WorldWideScience

Sample records for subarctic ecosystem response

  1. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase......The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... the understanding of the controls of BVOC emissions from subarctic ecosystems under climate change by studying the responses to long-term manipulations from leaf level to small ecosystem scale. Leaf-level studies showed different anatomical responses for warming and shading manipulations between studied species...

  2. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  3. Above-ground and below-ground plant responses to fertilization in two subarctic ecosystems

    NARCIS (Netherlands)

    Veen, G.F.; Sundqvist, Maja K.; Metcalfe, D.; Wilson, S.D.

    2015-01-01

    Soil nutrient supply is likely to change in the Arctic due to altered process rates associated with climate change. Here, we compare the responses of herbaceous tundra and birch forest understory to fertilization, considering both above- and below-ground responses. We added nitrogen and phosphorus

  4. Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem

    Science.gov (United States)

    Pedersen, Emily Pickering; Elberling, Bo; Michelsen, Anders

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas controlled by both biotic and abiotic processes. Few studies have investigated CH4 fluxes in subarctic heath ecosystems, and climate change-induced shifts in CH4 flux and the overall carbon budget are therefore largely unknown. Hence, there is an urgent need for long-term in situ experiments allowing for the study of ecosystem processes over time scales relevant to environmental change. Here we present in situ CH4 and CO2 flux measurements from a wet heath ecosystem in northern Sweden subjected to 16 years of manipulations, including summer warming with open-top chambers, birch leaf litter addition, and the combination thereof. Throughout the snow-free season, the ecosystem was a net sink of CH4 and CO2 (CH4 -0.27 mg C m-2 d-1; net ecosystem exchange -1827 mg C m-2 d-1), with highest CH4 uptake rates (-0.70 mg C m-2 d-1) during fall. Warming enhanced net CO2 flux, while net CH4 flux was governed by soil moisture. Litter addition and the combination with warming significantly increased CH4 uptake rates, explained by a pronounced soil drying effect of up to 32% relative to ambient conditions. Both warming and litter addition also increased the seasonal average concentration of dissolved organic carbon in the soil. The site was a carbon sink with a net uptake of 60 g C m-2 over the snow-free season. However, warming reduced net carbon uptake by 77%, suggesting that this ecosystem type might shift from snow-free season sink to source with increasing summer temperatures.

  5. Spectral properties of subarctic plants for remote ecosystem assessment

    Science.gov (United States)

    Golubeva, Elena; Tutubalina, Olga; Rees, Gareth; Zimin, Mikhail; Mikheeva, Anna

    2014-05-01

    Multispectral and hyperspectral satellite images are increasingly used to identify properties of vegetation, its state, dynamics and productivity. Arctic vegetation is sensitive to changing habitat conditions related to both natural causes (in particular climatic trends), and human impact (both direct and indirect, e.g. associated with air, soil and water pollution). Change in the state of individual plants and of vegetation cover in general enables their use as indicators of natural and anthropogenic processes, manifested in satellite images through change of their spectral reflectance properties. These processes can be studied by identifying significant links between spectral properties of objects in satellite images and corresponding properties of plants, recorded in situ. We focus on the spectral signatures of subarctic plants dominating treeline ecotone ecosystems to assess the feasibility of mapping the spatial structure and dynamics of vegetation using multispectral and hyperspectral satellite imagery. Our model objects are tundra plants and ecosystems in both natural and technogenically disturbed environments in the central part of the Kola Peninsula, Russia. We conducted ground spectroradiometry with two spectroradiometers: ASD FieldSpec 3 Hi-res (350-2500 nm range with resolution from 3 to 10 nm) and SkyeInstruments SpectroSense 2+ (bands centred at 480, 550, 680, 840 nm, 50-130 nm wide) for samples of different species: Betula pubescens S.L., B. tortuosa, Picea abies, Betula nana, Ledum palustre, Vaccinium uligimosum, V. myrtillus, V. vitis-idaea, Empetrum hermaphroditum, Cetraria islandica (L), Flavocetraria nivalis (Cetraria nivalis), Alectoria ochroleuca, Cladonia arbuscula S.L., Hylocomium splendens and Pleurozium Shreberi. The results demonstrate the ability of green vegetation to selectively reflect solar radiation, depending on the species composition and state of the plants. Our results will be included in a spectral library of northern plants

  6. The Bering Strait Region: A Window into Changing Benthic Populations in Response to Varying Subarctic-Arctic Connectivity and Ecosystem Dynamics

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.; Moore, S. E.

    2016-02-01

    A key ecological organizing principle for the northern Bering Sea and the adjoining southern Chukchi Sea just north of Bering Strait is that the shallow, seasonally productive waters lead to strong pelagic-benthic coupling to the sea floor, with deposition of fresh chlorophyll coinciding with the spring bloom as sea ice retreats. Both in situ production and advection of upstream phytodetritus to these regions support persistent biological hotspots that connect benthic prey to upper trophic benthivores. This northern marine ecosystem is dominated by marine macroinvertebrates (e.g. clams, polychaetes, sipunculids, and amphipods) that feed on the high production deposited rapidly to the seafloor, which in turn serve as food resources for diving mammals and seabirds, such as gray whales, bearded seals, eiders, and walruses. Between St. Lawrence Island and Bering Strait and northwards into the Chukchi Sea, the persistence of seasonal sea ice has significantly declined over the past two decades, and along with warming seawater temperatures, these changes have potential ramifications to ecosystem structure. Times-series data over the last 25 years indicate that these regions have experienced a northward shift in macrofaunal composition and a decline in core benthic biomass that matches patterns of reduced sea ice, warming seawater, and changing sediment grain size that relates to varying current patterns. This presentation will discuss these data in the context of both process studies from the region and results from the Distributed Biological Observatory (DBO), an international network of time series transects that is providing a framework to evaluate status and trends on a latitudinal bases in the Pacific Arctic region.

  7. Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers.

    Science.gov (United States)

    Callaghan, Terry V; Jonasson, Christer; Thierfelder, Tomas; Yang, Zhenlin; Hedenås, Henrik; Johansson, Margareta; Molau, Ulf; Van Bogaert, Rik; Michelsen, Anders; Olofsson, Johan; Gwynn-Jones, Dylan; Bokhorst, Stef; Phoenix, Gareth; Bjerke, Jarle W; Tømmervik, Hans; Christensen, Torben R; Hanna, Edward; Koller, Eva K; Sloan, Victoria L

    2013-08-19

    The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.

  8. Future stratospheric ozone depletion will affect a subarctic dwarf shrub ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Ulf

    1997-02-01

    The stratospheric ozone depletion and the concomitant increase in ultraviolet-B (UV-B, 280-320 nm) radiation is of global concern due to the effects of UV-B on living organisms. To investigate the effects of increased levels of UV-B, a field irradiation system was established at a subarctic dwarf shrub heath in Northern Sweden (68 deg N). An ozone depletion of 15% under clear sky conditions was simulated over a naturally growing ecosystem. The response of both individual components and processes was studied to reveal changes in ecosystem structure and function. Species with different life strategies (evergreen or deciduous) responded differently both in magnitude and direction. The evergreen species were more responsive to UV-B regarding shoot growth, which could be due to cumulative effects in long-lived tissues, since the retardation in relative growth increased over time of exposure. Leaves of evergreen species became thicker under enhanced UV-B, while leaves of deciduous species became thinner. Decomposition studies (laboratory and in situ) showed that indirect effects of UV-B, due to changes in leaf tissue chemistry affected microbial activity and slowed down the decomposition rate. More directly, UV-B decreased the abundance of some fungal species and hence the composition of species. However, no altered decomposition rate was found when decomposition progressed under high UV-B even if the microorganisms were fewer. This could be due to the increased direct photo degradation of litter that compensates for lower microbial activity. The decomposition rate is therefore strongly dependent on the interception of UV-B at the litter layer. This research has shown that ecosystem components and processes are affected in a number of ways and that there are indications of changes in species composition in a long-term perspective due to differences in responsiveness between the different species. 128 refs, 7 figs

  9. Remote Sensing Methods for Environmental Monitoring of Human Impact on sub-Arctic Ecosystems in Europe

    OpenAIRE

    Shipigina, Ekaterina

    2013-01-01

    The role and scale of human impact on the global environment is a question of special importance to the scientific community and the world as a whole. This impact has dramatically increased since the beginning of industrialisation, yet its understanding remains patchy. The sub-Arctic plays a central role in forming the global environment due to the vast territory of boreal forest and tundra. Severe climatic conditions make its ecosystems highly sensitive to any natural and human disturbances....

  10. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Climatic warming leads to the expansion of deciduous shrubs and trees in the Arctic. This leads to higher leaf litter inputs, which together with warming may alter the rate of carbon and nutrient cycling in the arctic ecosystems. We assessed effects of factorial warming and additional litter...... on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P...... in the uppermost 5 cm soil, while decreasing the pool of total P per unit area of the organic profile and having no significant effects on N concentrations or pools. Microbial biomass C and N were unaffected by the treatments, while the microbial biomass P increased significantly with litter addition. Soil...

  11. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...

  12. Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season

    DEFF Research Database (Denmark)

    Campioli, Matteo; Samson, Roeland; Michelsen, Anders

    2009-01-01

    Bryophytes and lichens abound in many arctic ecosystems and can contribute substantially to the ecosystem net primary production (NPP). Because of their growth seasonality and their potential for growth out of the growing season peak, bryophyte and lichen contribution to NPP may be particularly...... significant when vascular plants are less active and ecosystems act as a source of carbon (C). To clarify these dynamics, nonvascular and vascular aboveground NPP was compared for a subarctic heath during two contrasting periods of the growing season, viz. early-mid summer and late summer-early autumn....... Nonvascular NPP was determined by assessing shoot biomass increment of three moss species (Hylocomium splendens, Pleurozium schreberi and Dicranum elongatum) and by scaling to ecosystem level using average standing crop. For D. elongatum, these estimates were compared with production estimates obtained from...

  13. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T.N.; Gabrielsen, G.W.; Falk-Petersen, S.

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  14. Effects of long-term warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems

    DEFF Research Database (Denmark)

    Sjursen, Heidi; Michelsen, Anders; Jonasson, Sven Evert

    2005-01-01

    Soil microarthropod responses to long-term soil warming and increased fertilisation by addition of NKP or litter were assessed in three subarctic ecosystems. The experiment was carried out at three different field sites, where temperature and fertilisation manipulations had been running for 3...... had higher densities in the treatment with both fertilisation and warming. In the fellfield, we found increased densities of Oribatida, Gamasida and Actinedida in the fertilised treatments, and some increases in Oribatida and decreases in Collembola and Gamasida in warming treatments. In the heath......, there were increased densities of Collembola, Oribatida and Actinedida in the fertilised treatments, but we found no strong effects of warming. We suggest that the responses found in this study comply with the assumption that soil microarthropods are bottom-up controlled, and the observed changes...

  15. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  16. Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.

    Science.gov (United States)

    Leblans, Niki I W; Sigurdsson, Bjarni D; Vicca, Sara; Fu, Yongshuo; Penuelas, Josep; Janssens, Ivan A

    2017-11-01

    The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming-induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground-level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short- and long-term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming-driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high-latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming-induced extension of LOS has important implications for the C-sink potential of subarctic grasslands under climate

  17. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    Science.gov (United States)

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  18. Effects of Permafrost Thaw on Net Ecosystem Carbon Balance in a Subarctic Peatland

    Science.gov (United States)

    Wang, Z.; Roulet, N. T.; Moore, T. R.

    2014-12-01

    This research is to assess changes in net ecosystem carbon balance (NECB) with permafrost thaw in northern peatland: in particular how changes in C biogeochemistry influence NECB. Thawed transects associated with varying stages of permafrost thaw: from palsas with intact permafrost (P), through edge of palsa (EP), dry lawn (DL), wet lawn (WL), edge of thawed pond (ET), pond sedges (PS), to several thawed ponds (TP) in a subarctic peatland in northern Quebec were sampled in the snow free seasons of 2013 and 2014. The exchange of CO2 and CH4, vegetation, dissolved organic C (DOC) concentration and biodegradability, active layer depth, air and peat temperatures, water table depth (WT), pH, and conductivity were measured. Peat temperatures were quite similar among different locations, but the WT decreased significantly along the transect creating varied environmental conditions that supporting different plant communities. From dry to wet area, vegetation abundance and biomass showed reductions of shrubs and lichens, and increases of Sphagnum, grasses and sedges. Pore water pH increased from dry to wet area, and conductivity slightly decreased. Wet thaw area WL, ET and PS had relatively higher season gross ecosystem production (GEP) and higher season ecosystem respiration (ER), but relative similar net ecosystem CO2 exchange (NEE). Only TP had a significant higher positive season NEE. Palsa was the only CH4 sink, and quite high CH4 emissions were found after it thawed. CH4-C release significantly increased from dry to wet in thawed area, which even several times bigger than total C exchange in ET and PS. Generally, wet area had higher DOC concentration and higher DOC biodegradability indicated by lower SUVA254 (except PS which received great influence from pond). All components in the NECB (GEP, ER, CH4, DOC) increased significantly in magnitude from palsa to wet thawed area, and ecosystem C sink turned into source as palsa thawed into PS and TP. These results

  19. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    Science.gov (United States)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  20. Diurnal Variations of CH4 and CO2 Exchange in a Sub-Arctic Peatland Ecosystem

    Science.gov (United States)

    Berg, A.; Oquist, M. G.; Svensson, B. H.

    2003-04-01

    We investigated the diurnal variations of CH_4 and CO_2 fluxes from a sub-arctic peatland ecosystem in order to evaluate short-term controls on exchange dynamics and the importance of vascular plant photosynthetic activity. The study site was a semi-dry ombrotrophic habitat with a vascular plant community dominated by Eriophorum vaginatum L. and Carex rotundata Whalenb. Measurements were carried out at six sub-sites, three controls and three that were shaded with sack cloth in order to reduce the magnitude and extent of photosynthetic activity. Gas exchange rates, soil temperatures and porewater concentrations of methane and acetate were measured at 2--4 h intervals during a cloud-free diurnal cycle. During the day the variations in methane flux had the same temporal pattern as the gross photosynthetic rate and in combination with porewater acetate concentrations it could explain ca 60% of the variation. Average CH_4 emission rates tended to be higher during the night and correlated best with porewater CH_4 concentrations (r^2 > 0.9). When photosynthesis seized in the evening it was associated with an increase of acetate concentrations in the rhizosphere. This was followed by increases in porewater CH_4 concentrations and concomitant higher CH_4 flux rates with a lag of ca 2--4 h. The same pattern could be observed at both control and shaded sub-sites, but occurred earlier in the shaded, probably owing to an earlier decrease in light intensities. Apart from these substrate-based interactions we also found evidence confirming the importance of vascular plants in mediating CH_4 transport, and results suggest that this was linked to stomatal conductance. Our observations further stress the importance of vascular plant influence on CH_4 exchange dynamics from northern peatlands, and also add a new dimension to the complexities involved in these interactions.

  1. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs......, mosses and graminoids in fall, and investigated its partitioning among ecosystem components at several time points (October, November, April, May, June) through to the following spring/early summer. Soil microbes had acquired 65 ± 7% of the 15N tracer by October, but this pool decreased through winter....... The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after...

  2. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    Science.gov (United States)

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  3. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic

    Directory of Open Access Journals (Sweden)

    M. Jammet

    2017-11-01

    Full Text Available Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4 and carbon dioxide (CO2 with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface–atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for

  4. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic

    Science.gov (United States)

    Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto; Parmentier, Frans-Jan W.; Wik, Martin; Crill, Patrick; Friborg, Thomas

    2017-11-01

    Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33

  5. Foliar Expression of Parent Lithologic Composition in the Sub-Arctic: Examples from Heath Ecosystems of Abisko, Sweden.

    Science.gov (United States)

    Heim, E. W.; Tomczyk, N.; Remiszewski, K.; Bryce, J. G.; Frey, S. D.; Prado, M. F.; Varner, R. K.

    2014-12-01

    Climatic evolution and its effect on ecosystem stability through macronutrient acquisition is of particular interest in the fringe ecosystems of the Arctic and Sub-Arctic, regions predicted to face the most extreme temperature increases in Earth's changing climate. Accordingly enhanced understanding of climate change impacts on nutrient mobilization in recently glaciated terrains will factor importantly into accurate predictive models for future ecosystem health. Lithologic variation can lead to differences in geomorphic processes and thus influence landscape evolution [1]. Heath ecosystems in the region are developed on thin soils which place them close to parent material bedrock. Given the abundance of thin soils mantling bedrock, we assessed how bedrock geochemical content links with foliar composition of key macronutrients. We focused our studies on four sites near Abisko, Sweden (68°21'N 19°02'E) in metamorphosed sedimentary bedrock. In our sites the average annual air temperature has crossed the 0o threshold and has been linked to many cryospheric and ecological impacts [2]. Sites were chosen at the same elevation (700 m absl) and shared similar vegetation coverage. Three dominant species across our sampling sites include Betula nana, Empetrum nigrum, and Salix lapponum. E. Nigrum had consistent concentrations of foliar magnesium (Mg) and phosphorus (P) across the bedrock compositional gradients. B. nana and S. lapponum had consistently higher foliar Mg and P concentrations than E. nigrum across the gradients. Across a soil calcium (Ca) gradient, dominant species had a weak correlation between soil Ca and foliar Ca contents, R2 = 0.106. Soil Mg and P gradients were similarly poorly correlated with foliar abundances, R2 = -0.0228, and R2= -0.034 respectively. Expansion of our work into other lithologies will contribute towards improved predictive biogeochemical models of macronutrient acquisition and ecological evolution across changing Arctic ecosystems.

  6. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003......Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated...... herbivory affect vegetation, soil nutrient concentrations and soil microbial communities after 10-13 years of exposure. 2 We established a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisj rvi, Finland, in 1994. Warming was carried out using the open-top chamber...

  7. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  8. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, A.; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...

  9. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    contributions of bulk soil organic matter and plant-associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath...... tundra vegetation types in northern Sweden through a full annual cycle. We used a plant biomass removal treatment to differentiate bulk soil organic matter respiration from total ecosystem respiration in each vegetation type. Plant-associated and bulk soil organic matter carbon pools each contributed...... significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76...

  10. Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden

    Science.gov (United States)

    Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.

    2012-12-01

    Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.

  11. Traits explain the responses of a sub-arctic Collembola community to climate manipulation.

    NARCIS (Netherlands)

    Makkonen, M.A.; Berg, M.P.; van Hal, J.R.; Callaghan, T.V.; Press, M.C.; Aerts, R.

    2011-01-01

    Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will

  12. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... permafrost thaw, in contrast to surface soil thaw. Conclusions: Our results suggest that both arctic plants and microorganisms acquire amino acids released upon spring and permafrost thaw. Despite indications of more efficient utilization of added substrate in the High Arctic than the Subarctic, we conclude...

  13. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.

    Science.gov (United States)

    Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M

    2016-08-17

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. © 2016 The Author(s).

  14. Plant performance and soil nitrogen mineralization in response to simulation climate change in subarctic dwarf shrub heath

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, A.E.; Neill, C.; Melillo, J.M.; Crabtree, R.; Bowles, F.P. [Marine Biological Lab., Ecosystems Center, Woods Hole, MA (United States)

    1999-08-01

    To simulate a future, warmer climate, we subjected subarctic dwarf shrub heath to 5 deg. C direct soil warming for five consecutive growing seasons (1993-1997). Supplemental air warming treatments vere imposed on warmed soil by plastic tents in 1994 and open-top chambers in 1995. Plant responses to warming were assessed by changes in: (1) shrub phenology. (2) current-year aboveground biomass in the dominant shrubs (Empetrum hermaphroditum, Vaccinium myrtillus, V. uliginosum and V. vitis-idaea), and (3) vascular and nonvascular plant cover. We estimated warming effects on soil nitrogen (N) availability by in situ buried bag incubation of soils. Soil warming stimulated soil N cycling and shrub growth and development in the short term (2-3 yr). In the second lear, net N mineralization rates doubled in warmed soil (4.3 kg N ha{sup -1} season{sup -1} in untreated soil vs 9.2 kg ha{sup -1} season{sup -1}). Greater N availability likely contributed to the observed 62% increase in current-year growth of V. myrtillus the dominant deciduous shrub. In the third year, soil and air warming increased shoot production by > 80% in the evergreen shrubs V. vitis-idaea and E. hermaphroditum. Soil warming had no detectable effects on plant growth or soil N cycling in the fifth year, suggesting that the long-term response may be less dramatic than short-term changes. Past fertilization studies in arctic and subarctic tundra reported an increase in the abundance of graminoids. Despite enhanced soil N mineralization in the second year we found that warming had little effect on plant community composition after five years. Even in an extreme climate warming scenario, it appears that subarctic soils mineralize an order of magnitude less N than was applied in fertilization experiments. High-dose fertilization studies provide insight into controls on plant communities, but do not accurately simulate increases in N availability predicted for a warmer climate. (au)

  15. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Jonasson, Sven; Strom, Lena

    2008-01-01

    15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non-mycorrhiza......, the differences in 15N uptake patterns may also be due to differences in leaf longevity and woodiness between plant functional groups.......-mycorrhizal plants and in soil microorganisms, in order to reveal probable differences in acquisition patterns between the two functional plant types and between plants and soil microorganisms. Three weeks after the label addition, with the 15N-forms added with same amount of nitrogen per square meter, we analyzed...... the 15N-enrichment in total soil, in soil K2SO4 (0.5 M) extracts and in the microbial biomass after vacuum-incubation of soil in chloroform and subsequent K2SO4 extraction. Furthermore the 15N-enrichment was analyzed in current years leaves of the dominant plant species sampled three, five and 21 days...

  16. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha-1 ) and birch litter addition plots (2.8 ± 0.2 kg N ha-1 ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha-1 ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha-1 ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits. © 2016 John Wiley & Sons Ltd.

  17. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... in northern Sweden. Both climate and vegetation type were strong interactive controls on ecosystem CO2 production rates during winter. Of all variables tested, soil temperature explained by far the largest amount of variation in respiration rates (41-75%). Our results indicate that vegetation type only....... At the end of winter, within several days of snowmelt, gross ecosystem photosynthesis rates were of a similar magnitude to ecosystem respiration, resulting in significant net carbon gain in some instances. Finally, climate and vegetation type were also strong interactive controls on total wintertime...

  18. Nitrogen supply effects on leaf dynamics and nutritional soil feedbacks of plant species in a sub-arctic tundra ecosystem.

    NARCIS (Netherlands)

    Aerts, R.

    2009-01-01

    Global warming will lead to increased nitrogen supply in tundra ecosystems. How increased N supply affected leaf production, leaf turnover and dead leaf N input into the soil of Empetrum nigrum and Andromeda polifolia (evergreens), Eriophorum vaginatum (graminoid) and Betula nana (deciduous) in a

  19. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    deciduous and evergreen plant species decreased. Species dominance was correlated with uptake of 13C, i.e., the most productive species also took up the highest amount of glycine. The ecosystem exhibited a tendency towards lower colonization by ericoid mycorrhizal fungi and dark septate endophytes in hair...

  20. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients. There...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems.......Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...

  1. The Biogeochemical Response to Inter-decadal Atmospheric Forcing Across Watershed Scales in Canada's Subarctic

    Science.gov (United States)

    Spence, C.

    2016-12-01

    Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.

  2. Hepatocyte responses to in vitro freezing and β-adrenergic stimulation: Insights into the extreme freeze tolerance of subarctic Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2015-02-01

    The wood frog, Rana sylvatica LeConte 1825, is a freeze-tolerant amphibian widely distributed in North America. Subarctic populations of this species can survive experimental freezing to temperatures below -16 °C, whereas temperate populations tolerate freezing only at temperatures above -6 °C. We investigated whether hepatocytes isolated from frogs indigenous to Interior Alaska (subarctic) or southern Ohio (temperate) had distinct characteristics that could contribute to this variation in freeze tolerance capacity. Following in vitro freezing, cell damage, as assessed from lactate dehydrogenase leakage, was similar between samples from Alaskan and Ohioan frogs. Preincubation of cells in media containing glucose or urea, the two primary cryoprotectants used by R. sylvatica, markedly reduced freezing damage to hepatocytes; however, results suggested that cells of the northern phenotype were comparatively more amenable to cryoprotection by urea. Stimulation of isolated hepatocytes with β-adrenergic agonists, which simulates the freezing-induced cryoprotectant mobilization response, gave rates of glucose production from endogenous glycogen reserves that were similar between the populations. Our findings suggest that extreme freeze tolerance in subarctic R. sylvatica does not require an enhanced ability of the liver to resist freezing stress or rapidly mobilize cryoprotectant. © 2015 Wiley Periodicals, Inc.

  3. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    Science.gov (United States)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  4. Lake Ecosystem Responses to Holocene Climate Change at the Subarctic Tree-Line in Northern Sweden

    DEFF Research Database (Denmark)

    Reuss, Nina Steenberg; Hammarlund, Dan; Rundgren, Mats

    2010-01-01

    sedimentary pigments, diatoms, chironomids, pollen, biogenic silica (BSi), carbon (C), nitrogen (N) elemental and stable-isotope records, and total lake-water organic carbon (TOC) concentration inferred from near-infrared spectroscopy (NIRS), suggest that the Holocene development of Lake Seukokjaure......-term decrease in primary production. The onset of the local tree-line retreat around 3200 cal years BP was accompanied by more diverse and altered chironomid and diatom assemblages and indications of destabilized soils in the catchment by an increase in variability and absolute values of d13C. An abrupt drop...... in the C/N ratio around 1750 cal years BP was coupled to changes in the internal lake structure, in combination with changes in light and nutrient conditions, resulting in a shift in the phototrophic community from diatom dominance to increased influence of chlorophytes, likely dominated by an aquatic moss...

  5. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic

    Directory of Open Access Journals (Sweden)

    Tony Gutierrez

    2017-04-01

    Full Text Available In this study we report the formation of marine oil snow (MOS, its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC. The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m. A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax

  6. Wind and ecosystem response at the GLEES

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, R.C.; Wooldridge, G.L.; Massman, W.J.; Sommerfeld, R.A. [Forest Service, Fort Collins, CO (United States). Rocky Mountain Forest and Range Experiment Station

    1995-12-31

    Research was conducted to determine wind patterns and snow deposition at a high elevation alpine/subalpine ecotone site using deformation response of trees to prevailing winds. The research has provided detailed maps of wind speed, wind direction, and snow depth as determined from tree deformation. The effects of prevailing wind on tree blowdown at the site have also been described. This research is an example of interaction of biological and physical scientists working together to provide detailed description of an ecosystem response to the atmospheric environment.

  7. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  8. Ecosystem Responses to Pacific Storm Track Variability

    Science.gov (United States)

    Dannenberg, M. P.; Wise, E.

    2016-12-01

    Much of the precipitation delivered to western North America arrives during winter via the midlatitude Pacific storm track. The strength and position and of the storm track varies from year to year, and this variation is a major driver of western hydroclimate. We examine the responses of both hydrological and ecological indicators to the position of the storm track using a regional reanalysis, historical climate data, and remotely sensed land surface phenology and burn area estimates. We find that the standardized precipitation-evapotranspiration index (SPEI) exhibits a dipole-type response to variation in the position of the storm track. In the northwestern United States, more northerly storm tracks are associated with dry winters while more southerly storm tracks are associated with wet winters. Northwestern Canada shows the opposite response. Likewise, there is a negative relationship between snow water equivalent and storm track latitude throughout the Cascades, Sierras, and parts of the Rockies, but a positive relationship in northwestern Canada and eastern Alaska. Variability of the Pacific storm track and associated precipitation and snow pack anomalies have significant consequences for ecological and biogeochemical processes in the water-sensitive ecosystems of western North America. In the northwestern United States, the area burned by moderate and severe fire is positively correlated with storm track latitude, likely a result of drier conditions when the storm track is displaced north. While there is a relatively small response of vegetation phenology to storm track variability, the peak greenness of the land surface exhibits a dipole response similar to the SPEI. A long-term northerly shift in the position of the midlatitude Pacific storm track, as expected under a warming climate, could therefore alter both the prevailing hydroclimatic regimes and ecosystem processes of western North America.

  9. Response diversity determines the resilience of ecosystems to environmental change.

    Science.gov (United States)

    Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro

    2013-05-01

    A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from

  10. Factors Influencing the Stable Oxygen and Hydrogen Isotopic Composition (δ 18O and δ D) of a Subarctic Freshwater Lake Ecosystem

    Science.gov (United States)

    Wang, Y.; Wooller, M. J.

    2005-12-01

    Previous studies have shown that the stable oxygen and hydrogen isotopic compositions (δ 18O and δD) in various animal tissues can be used to examine past climates and animal migration pattern. Little attention has been paid to the relative roles of diet and water influencing the overall δ 18O and δD of animal tissues in freshwater ecosystems. It is unclear whether different trophic levels in a freshwater lake ecosystem have an identical relationship to the water that surrounds them. The δ18O and δD values of animal tissues may be controlled by numerous different factors, including metabolic and biosynthetic isotopic fractionation and variations of δ 18O and δD in the food available. We began to examine these issues by analyzing the δ 18O and δD throughout a freshwater aquatic ecosystem at Smith Lake in Alaska. We collected samples representing primary producers and consumers (primary and secondary). Samples included green algae, various aquatic plants, such as Nuphar variegatum (water lily), Polygonum amphibium (water smartweed), Carex utriculata (sedge), Utricularia vulgaris (common bladderwort), Typha latifolia (common cattail), and a range of aquatic invertebrates, including Chironomus. sp (midge), Zygoptera (damselfly), Anisoptera (dragonfly), Dytiscidae (diving beetle) and Euhirudinea (leeches). The δ 18O and δD of Smith Lake water were ~-13.5e and -129.0e, respectively, and we present the δ 18O and δD of the rest of the ecosystem relative to these data. For instance, the δ 18O of chironomus sp. was ~12.1, which is greater than the of the lake water. Preliminary results suggest the extent of the fractionation between δ 18O of chironomids vs. lake water δ 18O is consistent with previous studies. Our data provide an insight into the range of variations that could be expected within a single freshwater ecosystem.

  11. Animals as indicators of ecosystem responses to air emissions

    Science.gov (United States)

    Newman, James R.; Schreiber, R. Kent

    1984-07-01

    With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.

  12. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    The Arctic embraces one of the simplest terrestrial ecosystems in the world and yet it covers roughly 11% of the world’s surface. Summer temperatures rarely exceed 10°C and most of the limited precipitation falls as snow. The landmasses are predominantly polar tundra, while the Arctic Ocean...... is frozen solid for the main part of the year. However, in recent decades, arctic temperatures have in-creased between two and three times that of the global averages, which have had a substantial impact on the physical environment of the arctic ecosystem, such as deglaciation of the Greenland inland ice......-trophic interaction patterns. However, while studies have documented the climatic effects on the arctic biotic ecosys-tem, detailed studies have been constrained by short time series or the lack of comprehensive multivariate tools, which enables the disentanglement of direct effects and effects mediated through...

  13. Marine ecosystem responses to Cenozoic global change.

    Science.gov (United States)

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-02

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  14. Beyond Turing : The response of patterned ecosystems to environmental change

    NARCIS (Netherlands)

    Siteur, Koen; Siero, Eric; Eppinga, Maarten B.; Rademacher, Jens D M; Doelman, Arjen; Rietkerk, Max

    2014-01-01

    Spatially periodic patterns can be observed in a variety of ecosystems. Model studies revealed that patterned ecosystems may respond in a nonlinear way to environmental change, meaning that gradual changes result in rapid degradation. We analyze this response through stability analysis of patterned

  15. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Johnson, Richard K.

    2013-01-01

    1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change

  16. Terrestrial ecosystem responses to global change: A research strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  17. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  18. Wind and ecosystem response at the GLEES

    Science.gov (United States)

    Robert C. Musselman; Gene L. Wooldridge; William J. Massman; Richard A. Sommerfeld

    1995-01-01

    Research was conducted to determine wind patterns and snow deposition at a high elevation alpine/subalpine ecotone site using deformation response of trees to prevailing winds. The research has provided detailed maps of wind speed, wind direction, and snow depth as determined from tree deformation. The effects of prevailing wind on tree blowdown at the site have also...

  19. Epipelagic nekton of the North Pacific Subarctic and Transition Zones

    Science.gov (United States)

    Brodeur, Richard; McKinnell, Skip; Nagasawa, Kazuya; Pearcy, William; Radchenko, Vladimir; Takagi, Shogo

    1999-03-01

    During the 1980s and 1990s, scientific research cruises and commercial gillnet operations with scientific observers aboard were conducted throughout much of the Subarctic and Transition Zones of the North Pacific Ocean. These studies produced one of the most extensive databases ever collected on the relative species composition and trophic structure of epipelagic nekton of the Subarctic and Transition Zones in the North Pacific Ocean. Data from Japanese high-seas gillnet research surveys (1981-1991) were examined using multivariate analytical techniques to analyse community structure of nektonic cephalopods, elasmobranchs, and teleosts in the North Pacific Subarctic and Transition Zones during the summer months, emphasizing differences between the eastern and western Subarctic Gyres. Species diversity generally increased going from west to east, which was apparently associated with the greater range of temperatures in the east. Discriminant analysis was able to correctly classify about half the catch locations into their respective regions. Catches from multinational drift gillnet commercial fisheries operations in 1990-1991 mainly in the Transition Zone were also examined. Classification techniques were employed to determine species associations and multivariate analyses were used to examine relationships of these assemblages to environmental data. We found that some species are often captured in the same gillnet sets and form species associations that are distinct in ordination space, but these associations are loose and may vary appreciably from year to year. We review recent studies on the feeding habits and daily ration of the dominant species and construct food webs for the eastern and western Subarctic and Transition Zone systems emphasizing the role that nekton play in these pelagic ecosystems.

  20. Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems

    Science.gov (United States)

    Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen

    2009-04-01

    As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.

  1. Hysteresis response of daytime net ecosystem exchange during drought

    Directory of Open Access Journals (Sweden)

    N. Pingintha

    2010-03-01

    Full Text Available Continuous measurements of net ecosystem CO2 exchange (NEE using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.

  2. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  3. Microbial responses to experimental warming in a peatland forest ecosystem

    Science.gov (United States)

    Kluber, L. A.; Hanson, P. J.; Schadt, C. W.

    2016-12-01

    The Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment is a ten-year ecosystem manipulation experiment examining how peatland forests respond to increased temperature and CO2 levels. This experiment is expected to lead to various changes in ecosystem processes, including microbially mediated biogeochemical cycles that may ultimately alter the overall C balance of these ecosystems. The initial phase of this experiment began over the summer of 2014 by heating deep subsurface peat to +2.25, +4.5, +6.75 and +9.0 °C above ambient plots with a target heating zone of 1.5-2 meters depth. Whole ecosystem warming began the summer of 2015 with the addition of aboveground heating to the same target temperatures. The response of microbial communities to in-situ warming is assessed with qPCR and rRNA amplicon sequencing at eleven discrete depths across the peat profile to a depth of 200 cm. Additionally, metagenomic sequencing is used to characterize microbial metabolic and functional potential on four depths per profile. After one year of deep peat warming, microbial community structure and abundance of bacterial, archaeal, fungal, and methanogenic populations showed strong vertical stratification across the peat depth profile yet no clear response to the temperature treatments. In an effort to identify factors that may be limiting decomposition and microbial community change in deep peat, we conducted a microcosm incubation of deep peat (150-200 cm depth) at 6 and 15 °C to mimic ambient and +9 °C SPRUCE conditions. Additional treatments included elevated pH and the addition of N and P. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing. Increasing temperature elevated both CO2 and CH4 production while elevated pH only resulted in greater CH4 production. The effects of elevating temperature and pH in combination with N, P, or N+P additions were more

  4. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake.

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčová, Jana; Knudsen, Rune; Kuhn, Jesper A; Henriksen, Eirik H; Siwertsson, Anna; Shaw, Jenny C; Kuris, Armand M; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D; Kostadinova, Aneta

    2017-05-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages) and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages. Copyright © 2017 Australian Society for Parasitology. All rights reserved.

  5. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  6. Stream biofilm responses to flow intermittency: from cells to ecosystems

    Directory of Open Access Journals (Sweden)

    Sergi eSabater

    2016-03-01

    Full Text Available Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria and algae, during dryness. Algal and bacterial communities show remarkable decreases in their diversity, at least locally (at the habitat scale. Biofilms also respond with significant physiological plasticity to each of the hydrological changes. The decreasing humidity of the substrata through the drying process, and the changing quantity and quality of organic matter and nutrients available in the stream during that process, causes unequal responses on the biofilm bacteria and algae. Biofilm algae are affected faster than bacteria by the hydric stress, and as a result the ecosystem respiration resists longer than gross primary production to the increasing duration of flow intermittency. This response implies enhancing ecosystem heterotrophy, a pattern that can be exacerbated in temporary streams suffering of longer dry periods under global change.

  7. Where California Meets Alaska: Ecosystem Response in a Transition Zone

    Science.gov (United States)

    Crawford, W.; Pena, A.; Irvine, J. R.

    2008-12-01

    Ecosystems along the west coast of Vancouver Island share features with those of the northern California Current and also with the southern part of the Alaska Coastal Current, and provide the richest fisheries of these two regimes. Studies of the past few decades reveal surprisingly consistent biological responses to changes in ocean temperatures, partly due to the extreme warm and cool years since 1998. Zooplankton populations, migrating salmon, and fledgling seabirds are rapidly affected by changing ocean conditions, whereas the biomass of resident fish stocks responds over several years or even decades. The specific mechanisms responsible for these temperature-related changes vary from species to species, and many are unknown. We will present examples of how influx of predators, timing of food availability, and wind and coastal weather contribute to the response of coastal populations. Results are based on statistical analyses of many decades of observations and also on biophysical models. The responses to past temperature variability suggest which species will eventually thrive with climate warming and the speed with which these changes might occur. One unresolved factor is the ability of cold water species to survive and rebound after warm years, and of warm-water species to recover after cold years. These responses will be increasingly important, because the IPCC models suggest increasing local ocean temperature variability during this century.

  8. Marine Ecosystem Response to the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Edwards, Martin; Beaugrand, Gregory; Helaouët, Pierre; Alheit, Jürgen; Coombs, Stephen

    2013-01-01

    Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries. PMID:23460832

  9. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  10. Ecosystem response to antibiotics entering the aquatic environment.

    Science.gov (United States)

    Costanzo, Simon D; Murby, John; Bates, John

    2005-01-01

    Awareness of antibiotics in wastewaters and aquatic ecosystems is growing as investigations into alternate pollutants increase and analytical techniques for detecting these chemicals improve. The presence of three antibiotics (ciprofloxacin, norfloxacin and cephalexin) was evaluated in both sewage effluent and environmental waters downstream from a sewage discharge. Bacteria cultured from the sewage bioreactor and receiving waters were tested for resistance against six antibiotics (ciprofloxacin, tetracycline, ampicillin, trimethoprim, erythromycin and trimethoprim/sulphamethoxazole) and effects of short term exposure (24 h) to antibiotics on bacterial denitrification rates were examined. Antibiotics were detected entering the sewage treatment plant with varying levels of removal during the treatment process. Antibiotics were also detected in effluent entering receiving waters and detectable 500 m from the source. Among the bacteria cultured from the sewage bioreactor, resistance was displayed against all six antibiotics tested and bacteria cultured from receiving waters were resistant against two of the antibiotics tested. Rates of denitrification were observed to decrease in response to some antibiotics and not to others, though this was only observed at concentrations exceeding those likely to be found in the environment. Findings from this preliminary research have indicated that antibiotics are entering our aquatic systems and pose a potential threat to ecosystem function and potentially human health.

  11. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund

    2010-01-01

    • Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....

  12. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    important for the lake annual emissions compared to the length of the period, as it turned the lake from a small summer CO2 sink into an annual source. Annual inter-annual variability was notable in the magnitude of the CH4 spring release and needs further investigation. The high temporal resolution......-out and the release of CH4 and CO2 was established. These results underline the crucial importance of shoulder seasons in the annual carbon emissions from seasonally frozen lakes. Overall, the lake was an important annual source of carbon to the atmosphere, partially compensating the higher, annual sink function......Ongoing climate warming is expected to affect the carbon functioning of subarctic ecosystems. Lakes and wetlands, which are common ecosystems of the high northern latitudes, are of utmost interest in this context because they exchange large amounts of the climate-forcing gases methane (CH4...

  13. Root Responses to Altered Ecosystem N/P Stoichiometry in a Mediterranean Tree-Grass Ecosystem

    Science.gov (United States)

    Nair, Richard; Moreno, Gerado; Morris, Kendalynn; Schrumpf, Marion; Migliavacca, Mirco

    2017-04-01

    Biological components of the soil system (plant roots, fungi, microbes) may respond to biogeochemical drivers (e.g. nutrient status, water availability, C availability) in dissimilar ways due to differing scales, activities and access to resources. Understanding individual components and their phenology in the soil system is therefore critical to interpret overall fluxes. In seasonally dry systems, plants balance belowground investment with other growth and maintenance in life strategies where water limitations (in dry periods), nutrient limitations (in wet periods) and temperature/light limitations (in winter) interact, varying the need to invest in gaining these three resources throughout the year. Additionally, root growth may also be desynchronized with overall nutrient demand due to the ability to take up nutrients outside of seasonal periods of demand for storage and subsequent reallocation. We examined root responses to an ecosystem level stoichiometry (+N / +N+P) manipulation experiment at a highly instrumented site in a strongly seasonal semi-arid tree-grass ('dehesa') system (Majadas del Tietar, Spain). We are interested in whether root growth and phenology is affected by differing demand for nutrients/water both between sites and at tree and grass-dominated subsites. Many non-invasive, ecosystem-scale methods to measure changes in biogeochemical cycling focus only on integrated whole-system fluxes or above-ground change and it is difficult to extract a root signal. However, local soil respiration fluxes and root growth introduces a variety of method-dependent artefacts and drawbacks necessitating multiple approaches and careful interpretation. Therefore, in coordination with indirect measurements (subcanopy fluxes via eddy covariance, soil respiration chambers) we are using direct soil coring, ingrowth cores and repeatable measurements from custom-built minirhizotron systems to attempt to assess site-level variation in root biomass and phenology. In this

  14. Effects of a warmer climate on seed germination in the subarctic

    Science.gov (United States)

    Milbau, Ann; Graae, Bente Jessen; Shevtsova, Anna; Nijs, Ivan

    2009-01-01

    Background and Aims In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined. Methods Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year. Key Results Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate. Conclusions Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration

  15. Response of grassland ecosystems to prolonged soil moisture deficit

    Science.gov (United States)

    Ross, Morgan A.; Ponce-Campos, Guillermo E.; Barnes, Mallory L.; Hottenstein, John D.; Moran, M. Susan

    2014-05-01

    Soil moisture is commonly used for predictions of plant response and productivity. Climate change is predicted to cause an increase in the frequency and duration of droughts over the next century, which will result in prolonged periods of below-normal soil moisture. This, in turn, is expected to impact regional plant production, erosion and air quality. In fact, the number of consecutive months of soil moisture content below the drought-period mean has recently been linked to regional tree and shrub mortality in the southwest United States. This study investigated the effects of extended periods of below average soil moisture on the response of grassland ANPP to precipitation. Grassland ecosystems were selected for this study because of their ecological sensitivity to precipitation patterns. It has been postulated that the quick ecological response of grasslands to droughts can provide insight to large scale functional responses of regions to predicted climate change. The study sites included 21 grassland biomes throughout arid-to-humid climates in the United States with continuous surface soil moisture records for 2-13 years during the drought period from 2000-2013. Annual net primary production (ANPP) was estimated from the 13-year record of NASA MODIS Enhanced Vegetation Index extracted for each site. Prolonged soil moisture deficit was defined as a period of at least 10 consecutive months during which soil moisture was below the drought-period mean. ANPP was monitored before, during and after prolonged soil moisture deficit to quantify shifts in the functional response of grasslands to precipitation, and in some cases, new species assemblages that included invasive species. Preliminary results indicated that when altered climatic conditions on grasslands led to an increase in the duration of soil water deficit, then the precipitation-to-ANPP relation became non-linear. Non-linearity was associated with extreme grassland dieback and changes in the historic

  16. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms

    DEFF Research Database (Denmark)

    Grogan, P.; Michelsen, A.; Ambus, P.

    2004-01-01

    of which is realistic of in situ spatial and temporal variation in field conditions, on C and N dynamics in sub-arctic heath tundra mesocosms. In addition, N-15 isotopic label was used to follow the partitioning of a labile N pool between major ecosystem components, both during the freeze-thaw treatments...

  17. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    NARCIS (Netherlands)

    Stevens, C.J.; Manning, P.; Berg, van den L.J.L.; Graaf, de M.C.C.; Wamelink, G.W.W.; Boxman, A.W.; Bleeker, A.; Vergeer, P.; Arroniz-Crespo, M.; Limpens, J.; Lamers, L.P.M.; Bobbink, R.; Dorland, E.

    2011-01-01

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NHx and NOy) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and

  18. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  19. Future climate change will favour non-specialist mammals in the (subarctics.

    Directory of Open Access Journals (Sweden)

    Anouschka R Hof

    Full Text Available Arctic and subarctic (i.e., [sub]arctic ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (subarctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (subarctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature.

  20. Individual and Combined Responses of Stream Ecosystems to Multiple Stressors

    National Research Council Canada - National Science Library

    Colin R. Townsend; S. Sebastian Uhlmann; Christoph D. Matthaei

    2008-01-01

    1. Managers must understand the effects of stressors on ecosystems in order to identify thresholds of harm but, to be meaningful, thresholds will usually need to be defined for situations where multiple...

  1. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.

    2010-01-01

    to the fungal symbionts. In this study, we investigated how ericoid mycorrhiza (ErM), fine endophytes (FE) and dark septate endophytes (DSE) in roots responded to elevated atmospheric CO2 concentrations and warming in the dwarf shrub understory of a birch forest in the subarctic region of northern Sweden...

  2. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

    OpenAIRE

    Geffen, van, LCMM; Berg, M.P.; Aerts, R.

    2011-01-01

    As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all pos...

  3. Ecosystem features determine seagrass community response to sea otter foraging

    Science.gov (United States)

    Hessing-Lewis, Margot; Rechsteiner, Erin U.; Hughes, Brent B.; Tinker, M. Tim; Monteith, Zachary L.; Olson, Angeleen M.; Henderson, Matthew Morgan; Watson, Jane C.

    2017-01-01

    Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research.

  4. Ecosystem features determine seagrass community response to sea otter foraging.

    Science.gov (United States)

    Hessing-Lewis, Margot; Rechsteiner, Erin U; Hughes, Brent B; Tim Tinker, M; Monteith, Zachary L; Olson, Angeleen M; Henderson, Matthew Morgan; Watson, Jane C

    2017-12-06

    Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparing Apples to Oranges: Common Trends and Thresholds in Anthropogenic and Environmental Pressures across Multiple Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Jamie C. Tam

    2017-09-01

    Full Text Available Ecosystem-based management (EBM in marine ecosystems considers impacts caused by complex interactions between environmental and anthropogenic pressures (i.e., oceanographic, climatic, socio-economic and marine communities. EBM depends, in part, on ecological indicators that facilitate understanding of inherent properties and the dynamics of pressures within marine communities. Thresholds of ecological indicators delineate ecosystem status because they represent points at which a small increase in one or many pressure variables results in an abrupt change of ecosystem responses. The difficulty in developing appropriate thresholds and reference points for EBM lies in the multidimensionality of both the ecosystem responses and the pressures impacting the ecosystem. Here, we develop thresholds using gradient forest for a suite of ecological indicators in response to multiple pressures that convey ecosystem status for large marine ecosystems from the US Pacific, Atlantic, sub-Arctic, and Gulf of Mexico. We detected these thresholds of ecological indicators based on multiple pressures. Commercial fisheries landings above approximately 2–4.5 t km−2 and fisheries exploitation above 20–40% of the total estimated biomass (of invertebrates and fish of the ecosystem resulted in a change in the direction of ecosystem structure and functioning in the ecosystems examined. Our comparative findings reveal common trends in ecosystem thresholds along pressure gradients and also indicate that thresholds of ecological indicators are useful tools for comparing the impacts of environmental and anthropogenic pressures across multiple ecosystems. These critical points can be used to inform the development of EBM decision criteria.

  6. Butterfly response and successional change following ecosystem restoration

    Science.gov (United States)

    Amy E. M. Waltz; W. Wallace Covington

    2001-01-01

    The Lepidoptera (butterflies and moths) can be useful indicators of ecosystem change as a result of a disturbance event. We monitored changes in butterfly abundance in two restoration treatment units paired with adjacent untreated forest at the Mt. Trumbull Resource Conservation Area in northern Arizona. Restoration treatments included thinning trees to density levels...

  7. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  8. Response of South American Ecosystems to Precipitation Variability

    Science.gov (United States)

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.

    2009-12-01

    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  9. Value assessment of ecosystem services in nature reserves in Ningxia, China: a response to ecological restoration.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Changes in land use can cause significant changes in the ecosystem structure and process variation of ecosystem services. This study presents a detailed spatial, quantitative assessment of the variation in the value of ecosystem services based on land use change in national nature reserves of the Ningxia autonomous region in China. We used areas of land use types calculated from the remote sensing data and the adjusted value coefficients to assess the value of ecosystem services for the years 2000, 2005, and 2010, analyzing the fluctuations in the valuation of ecosystem services in response to land use change. With increases in the areas of forest land and water bodies, the value of ecosystem services increased from 182.3×10(7 to 223.8×10(7 US$ during 2000-2010. Grassland and forest land accounted for 90% of this increase. The values of all ecosystem services increased during this period, especially the value of ecosystem services for biodiversity protection and soil formation and protection. Ecological restoration in the reserves had a positive effect on the value of ecosystem services during 2000-2010.

  10. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  11. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    DEFF Research Database (Denmark)

    Ivits, Eva; Horion, Stéphanie Marie Anne F; Fensholt, Rasmus

    2014-01-01

    -temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity...... in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations......Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio...

  12. Effects of warming on CO2, N2O and CH4 fluxes and underlying processes from subarctic tundra, Northwest Russia

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Biasi, Christina; Martikainen, Pertti J.

    2014-05-01

    Peatlands, especially those located in the highly sensitive arctic and subarctic latitudes, are known to play a major role in the global carbon cycle. Predicted climatic changes - entailing an increase in near-surface temperature and a change in precipitation patterns - will most likely have a serious yet uncertain impact on the greenhouse gas (GHG) balance of these ecosystems. Microbial processes are enhanced by warmer temperatures which may lead to increased trace gas fluxes to the atmosphere. However, the response of ecosystem processes and related GHG fluxes may differ largely across the landscape depending on soil type, vegetation cover, and moisture conditions. In this study we investigate how temperature increase potentially reflects on GHG fluxes (CO2, CH4 and N2O) from various tundra surfaces in the Russian Arctic. These surfaces include raised peat plateau complexes, mineral tundra soils, bare surfaces affected by frost action such as peat circles and thermokarst lake walls, as well as wetlands. Predicted temperature increase and climate change effects are simulated by means of open top chambers (OTCs), which are placed on different soil types for the whole snow-free period. GHG fluxes, gas and nutrient concentrations in the soil profile, as well as supporting environmental parameters are monitored for the full growing season. Aim of the study is not only the quantification of aboveground GHG fluxes from the study area, but the linking of those to underlying biogeochemical processes in permafrost soils. Special emphasis is placed on the interface between active layer and old permafrost and its response to warming, since little is known about the lability of old carbon stocks made available through an increase in active layer depth. Overall goal of the study is to gain a better understanding of C and N cycling in subarctic tundra soils and to deepen knowledge in respect to carbon-permafrost feedbacks in respect to climate.

  13. Long-term ecosystem response to the Exxon Valdez oil spill.

    Science.gov (United States)

    Peterson, Charles H; Rice, Stanley D; Short, Jeffrey W; Esler, Daniel; Bodkin, James L; Ballachey, Brenda E; Irons, David B

    2003-12-19

    The ecosystem response to the 1989 spill of oil from the Exxon Valdez into Prince William Sound, Alaska, shows that current practices for assessing ecological risks of oil in the oceans and, by extension, other toxic sources should be changed. Previously, it was assumed that impacts to populations derive almost exclusively from acute mortality. However, in the Alaskan coastal ecosystem, unexpected persistence of toxic subsurface oil and chronic exposures, even at sublethal levels, have continued to affect wildlife. Delayed population reductions and cascades of indirect effects postponed recovery. Development of ecosystem-based toxicology is required to understand and ultimately predict chronic, delayed, and indirect long-term risks and impacts.

  14. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses. These cha...... to environmental changes, recommendations are made for the establishment of long-term observatories across the Arctic, in support of sustainable management and conservation actions........ These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors......The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses...

  15. Variation in the Adaptive Capacity of Plankton Alters Marine Ecosystem Responses to Climate Change.

    Science.gov (United States)

    Kremer, C. T.; Stock, C. A.; Vasseur, D.; Sarmiento, J. L.

    2016-02-01

    Ecosystem responses to climate change depend on the collective reactions of many species, which individually can evolve, migrate, or decline. Evolutionary responses will be particularly important in areas that experience extreme or novel conditions, such as the tropics. Ecosystem function in these regions will depend on the pace of climate change, the rate at which species can adapt, and the consequences of maladaptation. Marine ecosystem models are powerful tools for exploring climate change scenarios. They can describe the physical effects of climate change and the transport (dispersal) of plankton in detail, but rarely account for evolutionary responses. We studied the response of marine ecosystems to changing ocean temperatures given different evolutionary scenarios, using an intermediate complexity global ecosystem model (COBALT) embedded within GFDL's Earth System Model. We characterized the limits of present-day plankton species to tolerate high temperatures using empirical data. Informed by this, we explored four evolutionary scenarios: (1) phytoplankton and zooplankton are limited in their response to climate change by standing variation and cannot evolve higher temperature tolerances, (2) phytoplankton can evolve, but not zooplankton, (3) phytoplankton and smaller zooplankton can evolve, but not large zooplankton, and (4) all groups evolve rapidly. Differing rates of evolutionary response between groups are likely, driven by variation in body size, generation time, reproductive mode, and population size. We will describe the results of these bounding simulations, focusing on equatorial regions. Our results highlight the importance of incorporating evolution in climate change and ecosystem studies, while providing an example of how to do so. Finally, our results illustrate how interactions between evolution, ecology, and climate variability can lead to markedly different future ecosystems.

  16. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change

    NARCIS (Netherlands)

    Wijk, van M.T.; Clemmensen, K.E.; Shaver, G.R.; Williams, M.; Callaghans, T.V.; Chapin, F.S.; Cornelissen, J.H.C.; Gough, L.; Hobbie, S.E.; Jonasson, S.; Lees, J.A.; Michelsen, A.; Press, M.C.; Richardsons, S.J.; Rueth, H.

    2004-01-01

    Long-term ecosystem-level experiments, in which the environment is manipulated in a controlled manner, are important tools to predict the responses of ecosystem functioning and composition to future global change. We present the results of a meta-analysis performed on the results of long-term

  17. Linking above and belowground responses to global change at community and ecosystem scales.

    Energy Technology Data Exchange (ETDEWEB)

    Antoninka, Anita [Northern Arizona University; Wolf, Julie [Northern Arizona University; Bowker, Matt [Northern Arizona University; Classen, Aimee T [ORNL; JohnsonPhD, Dr Nancy C [Northern Arizona University

    2009-01-01

    Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. After two growing seasons, biomass responses of plant communities were recorded, and soil community responses were measured using microscopy, phospholipid fatty acids (PLFA) and community-level physiological profiles (CLPP). Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by strongly influencing the composition of plant and soil communities. For example, the presence of AM fungi had a strong influence on other root and soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and thus, the mycorrhizal treatments had the highest NPP. In contrast, non-mycotrophic forbs were dominant during the second growing season and thus, the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N; and the composition of the soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities

  18. Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS II)

    Science.gov (United States)

    Hashimoto, Shinya; Toda, Shuji; Suzuki, Koji; Kato, Shungo; Narita, Yasusi; Kurihara, Michiko K.; Akatsuka, Yoko; Oda, Hiroshi; Nagai, Takahiro; Nagao, Ippei; Kudo, Isao; Uematsu, Mitsuo

    2009-12-01

    Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5-30 m depth) increased from 0.94 to 2.81 μg L -1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH 3Br; 5-30 m depth) increased from 6.4 to 13.4 pmol L -1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19'-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH 3Br in the seawater. After fertilization, the air-sea flux of CH 3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH 3Cl) due to iron fertilization. Furthermore, CH 3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH 3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L -1), dibromomethane (2.1 and 2.2 pmol L -1), and dibromochloromethane (1.0 and 1.2 pmol L -1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings ( in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological

  19. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems.

    NARCIS (Netherlands)

    Douma, J.C.; Bardin, V.; Bartholomeus, R.P.; van Bodegom, P.M.

    2012-01-01

    Our understanding of the generality of plant functional responses to water availability is limited; current field studies use either very rough approximations of water and oxygen availability or only focus on water-stressed ecosystems. Studies that relate species' responses to a surplus of water are

  20. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems

    NARCIS (Netherlands)

    Douma, J.C.; Bardin, V.; Bartholomeus, R.P.; Bodegom, van P.M.

    2012-01-01

    1. Our understanding of the generality of plant functional responses to water availability is limited; current field studies use either very rough approximations of water and oxygen availability or only focus on water-stressed ecosystems. Studies that relate species' responses to a surplus of water

  1. Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil

    NARCIS (Netherlands)

    Daebeler, Anne; Bodelier, Paul L.E.; Hefting, Mariet M.; Rütting, Tobias; Laanbroek, Hendrikus J.

    Abstract The balance of microbial nitrogen (N) transformation processes in sub-arctic terrestrial ecosystems is most likely affected by global change, with potential feedbacks to greenhouse gas emissions and eutrophication. Soil temperature and N availability – their global increases being two of

  2. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Science.gov (United States)

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  3. Changing Arctic ecosystems - measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate

    Science.gov (United States)

    Pearce, John; DeGange, Anthony R.; Flint, Paul; Fondell, Tom F.; Gustine, David; Holland-Bartels, Leslie; Hope, Andrew G.; Hupp, Jerry; Koch, Josh; Schmutz, Joel; Talbot, Sandra L.; Ward, David; Whalen, Mary

    2012-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades, leading to thawing of on-shore permafrost and the disappearance of sea ice at an unprecedented rate. The loss of sea ice has increased ocean wave action, leading to higher rates of erosion and salt water inundation of coastal habitats. Warming temperatures also have advanced the overall phenology of the region, including earlier snowmelt, lake ice thaw, and plant growth. As a result, many migratory species now arrive in the Arctic several days earlier in spring than in the 1970s. Predicted warming trends for the future will continue to alter plant growth, ice thaw, and other basic landscape processes. These changes will undoubtedly result in different responses by wildlife (fish, birds, and mammals) and the food they rely upon (plants, invertebrates, and fish). However, the type of response by different wildlife populations and their habitats-either positively or negatively-remains largely unknown.

  4. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    Science.gov (United States)

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry. © 2014 John Wiley & Sons Ltd.

  5. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.

    Science.gov (United States)

    Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka

    2014-06-01

    Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations

  6. From groundwater abstraction to vegetative response in fen ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole Munch; Jensen, Jacob Birk; Pedersen, Morten Lauge

    2014-01-01

    periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water-level vegetation relations. The results provide a rare quantitative foundation for decision making...

  7. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    Directory of Open Access Journals (Sweden)

    Eva Ivits

    2014-05-01

    Full Text Available Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs based on common spatio-temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI and FPAR3g anomalies (1982–2011 by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs produced here thus have potential in supporting global change studies by mapping reference conditions of long term ecosystem changes.

  8. Structural diversity of water-limited savanna and ecosystem response to climatological variability

    Science.gov (United States)

    Nosshi, M. I.; Brunsell, N. A.

    2016-12-01

    Determining the sensitivity of ecosystem response to environmental variability is fundamental to understand the capacity of ecosystems to resist and recover from change. Despite limitations to infer about biotic mechanisms, remote sensing has the advantage of high temporal resolution, over long records, to address fundamental challenges in ecology in an environmental context. The degree of structural diversity in water-limited savanna changes across a climatological gradient over the sand covered area in interior southern Africa, between 29° S to the equator and 14° E to 28° E. To determine the coupling between structural diversity and ecosystem function in water-limited ecosystems, we use a 15-year record of daily precipitation, and satellite data for Normalized Difference Vegetation Index (NDVI), matching the same time period (2001-2015), along the Kalahari sand sheet. Savanna ecosystems show a varied temporal sensitivity to environmental fluctuation going from 200 mm to 750 mm of mean annual precipitation. Increasing grass cover results in higher sensitivity to intra-annual dynamics, while an increased woody cover reflects purely annual patterns. Lagged correlations suggest a similar sensitivity at the extreme ends of the gradient, but highest in the middle, between 400 mm and 450 mm of mean annual precipitation. The vegetation in this region, described as a wooded grassland, has contributions to net primary productivity more equally shared by trees and grasses. In particular, the role of rainfall seasonality, magnitude, and frequency is examined in the different savanna, against different indices of ecosystem stability. Finally, using the savanna example to better understand trade-offs, such as how resistance versus recovery, and similarly, stress avoidance versus resource use optimization under a gradient of conditions, highlights the importance of structural diversity in determining ecosystem response to environmental variability.

  9. Water use efficiency of China’s terrestrial ecosystems and responses to drought

    Science.gov (United States)

    Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui

    2015-01-01

    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. PMID:26347998

  10. Water use efficiency of China's terrestrial ecosystems and responses to drought.

    Science.gov (United States)

    Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui

    2015-09-08

    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg(-1) H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity.

  11. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought.

    Science.gov (United States)

    Roman, D T; Novick, K A; Brzostek, E R; Dragoni, D; Rahman, F; Phillips, R P

    2015-11-01

    Ongoing shifts in the species composition of Eastern US forests necessitate the development of frameworks to explore how species-specific water-use strategies influence ecosystem-scale carbon (C) cycling during drought. Here, we develop a diagnostic framework to classify plant drought-response strategies along a continuum of isohydric to anisohydric regulation of leaf water potential (Ψ(L)). The framework is applied to a 3-year record of weekly leaf-level gas exchange and Ψ measurements collected in the Morgan-Monroe State Forest (Indiana, USA), where continuous observations of the net ecosystem exchange of CO2 (NEE) have been ongoing since 1999. A severe drought that occurred in the middle of the study period reduced the absolute magnitude of NEE by 55%, though species-specific responses to drought conditions varied. Oak species were characterized by anisohydric regulation of Ψ(L) that promoted static gas exchange throughout the study period. In contrast, Ψ(L) of the other canopy dominant species was more isohydric, which limited gas exchange during the drought. Ecosystem-scale estimates of NEE and gross ecosystem productivity derived by upscaling the leaf-level data agreed well with tower-based observations, and highlight how the fraction of isohydric and anisohydric species in forests can mediate net ecosystem C balance.

  12. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems.

    Science.gov (United States)

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T

    2016-03-17

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland.

  13. Ecosystem changes in the Neva Estuary (Baltic Sea): natural dynamics or response to anthropogenic impacts?

    Science.gov (United States)

    Golubkov, Sergey; Alimov, Alexander

    2010-01-01

    The Neva Estuary situated in the eastern Gulf of Finland is one of the largest estuaries of the Baltic Sea with a large conurbation, St. Petersburg, situated on its coast. Eutrophication, alien species and large-scale digging and dumping of bottom sediment are the most prominent anthropogenic impacts on its ecosystem. However, many ecosystem responses, which are traditionally attribute to these impacts, are related to natural dynamics of the ecosystem. Fluctuations in discharge of the Neva River, intrusions of bottom hypoxic waters from the western part of the Gulf of Finland, higher summer temperatures and a shorter period of ice cover are climatic mediated factors inducing adverse changes in its ecosystem from the 1980s onwards. The main ecosystem responses to these factors are 2-3-fold increase of trophic status, deterioration of native zoobenthic communities and establishment of alien species, as well as the many fold decrease of fish catch and the population of ringed seal in the region. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change.

    Science.gov (United States)

    Moore, Jonathan W; Olden, Julian D

    2017-05-01

    Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.

  15. Preface: long-term response of a forest watershed ecosystem, clearcutting in the Southern Appalachians

    Science.gov (United States)

    Wayne Swank; Jackson Webster

    2014-01-01

    Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...

  16. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Science.gov (United States)

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  17. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    DEFF Research Database (Denmark)

    Liu, Y.; Melillo, J.; Niu, S.

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation...

  18. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh

    NARCIS (Netherlands)

    Sarwar, M.H.; Hein, L.G.; Rip, F.I.; Dearing, J.A.

    2015-01-01

    This study explores the integration of ecosystem services and climate change adaptation in development plans for coastal wetlands in Bangladesh. A new response framework for adaptation is proposed, based on an empirical analysis and consultations with stakeholders, using a modified version of the

  19. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall.

    Science.gov (United States)

    Haverd, Vanessa; Ahlström, Anders; Smith, Benjamin; Canadell, Josep G

    2017-02-01

    Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO 2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there. © 2016 John Wiley & Sons Ltd.

  20. Responses of LAI to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia.

    Science.gov (United States)

    Li, Longhui; Wang, Ying-Ping; Beringer, Jason; Shi, Hao; Cleverly, James; Cheng, Lei; Eamus, Derek; Huete, Alfredo; Hutley, Lindsay; Lu, Xingjie; Piao, Shilong; Zhang, Lu; Zhang, Yongqiang; Yu, Qiang

    2017-09-15

    Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating that the mechanisms underlying the response of LAI to rainfall should be targeted for future model development.

  1. Soil microbial responses to disturbance events and consequences for carbon cycling in terrestrial ecosystems

    OpenAIRE

    Holden, Sandra Robin

    2014-01-01

    Understanding the response of soil microbial communities and decomposition to global environmental changes is central to our ability to accurately forecast future terrestrial carbon (C) storage and atmospheric CO2 levels. Increases in the frequency and severity of disturbance events are one element of global change in terrestrial ecosystems. The goal of this dissertation was to measure the response of soil microbial communities and decomposition to disturbance events and to examine the mechan...

  2. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Nicole M. Herman-Mercer; Elli Matkin; Melinda J. Laituri; Ryan C. Toohey; Maggie Massey; Kelly Elder; Paul F. Schuster; Edda A. Mutter

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation...

  3. A decade of insights into grassland ecosystem responses to global environmental change

    Science.gov (United States)

    Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.

    2017-01-01

    Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.

  4. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  5. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  6. Response of carbon fluxes to water relations in a savanna ecosystem in South Africa

    Directory of Open Access Journals (Sweden)

    W. L. Kutsch

    2008-12-01

    Full Text Available The principal mechanisms that connect carbon fluxes with water relations in savanna ecosystems were studied by using eddy covariance method in a savanna ecosystem at Kruger National Park, South Africa. Since the annual drought and rewetting cycle is a major factor influencing the function of savanna ecosystems, this work focused on the close inter-connection between water relations and carbon fluxes. Data from a nine-month measuring campaign lasting from the early wet season to the late dry season were used.

    Total ecosystem respiration showed highest values at the onset of the growing season, a slightly lower plateau during the main part of the growing season and a continuous decrease during the transition towards the dry season.

    The regulation of canopy conductance was changed in two ways: changes due to phenology during the course of the growing season and short-term acclimation to soil water conditions.

    The most constant parameter was water use efficiency that was influenced by VPD during the day but the VPD response curve of water usage did change only slightly during the course of the growing season and decreased by about 30% during the transition from wet to dry season.

    The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale.

  7. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic......The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... populations may have epidemiological importance in relation to the recent changes in production and infrastructure in these former Soviet states....

  9. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C.J. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Manning, P. [School of Agriculture Food and Rural Development, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE1 7RU (United Kingdom); Van den Berg, L.J.L. [Environment Department, University of York, Heslington, York, YO 5DD (United Kingdom); De Graaf, M.C.C. [University of Applied Sciences, HAS Den Bosch, PO BOX 90108, 5200 MA ' s-Hertogenbosch (Netherlands); Wieger Wamelink, G.W. [Alterra, Droevendaalsesteeg 3a, P.O. Box 47, 6700 AA Wageningen (Netherlands); Boxman, A.W.; Vergeer, P.; Lamers, L.P.M. [Department of Aquatic Ecology and Environmental Biology, University of Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Bleeker, A. [Energy research Centre of the Netherlands, Petten, NH, 1755 ZG (Netherlands); Arroniz-Crespo, M. [Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid (Spain); Limpens, J. [Nature Conservation and Plant Ecology Group, Wageningen University, Bornsesteeg 69, 6708 PD Wageningen (Netherlands); Bobbink, R. [Ware Research Centre, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands); Dorland, E. [Staatsbosbeheer, PO Box 1300, 3970 BH, Driebergen (Netherlands)

    2011-03-15

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NHx and NOy) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NHx:NOy ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH4+ concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NHx:NOy deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.

  10. The emission of carbon dioxide from soils of the Pasvik nature reserve in the Kola Subarctic

    Science.gov (United States)

    Kadulin, M. S.; Smirnova, I. E.; Koptsyk, G. N.

    2017-09-01

    The emission of carbon dioxide (CO2) from podzols (Albic Podzols (Arenic)) and the factors controlling its spatiotemporal variability in the forest ecosystems of the Pasvik Reserve in the Kola Subarctic are characterized. Relatively favorable climatic conditions beyond the polar circle in summer are responsible for intensive soil respiration. The type of forest affects the emission of CO2 from the soil surface. The lowest rate of the CO2 emission is typical of the soils under lichen pine forest (105-220 mg C/(m2 h) or 180 g C/m2 during the summertime). Higher rates are observed for the soils under green moss pine (170-385 mg C/(m2 h) or 360 g C/m2 during the summertime) and birch (190-410 mg C/(m2 h) or 470 g C/m2 during the summertime) forests. This may related to a higher contribution of root respiration (44, 88, and 67%, respectively). Soil respiration and the contribution of root respiration to it increase with an increase in the canopy density; mass of small roots; microbial biomass; depth of the stony layer; soil moistening; and the contents of available carbon, nitrogen, phosphorus, and potassium compounds. At the same time, they decrease with an increase in the portion of lichens in the ground cover. The seasonal dynamics are characterized by the CO2 emission maximums in the summer and fall and minimum in the spring. The daily dynamics are smoothed under conditions of the polar day.

  11. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In

  12. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.

    Science.gov (United States)

    Gornall, Jemma L; Woodin, Sarah J; Jónsdóttir, Ingibjörg S; Van der Wal, Rene

    2009-10-01

    Herbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions. To achieve this, two grazing treatments, clipping plus faecal additions and moss removal, were implemented in conjunction with passive warming. Our key finding was that, in many cases, the tundra ecosystem response was determined by treatment impacts on the moss layer. Moss removal reduced the remaining moss layer depth by 30% and increased peak grass biomass by 27%. These impacts were probably due to observed higher soil temperatures and decomposition rates associated with moss removal. The positive impact of moss removal on grass biomass was even greater with warming, further supporting this conclusion. In contrast, moss removal reduced dwarf shrub biomass possibly resulting from increased exposure to desiccating winds. An intact moss layer buffered the soil to increased air temperature and as a result there was no response of vascular plant productivity to warming over the course of this study. In fact, moss removal impacts on soil temperature were nearly double those of warming, suggesting that the moss layer is a key component in controlling soil conditions. The moss layer also absorbed nutrients from faeces, promoting moss growth. We conclude that both herbivory and warming influence this high arctic ecosystem but that herbivory is the stronger driver of the two. Disturbance to the moss layer resulted in a shift towards a more grass-dominated system with less abundant mosses and shrubs, a trend that was further enhanced by warming. Thus herbivore impacts to the moss layer are key to understanding arctic ecosystem response to grazing and warming.

  13. Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks.

    Science.gov (United States)

    Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R

    2014-10-21

    Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative

    Science.gov (United States)

    Millar, C. I.; Fagre, D. B.

    2004-12-01

    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate

  15. Arctic ecosystem responses to changes in water table and surface warming

    Science.gov (United States)

    Olivas, P. C.; Oberbauer, S. F.; Tweedie, C. E.; Oechel, W. C.

    2009-12-01

    Although low in productivity, arctic ecosystems store close to 20% of the global soil carbon as a result of low decomposition rates enhanced by high soil moisture availability and low temperatures. Expected global climatic changes are likely to significantly increase the temperature in the Arctic, disturbing surface soil moisture patterns and potentially increasing turnover of soil organic matter, thus reversing the role of the Arctic as a carbon sink. Our goal was to determine the short-term ecosystem CO2 exchange response to drying, flooding, and warming, and understand the potential effects that climatic changes could have on the long-term carbon balance of the Arctic. We carried out this study during the growing seasons from 2006 to 2008 on the coastal plain near Barrow, Alaska. We used a 62 ha thawed lake, divided into three sections: drained, flooded and intermediate treatments. Temperature treated plots were replicated within each water treatment category using open top chambers. We assessed ecosystem responses to water and temperature treatments as: ecosystem respiration (ER), gross primary photosynthesis (GPP) and net ecosystem balance (NEE) using chamber-based measurements. We found a strong CO2 exchange response to changes in water table and surface temperature. However, the magnitude of the response differed among carbon flux components. Although flooding increased NEE, the increase was more a result of a decrease in ER rather than an increase in GPP. High water tables can also reduce GPP by submerging leaf area, especially that of mosses. Drying increased ER and GPP, however, species composition and microtopography position affected the magnitude of the changes ultimately affecting NEE. Areas dominated by mosses experienced a reduction of sink capacity, whereas areas dominated by vascular plants experienced an increase in NEE regardless of the drying of the moss layer. Warming affected all CO2 flux components. GPP increased in all treatments except in

  16. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    OpenAIRE

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE?=?gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) an...

  17. Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales

    Science.gov (United States)

    B. Buma

    2014-01-01

    The Novus Network annual meeting was held at H. J. Andrews Experimental Forest in Oregon, USA, from 22 May to 24 May 2013. The topic was: ‘Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales’. The 2013 workshop brought together 28 researchers from 21 institutions spread across three continents. The participants – 17 faculty members,...

  18. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

    Science.gov (United States)

    van Geffen, Koert G; Berg, Matty P; Aerts, Rien

    2011-12-01

    As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.

  19. Slow acidification of the winter mixed layer in the subarctic western North Pacific

    Science.gov (United States)

    Wakita, Masahide; Nagano, Akira; Fujiki, Tetsuichi; Watanabe, Shuichi

    2017-08-01

    We used carbon dioxide (CO2) system data collected during 1999-2015 to investigate ocean acidification at time series sites in the western subarctic region of the North Pacific Ocean. The annual mean pH at station K2 decreased at a rate of 0.0025 ± 0.0010 year-1 mostly in response to oceanic uptake of anthropogenic CO2. The Revelle factor increased rapidly (0.046 ± 0.022 year-1), an indication that the buffering capacity of this region of the ocean has declined faster than at other time series sites. In the western subarctic region, the pH during the winter decline at a slower rate of 0.0008 ± 0.0004 year-1. This was attributed to a reduced rate of increase of dissolved inorganic carbon (DIC) and an increase of total alkalinity (TA). The reduction of DIC increase was caused by the decline of surface water density associated with the pycnocline depression and the reduction of vertical diffusion flux from the upper pycnocline. These physical changes were probably caused by northward shrinkage of the western subarctic gyre and global warming. Meanwhile, the contribution of the density decline to the TA increase is canceled out by that of the reduced vertical diffusive flux. We speculated that the winter TA increase is caused mainly by the accumulation of TA due to the weakened calcification by organisms during the winter.

  20. [Microbial response mechanism for drying and rewetting effect on soil respiration in grassland ecosystem: a review].

    Science.gov (United States)

    He, Yun-Long; Qi, Yu-Chun; Dong, Yun-She; Peng, Qin; Sun, Liang-Jie; Jia, Jun-Qiang; Guo, Shu-Fang; Yan, Zhong-Qing

    2014-11-01

    As one of the most important and wide distribution community type among terrestrial ecosystems, grassland ecosystem plays a critical role in the global carbon cycles and climate regulation. China has extremely rich grassland resources, which have a huge carbon sequestration potential and are an important part of the global carbon cycle. Drying and rewetting is a common natural phenomenon in soil, which might accelerate soil carbon mineralization process, increase soil respiration and exert profound influence on microbial activity and community structure. Under the background of the global change, the changes in rainfall capacity, strength and frequency would inevitably affect soil drying and wetting cycles, and thus change the microbial activity and community structure as well as soil respiration, and then exert important influence on global carbon budget. In this paper, related references in recent ten years were reviewed. The source of soil released, the trend of soil respiration over time and the relationship between soil respiration and microbial biomass, microbial activity and microbial community structure during the processes of dry-rewetting cycle were analyzed and summarized, in order to better understand the microbial response mechanism for drying and rewetting effecting on soil respiration in grassland ecosystem, and provide a certain theoretical basis for more accurate evaluation and prediction of future global carbon balance of terrestrial ecosystems and climate change.

  1. Paleo-ecotoxicology: What Can Lake Sediments Tell Us about Ecosystem Responses to Environmental Pollutants?

    Science.gov (United States)

    Korosi, Jennifer B; Thienpont, Joshua R; Smol, John P; Blais, Jules M

    2017-09-05

    The development of effective risk reduction strategies for aquatic pollutants requires a comprehensive understanding of toxic impacts on ecosystems. Classical toxicological studies are effective for characterizing pollutant impacts on biota in a controlled, simplified environment. Nonetheless, it is well-acknowledged that predictions based on the results of these studies must be tested over the long-term in a natural ecosystem setting to account for increased complexity and multiple stressors. Paleolimnology (the study of lake sediment cores to reconstruct environmental change) can address many key knowledge gaps. When used as part of a weight-of-evidence framework with more traditional approaches in ecotoxicology, it can facilitate rapid advances in our understanding of the chronic effects of pollutants on ecosystems in an environmentally realistic, multistressor context. Paleolimnology played a central role in the Acid Rain debates, as it was instrumental in demonstrating industrial emissions caused acidification of lakes and associated ecosystem-wide impacts. "Resurrection Ecology" (hatching dormant resting eggs deposited in the past) records evolutionary responses of populations to chronic pollutant exposure. With recent technological advances (e.g., geochemistry, genomic approaches), combined with an emerging paleo-ecotoxicological framework that leverages strengths across multiple disciplines, paleolimnology will continue to provide valuable insights into the most pressing questions in ecotoxicology.

  2. Ecosystem Structure Changes in the Turkish Seas as a Response to Overfishing

    Science.gov (United States)

    Gazihan Akoglu, Ayse; Salihoglu, Baris; Akoglu, Ekin; Kideys, Ahmet E.

    2013-04-01

    Human population in Turkey has grown more than five-fold since its establishment in 1923 and more than 73 million people are currently living in the country. Turkey is surrounded by partially connected seas (the Black Sea, the Sea of Marmara, the Aegean Sea and the Mediterranean Sea) each of which has significantly different productivity levels and ecosystem characteristics. Increasing human population with its growing socio-economic needs has generated an intensive fishing pressure on the fish stocks in its exclusive economic zone. Fishing grounds in the surrounding seas were exploited with different fishing intensities depending upon their productivity level and catch rates. Hence, the responses of these different ecosystems to overfishing have been realized differently. In this study, changes of the ecosystem structures in the Turkish Seas were comparatively investigated by ecosystem indices such as Marine Trophic Index (MTI), Fishing in Balance (FiB) and Primary Production Required (PPR) to assess the degree of sustainability of the fish stocks for future generations.

  3. A comparison of three marine ecosystems surrounding the Korean peninsula: Responses to climate change [review article

    Science.gov (United States)

    Rebstock, Ginger A.; Shil Kang, Young

    2003-12-01

    This study uses a comparative approach to examine responses of marine ecosystems to climatic regime shifts. The three seas surrounding the Korean peninsula, the Japan/East Sea, the East China Sea and the Yellow Sea represent three contiguous but distinct ecosystems. Sampling has been carried out by the National Fisheries Research and Development Institute of South Korea since 1965, using the same methods in all three seas. Sampling was generally synoptic. Amplitude time series of 1st EOF modes for temperature, salinity, zooplankton biomass and concentrations of four major zooplankton taxa were used to determine whether the three marine ecosystems respond in a similar manner to climate variations. Temporal patterns of the variables were strongly similar among the three seas at decadal time scales, but very weakly similar at interannual scales. All three seas responded to a climatic regime shift that occurred in 1989. Temperature, zooplankton biomass and copepod concentrations increased in the late 1980s or early 1990s in all three seas. Concentrations of amphipods, chaetognaths and euphausiids also increased in the Japan/East Sea and the East China Sea, but not the Yellow Sea. The Yellow Sea ecosystem differs strongly from the other two seas, and water exchange between the Yellow Sea and the East China Sea is much weaker than that between the East China Sea and Japan/East Sea. Spatial patterns of zooplankton determined by the EOF analysis were closely related to currents and fronts in each of the three seas.

  4. Oceanography of the subarctic Pacific region, 1960-71

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on the oceanography of the subarctic Pacific region 1969-1971. The background of the project is summarized. Next, a review of physical oceanography...

  5. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  6. Response of Benthic Macrofauna to Eutrophication in a Mesocosm Experiment: Ecosystem Resilience Prevents Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Panagiotis D. Dimitriou

    2017-12-01

    Full Text Available A benthic-pelagic mesocosm experiment was performed to study how the benthic macrofaunal community responds to a eutrophication gradient. The novel experimental setup allowed the induction of an eutrophication gradient in the water column and the detailed documentation of the response of the benthos in terms of biodiversity and ecosystem processes. Nine mesocosms were deployed in the facilities of the Hellenic Center for Marine Research in Crete in the eastern Mediterranean. The mesocosms were 4 m deep, contained 1.5 m3 coastal water, and included 85 liters of undisturbed sediment at the bottom. No water or sediment exchange was allowed. The experimental design included a Control and two eutrophication levels (Low and High for the 58-day duration of the experiment. Macrofaunal samples were collected at the end of the experiment from each mesocosm and compared to the ones collected at the beginning of the experiment from the sediment collection area. Results show that the High eutrophication treatment differed significantly from the Control and Low treatments in terms of macrofaunal species composition, diversity, ecological status and ecosystem processes. The increased availability of organic matter in the sediment caused differences in macrofaunal community structure by favoring deposit-feeding species with high bioturbation ability, which significantly increased their abundance. The increased bioturbation potential of the new community combined with the high organic matter consumption contributed to the oxygenation of the sediment within the mesocosm, preventing the creation of hypoxic conditions in the sediment and maintaining ecosystem health despite the highly eutrophic conditions and significant changes in sediment geochemical variables. In the oligotrophic eastern Mediterranean, healthy benthic ecosystems may use existing ecosystem processes to “buffer” the negative effects caused by eutrophication.

  7. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  8. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Lu, Meng; Yang, Yuanhe; Luo, Yiqi; Fang, Changming; Zhou, Xuhui; Chen, Jiakuan; Yang, Xin; Li, Bo

    2011-03-01

    • Anthropogenic nitrogen (N) addition may substantially alter the terrestrial N cycle. However, a comprehensive understanding of how the ecosystem N cycle responds to external N input remains elusive. • Here, we evaluated the central tendencies of the responses of 15 variables associated with the ecosystem N cycle to N addition, using data extracted from 206 peer-reviewed papers. • Our results showed that the largest changes in the ecosystem N cycle caused by N addition were increases in soil inorganic N leaching (461%), soil NO₃⁻ concentration (429%), nitrification (154%), nitrous oxide emission (134%), and denitrification (84%). N addition also substantially increased soil NH₄+ concentration (47%), and the N content in belowground (53%) and aboveground (44%) plant pools, leaves (24%), litter (24%) and dissolved organic N (21%). Total N content in the organic horizon (6.1%) and mineral soil (6.2%) slightly increased in response to N addition. However, N addition induced a decrease in microbial biomass N by 5.8%. • The increases in N effluxes caused by N addition were much greater than those in plant and soil pools except soil NO₃⁻, suggesting a leaky terrestrial N system. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  9. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.

    Science.gov (United States)

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A

    2012-06-01

    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.

  10. System-level responses of lake ecosystems to chemical stresses using exergy and structural exergy as ecological indicators.

    Science.gov (United States)

    Xu, Fu-Liu; Dawson, R W; Tao, Shu; Li, Ben-Gang; Cao, Jun

    2002-01-01

    This paper presents the system-level responses of experimental lake ecosystems to three chemical stresses (acidification, copper and pesticide contamination) using exergy and structural exergy as ecological indicators. The results indicate that the doses or toxicity of the three chemical stressors contributed to changes in both exergy and structural exergy. Remarkable changes in exergy and structural exergy occurred under acidic conditions and in the presence of Dursban, 24D-DMA, permethrin, bifenthrin, Carbaryl, TCP, PCP, trichlorethylene, benzene, and high doses of Cu, oil, and hexazinone. This seemed to indicate that the subject ecosystems were seriously contaminated by these chemical stressors. For low doses of Cu, oil, atrazine, HCBP, and hexazinone, exergy and structural exergy were either unchanged or only slightly changed, suggesting that the lake ecosystems were not significantly impacted by these chemical stressors. Discussion of the relationships between ecosystem-level changes and structural and functional changes in stressed lake ecosystems indicates that the above-mentioned ecosystem-level changes were in accordance with the changes in structure and function. The observed changes in exergy and structural exergy were also consistent with Odum's predictions of shortened food chains, reduced resource use efficiency, poor stability, low information, and high entropy in stressed aquatic ecosystems. The findings lead the authors to conclude that it is feasible for exergy and structural exergy to serve as ecological indicators when characterizing the system-level responses of experimental lake ecosystems to chemical stress. These results for experimental lake ecosystems would be extrapolated to actual lakes.

  11. Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem.

    Science.gov (United States)

    Ko, Chia-Ying; Lai, Chao-Chen; Hsu, Huang-Hsiung; Shiah, Fuh-Kwo

    2017-02-01

    Information of the decadal timescale effects of episodic climatic disturbances (i.e., typhoons) on phytoplankton in freshwater ecosystems have received less attention and fewer seasonal evaluations partly due to the lack of long-term time-series monitoring data in typhoon prevailing areas. Through field observations of a total 36 typhoon cases in a subtropical deep freshwater ecosystem in the period of 2005-2014, we quantified phytoplankton biomass, production and growth rate in response to meteorological and hydrological changes in the weeks before, during and after typhoons between summer and autumn, and also investigated the effects of typhoon characteristics on the aforementioned phytoplankton responses. The results showed that phytoplankton exposed to typhoon disturbances generally exhibited an increasing trend over the weeks before, during and after typhoons in summer but varied in autumn. The correlations and multivariate regressions showed different contributions of meteorological and hydrological variables to individual phytoplankton responses before, during and after typhoons between seasons. The post-typhoon weeks (i.e., within two weeks after a typhoon had passed) were especially important for the timeline of phytoplankton increases and with a detectable seasonal variation that the chlorophyll a concentration significantly increased in autumn whereas both primary production and growth rate were associated with significant changes in summer. Additionally, phytoplankton responses during the post-typhoon weeks were significantly different between discrete or continuous types of typhoon events. Our work illustrated the fact that typhoons did influence phytoplankton responses in the subtropical deep freshwater ecosystem and typhoon passages in summer and autumn affected the phytoplankton dynamics differently. Nevertheless, sustained and systematic monitoring in order to advance our understanding of the role of typhoons between seasons in the modulation of

  12. Flourish or flush: effects of simulated extreme rainfall events on Sphagnum-dwelling testate amoebae in a subarctic bog (Abisko, Sweden).

    Science.gov (United States)

    Tsyganov, Andrey N; Keuper, Frida; Aerts, Rien; Beyens, Louis

    2013-01-01

    Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.

  13. Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization?

    Science.gov (United States)

    Kienast, S.S.; Hendy, I.L.; Crusius, J.; Pedersen, Thomas F.; Calvert, S.E.

    2004-01-01

    The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micro-nutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ???35??N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today. ?? The Oceanographic Society of Japan.

  14. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  15. Response of Peat-forming Ecosystems of the Western Antarctic Peninsula to Recent Climate Change

    Science.gov (United States)

    Tardona, M.; Beilman, D.; Yu, Z.; Loisel, J.

    2014-12-01

    Amplified warming and related environmental changes in the high latitudes have a complex geographic pattern, with the Western Antarctic Peninsula experiencing one of the fastest rates of recent warming globally. To better understand the response of terrestrial Antarctic ecosystems to polar change, we applied a paleoscience approach to organic soil profiles from 13 aerobic peatbank ecosystems on 7 islands along the peninsula from 67.6 to 64.2°S. Peatbank ecosystem ages were obtained by Radiocarbon measurements of organic matter from the base of these profiles and cluster in three groups: older than 1000 years old (as old as 2750 years old), 400-500 years old, and younger than 65 years with fixed bomb-spike carbon. Three of these peatbank profiles were studied in detail, and show growth rates over the last 65 years of ~2.5 mm yr-1. This rate is faster than those observed during previous periods but is similar to other recent nearby studies that report recent growth rates of ~2.6 mm yr-1. Organic carbon storage ranged from 6.1 to 21.3 kgC m-2. Values of moss bank organic matter δ13C show progressively more depleted δ13C values; in which depletion increases 3.0‰ over recent decades. Overall increase in source-independent discrimination is 1.7‰, consistent with published records from other locations and an increase in photosynthetic activity at the regional scale. Source-independent discrimination displays substantial variations corresponding negatively to variation of organic matter C:N values. Our results imply several recent changes in Antarctic peat forming ecosystem processes including formation of new moss banks, increased accumulation rates, and high variability in source-independent discrimination. These changes are complex but affected by contemporary climate changes of the region including increasing temperatures over the past century.

  16. Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Hungate, Bruce

    2014-11-07

    This report summarizes a synthesis project of a long-term global change experiment conducted at the Kennedy Space Center, Florida, investigating how increasing concentrations of atmospheric carbon dioxide (CO2) influences the functioning of a fire-dominated scrub-oak ecosystem. The experiment began in 1996 and ended in 2007. Results presented here summarize the effects of elevated CO2 on plant growth, soil processes, carbon and nutrient cycling, and other responses. Products include archived data from the experiment, as well as six publications in the peer-reviewed literature.

  17. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    Science.gov (United States)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p pH and soil C-to-N ratio (r = -0.76, p enzyme activity and soil C-to-N ratio (r = 0.78, p effect on soil pH.

  18. Ecosystem response to nutrient loading and climate changes: a case study for the Black Sea

    Science.gov (United States)

    Staneva, J.; Kourafalou, V.; Tsiaras, K.

    2003-04-01

    The present study employs coupling between physical and biogeochemical numerical models and provides an extensive analysis on the response of the ecosystem in the northwestern Black Sea to nutrient loads and climatic changes. The work is part of the EU Project DANUBS (NUtrient management of the Danube basin and its impact on the Black Sea). The physical models are a one-dimensional mixed layered model and a three-dimensional, primitive equation hydrodynamic model. The Biogeochemical model is based on the European Ecosystem Model (ERSEM). The model consists of five modules: (1) primary producers, (2) microbial loop, (3) mesozooplankton, (4) benthic nutrients, and (5) benthic biology. The ecosystem in ERSEM is subdivided into three functional types: producers (phytoplankton), decomposers (pelagic and benthic bacteria) and consumers (zooplankton and zoobenthos). We address here the impact of meteorological forcing, as well as the impact of vertical stratification on the functioning of the biological system. The evolution of the mixed layer, as well as the response of the biological system to variability in the physical conditions and to the nutrient discharge from the Danube River are described in detail. The numerical simulations illustrate the basic physical and biological dynamics of the upper ocean. The results from the simulation of the seasonal cycle of the lower trophic levels are presented. Important climatological features for the Black Sea, such as the formation and advection of low-salinity waters associated with the Danube River plume, the cold intermediate water formation, the evolution of the seasonal pycnocline and the annual cycle of the mixed layer depth are discussed. A hierarchy of model scenarios has been developed to study the impact, which nutrient reduction has on the coastal marine system. The model predictions indicate that the biological system is very sensitive to the changes in nutrient concentrations, as well as to C:N:P:Si ratios.

  19. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.

    Science.gov (United States)

    Medina, Matías H; Correa, Juan A; Barata, Carlos

    2007-05-01

    Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.

  20. How long can fisheries management delay action in response to ecosystem and climate change?

    Science.gov (United States)

    Brown, Christopher J; Fulton, Elizabeth A; Possingham, Hugh P; Richardson, Anthony J

    2012-01-01

    Sustainable management of fisheries is often compromised by management delaying implementation of regulations that reduce harvest, in order to maintain higher catches in the short-term. Decreases or increases in fish population growth rate driven by environmental change, including ecosystem and climate change, affect the harvest that can be taken sustainably. If not acted on rapidly, environmental change could result in unsustainable fishing or missed opportunity for higher catches. Using simulation models of harvested fish populations influenced by environmental change, we explore how long fisheries managers can afford to wait before changing harvest regulations in response to changes in population growth. If environmental change causes population declines, delays greater than five years increase the probability of population collapse. Species with fast and highly variable population growth rates are more susceptible to collapse under delays and should be a priority for revised management where delays occur. Generally, the long-term cost of delay, in terms of lost fishing opportunity, exceeds the short-term benefits of overfishing. Lowering harvest limits and monitoring for environmental change can alleviate the impact of delays; however, these measures may be more costly than reducing delays. We recommend that management systems that allow rapid responses to population growth changes be enacted for fisheries management to adapt to ecosystem and climate change.

  1. Bridging the Divide: Linking Genomics to Ecosystem Responses to Climate Change: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Melinda D.

    2014-03-15

    Over the project period, we have addressed the following objectives: 1) assess the effects of altered precipitation patterns (i.e., increased variability in growing season precipitation) on genetic diversity of the dominant C4 grass species, Andropogon gerardii, and 2) experimentally assess the impacts of extreme climatic events (heat wave, drought) on responses of the dominant C4 grasses, A. gerardii and Sorghastrum nutans, and the consequences of these response for community and ecosystem structure and function. Below is a summary of how we have addressed these objectives. Objective 1 After ten years of altered precipitation, we found the number of genotypes of A. gerardii was significantly reduced compared to the ambient precipitation treatments (Avolio et al., 2013a). Although genotype number was reduced, the remaining genotypes were less related to one another indicating that the altered precipitation treatment was selecting for increasingly dissimilar genomes (based on mean pairwise Dice distance among individuals). For the four key genotypes that displayed differential abundances depending on the precipitation treatment (G1, G4, and G11 in the altered plots and G2 in the ambient plots), we identified phenotypic differences in the field that could account for ecological sorting (Avolio & Smith, 2013a). The three altered rainfall genotypes also have very different phenotypic traits in the greenhouse in response to different soil moisture availabilities (Avolio and Smith, 2013c). Two of the genotypes that increased in abundance in the altered precipitation plots had greater allocation to root biomass (G4 and G11), while G1 allocated more biomass aboveground. These phenotypic differences among genotypes suggests that changes in genotypic structure between the altered and the ambient treatments has likely occurred via niche differentiation, driven by changes in soil moisture dynamics (reduced mean, increased variability and changes in the depth distribution of

  2. Predicting the likely response of data-poor ecosystems to climate change using space-for-time substitution across domains.

    Science.gov (United States)

    Lester, Rebecca E; Close, Paul G; Barton, Jan L; Pope, Adam J; Brown, Stuart C

    2014-11-01

    Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a

  3. Threshold of soil water content for ecosystem carbon fluxes and their response to climate warming in an alpine meadow

    Science.gov (United States)

    Quan, Quan

    2017-04-01

    1. Soil water content (SWC) has been recognized to largely regulate ecosystem carbon (C) fluxes and their responses to climate change. However, it remains unclear whether there exists a SWC threshold for ecosystem C fluxes and their responses to climate warming. 2. Based on a field warming experiment in an alpine meadow on the Qinghai-Tibet Plateau (QTP), we examined how SWC regulates ecosystem C fluxes in response to experimental warming. 3. We first detected a SWC threshold of 27.3 ± 5.2% for all the C flux variables except root respiration. This threshold did not change over years in 2014 or 2015 across all the warming or clipping treatments. C fluxes increased with SWC below the threshold but significantly decreased with SWC above it. Warming effects on C fluxes varied with seasons and years due to the changes in SWC. Experimental warming stimulated C fluxes when SWC was above the threshold but depressed C fluxes when SWC was below the threshold. C fluxes were always positively correlated with soil temperature when SWC was above its threshold. When SWC was below its threshold, net ecosystem exchange (NEE) and gross ecosystem production (GEP) decreased but root respiration, soil respiration, and ecosystem respiration increased with soil temperature. 4. This study provided field evidence on the traditionally speculated concept of SWC threshold and revealed how SWC threshold regulates responses of different ecosystem C fluxes to climate warming. The findings offer mechanistic explanations for ecosystem C fluxes in response to climate warming under varying SWC status and changing precipitation regimes.

  4. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Sass, U.G.W.

    2011-01-01

    Part of Focus on Dynamics of Arctic and Sub-Arctic Vegetation Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra ecosystems. Here, we (1) synthesize these findings, (2) present a

  5. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models

    OpenAIRE

    Song, Xiang; Zeng, Xiaodong

    2017-01-01

    Abstract The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2, and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with diffe...

  6. Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change

    Science.gov (United States)

    Wythers, Kirk R.; Reich, Peter B.; Bradford, John B.

    2013-03-01

    Evidence suggests that respiration acclimation (RA) to temperature in plants can have a substantial influence on ecosystem carbon balance. To assess the influence of RA on ecosystem response variables in the presence of global change drivers, we incorporated a temperature-sensitive Q10 of respiration and foliar basal RA into the ecosystem model PnET-CN. We examined the new algorithms' effects on modeled net primary production (NPP), total canopy foliage mass, foliar nitrogen concentration, net ecosystem exchange (NEE), and ecosystem respiration/gross primary production ratios. This latter ratio more closely matched eddy covariance long-term data when RA was incorporated in the model than when not. Averaged across four boreal ecotone sites and three forest types at year 2100, the enhancement of NPP in response to the combination of rising [CO2] and warming was 9% greater when RA algorithms were used, relative to responses using fixed respiration parameters. The enhancement of NPP response to global change was associated with concomitant changes in foliar nitrogen and foliage mass. In addition, impacts of RA algorithms on modeled responses of NEE closely paralleled impacts on NPP. These results underscore the importance of incorporating temperature-sensitive Q10 and basal RA algorithms into ecosystem models. Given the current evidence that atmospheric [CO2] and surface temperature will continue to rise, and that ecosystem responses to those changes appear to be modified by RA, which is a common phenotypic adjustment, the potential for misleading results increases if models fail to incorporate RA into their carbon balance calculations.

  7. Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra

    Science.gov (United States)

    Vandeplas, Nicolas; Kockelbergh, Fred; Nijs, Ivan

    2017-01-01

    Abstract Climate change is expected to force many species in arctic regions to migrate and track their climatic niche. This requires recruitment from seed, which currently shows very low rates in arctic regions, where long-lived and vegetatively reproducing plants dominate. Therefore, we pose the question whether recruitment (germination and seedling establishment) in arctic regions will significantly improve in a warmer world, and thus allow species to follow their climatic niche. We used a full factorial experiment to examine if realistic warmer temperatures (+3 °C; infrared radiation) and increased nitrogen availability (+1.4 g N m−2 year−1) affected germination, seedling survival and above- and below-ground seedling biomass in five species common in subarctic regions (Anthoxanthum odoratum, Betula nana, Pinus sylvestris, Solidago virgaurea, Vaccinium myrtillus). We found that warming increased seedling emergence in all species, but that subsequent mortality also increased, resulting in no net warming effect on seedling establishment. Warming slightly increased above-ground seedling biomass. Fertilization, on the other hand, did not influence seedling biomass, but it increased seedling establishment in B. nana while it reduced establishment in V. myrtillus. This may help B. nana dominate over V. myrtillus in warmer tundra. Surprisingly, no interactive effects between warming and fertilization were found. The lack of a general positive response of seedling establishment to warmer and more nutrient-rich conditions suggests that (sub)arctic species may experience difficulties in tracking their climatic niche. Predictions of future species distributions in arctic regions solely based on abiotic factors may therefore overestimate species’ ranges due to their poor establishment. Also, the opposite response to fertilization of two key (sub)arctic dwarf shrubs, i.e. B. nana and V. myrtillus, could have important implications for the future development of arctic

  8. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland

    2007-01-01

    Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim...... was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon...... the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate...

  9. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  10. Ecosystem resilience and threshold response in the Galápagos coastal zone.

    Directory of Open Access Journals (Sweden)

    Alistair W R Seddon

    Full Text Available BACKGROUND: The Intergovernmental Panel on Climate Change (IPCC provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1 at the end of the 21(st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? METHODOLOGY/PRINCIPAL FINDINGS: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13C were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. CONCLUSIONS/SIGNIFICANCE: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study

  11. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Science.gov (United States)

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  12. How ecosystems recover from pulse perturbations: A theory of short- to long-term responses.

    Science.gov (United States)

    Arnoldi, J-F; Bideault, A; Loreau, M; Haegeman, B

    2017-10-04

    Quantifying stability properties of ecosystems is an important problem in ecology. A common approach is based on the recovery from pulse perturbations, and posits that the faster an ecosystem return to its pre-perturbation state, the more stable it is. Theoretical studies often collapse the recovery dynamics into a single quantity: the long-term rate of return, called asymptotic resilience. However, empirical studies typically measure the recovery dynamics at much shorter time scales. In this paper we explain why asymptotic resilience is rarely representative of the short-term recovery. First, we show that, in contrast to asymptotic resilience, short-term return rates depend on features of the perturbation, in particular on the way its intensity is distributed over species. We argue that empirically relevant predictions can be obtained by considering the median response over a set of perturbations, for which we provide explicit formulas. Next, we show that the recovery dynamics are controlled through time by different species: abundant species tend to govern the short-term recovery, while rare species often dominate the long-term recovery. This shift from abundant to rare species typically causes short-term return rates to be unrelated to asymptotic resilience. We illustrate that asymptotic resilience can be determined by rare species that have almost no effect on the observable part of the recovery dynamics. Finally, we discuss how these findings can help to better connect empirical observations and theoretical predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Processes of community development and responses of ecosystems to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.

    1989-05-26

    Our studies focus on attempting to understand the role of decomposer-primary producer linkages in successional dynamics. We are testing a series of hypotheses that relate changes in plant species composition during succession to changes in activity and structure of the soil microfloral and faunal community, dynamics of soil organic matter, and availability of soil nutrients. As these successional patterns are identified, they are being applied to understanding specific processes and mechanics involved in ecosystem development during recovery from moderate and severe disturbances. These findings are then being used in conjunction with simulation models to assess potential effects of climate change on ecosystems. Our research involves field studies in northwestern Colorado and southeastern Washington, laboratory studies, and simulation modeling. Ongoing projects include studies of response patterns of primary producer and soil microbial communities to nutrient additions (N, P, and sucrose), the function of mycorrhizal fungi in plant community development, and the dynamics of litter decomposition under semiarid conditions. New studies are being implemented to investigate the significance of nutrient transfers from VAM fungi to plants and plant-root exudate interactions, and to relate this to understanding their roles in succession.

  14. [Responses of soil properties to ecosystem degradation in Karst region of northwest Guangxi, China].

    Science.gov (United States)

    Wei, Ya-wei; Su, Yi-rong; Chen, Xiang-bi; He, Xun-yang

    2010-05-01

    Four typical ecosystems, i.e., maize-sweet potato rotational cultivated land (KMS), grazing grassland burned annually in winter (KGB), natural restoration land (KNR), and primary forest land (KPF), in Karst region of northwest Guangxi were selected to investigate the responses of soil nutrients (C, N and P), soil microbial biomass, and soil structure to the degradation of ecosystem. The contents of soil organic C, total N and P, and soil microbial biomass C, N, and P were significantly higher in KPF than in KMS, KGB, and KNR (P KGB> KMS but the difference was not significant, soil total P content in KMS (0.87 g x kg(-1)) was 2.07 and 9.67 times of that in KNR and KGB, respectively (P 0.25 mm) accounted for more than 70%, and dominated by >2 mm aggregates; while in KMS, soil water-stable macro-aggregates only occupied 40.34%, and dominated by 2-0.25 mm aggregates. The destruction rate of soil structure in KMS, KGB, KNR, and KPF was 51.62%, 23.48%, 9.09%, and 9.46%, respectively (P rehabilitation would be the suitable ecological restoration strategy in Karst region.

  15. Conceptual data modeling of wildlife response indicators to ecosystem change in the Arctic

    Science.gov (United States)

    Walworth, Dennis; Pearce, John M.

    2015-08-06

    Large research studies are often challenged to effectively expose and document the types of information being collected and the reasons for data collection across what are often a diverse cadre of investigators of differing disciplines. We applied concepts from the field of information or data modeling to the U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative to prototype an application of information modeling. The USGS CAE initiative is collecting information from marine and terrestrial environments in Alaska to identify and understand the links between rapid physical changes in the Arctic and response of wildlife populations to these ecosystem changes. An associated need is to understand how data collection strategies are informing the overall science initiative and facilitating communication of those strategies to a wide audience. We explored the use of conceptual data modeling to provide a method by which to document, describe, and visually communicate both enterprise and study level data; provide a simple means to analyze commonalities and differences in data acquisition strategies between studies; and provide a tool for discussing those strategies among researchers and managers.

  16. Modeling and validating tritium transfer in a grassland ecosystem in response to {sup 3}H releases

    Energy Technology Data Exchange (ETDEWEB)

    Le Dizes, S.; Maro, D.; Rozet, M.; Hebert, D.; Solier, L.; Nicoulaud, V. [Institut de radioportection et de surete nucleaire - IRSN (France); Vermorel, F.; Aulagnier, C. [Electricite de France - EDF (France)

    2014-07-01

    Tritium ({sup 3}H) is a major radionuclide released in several forms (HTO, HT) by nuclear facilities under normal operating conditions. In terrestrial ecosystems, tritium can be found under two forms: tritium in tissue free water (TFWT) following absorption of tritiated water by leaves or roots and Organically Bound Tritium (OBT) resulting from TFWT incorporation by the plant organic matter during photosynthesis. In order to study transfers of tritium from atmospheric releases to terrestrial ecosystem such as grasslands, an in-situ laboratory has been set up by IRSN on a ryegrass field plot located 2 km downwind the AREVA NC La Hague nuclear reprocessing plant (North-West of France), as was done in the past for the assessment of transfer of radiocarbon in grasslands. The objectives of this experimental field are: (i) to better understand the OBT formation in plant by photosynthesis, (ii) to evaluate transfer processes of tritium in several forms (HT, HTO) from the atmosphere (air and rainwater) to grass and soil, (iii) to develop a modeling allowing to reproduce the dynamic response of the ecosystem to tritium atmospheric releases depending of variable environmental conditions. For this purpose, tritium activity measurements will be carried out in grass (monthly measurements of HTO, OBT), in air, rainwater, soil (daily measurements of HT, HTO) and CO{sub 2}, H{sub 2}O fluxes between soil and air compartments will be carried out. Then, the TOCATTA-c model previously developed to simulate {sup 14}C transfers to pasture on a hourly time-step basis will be adapted to take account for processes specific to tritium. The model will be tested by a comparison between simulated results and measurements. The objectives of this presentation are (1) to present the organization of the experimental design of the VATO study (Validation of TOCATTA) dedicated to transfers of tritium in a grassland ecosystem, (2) to document the major assumptions, conceptual modelling and

  17. A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals

    Science.gov (United States)

    Valery E. Forbes; Chris J. Salice; Bjorn Birnir; Randy J.F. Bruins; Peter Calow; Virginie Ducrot; Nika Galic; Kristina Garber; Bret C. Harvey; Henriette Jager; Andrew Kanarek; Robert Pastorok; Steve F. Railsback; Richard Rebarber; Pernille Thorbek

    2017-01-01

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem...

  18. Nutrient budgets of rock outcrop ecosystems and their response to selected perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Nabholz, J. V.; Crossley, Jr., D. A.

    1979-07-01

    The objective was to test the hypothesis that destruction of a biotic compartment of an ecosystem will increase system nutrient loss. Four ecosystems were described and their input-output budgets monitored. The vegetation of one ecosystem was killed with an herbicide. In another, an insecticide eliminated arthropods. The remaining two were controls.

  19. Estimating Ecosystem Responses to Changes in Mercury Loading: Lessons From the METAALICUS Project

    Science.gov (United States)

    Krabbenhoft, D. P.; Tate, M. T.; Harris, R.; Heyes, A.; St. Louis, V.; Graydon, J.; Branfireun, B.

    2007-12-01

    The Mercury Experiment to Assess Atmospheric Loadings in Canada and the US (METAALICUS) project is a whole-ecosystem, mercury (Hg) loading experiment specifically designed to examine the relation between atmospheric mercury deposition and fish Hg concentrations. This project was prompted by the observation that we lacked clear evidence whether a changes atmospheric Hg deposition might lead to a corresponding change in fish Hg, and at what time scales. To address this information need, a multi-national team of scientists was formed to devise a whole-ecosystem, Hg-dosing study, whereby mercury would be deliberately added to an entire watershed. The study is being conducted at the Experimental Lakes Area (ELA), which is located in northwestern Ontario, Canada. Whole-ecosystem manipulation studies have a distinct advantage over small-scale (lab scale) studies, in that natural processes and complexities that are present in watersheds are accounted for in the scientific results. Starting in the spring of 2001, the METAALICUS team been dosing the entire Lake 658 watershed with about 20 ug/m2/y (about 4-5 times the current ambient load). However, the applied Hg is in the form of enriched stable isotopes that can be analytically distinguished from previously existing ambient Hg, or currently depositing Hg. Thus, using the applied isotope as a tracer allows for improved insights into process rates occurring in watersheds that have not been possible heretofore. One of the greatest areas of uncertainty for making reliable predictions of the environmental response to changes in atmospheric Hg deposition is quantifying the flux of Hg from terrestrial systems to downstream aquatic ecosystems. This is especially problematic for settings where terrestrial inputs are similar in scale to atmospheric deposition or may exceed it. In these cases, it is critical to understand the details of how Hg is delivered from watersheds and the relative bioavailability of this Hg compared to that

  20. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of permafrost requires an interdisciplinary approach, relying on (for example) geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  1. Earthworm impacts on organo-mineral interactions and soil carbon inventories in Fennoscandian boreal and sub-arctic landscapes

    Science.gov (United States)

    Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan

    2017-04-01

    Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better

  2. Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing.

    Directory of Open Access Journals (Sweden)

    Emilie Champagne

    Full Text Available Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots and nitrogen-fertilisation (0 and 10 g m(-2 experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions.

  3. Tolerance of an Expanding Subarctic Shrub, Betula glandulosa, to Simulated Caribou Browsing

    Science.gov (United States)

    Champagne, Emilie; Tremblay, Jean-Pierre; Côté, Steeve D.

    2012-01-01

    Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots) and nitrogen-fertilisation (0 and 10 g m−2) experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions. PMID:23272191

  4. Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific

    Directory of Open Access Journals (Sweden)

    Hongmei Jing

    2017-06-01

    Full Text Available Community composition and abundance of ammonia-oxidizing archaea (AOA in the ocean were affected by different physicochemical conditions, but their responses to physical barriers (such as a chain of islands were largely unknown. In our study, geographic distribution of the AOA from the surface photic zone to the deep bathypelagic waters in the western subarctic Pacific adjacent to the Kuril Islands was investigated using pyrosequencing based on the ammonia monooxygenase subunit A (amoA gene. Genotypes of clusters A and B dominated in the upper euphotic zone and the deep waters, respectively. Quantitative PCR assays revealed that the occurrence and ammonia-oxidizing activity of ammonia-oxidizing archaea (AOA reached their maxima at the depth of 200 m, where a higher diversity and abundance of actively transcribed AOA was observed at the station located in the marginal sea exposed to more terrestrial input. Similar community composition of AOA observed at the two stations adjacent to the Kuril Islands maybe due to water exchange across the Bussol Strait. They distinct from the station located in the western subarctic gyre, where sub-cluster WCAII had a specific distribution in the surface water, and this sub-cluster seemed having a confined distribution in the western Pacific. Habitat-specific groupings of different WCB sub-clusters were observed reflecting the isolated microevolution existed in cluster WCB. The effect of the Kuril Islands on the phylogenetic composition of AOA between the Sea of Okhotsk and the western subarctic Pacific is not obvious, possibly because our sampling stations are near to the Bussol Strait, the main gateway through which water is exchanged between the Sea of Okhotsk and the Pacific. The vertical and horizontal distribution patterns of AOA communities among stations along the Kuril Islands were essentially determined by the in situ prevailing physicochemical gradients along the two dimensions.

  5. Acetaldehyde in the Alaskan subarctic snowpack

    Directory of Open Access Journals (Sweden)

    F. Domine

    2010-02-01

    Full Text Available Acetaldehyde is a reactive intermediate in hydrocarbon oxidation. It is both emitted and taken up by snowpacks and photochemical and physical processes are probably involved. Understanding the reactivity of acetaldehyde in snow and its processes of physical and chemical exchanges requires the knowledge of its incorporation mechanism in snow crystals. We have performed a season-long study of the evolution of acetaldehyde concentrations in the subarctic snowpack near Fairbanks (65° N, central Alaska, which is subjected to a vigorous metamorphism due to persistent elevated temperature gradients in the snowpack, between 20 and 200° C m−1. The snowpack therefore almost entirely transforms into depth hoar. We have also analyzed acetaldehyde in a manipulated snowpack where temperature gradients were suppressed. Snow crystals there transformed much more slowly and their original shapes remained recognizable for months. The specific surface area of snow layers in both types of snowpacks was also measured. We deduce that acetaldehyde is not adsorbed onto the surface of snow crystals and that most of the acetaldehyde is probably not dissolved in the ice lattice of the snow crystals. We propose that most of the acetaldehyde measured is either trapped or dissolved within organic aerosol particles trapped in snow, or that acetaldehyde is formed by the hydrolysis of organic precursors contained in organic aerosols trapped in the snow, when the snow is melted for analysis. These precursors are probably aldehyde polymers formed within the aerosol particles by acid catalysis, but might also be biological molecules. In a laboratory experiment, acetaldehyde-di-n-hexyl acetal, representing a potential acetaldehyde precursor, was subjected to our analytical procedure and reacted to form acetaldehyde. This confirms our suggestion that acetaldehyde detected in snow could be produced during the melting of snow for analysis.

  6. Subarctic physicochemical weathering of serpentinized peridotite

    Science.gov (United States)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by

  7. How important is diversity for capturing environmental-change responses in ecosystem models?

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2014-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean...... ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical...... in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  8. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

    2005-12-15

    The restoration of wetland salmon habitat in the tidal portion of the Columbia River is occurring at an accelerating pace and is anticipated to improve habitat quality and effect hydrological reconnection between existing and restored habitats. Currently multiple groups are applying a variety of restoration strategies in an attempt to emulate historic estuarine processes. However, the region lacks both a standardized means of evaluating the effectiveness of individual projects as well as methods for determining the cumulative effects of all restoration projects on a regional scale. This project is working to establish a framework to evaluate individual and cumulative ecosystem responses to restoration activities in order to validate the effectiveness of habitat restoration activities designed to benefit salmon through improvements to habitat quality and habitat opportunity (i.e. access) in the Columbia River from Bonneville Dam to the ocean. The review and synthesis of approaches to measure the cumulative effects of multiple restoration projects focused on defining methods and metrics of relevance to the CRE, and, in particular, juvenile salmon use of this system. An extensive literature review found no previous study assessing the cumulative effects of multiple restoration projects on the fundamental processes and functions of a large estuarine system, although studies are underway in other large land-margin ecosystems including the Florida Everglades and the Louisiana coastal wetlands. Literature from a variety of scientific disciplines was consulted to identify the ways that effects can accumulate (e.g., delayed effects, cross-boundary effects, compounding effects, indirect effects, triggers and thresholds) as well as standard and innovative tools and methods utilized in cumulative effects analyses: conceptual models, matrices, checklists, modeling, trends analysis, geographic information systems, carrying capacity analysis, and ecosystem analysis. Potential

  9. Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2

    Science.gov (United States)

    James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapek

    2008-01-01

    A modeling experiment was designed to investigate the impact of fire management, CO2 emission rate, and the growth response to CO2 on the response of ecosystems in the conterminous United States to climate scenarios produced by three different general circulation models (GCMs) as simulated by the MCl Dynamic General...

  10. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    In subarctic ecosystems, plant growth is mostly limited by nutrient availability and harsh climate. Investigating how soil nutrient availability controls the plant community composition may therefore help to understand indirect effects of climate change. The study was conducted in a long-term field...... experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years......, and the aboveground plant biomass was harvested 4 and 16 years after initiating the experiment. In addition, soil inorganic N and P concentration was analyzed the same years. Increased nutrient availability (NPK fertilizer) largely increased the biomass of graminoids and unexpectedly of bryophytes, but not of other...

  11. Selected References on Arctic and Subarctic Prehistory and Ethnology. Revised.

    Science.gov (United States)

    Fitzhugh, William, Comp.; Loring, Stephen, Comp.

    This bibliography provides an introduction to the current literature, in English, on arctic and subarctic prehistory and ethnology. Leads for further research will be found in section 1. Publications listed are not available from the Smithsonian Institution but copies may be found in larger libraries or obtained through inter-library loan.…

  12. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  13. Many-objective robust decision making for managing an ecosystem with a deeply uncertain threshold response

    Directory of Open Access Journals (Sweden)

    Riddhi Singh

    2015-09-01

    Full Text Available Managing ecosystems with deeply uncertain threshold responses and multiple decision makers poses nontrivial decision analytical challenges. The problem is imbued with deep uncertainties because decision makers do not know or cannot converge on a single probability density function for each key parameter, a perfect model structure, or a single adequate objective. The existing literature on managing multistate ecosystems has generally followed a normative decision-making approach based on expected utility maximization (MEU. This approach has simple and intuitive axiomatic foundations, but faces at least two limitations. First, a prespecified utility function is often unable to capture the preferences of diverse decision makers. Second, decision makers' preferences depart from MEU in the presence of deep uncertainty. Here, we introduce a framework that allows decision makers to pose multiple objectives, explore the trade-offs between potentially conflicting preferences of diverse decision makers, and to identify strategies that are robust to deep uncertainties. The framework, referred to as many-objective robust decision making (MORDM, employs multiobjective evolutionary search to identify trade-offs between strategies, re-evaluates their performance under deep uncertainty, and uses interactive visual analytics to support the selection of robust management strategies. We demonstrate MORDM on a stylized decision problem posed by the management of a lake in which surpassing a pollution threshold causes eutrophication. Our results illustrate how framing the lake problem in terms of MEU can fail to represent key trade-offs between phosphorus levels in the lake and expected economic benefits. Moreover, the MEU strategy deteriorates severely in performance for all objectives under deep uncertainties. Alternatively, the MORDM framework enables the discovery of strategies that balance multiple preferences and perform well under deep uncertainty. This

  14. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  15. Responses of terrestrial herpetofauna to persistent, novel ecosystems resulting from mountaintop removal mining

    Science.gov (United States)

    Williams, Jennifer M.; Brown, Donald J.; Wood, Petra

    2017-01-01

    Mountaintop removal mining is a large-scale surface mining technique that removes entire floral and faunal communities, along with soil horizons located above coal seams. In West Virginia, the majority of this mining occurs on forested mountaintops. However, after mining ceases the land is typically reclaimed to grasslands and shrublands, resulting in novel ecosystems. In this study, we examined responses of herpetofauna to these novel ecosystems 10–28 y postreclamation. We quantified differences in species-specific habitat associations, (sub)order-level abundances, and habitat characteristics in four habitat types: reclaimed grassland, reclaimed shrubland, forest fragments in mined areas, and nonmined intact forest. Habitat type accounted for 33.2% of the variation in species-specific captures. With few exceptions, forest specialists were associated with intact forest and fragmented forest sites, while habitat generalists were either associated with grassland and shrubland sites or were distributed among all habitat types. At the (sub)order level, salamander (Order Urodela) captures were highest at fragmented and intact forest sites, frog and toad (Order Anura) captures were lowest at intact forest sites, and snake (Suborder Serpentes) captures were highest at shrubland sites. Habitat type was a strong predictor for estimated total abundance of urodeles, but not for anurans or snakes. Tree stem densities in grasslands differed from the other three habitat types, and large trees (>38 cm diameter at breast height) were only present at forest sites. Overstory vegetation cover was greater in forested than in reclaimed habitat types. Ground cover in reclaimed grasslands was distinct from forest treatments with generally less woody debris and litter cover and more vegetative cover. It is important to consider the distributions of habitat specialists of conservation concern when delineating potential mountaintop mine sites, as these sites will likely contain unsuitable

  16. Tracking Biological and Ecosystem Responses to Changing Environmental Conditions in the Pacific Arctic

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.; Frey, K. E.; Moore, S. E.

    2014-12-01

    Changing seasonal sea ice conditions and seawater temperatures strongly influence biological processes and marine ecosystems at high latitudes. In the Pacific Arctic, persistent regions termed "hotspots", are localized areas with high benthic macroinfaunal biomass that have been documented over four decades (see Figure). These regions are now being more formally tracked to relate physical forcing and ecosystem response as an Arctic Distributed Biological Observatory (DBO) supported by the US National Ocean Policy Implementation Plan and international partners. These hotspots are important foraging areas for upper trophic level benthic feeders, such as marine mammals and seabirds. South of St. Lawrence Island (SLI) in the northern Bering Sea, benthic feeding spectacled eiders, bearded seals and walruses are important winter consumers of infauna, such as bivalves and polychaetes. Gray whales have historically been a major summer consumer of benthic amphipods in the Chirikov Basin to the north of SLI, although summertime sightings of gray whales declined in the Chirikov from the 1980s up until at least 2002. The SE Chukchi Sea hotspot, as are the other hotspots, is maintained by export of high chlorophyll a that is produced locally as well as advected by water masses transiting northward through the system. Both walrus and gray whales are known to forage in this hotspot seasonally on high biomass levels of benthic prey. Notably the center of the highest benthic biomass regions has shifted northward in three of the DBO hotspots in recent years. This has coincided with changing sediment grain size, an indicator of current speed, and is also likely a response to changes in primary production in the region. Studies of these broad biological responses to changing physical drivers have been facilitated through development of the DBO cooperative effort by both US and international scientists. The DBO includes a series of coordinated, multi-trophic level observations that

  17. Carbon-cycle implications of asymmetry in response of semi-arid ecosystem phenology and productivity to rainfall

    Science.gov (United States)

    Smith, Benjamin; Haverd, Vanessa; Ahlström, Anders; Canadell, Josep

    2017-04-01

    Semi-arid savannahs and shrublands of the tropics and subtropics play a key role in the inter-annual variability of the global carbon cycle and are emerging as an important player - comparable with tropical forests - in terms of their contribution to the ongoing sink trend of the carbon exchange between the global land surface and atmosphere. Both the variability and carbon balance trend of the savannah-shrubland biome are characterised by shifting phenology, mediated by changes in the seasonality and relative contributions to ecosystem productivity of woody vegetation elements and grasses. Shifts in water availability associated with the impacts of global circulation systems on the distribution and amount of rainfall are a key driver of vegetation response in these ecosystems, which tolerate drought, but spring to life, becoming highly productive, during episodes of ample water supply. This "boom or bust" behaviour with respect to water availability may be expected to translate into an asymmetric response to rainfall change, positive anomalies in rainfall tending to lead to larger increases in productivity compared with the corresponding decrease in productivity resulting from a negative anomaly of comparable size. As rainfall distributions over time themselves exhibit asymmetry, an 'intrinsic' (ecosystem response-driven) and 'extrinsic' (climate or weather forcing-driven) component of asymmetry may be distinguished. We investigated the prevalence of asymmetry in forcing and response of ecosystem productivity to rainfall variability globally and for the illustrative case of Australia, which emerges as a global 'hot spot' for rainfall-driven variability in ecosystem gross primary production (GPP) and associated net ecosystem productivity (NEP). Employing two climate-driven ecosystem models, informed by multiple observation types (land-atmosphere fluxes, biomass, streamflow and remotely-sensed vegetation cover), we show that the inland region of Australia, dominated

  18. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    Science.gov (United States)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to <3000 pairs at since 1975 in response to changes in food availability and increased late spring snow accumulation. Changes in pygoscelid penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  19. Intensive land use in the Swedish mountains between AD 800 and 1200 led to deforestation and ecosystem transformation with long-lasting effects.

    Science.gov (United States)

    Östlund, Lars; Hörnberg, Greger; DeLuca, Thomas H; Liedgren, Lars; Wikström, Peder; Zackrisson, Olle; Josefsson, Torbjörn

    2015-10-01

    Anthropogenic deforestation has shaped ecosystems worldwide. In subarctic ecosystems, primarily inhabited by native peoples, deforestation is generally considered to be mainly associated with the industrial period. Here we examined mechanisms underlying deforestation a thousand years ago in a high-mountain valley with settlement artifacts located in subarctic Scandinavia. Using the Heureka Forestry Decision Support System, we modeled pre-settlement conditions and effects of tree cutting on forest cover. To examine lack of regeneration and present nutrient status, we analyzed soil nitrogen. We found that tree cutting could have deforested the valley within some hundred years. Overexploitation left the soil depleted beyond the capacity of re-establishment of trees. We suggest that pre-historical deforestation has occurred also in subarctic ecosystems and that ecosystem boundaries were especially vulnerable to this process. This study improves our understanding of mechanisms behind human-induced ecosystem transformations and tree-line changes, and of the concept of wilderness in the Scandinavian mountain range.

  20. In Situ Nuclear Magnetic Resonance Response of Permafrost and Active Layer in Boreal and Tundra Ecosystems

    Science.gov (United States)

    Kass, A.; Minsley, B. J.; Irons, T. P.; Pastick, N. J.; Brown, D. N.; Wylie, B. K.

    2016-12-01

    Characterization of permafrost, particularly warm and near-surface permafrost (which can contain significant unfrozen water), is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost landscapes to environmental change requires an interdisciplinary approach, relying on (for example) geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multi-year investigation into the impacts of wildfires to permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR) response of active layer and permafrost in a variety of soil conditions, types, and saturations. The miniaturized borehole NMR data can directly quantify the significant amounts of unfrozen water within warm permafrost, as well as characterize the distribution of that water throughout the pores. Our observations are consistent with the laboratory-derived model of ice nucleating at the center of pores and growing outwards. Random walk simulations also support this conceptual model. In this presentation, we summarize the NMR data and present relationships between active layer and permafrost liquid water content and pore sizes. We also discuss relationships between electrical resistivity, NMR response, and permafrost as a function of soil type.

  1. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    Science.gov (United States)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and

  2. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Kelly Elder,; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  3. Changing times, changing stories: generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Directory of Open Access Journals (Sweden)

    Nicole M. Herman-Mercer

    2016-09-01

    Full Text Available Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1 intergenerational observations of change were common among interview participants in all four communities, (2 older generations observed more overall change than younger generations interviewed by us, and (3 how change was perceived varied between generations. We defined "observations" as the specific examples of environmental and weather change that were described, whereas "perceptions" referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  4. SubArctic Oceans and Global Climate

    Science.gov (United States)

    Rhines, P. B.

    2004-12-01

    The passages connecting the Arctic Ocean with the Atlantic and Pacific, and their `mediterranean' basins, are focal points for the global meridional overturning circulation, and all of the climate impacts which this implies. It is also a difficult region to model accurately: the sensitivity of climate models to subpolar ocean dynamics is well-known. In this talk we stress the need to instrument and analyze the subpolar oceans, and some examples of sustained observations developing there. Results from satellite altimetry, recent Seaglider deployments from Greenland, and mooring arrays will be described. In particular we show the first Seaglider sections of hydrography and bio-optical profiles of the Labrador Sea (one of the first extended deployments of this autonomous undersea vehicle); we discuss the decline during the 1990s of the subpolar gyre circulation of the Atlantic from its great strength during the positive NAO period of the early 1990s, and its relevance to the salinity decline observed over a much longer period; we review observations of the flows at the Iceland-Scotland Ridge and Davis Strait, argued in terms of volume transport plots on the potential temperature/salinity plane; we display maps of the `convection resistance' (related to dynamic height) and its sensitivity to surface low-salinity water masses and their partition between shallow continental shelves and deep ocean. This is a particularly exciting time for climate studies, with fundamental properties of the atmosphere-ocean circulation under debate, even before one considers natural and human-induced variability. Is the four-decade long decline in subArctic salinity the result of increased hydrologic cycle, increased or altered Arctic outflow to the Atlantic, or slowing of the subpolar circulation? Is the basic intensity of the MOC more dependent on high-latitude buoyancy forcing, or wind- or tide-driven mixing in the upwelling branch, or possibly wind-stress at high latitude? Is the

  5. Ecosystem responses in the southern Caribbean Sea to global climate change

    National Research Council Canada - National Science Library

    Gordon T. Taylor; Frank E. Muller-Karger; Robert C. Thunell; Mary I. Scranton; Yrene Astor; Ramon Varela; Luis Troccoli Ghinaglia; Laura Lorenzoni; Kent A. Fanning; Sultan Hameed; Owen Doherty

    2012-01-01

    ... of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation (NAO). Expression of these changes in tropical marine ecosystems is poorly understood because of sparse observational datasets...

  6. Soil moisture and ecosystem function responses of desert grassland varying in vegetative cover to a saturating precipitation pulse

    Science.gov (United States)

    A critical linkage between hydrological and ecological processes is plant cover, yet the ecosystem-level responses of aridland systems of varying plant cover to extreme precipitation events, predicted to increase in number and severity in the future, has not been well studied. We tracked average ro...

  7. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators.

    Science.gov (United States)

    Cariveau, Daniel P; Williams, Neal M; Benjamin, Faye E; Winfree, Rachael

    2013-07-01

    More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real-world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land-use change. We measured crop pollination services provided by native bees across land-use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta; Kivimäenpää, Minna; Faubert, Patrick

    2015-01-01

    to a fixed temperature,warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increaseappeared to result from increased plant coverage and changes in vegetation composition. The litter addition treat-ment also caused significant increases in the emission...... and stimulated microbial production of BVOCs. We suggest that the changes in the subarcticvegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emissionpotentials and composition.......Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensi-tive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, weaimed to investigate how warming affects the BVOC emissions in the long term...

  9. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems

    Science.gov (United States)

    Hoover, David L.; Duniway, Michael C.; Belnap, Jayne

    2015-01-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  10. Design and construction of miniature artificial ecosystem based on dynamic response optimization

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu

    The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and

  11. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems.

    Science.gov (United States)

    Hoover, David L; Duniway, Michael C; Belnap, Jayne

    2015-12-01

    In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3 shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.

  12. A systems approach to understanding subarctic critical zone changes in a warming climate (Invited)

    Science.gov (United States)

    Rich, V. I.; McCalley, C. K.; Woodcroft, B. J.; Kim, E.; Hodgkins, S. B.; Tfaily, M. M.; Wehr, R. A.; Logan, T.; Jones, R.; Mondav, R.; Hurst, G.; Verberkmoes, N.; Li, C.; Frolking, S. E.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Tyson, G. W.

    2013-12-01

    Climate change is dramatically altering the subarctic and Arctic Critical Zone. Permafrost, which currently holds approximately one third of global soil carbon in a relatively unavailable form, is predicted to be virtually eliminated by the end of the century. One endpoint for permafrost habitat thaw is wetlands, which are a major source of the microbially-produced greenhouse gas methane. This creates a potentially large positive feedback to climate change. Our team is using a systems approach spanning diverse geochemical (high-resolution greenhouse gas isofluxes and soil/peat geochemistry) and molecular (16S rRNA gene amplicon, metagenomic and metaproteomic sequencing) measurements to track parallel changes in carbon cycling and in situ microbiology across a natural permafrost thaw gradient. Thaw at this site results in a three-stage habitat shift from ericaceous shrubs, to peat moss, to sedges, concomitant with a substantial increase in methane emissions. Isotopically, emitted methane shifts along the thaw gradient away from hydrogenotrophic methane production, in parallel with the appearance of acetoclastic methanogens in the microbial community. Community data have also revealed the presence of a novel, highly-active methanogen from the euryarchaeal lineage Rice Cluster-II, dubbed Candidatus Methanoflorens stordalenmirensis. Its ';species' is present in numerous other global wetland datasets, has the genomic capacity (inferred from its population genome) for hydrogenotrophic methanogenesis, and was the highest environmental correlate of emitted methane's isotopic signature. In situ community global protein expression profiles (i.e. metaproteomes) revealed that it strongly expresses its hydrogentrophic methanogensis genes, and that methanogenesis is a dominant signal in the overall community proteome. As we generate a portrait of how thaw impacts this major subarctic critical zone habitat, we are working with ecosystem process modelers to integrate new

  13. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development

    Science.gov (United States)

    Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna. Lee

    2009-01-01

    Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...

  14. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons

    NARCIS (Netherlands)

    Chiang, L-C; Lin, Y-P; Schmeller, D.S.; Verburg, P.H.; Liu, Y.L.; Ding, T-S.

    2014-01-01

    Ongoing environmental disturbances (e.g., climate variation and anthropogenic activities) alter an ecosystem gradually over time. Sudden large disturbances (e.g., typhoons and earthquakes) can have a significant and immediate impact on landscapes and ecosystem services. This study explored how

  15. A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals

    Science.gov (United States)

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxic...

  16. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  17. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  18. Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation.

    Directory of Open Access Journals (Sweden)

    Thomas C Adam

    Full Text Available Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience.

  19. Response of arid ecosystems to the Holocene climate variability along west and central Mediterranean gradients.

    Science.gov (United States)

    Jaouadi, Sahbi; Combourieu Nebout, Nathalie; Azuara, Julien; Lebreton, Vincent

    2017-04-01

    Decadal to millennial climate variability is a common feature recorded by environmental series. However interconnections between climate forcing (i.e. insolation, thermohaline circulation) and large atmospheric circulation patterns (i.e. North Atlantic Oscillation, Mediterranean Oscillation, Monsoon) still remain poorly understood considering their respective impacts on the global climate mechanisms. In the Mediterranean area, joint climatic influences from high temperate and low subtropical latitudes result in a high sensitivity of ecosystems to climate changes and especially to extreme events. Several vegetation records illustrate millennial changes in Mediterranean. Nevertheless notable discrepancies in the environmental response arise between Mediterranean edges (east vs west, north vs south). The new paleoenvironmental record from Sebkha Boujmel (33°N, southern Tunisia) covers the last 8kyr and exhibits eight humid/arid fluctuations with cyclic expansion of the desert, related to Middle and Late Holocene rapid climate changes (RCC) occurring at a centennial scale. Sebkha Boujmel record is replaced in the wider context of west Mediterranean and northern hemisphere. Asynchronies and disparity of the Mediterranean RCC occurrence documents north-south and west-east climate gradients in the west Mediterranean and pinpoint Sebkha Boujmel as the single vegetation record tracing as many climate events during the last 8kyr. Indeed the high sensitivity of arid environments triggers the prompt reaction of the southern Tunisian vegetation to Holocene RCC however tenuous. Pattern of RCC geographical occurrence in west and central Mediterranean is interpreted in the light of climate forcings involved for the Holocene centennial variability.

  20. Gene Expression Profiling - Opening the Black Box of Plant Ecosystem Responses to Global Change

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Elizabeth A. [USDA-ARS, Urbana, IL; Bernard, Stephanie M. [University of California, Berkeley; Markelz, R.J. Cody [University of Illinois; Ort, Donald R. [USDA-ARS, Urbana, IL; Placella, Sarah A. [University of California, Berkeley; Rogers, Alistair [ORNL; Smith, Melinda D [Yale University; Sudderth, Erika A. [University of California, Berkeley; Weston, David [ORNL; Wullschleger, Stan D [ORNL; Yuan, Shenghua [Yale University

    2009-01-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the black box of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  1. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.

    Science.gov (United States)

    Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin

    2014-10-07

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.

  2. Soil life in reconstructed ecosystems: initial soil food web responses after rebuilding a forest soil profile for a climate change experiment

    Science.gov (United States)

    Paul T. Rygiewicz; Vicente J. Monleon; Elaine R. Ingham; Kendall J. Martin; Mark G. Johnson

    2010-01-01

    Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems. That is, the sensitivity of analyzing ecosystem processes in a reconstructed system is...

  3. Establishing the Role of Digital Repeat Photography in Understanding Phenology and Carbon Cycling in a Subarctic Peatland

    Science.gov (United States)

    Garnello, Anthony John

    In this thesis, I establish and explore the role of phenology in understanding the rapidly changing environment of a subarctic peatland. First, I demonstrate how digital repeat photography can be used to characterize and differentiate distinct plant communities using two years of images. Each habitat is composed of different plant functional groups, promoting the individualistic approach to characterization that near-earth remote sensing tools can provide. The camera-product Relative Greenness successfully characterized interannual variability in seasonal growth for each habitat type. Across habitats, there was a direct relationship between advancement of spring onset and active season growth though this overall pattern showed habitat-specific variance. The camera images were also useful in characterizing the flowering phenology of an eriophorum-rich fen habitat, for which a metric named Intensity was created. These results suggest that employment of phenology cameras in highly heterogeneous subarctic environments is a robust method to characterize phenology on a habitat to species scale. Next, I explored the role that this phenology product has in modeling Net Ecosystem Exchange (NEE) also measured at the field site. I hypothesized that the explanatory power of the phenology index, which is conceptually tied to a measure of photosynthetic capacity, would be tightly linked to the timescale it was used for: At sub-daily timescales, environmental forces would dominate, though when averaged over days to weekly scales, the biology represented through the camera index would be more influential. I show that at multiple time scales the environmental factors outperform the camera index when modeling NEE. Together, these studies begin to explore the applicability of phenology camera systems in subarctic environments.

  4. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  5. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models.

    Science.gov (United States)

    Song, Xiang; Zeng, Xiaodong

    2017-02-01

    The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2, and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (ΔFtree; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether ΔFtree was positive or negative, while the tree fractional coverage (Ftree; %) played a decisive role in the amplitude of ΔFtree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, Ftree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < Ftree < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, ΔFtree had a stronger dependence on Ftree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

  6. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  7. Impact of decade-long warming, nutrient addition and shading on emission and carbon isotopic composition of CO2 from two subarctic dwarf shrub heaths

    DEFF Research Database (Denmark)

    Ravn, Nynne R.; Ambus, Per Lennart; Michelsen, Anders

    2017-01-01

    This study investigated ecosystem respiration, soil respiration and carbon isotopic composition in CO2 emitted from two subarctic shrub heaths with contrasting moisture regimes. The reported measurements were conducted 22 years (mesic heath) and 12 years (wet heath) upon initiation of in situ...... and soil respiration was measured using closed chambers and CO2 in the soil profile was sampled with gas probes installed at different depths. At the mesic heath ecosystem respiration was increased 46% by warming while soil respiration increased 133% by nutrient addition. At the wet heath, warming...... climate change related manipulations of temperature, nutrient availability and light. The aim was to quantify expected climatic change effects on soil and ecosystem respiration, and to investigate whether the emitted CO2 originates from old carbon stores in the soil or from newly fixed carbon. Ecosystem...

  8. Responses of coastal ecosystems to environmental variability in emerging countries from the Americas

    Science.gov (United States)

    Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar

    2015-12-01

    Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).

  9. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study

    Science.gov (United States)

    Olchev, Alexander; Kurbatova, Julia

    2014-05-01

    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  10. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of ...

  11. Detritus-based assemblage responses under salinity stress conditions in a disused aquatic artificial ecosystem

    National Research Council Canada - National Science Library

    Cerfolli, Fulvio; Bellisario, Bruno; Battisti, Corrado

    2013-01-01

    .... In this work, we report the comparison between biomass and abundance in a set of detritus-based macrozoobenthic assemblages located in six sampling pools with different salinity in an artificial aquatic ecosystem...

  12. Regional signatures of plant response to drought and elevated temperature across a desert ecosystem.

    Science.gov (United States)

    Munson, Seth M; Muldavin, Esteban H; Belnap, Jayne; Peters, Debra P C; Anderson, John P; Reiser, M Hildegard; Gallo, Kirsten; Melgoza-Castillo, Alicia; Herrick, Jeffrey E; Christiansen, Tim A

    2013-09-01

    The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified "climate pivot points" that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.

  13. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  14. A long-term copper exposure on freshwater ecosystem using lotic mesocosms: Primary producer community responses.

    Science.gov (United States)

    Roussel, Hélène; Ten-Hage, Loïc; Joachim, Sandrine; Le Cohu, René; Gauthier, Laury; Bonzom, Jean-Marc

    2007-02-28

    Copper is commonly used as an algicide and plant herbicide in the aquatic environment. Despite of its frequent application in rivers, ponds and lakes, few studies have been performed at the ecosystem level on primary producers' communities. A long-term lotic mesocosms study was carried on, in 20m long channels, under environmentally realistic concentrations of copper (0, 5, 25 and 75 microgL(-1)) delivered continuously for 18 months. Results showed significant effects at the 25 and 75 microgL(-1) copper treatment levels on the phytoplankton, periphyton and macrophyte community structure. Effects on biomass and abundance were dissimilar depending on the studied community. Phytoplankton showed no abundance variation with treatment, whereas periphyton had higher biomass and macrophytes had lower coverage at 25 and 75 microgL(-1). Taxa richness was significantly affected for all primary producers communities at 25 and 75 microgL(-1). Some taxa seemed to be sensitive to copper, i.e. Cocconeis spp., Epithemia sp., Gomphonema spp., Lemna minor, Nasturtium officinale and filamentous macroalgae. Other taxa appeared to be tolerant or facilitated by indirect effects, i.e. Leptolyngbya sp., Mougeotia sp., Nitzschia palea, Pseudanabaena sp. and Ulothrix sp. and therefore increased in the 25 and 75 microgL(-1) treatments. Important indirect factors influenced the community responses, such as trophic interactions like decrease of grazing pressure, competition for light and nutrients and temperature favouring blue-green algae development. After 18 months of copper exposure, the no observed effect concentration at community level (NOEC(community)) for primary producers was set up at 5 or 4mugL(-1), if we consider the average effective concentration, with a lowest observed effect concentration (LOEC(community)) at 25 or 20 microgL(-1) (AEC).

  15. Population dynamics of Empetrum hermaphroditum (Ericaceae) on a subarctic sand dune: Evidence of rapid colonization through efficient sexual reproduction.

    Science.gov (United States)

    Boudreau, Stéphane; Ropars, Pascale; Harper, Karen Amanda

    2010-05-01

    The importance of sexual reproduction for clonal plant species has long been underestimated, perhaps as a consequence of the difficulty in identifying individuals, preventing the study of their population dynamics. Such is the case for Empetrum hermaphroditum, an ericaceous species, which dominates the ground vegetation of subarctic ecosystems. Despite abundant seed production, seedlings are rarely observed. Therefore, prevalent seedling recruitment on a subarctic dune system provided an opportunity to study the population dynamics and spatial pattern of the colonization phase of this species. We established a 6-ha grid on the dune systems that extended from the shoreline to the fixed dunes and mapped and measured all E. hermaphroditum individuals in the grid. Moreover, we sampled 112 individuals just outside the grid to identify any allometric relationship between the size and age of the individuals, which allowed us to reconstruct population expansion. The overall size structure suggests that the population is still expanding. In the last 50 yr, E. hermaphroditum advanced more than 200 m in the dune system. Expansion started in the 1960s simultaneously at different distances from the shoreline. Colonization did not proceed gradually from the fixed dune toward the shoreline but instead individuals established earlier in the troughs between the dunes, with an increasingly clumped spatial pattern as the population filled in with time.

  16. CO2 and fire influence tropical ecosystem stability in response to climate change.

    Science.gov (United States)

    Shanahan, Timothy M; Hughen, Konrad A; McKay, Nicholas P; Overpeck, Jonathan T; Scholz, Christopher A; Gosling, William D; Miller, Charlotte S; Peck, John A; King, John W; Heil, Clifford W

    2016-07-18

    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.

  17. A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals.

    Science.gov (United States)

    Forbes, Valery E; Salice, Chris J; Birnir, Bjorn; Bruins, Randy J F; Calow, Peter; Ducrot, Virginie; Galic, Nika; Garber, Kristina; Harvey, Bret C; Jager, Henriette; Kanarek, Andrew; Pastorok, Robert; Railsback, Steve F; Rebarber, Richard; Thorbek, Pernille

    2017-04-01

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC. © 2017 SETAC.

  18. Ecosystem Health Assessment at County-Scale Using the Pressure-State-Response Framework on the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Delin Liu

    2016-12-01

    Full Text Available Assessing ecosystem health is helpful to determine reasonable eco-environmental restoration and resource management strategies. Based on a pressure-state-response (PSR framework, a set of comprehensive indicators including natural, social and economic aspects was proposed and applied for assessing the ecosystem health of Yuanzhou County, Loess Plateau, Ningxia Province, China. The basic data used to calculate the values of the assessment indicators include Landsat TM image and socio-economic data, and remote sensing (RS and the geographic information system (GIS were used to process image data. The results showed that the ecosystem health conditions of most townships in Yuanzhou County were at the moderately healthy level, three townships were at the healthy level, and only two townships were at the unhelathy level; the areas (percentage at the unhealthy, moderately healthy and healthy levels were 443.91 km2 (12.66%, 2438.75 km2 (69.54% and 624.50 km2 (17.81%, respectively. The results could provide useful information for local residents and the government to take measures to improve the health conditions of their township ecosystem.

  19. Ecosystem Health Assessment at County-Scale Using the Pressure-State-Response Framework on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Delin; Hao, Shilong

    2016-12-22

    Assessing ecosystem health is helpful to determine reasonable eco-environmental restoration and resource management strategies. Based on a pressure-state-response (PSR) framework, a set of comprehensive indicators including natural, social and economic aspects was proposed and applied for assessing the ecosystem health of Yuanzhou County, Loess Plateau, Ningxia Province, China. The basic data used to calculate the values of the assessment indicators include Landsat TM image and socio-economic data, and remote sensing (RS) and the geographic information system (GIS) were used to process image data. The results showed that the ecosystem health conditions of most townships in Yuanzhou County were at the moderately healthy level, three townships were at the healthy level, and only two townships were at the unhelathy level; the areas (percentage) at the unhealthy, moderately healthy and healthy levels were 443.91 km² (12.66%), 2438.75 km² (69.54%) and 624.50 km² (17.81%), respectively. The results could provide useful information for local residents and the government to take measures to improve the health conditions of their township ecosystem.

  20. Functional traits drive plant community and ecosystem response to global change across arctic and alpine environments

    DEFF Research Database (Denmark)

    Chisholm, Chelsea Lee

    indices is supported in many of the deciduous trees in these northern temperate and boreal forests. I next assessed the interplay between ground processes and plant communities on changes in phenology due to temperature-induced permafrost melt in the high Arctic and found that plant phenology is largely...... ecosystems. I found large effects of removal on both ecosystem productivity and respiration and an overall null net effect on ecosystem exchange of carbon across regions. I also examined how trait variation underlies predictions of individual tree growth across climate space in Norwegian forests, using...... delayed in ice-rich areas. Finally, colleagues and I used an observational approach to assess changes in nutrient dynamics across replicated treeline transects in temperate regions around the globe, where we found consistent temperature-mediated changes in both ground-layer plant and soil nutrients across...

  1. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  2. Ecosystem Respiration Rates of Arctic Tundra Mesocosms in Response to Cold-Season Temperatures

    Science.gov (United States)

    Oberbauer, S. F.; Moser, J. G.; Olivas, P. C.; Starr, G.; Mortazavi, B.

    2013-12-01

    The cold season in the Arctic extends over 8 to 9 mo, during which air temperatures often reach as low as -40 °C. However, as a result of the insulating layer created by snow cover, temperatures seldom fall below -15 °C, and are likely warm enough to support some metabolism. Little research has been conducted on arctic plants and tundra during the cold season, despite its length and the fact that warming is predicted to be greatest during this period. The primary focus of cold-season research has been on rates of winter ecosystem respiration (ER) for estimates of annual carbon balance. The majority of these measurements during the winter or at winter temperatures indicate that some respiration is occurring. Although rates are low, they may contribute substantially to the annual carbon balance because of the length of the cold season. However, estimates of respiration at low temperatures differ substantially, have been taken at different temperatures using different methodologies, and importantly almost none provide quantitative relationships across a range of temperatures. We measured respiration rates of intact arctic tundra monoliths from 15 to -15 °C at 5 °C steps to facilitate improved model estimates of tundra respiration. Six tundra monoliths (~900 cm2) taken from Toolik Field Station, Alaska were conditioned for the cold season in growth chambers at shortened photoperiods and low, but above-freezing temperatures. Desired temperatures were obtained with a combination of growth chambers and a modified freezer. The average of five samplings of [CO2] at each temperature step was used to estimate the ER rates. Measurements were conducted with a closed system using incubation periods of 30 to 180 min, depending on the temperature. Carbon dioxide concentrations were measured by syringe samples injected into a N2 gas stream flowing through an infrared gas analyzer. Rates of ER calculated on an area basis were close to zero at -15 °C, but increased steadily with

  3. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    Science.gov (United States)

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  4. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    Science.gov (United States)

    Lindsey E. Rustad

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and...

  5. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea

    Science.gov (United States)

    Goberville, Eric; Beaugrand, Gregory; Edwards, Martin

    2014-01-01

    Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.

  6. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Science.gov (United States)

    Shuhua Yi; David McGuire; Jennifer Harden; Eric Kasischke; Kristen Manies; Larr Hinzman; Anna Liljedahl; Jim Randerson; Heping Liu; Vladimire Romanovsky; Sergei Marchenko; Yongwon. Kim

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were...

  7. Plant Species Diversity Mediates Ecosystem Stability of Natural Dune Grasslands in Response to Drought

    NARCIS (Netherlands)

    Rooijen, van Nils M.; Keersmaecker, de Wanda; Ozinga, Wim A.; Coppin, Pol; Hennekens, Stephan M.; Schaminée, Joop H.J.; Somers, Ben; Honnay, Olivier

    2015-01-01

    How plant species diversity can mediate the temporal stability of ecosystem functioning during periods of environmental stress is still a pressing question in ecology, certainly in the context of predicted increasing frequencies and intensities of climate extremes, such as drought. The vast

  8. Seasonal hysteresis of net ecosystem exchange in response to temperature change: Patterns and causes

    NARCIS (Netherlands)

    Niu, S.; Luo, Y.; Montagnani, L.; Janssens, I.A.; Gielen, B.; Rambal, S.; Moors, E.J.; Matteucci, G.

    2011-01-01

    Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change-carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site-years of data) in mid- and high-latitude forests to

  9. Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study

    NARCIS (Netherlands)

    Riebesell, U.; Gattuso, J.-P.; Thingstad, T.F.; Middelburg, J.J.

    2013-01-01

    The growing evidence of potential biological impacts of ocean acidification affirms that this global change phenomenon may pose a serious threat to marine organisms and ecosystems. Whilst ocean acidification will occur everywhere, it will happen more rapidly in some regions than in others. Due

  10. Minimizing risks from spilled oil to ecosystem services using influence diagrams: The Deepwater Horizon spill response

    Science.gov (United States)

    Making inferences on risks to ecosystem services (ES) from ecological crises may be improved using decision science tools. Influence diagrams (IDs) are probabilistic networks that explicitly represent the decisions related to a problem and evidence of their influence on desired o...

  11. Native bunchgrass response to prescribed fire in ungrazed Mountain Big Sagebrush ecosystems

    Science.gov (United States)

    Lisa M. Ellsworth; J. Boone Kauffman

    2010-01-01

    Fire was historically a dominant ecological process throughout mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) ecosystems of western North America, and the native biota have developed many adaptations to persist in a regime typified by frequent fires. Following spring and fall prescribed fires...

  12. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications.

    Science.gov (United States)

    Virginia R. Burkett; Douglas A. Wilcox; Robert Stottlemeyer; Wylie Barrow; Dan Fagre; Jill Baron; Jeff Price; Jennifer L. Nielsen; Craig D. Allen; David L. Peterson; Greg Ruggerone; Thomas. Doyle

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that...

  13. A modeling framework for evaluating stream restoration techniques and ecosystem response

    Science.gov (United States)

    Blersch, S. S.; Atkinson, J. F.; Blersch, D. M.; Bennett, S. J.

    2010-12-01

    The practice of stream restoration is still often viewed as an “art” versus a science. This view is further fueled by the manner in which many restoration projects are identified and implemented- on a case by case basis with little documentation on the drivers of the ecosystems in question or the establishment of success criteria once the project is complete. While monitoring data may exist to quantify the existing conditions of a stream (biological, chemical, and physical) prior to restoration, these data are not always easily translated into design criteria for restoration due to the dynamic nature of streams. In an attempt to address the critiques of existing stream restoration practices, a conceptual model is proposed which identifies the ecosystem drivers in a stream system at varying temporal and spatial scales based on the hierarchy of general systems. Using an energy circuit diagramming as a template for this conceptual model, a guiding image of the stream ecosystem is presented that incorporates the effects of in-stream restoration structures on the ecological functions of the stream and possible trajectories of these ecosystems with and without restoration. The energy circuit diagram is translated into a STELLA modeling framework in an attempt to quantify, for the first time, the potential interactions among biological, chemical and physical structure of the stream ecosystem due to changes in energy signatures (physical, chemical and biological). Pre and post restoration scenarios are developed and presented based on this construct, and Elton Creek near Delevan, New York has been selected as a test case for the conceptual model. State variables and boundary conditions are discussed, and existing data sources to calibrate the model are reviewed.

  14. Testing the field of dreams hypothesis: functional responses to urbanization and restoration in stream ecosystems.

    Science.gov (United States)

    Sudduth, Elizabeth B; Hassett, Brooke A; Cada, Peter; Bernhardt, Emily S

    2011-09-01

    As catchments become increasingly urban, the streams that drain them become increasingly degraded. Urban streams are typically characterized by high-magnitude storm flows, homogeneous habitats, disconnected riparian zones, and elevated nitrogen concentrations. To reverse the degradation of urban water quality, watershed managers and regulators are increasingly turning to stream restoration approaches. By reshaping the channel and reconnecting the surface waters with their riparian zone, practitioners intend to enhance the natural nutrient retention capacity of the restored stream ecosystem. Despite the exponential growth in stream restoration projects and expenditures, there has been no evaluation to date of the efficacy of urban stream restoration projects in enhancing nitrogen retention or in altering the underlying ecosystem metabolism that controls instream nitrogen consumption. In this study, we compared ecosystem metabolism and nitrate uptake kinetics in four stream restoration projects within urban watersheds to ecosystem functions measured in four unrestored urban stream segments and four streams draining minimally impacted forested watersheds in central North Carolina, U.S.A. All 12 sites were surveyed in June through August of 2006 and again in January through March of 2007. We anticipated that urban streams would have enhanced rates of ecosystem metabolism and nitrate uptake relative to forested streams due to the increases in nutrient loads and temperature associated with urbanization, and we predicted that restored streams would have further enhanced rates for these ecosystem functions by virtue of their increased habitat heterogeneity and water residence times. Contrary to our predictions we found that stream metabolism did not differ between stream types in either season and that nitrate uptake kinetics were not different between stream types in the winter. During the summer, restored stream reaches had substantially higher rates of nitrate uptake

  15. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  16. Modeling the response of plants and ecosystems to CO{sub 2} and climate change. Final technical report, September 1, 1992--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.

    1998-04-10

    Objectives can be divided into those for plant modeling and those for ecosystem modeling and experimental work in support of both. The author worked in a variety of ecosystem types, including pine, arctic, desert, and grasslands. Plant modeling objectives are: (1) to construct generic models of leaf, canopy, and whole-plant response to elevated CO{sub 2} and climate change; (2) to validate predictions of whole-plant response against various field studies of elevated CO{sub 2} and climate change; (3) to use these models to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on individual plants for conditions and time frames beyond those used to calibrate the model; and (4) to provide information to higher-level models, such as community models and ecosystem models. Ecosystem level modeling objectives are: (1) to incorporate models of plant responses to elevated CO{sub 2} into a generic ecosystem model in order to predict the direct and indirect effects of elevated CO{sub 2} and climate change on ecosystems; (2) to validate model predictions of total system-level response (including decomposition) against various ecosystem field studies of elevated CO{sub 2} and climate change; (3) to use the ecosystem model to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on ecosystems for conditions and time frames beyond those used to calibrate the model; and (4) to use the ecosystem model to study effects of change in CO{sub 2} and climate at regional and global scales. Occasionally the author conducted some experimental work that was deemed important to the development of the models. This work was mainly physiological work that could be performed in the Duke University Phytotron, using existing facilities.

  17. Threshold responses to interacting global changes in a California grassland ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Field, Christopher [Carnegie Inst. of Science, Stanford, CA (United States); Mooney, Harold [Stanford Univ., CA (United States); Vitousek, Peter [Stanford Univ., CA (United States)

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place in the context of 4 global change factors – warming, elevated CO2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.

  18. Issues in evaluation of ecosystem change in response to global change

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Shevliakova, E.; Kandlikar, M.

    1994-12-31

    Uncertainty analysis of our integrated climate assessment model has revealed the importance of obtaining better market and non-market impacts. Improving market and non-market damage assessments has necessitated advances in the theoretical and applied dimensions of the problem. The assessment of climate change impacts on ecosystems provides a severe test for the new ideas being put forward. This paper provides a brief overview of, (i) the challenges inherent in modeling ecosystem dynamics; (ii) the problem of selecting an appropriate metric of change; and, (iii) the thorny issue of how to place a monetary value on market and non-market impacts. We focus on two central issues in estimation of impacts: (i) before climate change, are the systems being impacted (both ecological and economic) in equilibrium? and (ii) how quickly do ecological and related economic systems adapt to change? In addition, we attempt to be comprehensive in laying out the magnitude of the challenge ahead.

  19. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean

    Science.gov (United States)

    Maldonado, Maria T.; Price, Neil M.

    1999-11-01

    Experiments were conducted along a coastal-oceanic transect in the NE subarctic Pacific to examine acquisition of organically complexed Fe by autotrophic and heterotrophic plankton. During short-term experiments, plankton took up Fe bound to the siderophores desferrioxamine B and E, microbial Fe chelates with a high affinity for Fe. Uptake occurred in all size fractions: 0.2-1, 1-3, and >3 μm. Heterotrophic bacteria had higher Fe : C ratios (1.5 to 2 times) than phytoplankton, and accounted for 70±8% of the total Fe uptake by the community (mol Fe ml -1 h -1). This latter result was partially explained by the higher C biomass of bacteria, but was not related to their productivity. Carbon-specific uptake rates of Fe were also faster (1.6±1.5 times) in bacteria than phytoplankton. When the rates were normalized per cell surface area, however, phytoplankton were observed to transport Fe at a rate more than 30 times that of bacteria. Large phytoplankton greater than 3 μm reduced Fe bound to organic ligands extracellularly. Their Fe : C ratios and rates of uptake and reduction of organically bound Fe were very similar at all stations along the transect and were characteristic of Fe-stressed phytoplankton. A strong seasonal trend of Fe uptake and reduction was apparent. The results suggest that heterotrophic bacteria are responsible for a large fraction of dissolved Fe uptake and that the indigenous plankton of the subarctic Pacific are able to acquire Fe bound to strong organic ligands, the predominant form of dissolved Fe in the sea.

  20. Human alterations, dynamic equilibrium, and riparian ecosystem responses along selected rivers in Tuscany, Italy (Invited)

    Science.gov (United States)

    Hupp, C. R.; Rinaldi, M.

    2010-12-01

    Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery

  1. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-01-01

    Roč. 81, č. 2 (2017), s. 1-27, č. článku e00063. ISSN 1092-2172 R&D Projects: GA ČR(CZ) GP14-09040P; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : bacteria * decomposition * ecosystem processes Subject RIV: EE - Microbiology, Virology Impact factor: 14.533, year: 2016

  2. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

    2012-05-01

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

  3. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  4. Responses of aquatic ecosystems to environmental changes in Finland and China

    Directory of Open Access Journals (Sweden)

    Jan eWeckström

    2015-11-01

    Full Text Available The concern for the state of global freshwater reservoirs has increased due to deterioration of the water quality during the last decades. This has prompted monitoring and restoration efforts such as the European Water Framework Directive and the national-scale 2nd-investigation and monitoring of the water quality, water volume and biota resources in China. The challenge so far has been the determination of the natural state (reference conditions of freshwater ecosystems. We used the sediment archives of five lakes and one brackish water embayment in Finland and China to assess the impact of selected variables of climatology, hydrology, nutrients, and changes in human population on these ecosystems during the last few centuries. The study sites represent catchment areas with varying land use. Despite the long distance between the sites and their different land-use characteristics, the direction and timing of changes during the last few centuries are well comparable between the high latitudes of Finland and the mid-low latitudes of China. This study reinforces the sensitivity of aquatic ecosystems to environmental change and underlines the usefulness of the palaeolimnological approach as a tool for determining reference conditions.

  5. The response of terrestrial ecosystems to global climate change: towards an integrated approach.

    Science.gov (United States)

    Rustad, Lindsey E

    2008-10-15

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components.

  6. Systematically enhanced subarctic Pacific stratification and nutrient utilization during glacials

    Science.gov (United States)

    Knudson, K. P.; Ravelo, A. C.

    2015-12-01

    The modern subarctic North Pacific is characterized as a high-nitrate, low-chlorophyll (HNLC) area, but evidence for increased nutrient utilization during the last glacial indicates that this region is highly dynamic. As such, this HNLC area is of particular interest in regard to understanding changes in the biological pump and carbon sequestration and predicting how biogeochemical processes will influence, or be influenced by, future climate change. While it has been suggested that changes in iron supply and/or ocean stratification could explain fluctuations in nutrient utilization and productivity in the subarctic Pacific, short records of nutrient utilization have previously hindered the evaluation of these potential mechanisms over long timescales. Here we present new, high-resolution records of bulk sediment δ15N from 0-1.2 Ma from Integrated Ocean Drilling Program Exp. 323 Site U1342, which are used to calculate Δδ15N (U1342 δ15Nbulk - ODP Site 1012 δ15Nbulk) as a nitrate utilization proxy. The unprecedented length and resolution of this new record allows us, for the first time, to determine orbital-scale systematic behavior in subarctic Pacific nutrient utilization over many glacial/interglacial cycles. Spectral analyses demonstrate that enhanced nutrient utilization was paced by climate on Milankovitch orbital cycles since the Mid-Pleistocene Transition (MPT; ~800 ka). Nitrate utilization maxima is statistically correlated with glacial maxima and enhanced dust/iron availability (represented by existing records of EPICA ice core dust, Southern Pacific Ocean sediment iron, and China loess) but shows low correlation to primary productivity, suggesting that stratification has systematically exerted an important control on subarctic Pacific nutrient utilization since the MPT. These findings imply that the presence of iron helped to change the region into a nitrate-limited, rather than iron-limited, region during glacials and that stratification, which

  7. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Desboeufs, K.; Wagener, T.; Pulido-Villena, E.; Grisoni, J.-M.; Louis, F.; Ridame, C.; Blain, S.; Brunet, C.; Bon Nguyen, E.; Tran, S.; Labiadh, M.; Dominici, J.-M.

    2010-09-01

    Intense Saharan dust deposition occurs over large oligotrophic areas in the Mediterranean Sea and in the Tropical Atlantic, and its impact on the biogeochemical functioning of such oligotrophic ecosystems needs to be understood. However, due to the logistical difficulties of investigating in situ natural dust events, and due to the inherent limitations of microcosm laboratory experiments, new experimental approaches need to be developed. In this paper, we present a new experimental setup based on large, clean mesocoms deployed in the frame of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project. We demonstrate that these tools are highly relevant and provide a powerful new strategy to in situ studies of the response of an oligotrophic ecosystem to chemical forcing by atmospheric deposition of African dust. First, we describe how to cope with the large amount of dust aerosol needed to conduct the seeding experiments by producing an analogue from soil collected in a source area and by performing subsequent appropriate physico-chemical treatments in the laboratory, including an eventual processing by simulated cloud water. The comparison of the physico-chemical characteristics of produced dust analogues with the literature confirms that our experimental simulations are representative of dust, aging during atmospheric transport, and subsequent deposition to the Mediterranean. Second, we demonstrate the feasibility in coastal areas to installing, in situ, a series of large (6 × 52 m3) mesocosms without perturbing the local ecosystem. The setup, containing no metallic parts and with the least possible induced perturbation during the sampling sequence, provides an approach for working with the required conditions for biogeochemical studies in oligotrophic environments, where nutrient and micronutrients are at nano- or subnano-molar levels. Two, distinct "seeding experiments" were conducted by deploying three mesocosms serving as controls

  8. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic.

    Science.gov (United States)

    Hassett, Brandon T; Ducluzeau, Anne-Lise L; Collins, Roy E; Gradinger, Rolf

    2017-02-01

    Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    Science.gov (United States)

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  10. Subarctic warming: Results from the global treeline project

    Energy Technology Data Exchange (ETDEWEB)

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  11. Evolution of the snow area index of the subarctic snowpack in central Alaska over a whole season. consequences for the air to snow transfer of pollutants.

    Science.gov (United States)

    Taillandier, A S; Domine, F; Simpson, W R; Sturm, M; Douglas, T A; Severin, K

    2006-12-15

    The detailed physical characteristics of the subarctic snowpack must be known to quantify the exchange of adsorbed pollutants between the atmosphere and the snow cover. For the first time, the combined evolutions of specific surface area (SSA), snow stratigraphy, temperature, and density were monitored throughout winter in central Alaska. We define the snow area index (SAI) as the vertically integrated surface area of snow crystals, and this variable is used to quantify pollutants' adsorption. Intense metamorphism generated by strong temperature gradients formed a thick depth hoar layer with low SSA (90 cm(2) g-1) and density (200 kg m(-3)), resulting in a low SAI. After snowpack buildup in autumn, the winter SAI remained around 1000 m(2)/m(2) of ground, much lower than the SAI of the Arctic snowpack, 2500 m(2) m-(2). With the example of PCBs 28 and 180, we calculate that the subarctic snowpack is a smaller reservoir of adsorbed pollutants than the Arctic snowpack and less efficiently transfers adsorbed pollutants from the atmosphere to ecosystems. The difference is greater for the more volatile PCB 28. With climate change, snowpack structure will be modified, and the snowpack's ability to transfer adsorbed pollutants from the atmosphere to ecosystems may be reduced, especially for the more volatile pollutants.

  12. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  13. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China.

    Science.gov (United States)

    Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou

    2015-12-15

    The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.

  14. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems.

    Science.gov (United States)

    Li, Wei; Xu, Xiaoguang; Fujibayashi, Megumu; Niu, Qigui; Tanaka, Nobuyuki; Nishimura, Osamu

    2016-10-01

    To estimate the combined effects of elevated CO2 and temperature on microalgae, three typical and worldwide freshwater species, the green alga Scenedesmus acuminatus, the diatom Cyclotella meneghiniana, and the cyanobacterium Microcystis aeruginosa, as well as mixes of these three species were continuously cultured in controlled environment chambers with CO2 at 390 and 1000 ppm and temperatures of 20, 25, and 30 °C. CO2 and temperature significantly affected the production of microalgae. The cell productivity increased under elevated CO2 and temperature. Although the green alga dominated in the mixed culture within all CO2 and temperature conditions, rising temperature and CO2 intensified the competition of the cyanobacterium with other microalgae. CO2 affected the extracellular polymeric substances (EPS) characteristics of the green alga and the cyanobacterium. Elevated CO2 induced the generation of humic substances in the EPS fractions of the green alga, the cyanobacterium, and the mixed culture. The extracellular carbohydrates of the diatom and the extracellular proteins of the cyanobacterium increased with elevated CO2 and temperature, while the extracellular carbohydrates and proteins of the green alga and the mixes increased under elevated CO2 and temperature. There were synergistic effects of CO2 and temperature on the productivity and the EPS of microalgae. Climate change related CO2 and temperature increases will promote autochthonous organic carbon production in aquatic ecosystems and facilitate the proliferation of cyanobacteria, which potentially changes the carbon cycling and undermines the functioning of ecosystems.

  15. Comprehensive Evaluation of Machine Learning Techniques for Estimating the Responses of Carbon Fluxes to Climatic Forces in Different Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2018-02-01

    Full Text Available Accurately estimating the carbon budgets in terrestrial ecosystems ranging from flux towers to regional or global scales is particularly crucial for diagnosing past and future climate change. This research investigated the feasibility of two comparatively advanced machine learning approaches, namely adaptive neuro-fuzzy inference system (ANFIS and extreme learning machine (ELM, for reproducing terrestrial carbon fluxes in five different types of ecosystems. Traditional artificial neural network (ANN and support vector machine (SVM models were also utilized as reliable benchmarks to measure the generalization ability of these models according to the following statistical metrics: coefficient of determination (R2, index of agreement (IA, root mean square error (RMSE, and mean absolute error (MAE. In addition, we attempted to explore the responses of all methods to their corresponding intrinsic parameters in terms of the generalization performance. It was found that both the newly proposed ELM and ANFIS models achieved highly satisfactory estimates and were comparable to the ANN and SVM models. The modeling ability of each approach depended upon their respective internal parameters. For example, the SVM model with the radial basis kernel function produced the most accurate estimates and performed substantially better than the SVM models with the polynomial and sigmoid functions. Furthermore, a remarkable difference was found in the estimated accuracy among different carbon fluxes. Specifically, in the forest ecosystem (CA-Obs site, the optimal ANN model obtained slightly higher performance for gross primary productivity, with R2 = 0.9622, IA = 0.9836, RMSE = 0.6548 g C m−2 day−1, and MAE = 0.4220 g C m−2 day−1, compared with, respectively, 0.9554, 0.9845, 0.4280 g C m−2 day−1, and 0.2944 g C m−2 day−1 for ecosystem respiration and 0.8292, 0.9306, 0.6165 g C m−2 day−1, and 0.4407 g C m−2 day−1 for net ecosystem exchange

  16. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.

  17. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  18. Competing ecosystem model hypotheses for the CO2 response of a nutrient and water limited mature woodland

    Science.gov (United States)

    Duursma, R.; Medlyn, B. E.; Zaehle, S.; De Kauwe, M. G.; Gimeno, T.; Drake, J.; Macdonald, C.; Singh, B.; Mishurov, M.; Pak, B. C.; Walker, A. P.; Yang, X.; Ellsworth, D.

    2013-12-01

    The long-term response of ecosystems to elevated atmospheric CO2 concentration (eCa) is modulated by the interactions with nutrient cycling and water availability. Here, we set out to evaluate alternative hypotheses for the response of a nutrient and water limited woodland to eCa, using a diverse set of ecosystem models. The EucFACE experiment was established in late 2012 in western Sydney, in a Eucalyptus-dominated native woodland. It is the only FACE site worldwide in mature native woodland. The site is characterized by extremely low nutrient availability (particularly P), frequent occurrence of extended dry periods, and low leaf area index (LAI = ca. 1 m2 m-2). We applied seven ecosystem models to predict, in advance of the experiment, the eCa response of vegetation growing at the EucFACE site. The seven models (GDAY, OCN, SDGVM, CLM4-CN, CLM4-CNP, LPJ-GUESS and CABLE2.0) all include water limitation and nearly all include nutrient limitation. The models embody a range of alternative hypotheses for the effects of eCa on vegetation. The aim was to use the models to quantify the outcomes of these competing hypotheses, and generate focussed questions that can help to guide research at the EucFACE. All models were run with available site inputs, and a historic weather dataset split into a sequence of ';wet' and ';dry' years. We focused on the responses of net primary production (NPP), total evapotranspiration (ET) and water-use efficiency (WUE) to eCa, and the interaction with water availability. The models differed in their predictions of the response of net primary productivity (NPP) to eCa. The hypotheses embedded in the models range from no nutrient limitation to growth, in which case the model predicts a sustained eCa effect on productivity, through to complete nutrient limitation, in which case the model predicts no eCa effect at all. The key processes that would allow us to distinguish among the competing hypotheses were identified as N and P mineralisation

  19. Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios.

    Science.gov (United States)

    Lee, Zarraz M; Steger, Laura; Corman, Jessica R; Neveu, Marc; Poret-Peterson, Amisha T; Souza, Valeria; Elser, James J

    2015-01-01

    Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbe-dominated systems from anthropogenic inputs of

  20. Uncertainty analysis of a coupled ecosystem response model simulating greenhouse gas fluxes from a temperate grassland

    Science.gov (United States)

    Liebermann, Ralf; Kraft, Philipp; Houska, Tobias; Breuer, Lutz; Müller, Christoph; Kraus, David; Haas, Edwin; Klatt, Steffen

    2015-04-01

    Among anthropogenic greenhouse gas emissions, CO2 is the dominant driver of global climate change. Next to its direct impact on the radiation budget, it also affects the climate system by triggering feedback mechanisms in terrestrial ecosystems. Such mechanisms - like stimulated photosynthesis, increased root exudations and reduced stomatal transpiration - influence both the input and the turnover of carbon and nitrogen compounds in the soil. The stabilization and decomposition of these compounds determines how increasing CO2 concentrations change the terrestrial trace gas emissions, especially CO2, N2O and CH4. To assess the potential reaction of terrestrial greenhouse gas emissions to rising tropospheric CO2 concentration, we make use of a comprehensive ecosystem model integrating known processes and fluxes of the carbon-nitrogen cycle in soil, vegetation and water. We apply a state-of-the-art ecosystem model with measurements from a long term field experiment of CO2 enrichment. The model - a grassland realization of LandscapeDNDC - simulates soil chemistry coupled with plant physiology, microclimate and hydrology. The data - comprising biomass, greenhouse gas emissions, management practices and soil properties - has been attained from a FACE (Free Air Carbon dioxide Enrichment) experiment running since 1997 on a temperate grassland in Giessen, Germany. Management and soil data, together with weather records, are used to drive the model, while cut biomass as well as CO2 and N2O emissions are used for calibration and validation. Starting with control data from installations without CO2 enhancement, we begin with a GLUE (General Likelihood Uncertainty Estimation) assessment using Latin Hypercube to reduce the range of the model parameters. This is followed by a detailed sensitivity analysis, the application of DREAM-ZS for model calibration, and an estimation of the effect of input uncertainty on the simulation results. Since first results indicate problems with

  1. Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters.

    Science.gov (United States)

    Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin

    2016-11-01

    To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ecosystem Responses to Changed Atmospheric Mercury Load: Results from Seven Years of Mercury Loading to Lake 658

    Science.gov (United States)

    Gilmour, C.; Harris, R.; Kelly, C.; Rudd, J.; Amyot, M.; Hurley, J.; Babiarz, C.; Paterson, M.; Blanchfield, P.; Beaty, K.; Sandilands, K.; Hintelmann, H.; Krabbenhoft, D.; Tate, M.; Lindberg, S.; Southworth, G.; St. Louis, V.; Graydon, J.

    2009-05-01

    The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we are conducting the METAALICUS study, a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Loading began in 2001 and ended in 2007. In this paper we will present mercury and methylmercury budgets for the study lake for the entire 7 year loading period. Overall, we increased the total Hg load to L658 and its watershed by roughly a factor of 3. However, we only increased the Hg load the lake itself by about 2X, since, during the seven years of addition, almost none of the Hg spike deposited to the watershed was transported all the way to the lake. Spike Hg concentrations in lake water rose each year during the open-water loading period and declined rapidly each winter. Methylmercury production in the lake responded rapidly to changes in mercury load during the first year of addition. After about 3 years, the increase in MeHg in lake water and in surface sediments slowed, suggesting that MeHg production was approaching a new level, or different rate, in response to the increased Hg load. We will discuss major input and loss terms for newly deposited Hg, the timing and proportionality of response, the timing and locations of MeHg production within the lake.

  3. Assessing the response of the Australian carbon balance to climate variability by assimilating satellite observations in a distributed ecosystem model

    Science.gov (United States)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems offset about 25% of anthropogenic emissions of fossil fuel responsible for the current global warming. This long-term carbon sink exhibits a large inter-annual variability that recent studies have associated to the response of semi-arid ecosystems to variations in climate conditions and especially the occurrence of extreme events. For example, wet conditions during the 2010-2011 La Niña episode led to the strongest annual terrestrial carbon sink ever observed. Satellite observations of plant productivity and modelling experiments indicate that this anomalous sink was mostly located in the southern hemisphere where Australia experienced record-breaking rainfall. However, the durability of this extra-sink has yet to be assessed as dry conditions returned in northern Australia at the end of 2011, causing large-scale fires. In this paper we investigate the influence of climate variability on Australian ecosystems and we particularly focus on the resilience of the La Niña driven 2010-2011 sink to subsequent dry years. Therefore, we use the CARbon Data MOdel fraMework (CARDAMOM) data-assimilation system to retrieve the 21st century Australian terrestrial carbon cycle simulated by an ecosystem model in agreement with climate data and Earth Observations relevant to the biosphere: burned area, leaf area index and biomass. Accordingly with previous studies results indicate a strong influence of the El Niño/Southern Oscillation on the inter-annual variability of the Australian carbon balance at the continent-scale. More precisely, in 2010-2011 the La Niña-driven wet conditions led the continent to become a strong sink of atmospheric carbon. Then, dry conditions accompanied by intense fires returned at the end of 2011 and our analyses indicate that the totality of the northern Australian sink (north of 30°S) was re-emitted by late 2011 as fires immediately burnt the extra-fuel produced during the record wet seasons. These results raise concerns on

  4. The Land-Use Legacy Effect: Towards a Mechanistic Understanding of Ecosystem Responses to Land Use/Cover

    Science.gov (United States)

    Martin, S. L.; Hayes, D. B.; Kendall, A. D.; Rutledge, D. T.; Hyndman, D. W.

    2012-12-01

    Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses. Only a few studies have linked the dynamics of changing LULC to a mechanistic understanding of flow paths and travel times. In this study, we explore relationships between LULC and ecosystem responses. We link mechanistic models of groundwater flow with statistical models of wetland processing and riparian dynamics. We provide an example that illustrates the utility of this approach in lakes, but is generalizable across ecosystem types. We test several hypotheses about mechanistic linkages between LULC and lake water chemistry: groundwater pathways are a dominant mechanism driving legacy effects in lakes for the study region; wetlands in close proximity to rivers have a stronger effect on lake chemistry than those located throughout the watershed; and, riparian zone LULC is more closely related to lake chemistry than watershed LULC. We applied these models to twelve water chemistry variables, ranging from nutrients to conservative ions, to better understand the roles that biological reactivity and solubility play as connections between LULC and aquatic ecosystem function. We expect that: 1) chemicals with high solubility (e.g. SRP, NO3) will have stronger relationships with legacy land uses via groundwater flow paths than those with low solubility (e.g. TP), which are affected more by surficial transport processes; 2) chemicals with low biological reactivity (e.g. relatively conservative ions) will have a stronger link to groundwater flow paths than those with high biological reactivity (e.g. nitrogen and phosphorus). The Huron River Watershed (HRW) study area has undergone extensive LULC change over the past century, shifting from a primarily agricultural to a suburban landscape. Selected sample sites cover a range of historical LULC trajectories. A multi-temporal GIS database of LULC data was constructed for eight time steps (circa 1800, 1880, 1938, 1955, 1968, 1978, 1995, and

  5. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...... model and the uncertainty of the driving parameters is considered low. The presented XF estimation method contributes with a central component for site-dependent characterization factors (CFs) for marine eutrophication, to be coupled with environmental fate of N emissions and effects of oxygen depletion...

  6. Observations from Space: Marine Ecosystem and Environment Response to Typhoon/ Hurricanes

    Science.gov (United States)

    Tang, Danling; Yi, Sui

    Marine ecosystem is sensitive to environmental factors, including typhoon. Typhoon's activities have been strengthening in both intensity and spatial coverage in the past several decades, along with global changes; however, our knowledge about the impact of typhoons upon the marine ecosystem is very scarce. To understand how could typhoon/hurricane impact on marine ecosystem, we have conducted a series studies in the South China Sea, by using Satellite remote sensing and in situ observation data to investigate phytoplankton concentration, sea surface temperature (SST) and related factors before, during, and after typhoon. Results show that typhoon can induce large area of phytoplankton blooms with increases of Chlorophyll a (Chl a) concentrations and decrease of sea surface temperature (SST) about 4 oC. Analysis showed that typhoon can support nutrients to surface phytoplankton by upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phyto-plankton bloom by upwelling. Typhoon can also induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. Comparative study show that slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. Therefore, typhoons may have important contribution to the marine primary production. Those studies may help better understand the mechanism of typhoon impacts on marine ecosys-tem, and the role of typhoon in the global environmental changes. The series research were sup-ported by: NSFC (40976091, 40811140533) and GD NSF (8351030101000002); (2) CAS(kzcx2-yw-226 and LYQ200701); (3) The CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-T001). References: Tang, DanLing, H Kawamura, P Shi, W Takahashi, T Shimada, F. Sakaida, O

  7. Chemical evolution and vegetation response in an altered wetland ecosystem, Hula Valley, Israel (1988-2004).

    Science.gov (United States)

    Avisar, Dror; Fox, Adam S

    2012-01-01

    The Hula Nature Reserve (HNR) (0.3 km(2)) in northern Israel is a semiarid wetland ecosystem within the greater Hula Valley. In the 1950s, approximately 60 km(2) of wetlands were drained and converted to farmland. The HNR was established during this time to preserve some of the native flora and fauna. Agricultural runoff and a reflooding of the area with peat water in 1999 resulted in high sulfate (SO(4) (2-)) concentrations of 66.67 ± 4.00 mg/L. We identified the existence of SO(4) (2-), nitrate (NO(3) (-)), and ammonium (NH(4) (+)) nutrient gradients as well as related mechanisms affecting the growth and dieback of Cyperus papyrus. The observed changes in the C. papyrus populations were caused primarily by fluctuations in SO(4) (2-). After two key events that affected levels of SO(4) (2-) in the HNR, C. papyrus coverage was altered by more than 80%.

  8. Changes in Responsibilities and Tasks of Universities in Regional Innovation Ecosystems

    Directory of Open Access Journals (Sweden)

    Birkner Zoltán

    2017-06-01

    Full Text Available Innovation process research is changing. In addition to the former territorial approach (examining countries or regions, the description of innovation cooperation in local areas is becoming more and more accepted. Instead of the innovation ability of the traditional large enterprises, research has begun to study the role of small and medium-sized enterprises, non-governmental organizations, local governments, and educational institutions (especially universities, which foreshadows the development of a new innovation system. In 2015, we conducted a study focusing on the civil and corporate relations of a major university. We tried to determine the new directions based on the economic and social cooperation as well as to search for the practical implementation of the theoretical helixes in these interactions. We came to the conclusion that universities not only are determinative according to the triple helix model but also have a prominent role in the creation of new innovation ecosystems, particularly in a well-defined geographical area.

  9. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Russell, Micah; Skalski, John R.; Thom, Ronald M.; Vavrinec, John

    2008-10-01

    The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoring indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.

  10. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs

    Directory of Open Access Journals (Sweden)

    C. Guieu

    2010-09-01

    Full Text Available Intense Saharan dust deposition occurs over large oligotrophic areas in the Mediterranean Sea and in the Tropical Atlantic, and its impact on the biogeochemical functioning of such oligotrophic ecosystems needs to be understood. However, due to the logistical difficulties of investigating in situ natural dust events, and due to the inherent limitations of microcosm laboratory experiments, new experimental approaches need to be developed. In this paper, we present a new experimental setup based on large, clean mesocoms deployed in the frame of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem project. We demonstrate that these tools are highly relevant and provide a powerful new strategy to in situ studies of the response of an oligotrophic ecosystem to chemical forcing by atmospheric deposition of African dust. First, we describe how to cope with the large amount of dust aerosol needed to conduct the seeding experiments by producing an analogue from soil collected in a source area and by performing subsequent appropriate physico-chemical treatments in the laboratory, including an eventual processing by simulated cloud water. The comparison of the physico-chemical characteristics of produced dust analogues with the literature confirms that our experimental simulations are representative of dust, aging during atmospheric transport, and subsequent deposition to the Mediterranean. Second, we demonstrate the feasibility in coastal areas to installing, in situ, a series of large (6 × 52 m3 mesocosms without perturbing the local ecosystem. The setup, containing no metallic parts and with the least possible induced perturbation during the sampling sequence, provides an approach for working with the required conditions for biogeochemical studies in oligotrophic environments, where nutrient and micronutrients are at nano- or subnano-molar levels. Two, distinct "seeding experiments" were conducted by deploying three

  11. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  12. Prokaryotic Community Composition in Arctic Kongsfjorden and Sub-Arctic Northern Bering Sea Sediments As Revealed by 454 Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Yin-Xin Zeng

    2017-12-01

    Full Text Available Fjords and continental shelves represent distinct marine ecosystems in the pan-arctic region. Kongsfjorden is a glacial fjord that is located on the west coast of Svalbard, and is influenced by both Atlantic and Arctic water masses. The Bering Sea consists of a huge continental shelf in the northeast and a deep ocean basin in the southwest, and is influenced by Pacific water. Microbial community compositions of Arctic sediment samples BJ4 from outer basin and BJ36 from inner basin of Kongsfjorden and sub-Arctic samples NEC5 from shallow shelf and DBS1 from deep basin region of the northern Bering Sea were investigated using 454 pyrosequencing of archaeal and bacterial 16S rRNA genes. Most archaeal sequences in the sediments were related to Thaumarchaeota, though Euryarchaeota were more abundant in the Arctic glacier-influencing inner basin sediment BJ36. Thaumarchaeota Group C3 was the dominant archaeal population in all samples. Proteobacteria and Bacteroidetes dominated the sediment bacterial communities. Acidobacteria and Actinobacteria were also dominant in the northern Bering Sea samples. Alphaproteobacteria and Epsilonproteobacteria were the two main classes in Kongsfjorden sediment bacterial communities while Deltaproteobacteria and Gammaproteobacteria were dominant in the northern Bering Sea sediments. Differences in the presence and abundance of other dominant archaeal and bacterial populations were observed among sediment samples. In contrast to archaeal community differences that the Arctic BJ36 archaeal community was distinct from the sub-Arctic sediments and the Arctic outer basin sediment BJ4, cluster analysis based on bacterial OTU (operational taxonomic unit distributions indicated that the Arctic and sub-Arctic bacterial communities segregated from one another. These results suggest that the sediment archaeal and bacterial community compositions can be driven by different environmental factors. Differences in the presence and

  13. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    Directory of Open Access Journals (Sweden)

    Xuyang Lu

    Full Text Available Soil carbon dioxide (CO2 emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10 of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  14. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost

    Science.gov (United States)

    Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.

    2016-01-01

    Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.

  15. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming

    Czech Academy of Sciences Publication Activity Database

    Alatalo, J.M.; Jägerbrand, A.K.; Čuchta, Peter

    2015-01-01

    Roč. 5, December (2015), s. 18161 ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Collembola * alpine subarctic sites * experimental warming Subject RIV: EH - Ecology, Behaviour Impact factor: 5.228, year: 2015

  16. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  17. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  18. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours

    National Research Council Canada - National Science Library

    Johnsen, May Trude; Wynn, Rolf; Bratlid, Trond

    2013-01-01

    ...) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables...

  19. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  20. Probable limits of sea ice extent in the northwestern Subarctic Pacific during the last glacial maximum

    Science.gov (United States)

    Matul, A. G.

    2017-09-01

    The article summarizes and analyzes published data on the distribution of sea-ice and open-ocean diatoms in 42 cores of bottom sediments from the northwestern part of the Subarctic Pacific that accumulated during the last glacial maximum (LGM). Based on micropaleontological records, the extent of winter sea ice during the LGM could be limited to the Okhotsk and Bering seas. During the warm season, the surface water masses from the open Subarctic Pacific spread widely in the marginal seas.

  1. Optimal Sleep Duration in the Subarctic with Respect to Obesity Risk Is 8?9 Hours

    OpenAIRE

    May Trude Johnsen; Rolf Wynn; Trond Bratlid

    2013-01-01

    INTRODUCTION: Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration,...

  2. Salt marsh ecosystem biogeochemical responses to nutrient enrichment: a paired 15N tracer study.

    Science.gov (United States)

    Drake, D C; Peterson, Bruce J; Galván, Kari A; Deegan, Linda A; Hopkinson, Charles; Johnson, J Michael; Koop-Jakobsen, K; Lemay, Lynsey E; Picard, Christian

    2009-09-01

    We compared processing and fate of dissolved NO3- in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of approximately 1-4 micromol NO3-/ L and the other receiving experimentally fertilized flood tides containing approximately 70-100 micromol NO3-/ L. We conducted simultaneous 15NO3- (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48-0.61 mol NO3-N.ha(-1).h(-1)) of incoming NO3- was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3- concentrations were 1.3-1.8 micromol/L. In contrast, only 50-60% of incoming NO3- was processed in the fertilized system when NO3- concentrations were 84-96 micromol/L; the remainder was exported in ebb tidewater. Gross NO3- processing was approximately 40 times higher in the fertilized system at 19.34-24.67 mol NO3-N.ha(-1).h(-1). Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but <1% of incoming 15NO3- was exported as 15NH4+. Nitrification rates calculated by 15NO3- dilution were 6.05 and 4.46 mol.ha(-1).h(-1) in the fertilized system but could not be accurately calculated in the reference system due to rapid (<4 h) NO3- turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3-, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol.ha(-1).d(-1), respectively. Macrophyte NO3- uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3

  3. The response of ecosystem carbon pools to management approaches in loblolly pine (Pinus taeda L.) plantations

    Science.gov (United States)

    Vogel, J. G.; Bacon, A. R.; Bracho, R. G.; Gonzalez-Benecke, C. A.; Fox, T. D.; Laviner, M. A.; Kane, M.; Burkhart, H.; Martin, T.; Will, R.; Ross, C. W.; Grunwald, S.; Jokela, E. J.; Meek, C.

    2016-12-01

    Extending from Virginia to east Texas in the southeastern United States, managed pine plantations are an important component of the region's carbon cycle. An objective of the Pine Integrated Network: Education, Mitigation, and Adaptation project (PINEMAP) is to improve estimates of how ecosystem carbon pools respond to the management strategies used to increase the growth of loblolly pine plantations. Experimental studies (108 total) that have been used to understand plantation productivity and stand dynamics by university-forest industry cooperatives were measured for the carbon stored in the trees, roots, coarse-wood, detritus in soil, forest floor, understory and soils to 1-meter. The age of the studied plantations ranged from 4-26 years at the time of sampling, with 26 years very near the period when these plantations are commonly harvested. Across all study sites, 455 experimental plots were measured. The average C storage across all pools, sites, and treatments was 192 Mg C ha-1, with the average percentage of the total coming from soil (44%), tree biomass (40%), forest floor (8%), root (5%), soil detritus (2%), understory biomass (1%), and coarse-wood (<1%) pools. Plots had as a treatment either fertilization, competition control, and stand density control (thinning), and every possible combination of treatments including `no treatment'. A paired plot analysis was used where two plots at a site were examined for relative differences caused by a single treatment and these differences averaged across the region. Thinning as a stand-alone treatment significantly reduced forest floor mass by 60%, and the forest floor in the thinned plus either competition control or fertilization was 18.9% and 19.2% less, respectively, than unthinned stands combined with the same treatments. Competition control increased C storage in tree biomass by 12% and thinning decreased tree biomass by 32%. Thinning combined with fertilization had lower soil carbon (0-1 m) than unthinned

  4. Modeling the response of plants and ecosystems to global change. Progress report, September 1, 1989--August 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.; Harley, P.; Hilbert, D.W.; Kemp, P.R.; Cornelius, J.M.; Tenhunen, J.D.

    1990-05-03

    An initiated close collaboration with experimentalists at Kansas State University that will provide data necessary to models of response to global change. This collaboration also includes co-operative experimental work carried out by staff at SERG that expands the range of ecosystem level processes measured in the open top chambers at Manhatan, Kansas. Several factors suggest that close co-operation between our two groups will be especially advantageous for the realization of the broad goals of the DOE CO{sub 2} consortium: (1) The experimental effort is very extensive, chambers and smaller closed chambers are experiments will provide information at levels. (2) We have been in close contact with the Kansas State group for some time and are beginning a major addition to the open chamber studies this summer. Consequently, we will be present at the field site for much of the summer, working directly with the group. (3) Several members of our group have extensive experience working in grasslands and our ecosystem model is currently well structured to handle grassland simulations.

  5. Processes of community development and responses of ecosystems to climate change. Progress report, September 28, 1988--September 27, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.

    1989-05-26

    Our studies focus on attempting to understand the role of decomposer-primary producer linkages in successional dynamics. We are testing a series of hypotheses that relate changes in plant species composition during succession to changes in activity and structure of the soil microfloral and faunal community, dynamics of soil organic matter, and availability of soil nutrients. As these successional patterns are identified, they are being applied to understanding specific processes and mechanics involved in ecosystem development during recovery from moderate and severe disturbances. These findings are then being used in conjunction with simulation models to assess potential effects of climate change on ecosystems. Our research involves field studies in northwestern Colorado and southeastern Washington, laboratory studies, and simulation modeling. Ongoing projects include studies of response patterns of primary producer and soil microbial communities to nutrient additions (N, P, and sucrose), the function of mycorrhizal fungi in plant community development, and the dynamics of litter decomposition under semiarid conditions. New studies are being implemented to investigate the significance of nutrient transfers from VAM fungi to plants and plant-root exudate interactions, and to relate this to understanding their roles in succession.

  6. Response of peatland ecosystem to climatic changes in Central-Eastern Europe: a long-term ecological approach

    Science.gov (United States)

    Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Lamentowicz, M.; Lamentowicz, L.; Mitchell, E. A.

    2013-12-01

    Northern peatlands play a major role in the global carbon cycle, and they are valuable archives of the past environmental change. The functioning of these ecosystems depends on the feedback between biotic and abiotic factors that are still not fully understood. In our study we investigated relationships between hydrological (groundwater level fluctuations, hydrochemistry), meteorological conditions near the ground (air temperature and humidity, photosynthetically active radiation, leaf wetness, temperature and moisture of Sphagnum) and biological factors: vegetation patterns, Sphagnum mosses growth and testate amoebae (Protists) composition. We designed a long-term ecological study site in a Sphagnum mire in Northern Poland that consisted of five meteorological micro stations and eleven piezometers located in two transects at 5,95 ha area. During the growing season 2012 we observed significant differences between plots in terms of micrometeorological and hydrological conditions that resulted in different Sphagnum increments and seasonal dynamics of testate amoebae communities. Our study is very important to better understand how temperate peatlands react to the climatic change and recent warming. Obtained results revealed a high sensitivity of bog ecosystem to e.g. short-term heat waves. Further research will be conducted to model a potential response of Sphagnum peatland to the future climate change. Project supported by Polish National Science Centre grant No. NN306060940 and the grant PSPB-013/2010 from Switzerland through the Swiss Contribution to the enlarged European Union.

  7. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem.

    Science.gov (United States)

    Inskeep, William P; Jay, Zackary J; Tringe, Susannah G; Herrgård, Markus J; Rusch, Douglas B

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) "filamentous streamer" communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  8. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  9. On incorporating fire into our thinking about natural ecosystems: A response to Saha and Howe

    Science.gov (United States)

    Keeley, Jon E.; Bond, William J.

    2001-01-01

    Ecologists long have had a fascination with fire impacts, although they have been slow to incorporate this ecological factor into serious thinking about the structure of communities and evolution of species (Bond and van Wilgen 1996).  The remarks by Saha and Howe (2001, in this issue) illustrate some of the problems ecologists have in trying to apply fire to their thinking about natural ecosystems.  Fire is commonly perceived qualitatively in terms of presence or absence, and the variation in frequency and intensity, as well as other components of the fire regime (e.g., fig. 1), is ignored.  Often not considered is the fact that plant life histories are fine-tuned to particular fire regims, and in this regard, landscapes present a range of selective peaks and valleys, both figuratively and literally.  Because landscape patterns affect the propagation of natural fires, it is imperative that the degree of human disturbance be considered (e.g. Marsh [1864] 1965; Gadgil and Guhu 1993) and the limitations of basing evolutionary arguments on anthropogenically derived landscapes be recognized (e.g., Janzen and Martin 1982).

  10. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Science.gov (United States)

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.; Herrgård, Markus J.; Rusch, Douglas B.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments. PMID:23653623

  11. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M.; Corbett, C.; Dawley, Earl M.; Ebberts, Blaine D.; Kauffman, Ronald; Roegner, G. Curtis; Russell, Micah T.; Silva, April; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Woodruff, Dana L.; Zimmerman, Shon A.

    2010-10-26

    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).

  12. Oxidative response of wetland macrophytes in response to contaminants of abiotic components of East Kolkata wetland ecosystem

    Directory of Open Access Journals (Sweden)

    Pal Sudin

    2014-06-01

    Full Text Available The tannery effluent and composite municipal sewage water drained to the East Kolkata wetland (EKW, a Ramsar Site (1208, is used for agriculture and pisciculture after natural stabilization. Such composite wastewater is characterized by exceedingly high total dissolved solids, total hardness, chloride and heavy metals concentrations. These water born pollutants generate reactive oxygen species which are potentially toxic to the biological system. These reactive oxygen species are normally detoxified by some enzymes, such as superoxide dismutase (SOD and catalase (CAT. The present study was commenced to find out the SOD and CAT activities against the oxidative stress, if any, in four macrophytes namely, Eichhornia crassipes, Pistia stratiotes, Alternanthera sessilis and Sagittarria montevidensis of contaminated ponds (Site 1 and Site 2 of EKW and an uncontaminated site (Control site. During the course of sampling the physico-chemical factors were found significantly higher in the EKW ponds compared to the control site. In the EKW sites, higher rate of evaporation during summer months caused higher elemental concentration in the premonsoon than in other seasons. This led to high activity of both SOD and CAT enzymes. In contrast, heavy rain fall in monsoon lowers the elemental concentration - mainly due to dilution effect. Present experiment indicated that in a stressed ecosystem like EKW, the wetland plants overcome the stress by altering their stress enzyme activities, hence suggesting an evidence of adaptive mechanism to thrive in a stressful environment.

  13. Phytoremediation of subarctic soil contaminated with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Puhakka, J.A. [Tampere University of Technology (Finland). Institute of Environmental Engineering and Biotechnology; Pichtel, J. [Ball State University, Muncie, IN (United States). Natural Resources and Environmental Management

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Festuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions. (author)

  14. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    Science.gov (United States)

    Liljedahl, A. K.; Gädeke, A.; O'Neel, S.; Gatesman, T. A.; Douglas, T. A.

    2017-07-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15-28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  15. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    Science.gov (United States)

    Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.

    2017-01-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  16. Ordination techniques for analysing response of biological communities to toxic stress in experimental ecosystems.

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Brink, van den P.J.; Oude Voshaar, J.H.; Leeuwangh, P.

    1995-01-01

    The ordination techniques Principal Component Analysis (PCA) and Redundancy Analysis (RDA) are considered to be useful tools for evaluating community responses in experimental ecotoxicology. Concepts and interpretation of these techniques are summarized. Application of PCA and RDA is illustrated in

  17. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Science.gov (United States)

    Kass, Mason A.; Irons, Trevor P; Minsley, Burke J.; Pastick, Neal J.; Brown, Dana R N; Wylie, Bruce K.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example) geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multi-year investigation into the impacts of wildfires to permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR) response of active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR can image the nucleation of ice within soil pore spaces.

  18. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Directory of Open Access Journals (Sweden)

    M. A. Kass

    2017-12-01

    Full Text Available Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  19. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Science.gov (United States)

    Kass, M. Andy; Irons, Trevor P.; Minsley, Burke J.; Pastick, Neal J.; Brown, Dana R. N.; Wylie, Bruce K.

    2017-12-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example) geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR) to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  20. The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    Energy Technology Data Exchange (ETDEWEB)

    Mark L. Wells; Mary Jane Perry; William P. Cochlan; Charles G. Trick

    2006-11-18

    The central hypothesis of this project is that natural iron-complexing organic ligands in seawater differentially regulate iron availability to large (microplankton) and small (nano and picoplankton) class of phytoplankton and thereby strongly influence the potential carbon sequestration in High Nitrate Low Chlorophyll (HNLC) regions of the ocean. The primary project goals are to: 1) determine how different natural and synthetic Fe chelators affect Fe availability to phytoplankton species that are representative of offshore HNLC waters, 2) elucidate how the changes in absolute concentrations of these chelators affect the longer-term ecosystem response to alleviation of Fe limitation, and 3) ascertain how changes in the ligand composition affect rates of cell sinking and aggregation - representative measures of the efficiency of carbon sequestration to the deep.

  1. Scaling ozone uptake and response in forest ecosystems using environmental indicators and process based models

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, N.S.; Samuelson, L.J.; Kelly, J.M.; Mays, P.A.; Wylie, C.L.; Goldstein, R.A.

    1999-07-01

    Recommendations to date for the secondary ozone standard have been based largely on short-term studies of annual crops and seedlings of a few tree species. Future versions of the criteria document will place greater emphasis on impacts to the forest and will progressively evaluate seedling, mature tree, and forest stand response. In order to realistically assess the impact of ozone on the forest environment, it is necessary to have a reasonable way to project ozone exposure across the landscape and to convert that exposure to a dose actually experienced by the plants making up the forest. The development of response functions for key environmental indicators that control ozone uptake by foliage at the tree level would allow the prediction of ozone uptake from ozone concentration and key environmental parameters such as temperature, soil moisture, light, and wind speed. Linkage of transport and ozone climatology models with estimates of ozone uptake by trees at different hierarchical scales derived from key indicators would allow the quantification of ozone dose and evaluation of potential ozone response using dose-response functions. In order to develop the necessary linkages, the Tennessee Valley Authority, working with EPRI and a number of universities, set up the ROVE project (Regional Ozone Vegetation Effects) in 1991 that combines a series of lab, field and modeling studies. Controlled field studies were designed to determine physiological and growth responses in mature trees and seedlings to the impact of different ozone levels. Those studies found that, within species, key physiological processes that drive predictive response models, such as photosynthesis, stomatal conductance, and respiration, vary between plants of different age and size. The next step of the project involved ozone uptake and response measurements collected in natural stands.

  2. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment

    Science.gov (United States)

    Herzyk, Agnieszka; Fillinger, Lucas; Larentis, Michael; Qiu, Shiran; Maloszewski, Piotr; Hünniger, Marko; Schmidt, Susanne I.; Stumpp, Christine; Marozava, Sviatlana; Knappett, Peter S. K.; Elsner, Martin; Meckenstock, Rainer; Lueders, Tillmann; Griebler, Christian

    2017-12-01

    Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132 days of toluene exposure followed by nearly 600 days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35 days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters.

  3. Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations.

    Science.gov (United States)

    Roitberg, Elena; Shoshany, Maxim

    2017-01-01

    Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this

  4. Final Technical Report: Response of Mediterranean-Type Ecosystems to Elevated Atmospheric CO2 and Associated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C

    2002-08-15

    This research incorporated an integrated hierarchical approach in space, time, and levels of biological/ecological organization to help understand and predict ecosystem response to elevated CO{sub 2} and concomitant environmental change. The research utilized a number of different approaches, and collaboration of both PER and non-PER investigators to arrive at a comprehensive, integrative understanding. Central to the work were the CO{sub 2}-controlled, ambient Lit, Temperature controlled (CO{sub 2}LT) null-balance chambers originally developed in the arctic tundra, which were re-engineered for the chaparral with treatment CO{sub 2} concentrations of from 250 to 750 ppm CO{sub 2} in 100 ppm increments, replicated twice to allow for a regression analysis. Each chamber was 2 meters on a side and 2 meters tall, which were installed over an individual shrub reprouting after a fire. This manipulation allowed study of the response of native chaparral to varying levels of CO{sub 2}, while regenerating from an experimental burn. Results from these highly-controlled manipulations were compared against Free Air CO{sub 2} Enrichment (FACE) manipulations, in an area adjacent to the CO{sub 2}LT null balance greenhouses. These relatively short-term results (5-7 years) were compared to long-term results from Mediterranean-type ecosystems (MTEs) surrounding natural CO{sub 2} springs in northern Italy, near Laiatico, Italy. The springs lack the controlled experimental rigor of our CO{sub 2}LT and FACE manipulation, but provide invaluable validation of our long-term predictions.

  5. Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios

    Science.gov (United States)

    Beerens, James M.; Trexler, Joel C.; Catano, Christopher P.

    2017-01-01

    In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.

  6. Ground beetle (Coleoptera: Carabidae) phenology, diversity, and response to weed cover in a turfgrass ecosystem.

    Science.gov (United States)

    Blubaugh, Carmen K; Caceres, Victoria A; Kaplan, Ian; Larson, Jonathan; Sadof, Clifford S; Richmond, Douglas S

    2011-10-01

    Despite being fragmented and highly disturbed habitats, urban turfgrass ecosystems harbor a surprising diversity of arthropods. The suitability of turf as arthropod habitat, however, likely depends on the extent and types of pesticides and fertilizers used. For example, moderate levels of weed cover in low-input lawns may provide alternative food resources. We conducted a 2-yr field study to: 1) characterize the ground beetle (Carabidae) species assemblage in turfgrass, and 2) assess the direct and indirect effects of lawn management on carabid communities. Weed cover and beetle activity were compared among four lawn management programs: 1) consumer/garden center, 2) integrated pest management (IPM), 3) natural organic, and 4) no-input control. Nearly 5,000 carabid beetles across 17 species were collected with the predator Cyclotrachelus sodalis LeConte numerically dominating the trap catch (87% and 45% of individuals in 2005 and 2006, respectively). Populations of C. sodalis underwent a distinct peak in activity during the third week of June, whereas omnivorous and granivorous species tended to occur at far lower levels and were less variable over the season. We found no evidence for direct effects of lawn management on carabid species diversity; however, we detected an indirect effect mediated by variation in weed cover. Seed-feeding species were positively correlated with turf weeds early in 2006, whereas strictly predaceous species were not. Thus, turf management programs that lead to changes in plant species composition (i.e., herbicide regimes) may indirectly shape epigeal arthropod communities more strongly than the direct effects of insecticide use.

  7. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  8. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  9. Ecosystem responses in the southern Caribbean Sea to global climate change.

    Science.gov (United States)

    Taylor, Gordon T; Muller-Karger, Frank E; Thunell, Robert C; Scranton, Mary I; Astor, Yrene; Varela, Ramon; Ghinaglia, Luis Troccoli; Lorenzoni, Laura; Fanning, Kent A; Hameed, Sultan; Doherty, Owen

    2012-11-20

    Over the last few decades, rising greenhouse gas emissions have promoted poleward expansion of the large-scale atmospheric Hadley circulation that dominates the Tropics, thereby affecting behavior of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation (NAO). Expression of these changes in tropical marine ecosystems is poorly understood because of sparse observational datasets. We link contemporary ecological changes in the southern Caribbean Sea to global climate change indices. Monthly observations from the CARIACO Ocean Time-Series between 1996 and 2010 document significant decadal scale trends, including a net sea surface temperature (SST) rise of ∼1.0 ± 0.14 °C (±SE), intensified stratification, reduced delivery of upwelled nutrients to surface waters, and diminished phytoplankton bloom intensities evident as overall declines in chlorophyll a concentrations (ΔChla = -2.8 ± 0.5%⋅y(-1)) and net primary production (ΔNPP = -1.5 ± 0.3%⋅y(-1)). Additionally, phytoplankton taxon dominance shifted from diatoms, dinoflagellates, and coccolithophorids to smaller taxa after 2004, whereas mesozooplankton biomass increased and commercial landings of planktivorous sardines collapsed. Collectively, our results reveal an ecological state change in this planktonic system. The weakening trend in Trade Winds (-1.9 ± 0.3%⋅y(-1)) and dependent local variables are largely explained by trends in two climatic indices, namely the northward migration of the Azores High pressure center (descending branch of Hadley cell) by 1.12 ± 0.42°N latitude and the northeasterly progression of the ITCZ Atlantic centroid (ascending branch of Hadley cell), the March position of which shifted by about 800 km between 1996 and 2009.

  10. Predicting the response of a temperate forest ecosystem to atmospheric CO[sub 2] increase

    Energy Technology Data Exchange (ETDEWEB)

    Bazzaz, F.A.

    1993-01-01

    This report summarizes the second year of research progress. Included are progress reports for the following studies: the responses of temperate forest tree to 3 years of exposure to elevated carbon dioxide, and high and low nutrient and light levels; pot-size limitations in carbon dioxide studies, interactive effects of carbon dioxide and soil moisture availability on tree seedling's tissue water relations, growth, and niche characteristics; individual versus population responses to elevated carbon dioxide levels in two species of annual weeds; and the development of gypsy moth larvae raised on gray and yellow birth foliage grown in ambient and elevated carbon dioxide environments.

  11. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    Science.gov (United States)

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  12. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

    NARCIS (Netherlands)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constanti; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Penuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual

  13. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling.

    Science.gov (United States)

    Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping

    2013-11-01

    A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are

  14. A Long-term Forest Fertilization Experiment to Understand Ecosystem Responses to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.

    2016-12-01

    Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one

  15. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-07

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  16. Trends in Ostracoda and Cladocera distribution and water chemistry in subarctic Canada: Churchill (Manitoba lakes and ponds revisited

    Directory of Open Access Journals (Sweden)

    Finn A. Viehberg

    2017-03-01

    Full Text Available Ponds and lakes distributed across northern treeline in the Hudson Bay Lowlands near Churchill (Manitoba were revisited to analyse and document the local ecoclimatic and limnological changes that occurred over the period 1997-2012. Our analyses revealed that single events may cause significant changes in salinity, pH and silicate content because of the limited buffer capacity of the inter-connected waters. Planktic freshwater microcrustaceans (Cladocera presented less diverse assemblages and appeared to favour waters that are situated in the boreal forest, while the diversity of benthic species assemblages (Cladocera and Ostracoda was highest in waters located closer to the coastline and in open tundra vegetation. We identified three species that are distinctive for the boreal ecozone (i.e., Candona acuta, Can. acutula and Can. decora and two species (i.e., Tonnacypris glacialis and Can. rawsoni that are elements of (sub-arctic landscapes and potentially endangered as the northern treeline expands due to rapid warming. These species are thought to be useful indicators for future ecosystem quality assessments and/or ecosystem service management programs. Our findings were compared to other studies completed in the boreal Yukon Territory and revealed that species diversity is closely linked to landscape history.

  17. Replacement cost valuation of Northern Pintail (Anas acuta) subsistence harvest in Arctic and sub-Arctic North America

    Science.gov (United States)

    Goldstein, Joshua H.; Thogmartin, Wayne E.; Bagstad, Kenneth J.; Dubovsky, James A.; Mattsson, Brady J.; Semmens, Darius J.; López-Hoffman, Laura; Diffendorfer, James E.

    2014-01-01

    Migratory species provide economically beneficial ecosystem services to people throughout their range, yet often, information is lacking about the magnitude and spatial distribution of these benefits at regional scales. We conducted a case study for Northern Pintails (hereafter pintail) in which we quantified regional and sub-regional economic values of subsistence harvest to indigenous communities in Arctic and sub-Arctic North America. As a first step, we used the replacement cost method to quantify the cost of replacing pintail subsistence harvest with the most similar commercially available protein (chicken). For an estimated annual subsistence harvest of ˜15,000 pintail, our mean estimate of the total replacement cost was ˜$63,000 yr−1 ($2010 USD), with sub-regional values ranging from \\$263 yr−1 to \\$21,930 yr−1. Our results provide an order-of-magnitude, conservative estimate of one component of the regional ecosystem-service values of pintails, providing perspective on how spatially explicit values can inform migratory species conservation.

  18. Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?

    Directory of Open Access Journals (Sweden)

    H. E. Dahlke

    2012-07-01

    Full Text Available Our understanding is limited to how transient changes in glacier response to climate warming will influence the catchment hydrology in the Arctic and Sub-Arctic. This understanding is particularly incomplete for flooding extremes because understanding the frequency of such unusual events requires long records of observation not often available for the Arctic and Sub-Arctic. This study presents a statistical analysis of trends in the magnitude and timing of flood extremes and the mean summer discharge in two sub-arctic catchments, Tarfala and Abisko, in northern Sweden. The catchments have different glacier covers (30% and 1%, respectively. Statistically significant trends (at the 5% level were identified for both catchments on an annual and on a seasonal scale (3-months averages using the Mann-Kendall trend test. Stationarity of flood records was tested by analyzing trends in the flood quantiles, using generalized least squares regression. Hydrologic trends were related to observed changes in the precipitation and air temperature, and were correlated with 3-months averaged climate pattern indices (e.g. North Atlantic oscillation. Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985–2009 (Tarfala and Abisko p<0.01, but did not show significant trends in the total precipitation (Tarfala p = 0.91, Abisko p = 0.44. Despite the similar climate evolution over the studied period in the two catchments, data showed contrasting trends in the magnitude and timing of flood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the streamflow and flood response in the highly glacierized catchment and a dampening of the response in the non-glacierized catchment. The glacierized mountain catchment showed a statistically significant increasing trend in the flood magnitudes (p = 0.04 that is clearly correlated to the

  19. Contrasting trends in floods for two sub-arctic catchments in northern Sweden - does glacier presence matter?

    Science.gov (United States)

    Dahlke, H. E.; Lyon, S. W.; Stedinger, J. R.; Rosqvist, G.; Jansson, P.

    2012-07-01

    Our understanding is limited to how transient changes in glacier response to climate warming will influence the catchment hydrology in the Arctic and Sub-Arctic. This understanding is particularly incomplete for flooding extremes because understanding the frequency of such unusual events requires long records of observation not often available for the Arctic and Sub-Arctic. This study presents a statistical analysis of trends in the magnitude and timing of flood extremes and the mean summer discharge in two sub-arctic catchments, Tarfala and Abisko, in northern Sweden. The catchments have different glacier covers (30% and 1%, respectively). Statistically significant trends (at the 5% level) were identified for both catchments on an annual and on a seasonal scale (3-months averages) using the Mann-Kendall trend test. Stationarity of flood records was tested by analyzing trends in the flood quantiles, using generalized least squares regression. Hydrologic trends were related to observed changes in the precipitation and air temperature, and were correlated with 3-months averaged climate pattern indices (e.g. North Atlantic oscillation). Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985-2009 (Tarfala and Abisko pflood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the streamflow and flood response in the highly glacierized catchment and a dampening of the response in the non-glacierized catchment. The glacierized mountain catchment showed a statistically significant increasing trend in the flood magnitudes (p = 0.04) that is clearly correlated to the occurrence of extreme precipitation events. It also showed a significant increase in mean summer discharge (p = 0.0002), which is significantly correlated to the decrease in glacier mass balance and the increase in air temperature (p = 0.08). Conversely, the non-glacierized catchment showed a

  20. Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska

    Science.gov (United States)

    Larsen, A. S.; O'Donnell, J. A.; Schmidt, J. H.; Kristenson, H. J.; Swanson, D. K.

    2017-04-01

    Lakes are an important component of high-latitude regions, providing habitat for fish and wildlife and playing a critical role in biogeochemical and global carbon cycles. High-latitude lakes are sensitive to climate change, in part due to their development within permafrost soils. Considerable heterogeneity exists across arctic and subarctic landscapes, yet little is known about how this landscape variability influences chemical and physical attributes of lakes. We investigated the physical and chemical limnology of 617 lakes in Alaska's boreal forest and boreal-arctic transition zone. We categorized lakes into 10 basin types based on parent material, topography, genesis, and permafrost characteristics. Physical parameters varied across lake basin types, with the deepest lakes occurring in ice-poor glacial deposits and ice-rich terrain, while the shallowest lakes were observed in floodplain deposits and coastal lowlands. Dissolved inorganic nitrogen (N) and phosphorous (P) concentrations were generally low across all landscapes, whereas total N and P were highest in lakes underlain by ice-rich Pleistocene loess. Total N and P concentrations were significantly correlated with chlorophyll a, indicating a possible colimitation of primary productivity in these systems. Base cation concentrations helped elucidate lake basin hydrology and the relative influence of shallow versus deep groundwater inputs to surface water. Using these results, we developed a simple conceptual model for each lake and landscape type based on differences in physical and chemical parameters. Overall, we expect that the vulnerability of lake ecosystems to climate change will vary across lake basin types and will be mediated by spatial patterns in permafrost characteristics and subsurface hydrology.

  1. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape.

    Directory of Open Access Journals (Sweden)

    Andrea G Vincent

    Full Text Available Phosphorus (P is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox and iron (Feox on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature, but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2-fold and 1.5-fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5-3.0 °C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity.

  2. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape.

    Science.gov (United States)

    Vincent, Andrea G; Sundqvist, Maja K; Wardle, David A; Giesler, Reiner

    2014-01-01

    Phosphorus (P) is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox) and iron (Feox) on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature), but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2-fold and 1.5-fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5-3.0 °C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity.

  3. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.

    Science.gov (United States)

    Park, Ha Ju; Chae, Namyi; Sul, Woo Jun; Lee, Bang Yong; Lee, Yoo Kyung; Kim, Dockyu

    2015-04-01

    Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48% after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172% during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0%), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

  4. Hydrological role of large icings within glacierized Sub-Arctic watershed: case study in Upper Duke River valley, Yukon, Canada.

    Science.gov (United States)

    Chesnokova, Anna; Baraer, Michel

    2017-04-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance for water resources management as well as for various ecosystem services. Such systems host many climate-sensitive water sources. Among those, icing is an important component as they provide substantial amount of water during the melt season. Moreover, collecting water of different origins during their formation, icings can be seen as an indicator for different water sources and water pathways that remain active during the freezing period. The present study focuses on genesis and dynamics of large icings within both proglacial field and neighboring alpine meadow in Upper Duke River valley, Yukon, in order to i) provide new insights on water sources and pathways within Sub-Arctic glacierized watersheds, and ii) to quantify contribution of icings to the total runoff of those hydrological systems. A multi-approach technique was applied to cope with the high hydrological complexity met in Sub-Arctic mountainous environments. Time series of positions of large river icings within the study area were obtained using Landsat images for the period 1980-2016. Four time-lapse cameras (TLC) were installed in the watershed targeting two proglacial fields and two alpine meadows in order to monitor icing dynamics all year long. Meteorological data was measured by an Automatic Weather Station in the main valley. In addition air temperature and relative humidity were measured at the location of each TLC. Finally, four icings along the Duke River valley, as well as 2 icings in its main tributary were sampled for stable water isotopes, solutes concentrations and total organic carbon. In addition, samples of freezing exclusion precipitates from icing surfaces were taken. Remote sensing data shows the persistence of large icing complexes in the area during last 30 years: icing within proglacial field appear with almost constant position relative to main glacier tongue on the 30 years long period

  5. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle

    Energy Technology Data Exchange (ETDEWEB)

    Norby, Richard J [ORNL; DeLucia, E. H. [University of Illinois; Moore, D J [University of Illinois

    2005-01-01

    In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after exposing pine and sweetgum to elevated CO2 for approximately 5 and 3 years, a complete budget calculation revealed increases in net ecosystem production (NEP) of 41% and 44% in the pine forest and sweetgum forest, respectively, representing the storage of an additional 174 gC m-2 and 128 gC m-2 in these forests. The stimulation of NPP without corresponding increases in leaf area index or light absorption in either forest resulted in 23-27% stimulation in radiation-use efficiency, defined as NPP per unit absorbed photosynthetically active radiation. Greater plant respiration contributed to lower NPP in the loblolly pine forest than in the sweetgum forest, and these forests responded differently to CO2 enrichment. Where the pine forest added C primarily to long-lived woody tissues, exposure to elevated CO2 caused a large increase in the production of labile fine roots in the sweetgum forest. Greater allocation to more labile tissues may cause more rapid cycling of C back to the atmosphere in the sweetgum forest compared to the pine forest. Imbalances in the N cycle may reduce the response of these forests to experimental exposure to elevated CO2 in the future, but even at the current stimulation observed for these forests, the effect of changes in land use on C sequestration are likely to be larger than the effect of CO2-induced growth stimulation.

  6. Snowmelt as a driver of ecosystem response in water limited mountain forests of the Western U.S.

    Science.gov (United States)

    Molotch, N. P.; Trujillo, E.

    2015-12-01

    Recent large-scale changes in snow cover over Western North America associated with climate warming may have widespread impacts on water availability. These changes have potentially varied impacts on water availability as snowmelt influences, soil moisture, streamflow, and evapotranspiration. These changes may significantly alter runoff production and gross primary productivity in mountain forests. Analysis of remotely sensed and in situ soil moisture data indicate strong sensitivities of the timing of peak soil moisture to the timing of snowmelt. Observations of vegetation greenness indicate strong forest and understory growth dependencies associated with snow accumulation, snowmelt, and soil moisture with peak snow water equivalent explaining 40-50% of inter-annual greenness variability in the Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Greenness sensitivities to aridity showed seasonal dependencies with record high Normalized Difference Vegetation Index (NDVI) values in April (14% above average) and record low NDVI values in July (7% below average). Gross primary productivity estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Niwot Ridge, Colorado Ameriflux tower indicate record high April GPP (30% and 90% above average for MODIS and the tower, respectively) and record low July GPP (19% and 30% below average, respectively). These energy, water, ecosystem relationships indicate that the sensitivity of ecosystems to changes in climate is

  7. Life-history traits predict perennial species response to fire in a desert ecosystem

    Science.gov (United States)

    Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  8. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  9. How Plant Hydraulics can Improve the Modeling of Plant and Ecosystem Responses to Environment

    Science.gov (United States)

    Sperry, J.; Anderegg, W.; Mackay, D. S.; Venturas, M.

    2016-12-01

    Stomatal regulation is an important, yet problematic component in modeling plant-environment interactions. The problem is that stomata respond to so many environmental cues via complex and uncertain mechanisms. But the assumed end result of regulation is conceptually simple: an optimization of CO2 for H2O exchange in response to changing conditions. Stomata open when photosynthetic opportunity is high and water is cheap. They close if photosynthetic opportunity is low or water is very expensive. Photosynthetic opportunity is relatively easy to model. The cost of water loss is also easy to model if it is assumed to rise with greater proximity to hydraulic failure and desiccation. Unsaturated hydraulic conductivity curves of soil- and plant are used to estimate proximity to failure. At any given instant, a model can calculate opportunity and cost curves associated with greater stomatal opening. If stomata regulate to maximize the instantaneous difference between photosynthetic gain and hydraulic cost, then a model can predict the trajectory of stomatal responses to changes in environment across time. Results of this optimization routine extend the utility of hydraulic predecessor models, and are consistent with widely used empirical models across a wide range of vapor pressure deficit and ambient CO2 concentrations for wet soil. The advantage of the optimization approach is the absence of empirical coefficients, applicability to dry as well as wet soil, and prediction of plant hydraulic status along with gas exchange. The optimization algorithm is a trait- and process-based approach that could improve next generation land surface models.

  10. Using an Acoustic System to Estimate the Timing and Magnitude of Ebullition Release from Wetland Ecosystems

    Science.gov (United States)

    Varner, R. K.; Palace, M. W.; Lennartz, J. M.; Crill, P. M.; Wik, M.; Amante, J.; Dorich, C.; Harden, J. W.; Ewing, S. A.; Turetsky, M. R.

    2011-12-01

    Knowledge of the magnitude and frequency of methane release through ebullition (bubbling) in water saturated ecosystems such as bogs, fens and lakes is important to both the atmospheric and ecosystems science community. The controls on episodic bubble releases must be identified in order to understand the response of these ecosystems to future climate forcing. We have developed and field tested an inexpensive array of sampling/monitoring instruments to identify the frequency and magnitude of bubbling events which allows us to correlate bubble data with potential drivers such as changes in hydrostatic pressure, wind and temperature. A prototype ebullition sensor has been developed and field tested at Sallie's Fen in New Hampshire, USA. The instrument consists of a nested, inverted funnel design with a hydrophone for detecting bubbles rising through the peat, that hit the microphone. The design also offers a way to sample the gases collected from the funnels to determine the concentration of CH4. Laboratory calibration of the instrument resulted in an equation that relates frequency of bubbles hitting the microphone with bubble volume. After calibration in the laboratory, the prototype was deployed in Sallie's Fen in late August 2010. An additional four instruments were deployed the following month. Audio data was recorded continuously using a digital audio recorder attached to two ebullition sensors. Audio was recorded as an mp3 compressed audio file at a sample rate of 160 kbits/sec. Using this format and stereo input, allowing for two sensors to be recorded with each device, we were able to record continuously for 20 days. Audio was converted to uncompressed audio files for speed in computation. Audio data was processed using MATLAB, searching in 0.5 second incremental sections for specific fundamental frequencies that are related to our calibrated audio events. Time, fundamental frequency, and estimated bubble size were output to a text file for analysis in

  11. Shifting baselines in Antarctic ecosystems; ecophysiological response to warming in Lissarca miliaris at Signy Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Adam J Reed

    Full Text Available The Antarctic Peninsula has experienced a rapid increase in atmospheric temperature over the last 50 years. Whether or not marine organisms thriving in this cold stenothermal environment are able to cope with warming is of concern. Here, we present changes to the growth and shell characteristics of the ecologically important, small and short lived brooding bivalve Lissarca miliaris from Signy Island, Antarctica. Using material collected from the 1970's to the present day, we show an increase in growth rate and adult shell deterioration accompanied by a decrease in offspring size, associated with an increase in annual average temperatures. Critical changes to the bivalve's ecology seen today evidence the problem of a shift in baseline since the onset of warming recorded in Antarctica. These small bivalves are demonstrating ecophysiological responses to subtle warming that, provided warming continues, could soon surpass a physiological tipping point, adding to warming associated threats such as increased predatory pressure and ocean acidification.

  12. Shifting baselines in Antarctic ecosystems; ecophysiological response to warming in Lissarca miliaris at Signy Island, Antarctica.

    Science.gov (United States)

    Reed, Adam J; Thatje, Sven; Linse, Katrin

    2012-01-01

    The Antarctic Peninsula has experienced a rapid increase in atmospheric temperature over the last 50 years. Whether or not marine organisms thriving in this cold stenothermal environment are able to cope with warming is of concern. Here, we present changes to the growth and shell characteristics of the ecologically important, small and short lived brooding bivalve Lissarca miliaris from Signy Island, Antarctica. Using material collected from the 1970's to the present day, we show an increase in growth rate and adult shell deterioration accompanied by a decrease in offspring size, associated with an increase in annual average temperatures. Critical changes to the bivalve's ecology seen today evidence the problem of a shift in baseline since the onset of warming recorded in Antarctica. These small bivalves are demonstrating ecophysiological responses to subtle warming that, provided warming continues, could soon surpass a physiological tipping point, adding to warming associated threats such as increased predatory pressure and ocean acidification.

  13. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem.

    Science.gov (United States)

    Cregger, Melissa A; Schadt, Christopher W; McDowell, Nate G; Pockman, William T; Classen, Aimée T

    2012-12-01

    Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the structure and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, -50%, or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath piñon pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynamics, background climatic variability, and the composition of the associated aboveground community.

  14. Soil microbial community response to precipitation change in a semi-arid ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Cregger, Melissa [ORNL; Schadt, Christopher Warren [ORNL; McDowell, Nathan [Los Alamos National Laboratory (LANL); Pockman, William [University of New Mexico, Albuquerque; Classen, Aimee T [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the struc- ture and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation ( 18%, 50%, or ambient) in a pi on-juniper woodland (Pinus edulis-Juniperus mono- sperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath pi on pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynam- ics, background climatic variability, and the composition of the associated aboveground community.

  15. Grazing by reindeer in subarctic coniferous forests - how it is affecting three main greenhouse gas emissions from soils.

    Science.gov (United States)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, strongly affecting Arctic lichen dominated ecosystems. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics, and little is known about reindeer and their impact on greenhouse gas (GHG) emissions between the soil and atmosphere. In a field experiment in northern boreal subarctic coniferous forests in Finnish Lapland, we investigated the influence of reindeer grazing on soil GHG (CO2, CH4 and N2O) fluxes, ground vegetation coverage and biomass, soil temperature and water content. The study was carried out in the growing season of the year 2014. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the non-grazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that grazing by reindeer significantly affected lichen and moss biomasses. Lichen biomass was significantly lower in the grazed. We also observed that when lichens were removed, mosses were quickly overtaking the areas and moss biomass was significantly higher in grazed areas compared to non-grazed areas. Our results indicated that grazing by reindeer in the northern boreal subarctic forests affects the GHG emissions from the forest floor and these emissions largely depend on changes in vegetation composition. Soil was always a source of CO2in our study, and soil CO2 emissions were significantly smaller in non-grazed areas compared to grazed areas. The soils in our study areas were CH4 sinks through entire measurement period, and grazed areas consumed

  16. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems.

    Science.gov (United States)

    D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J

    2013-12-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.

  17. Dynamics of CO2 fluxes and environmental responses in the rain-fed winter wheat ecosystem of the Loess Plateau, China.

    Science.gov (United States)

    Wang, Wen; Liao, Yuncheng; Wen, Xiaoxia; Guo, Qiang

    2013-09-01

    Chinese Loess Plateau plays an important role in carbon balance of terrestrial ecosystems. Continuous measurement of CO2 fluxes in cropland ecosystem is of great significance to accurately evaluate the carbon sequestration potential and to better explain the carbon cycle process in this region. By using the eddy covariance system we conducted a long-term (from Sep 2009 to Jun 2010) CO2 fluxes measurement in the rain-fed winter wheat field of the Chinese Loess Plateau and elaborated the responses of CO2 fluxes to environmental factors. The results show that the winter wheat ecosystem has distinct seasonal dynamics of CO2 fluxes. The total net ecosystem CO2 exchange (NEE) of -218.9±11.5 gC m(-2) in the growing season, however, after considering the harvested grain, the agro-ecosystem turned into a weak carbon sink (-36.2 gC m(-2)). On the other hand, the responses of CO2 fluxes to environmental factors depended on different growth stages of winter wheat and different ranges of environmental variables, suggesting that the variations in CO2 exchange were sensitive to the changes in controlling factors. Particularly, we found the pulse response of ecosystem respiration (Reco) to a large rainfall event, and the strong fluctuations of CO2 fluxes usually appeared after effective rainfall events (daily precipitation > 5 mm) during middle growing season. Such phenomenon also occurred in the case of the drastic changes in air temperature and within 5 days after field management (e.g. tillage and plough). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Ecosystem services

    Science.gov (United States)

    Trista Patterson

    2014-01-01

    Since its inception, the ecosystem service approach has stimulated interest from numerous planning, management, and partnership perspectives. To date, however, research that quantifies ecosystem services in the study area (in the form of explicit ecosystem service studies) has been limited. This chapter reviews and synthesizes the concept of ecosystem services,...

  19. The Uniqueness of Planktonic Ecosystems in the Mediterranean Sea: The Response to Orbital- and Suborbital-Climatic Forcing over the Last 130,000 Years

    Directory of Open Access Journals (Sweden)

    Incarbona Alessandro

    2016-01-01

    Full Text Available The Mediterranean Sea is an ideal location to test the response of organisms to hydrological transformations driven by climate change. Here we review studies carried out on planktonic foraminifera and coccolithophores during the late Quaternary and attempt the comparison of data scattered in time and space. We highlight the prompt response of surface water ecosystems to both orbital- and suborbital-climatic variations.

  20. Carbon dioxide balance of subarctic tundra from plot to regional scales

    Directory of Open Access Journals (Sweden)

    M. E. Marushchak

    2013-01-01

    Full Text Available We report here the carbon dioxide (CO2 budget of a 98.6 km2 subarctic tundra area in northeast European Russia based on measurements at two different scales and two independent upscaling approaches. Plot-scale measurements (chambers on terrestrial surfaces, gas gradient method and bubble collectors on lakes were carried out from July 2007 to October 2008. The landscape-scale eddy covariance (EC measurements covered the snow-free period of 2008. The annual net ecosystem exchange (NEE of different land cover types ranged from −251 to 84 g C m−2. Leaf area index (LAI was an excellent predictor of the spatial variability in gross photosynthesis (GP, NEE and ecosystem respiration (ER. The plot-scale CO2 fluxes were first scaled up to the EC source area and then to the whole study area using two data sets: a land cover classification and a LAI map, both based on field data and a 2.4 m pixel-sized QuickBird satellite image. The good agreement of the CO2 balances for the EC footprint based on the different measuring techniques (−105 to −81 g C m−2 vs. −79 g C m−2; growing season 2008 justified the integration of the plot-scale measurements over the larger area. The regional CO2 balance based on area-integrated plot-scale measurements was −41 or −79 g C m−2 yr−1 according to the two upscaling methods, the land cover classification and the LAI map, respectively. Due to the heterogeneity of tundra, the effect of climate change on CO2 uptake will vary strongly according to the land cover type and, moreover, likely changes in their relative coverage in the future will have great impact on the regional CO2 balance.

  1. Observed response of vulnerable forest ecosystems to ongoing site condition changes

    Science.gov (United States)

    Bidló, András; Gulyás, Krisztina; Gálos, Borbála; Horváth, Adrienn

    2017-04-01

    In the last decades, several symptoms of drought damages have been observed in the Hungarian forests (e.g. sparse canopy, leaf drop, top drying, fungal diseases). Forest responses are also influenced by other factors beyond climate (e.g. available water content, soil conditions, biotic damages, adaptive capacity, etc.). Our aim was to prepare a complex analysis of the change of all site conditions, that could lead to the observed health status decline of the forest tree species. For a case study region in Hungary (Keszthely Mountains, near to Lake Balaton) precipitation and temperature tendencies as well as the frequency of extreme dry summers have been determined for the period 1961-2100. Soil conditions have been investigated in 9 profiles and soil mapping analysis has been carried out including 100 sites with hand soil auger. For the investigation of the water-balance we used the modified Thornthwaite-type monthly model and determined water stress when the relative extractable water (REW) decreased below 40% (Granier et al., 1999). In the last 30 years three severe droughts have been detected when duration of extremely dry and hot periods exceeded 3-4 years. Not only orographic and microclimate conditions but also soil types show a large diversity within a relatively small distance in the case study area. On rendzina with shallow topsoil layer thickness, low water holding capacity, black pine was planted. Brown earth with medium and brown forest soils with deep topsoil layer thickness is favourable for oak (sessile or Turkey) and beech. These microscale differences between the three site condition types resulted different available water contents quantified by the modified Thornthwaite-type monthly water-balance model. Our results show the different sensitivity of the studied sites to water stress. It means that the local scale orographic and soil conditions can enhance the projected drought risk of the region. However, the favourable microclimatic effects of

  2. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China

    Directory of Open Access Journals (Sweden)

    Aynur Mamat

    2018-01-01

    Full Text Available Increasing anthropogenic activities have significantly altered ecosystems in arid oasis regions. Estimating the impact on a wide range of ecosystem services is important for decision making and the sustainable development of these regions. This study analyzed time-series Landsat data to determine the influences of oasis land-use changes on the ecosystem services in the Kashgar region in Northwest China. The following results were found. The total value of the ecosystem services in the Kashgar region were approximately $10,845.3, $11,218.6, $10,291.7, and $10,127.3 million in 1986, 1996, 2005, and 2015, respectively. The water supply, waste treatment, biodiversity protection, and recreation and cultural services were the four ecosystem services with the highest service value, contributing 77.05% of the total ecosystem services. The combined contribution rate of food production and raw material value was only about 4.02%, relatively small. The sensitivity analysis indicated that the estimated total ecosystem service value (ESV for this study area was relatively inelastic with respect to the value coefficients. The findings of this study will be crucial for maintaining the stability and sustainable development of the oasis region, where socio-economic development and the integrity of the natural ecosystem complement each other. Furthermore, the results provide a scientific basis for decision makers in land use management, and provide a reference for researchers in the Northwest China.

  3. Central Appalachians forest ecosystem vulnerability assessment and synthesis: a report from the Central Appalachians Climate Change Response Framework project

    Science.gov (United States)

    Patricia R. Butler; Louis Iverson; Frank R. Thompson; Leslie Brandt; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kent Karriker; Jarel Bartig; Stephanie Connolly; William Dijak; Scott Bearer; Steve Blatt; Andrea Brandon; Elizabeth Byers; Cheryl Coon; Tim Culbreth; Jad Daly; Wade Dorsey; David Ede; Chris Euler; Neil Gillies; David M. Hix; Catherine Johnson; Latasha Lyte; Stephen Matthews; Dawn McCarthy; Dave Minney; Daniel Murphy; Claire O’Dea; Rachel Orwan; Matthew Peters; Anantha Prasad; Cotton Randall; Jason Reed; Cynthia Sandeno; Tom Schuler; Lesley Sneddon; Bill Stanley; Al Steele; Susan Stout; Randy Swaty; Jason Teets; Tim Tomon; Jim Vanderhorst; John Whatley; Nicholas. Zegre

    2015-01-01

    Forest ecosystems in the Central Appalachians will be affected directly and indirectly by a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow and Eastern Broadleaf Forest Provinces of Ohio, West Virginia, and Maryland for a range of future...

  4. Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States

    Science.gov (United States)

    Hanqin Tian; Guangsheng Chen; Chi Zhang; Mingliang Liu; Ge Sun; Arthur Chappelka; Wei Ren; Xiaofeng Xu; Chaoqun Lu; Shufen Pan; Hua Chen; Dafeng Hui; Steven McNulty; Graeme Lockaby; Eric Vance

    2012-01-01

    Terrestrial ecosystems in the southern United States (SUS) have experienced a complex set of changes in climate, atmospheric CO2 concentration, tropospheric ozone (O3), nitrogen (N) deposition, and land-use and land-cover change (LULCC) during the past century. Although each of these factors has received attention for its alterations on ecosystem carbon (C) dynamics,...

  5. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Science.gov (United States)

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  6. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery. Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  7. Examining the relationship between mercury and organic matter in lake sediments along a latitudinal transect in subarctic Canada

    Science.gov (United States)

    Galloway, Jennifer M.; Sanei, Hamed; Parsons, Michael; Swindles, Graeme T.; Macumber, Andrew L.; Patterson, R. Timothy; Palmer, Michael; Falck, Hendrik

    2016-04-01

    The accumulation of Hg in aquatic environments at both high and low latitudes can be controlled by organic matter through algal scavenging, thus complicating the interpretation of historical Hg profiles in lake sediments1,2,3. However, other recent studies suggest that algal scavenging is not important in governing Hg flux to sediments4, in some cases because of dilution by inorganic materials5. This study examines relationships between Hg and organic matter (OM) in over 100 lakes located between 60.5 and 65.4 °N and crossing the latitudinal tree-line in subarctic Canada. The latitudinal gradient approach in our study offers an opportunity to better understand climate and environmental controls on OM accumulation and its role in influencing Hg deposition in subarctic lacustrine environments. We used Rock Eval 6 pyrolysis to determine total organic carbon (TOC%), S1 (soluble OM consisting of degradable lipids and algal pigments), S2 (OM derived from highly aliphatic biomacromolecule structure of algal cell walls), and S3 (OM dominated by carbohydrates, lignins, and plant materials). Total Hg in sediments was measured using thermal decomposition, amalgamation, and atomic absorption spectrophotometry. In these lake sediments, S2 composes the majority of TOC (Pearson's r = 0.978, pEnviron Sci Technol 41: 5259-65. 3Wu, F., Zu, L., Liao, H., Guo, F., Zhao, X., Giesy, J. 2013. Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China. J Soils Sediments 13: 1084-1092.4Kirk, J.L., Muir, D.C.G., Antoniades, D., Douglas, M.S.V., Evans, M.S., Jackson, T.A., Kling, H., Lamoureux, S., Lim, D.S.S., Pienitz, R., Smol, J.P., Stewart, K., Wang, X., Yang, F. 2011. Response to comment on climate change and mercury accumulation in Canadian high and subarctic lakes. Environ Sci Technol 45: 6705-06.5Deison, R., Smol, J.P., Kokelj, S.V., Pisaric, M.F.J., Kimpe, L.E., Poulain, A.J., Sanei, H., Theinpoint, J.R., Blais, J.M. 2012. Spatial and

  8. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.

    Science.gov (United States)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-10-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake ((15) N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their

  9. Diazotrophy in alluvial meadows of subarctic river systems.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Bergman, Ingela; Díez, Beatriz; Bergman, Birgitta

    2013-01-01

    There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy) to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy) as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1) yr(-1) and was down regulated from over 60 kg N ha(-1) yr(-1) to 0 kg N ha(-1) yr(-1) by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  10. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  11. Screening of Actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology.

    Science.gov (United States)

    Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy

    2011-01-01

    Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.

  12. Climate Sensitivity Runs and Regional Hydrologic Modeling for Predicting the Response of the Greater Florida Everglades Ecosystem to Climate Change

    Science.gov (United States)

    Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha

    2015-04-01

    It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.

  13. Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions.

    Science.gov (United States)

    Jäger, Christoph G; Borchardt, Dietrich

    2018-04-07

    In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our

  14. Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic Lake Kuetsjärvi, Murmansk Region, Russia.

    Science.gov (United States)

    Dauvalter, Vladimir

    2003-04-01

    Research on the influence of the activities of Pechenganickel Mining and Metallurgical Company on sediment heavy-metal geochemistry of the subarctic Lake Kuetsjärvi (north-western Russia) are described. It is estimated that during 60 years of mining/refining activity, 310 t of Ni, 120 t of Cu, 14 t of Co, 19 t of Zn, 0.087 t of Cd, 0.78 t of Pb and 0.053 t of Hg have accumulated in the lake sediments. The latter can be a source of secondary pollution and represent a danger for the lake ecosystem. The sedimentation rate in the lake is estimated to be within the range of 1.5-3 mm year(-1). The average concentrations of Ni, Cu, Hg and Co in superficial sediments have increased 25, 14, 11 and 5 times, respectively in the last century.

  15. Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Caiyao Xu

    2016-08-01

    Full Text Available Urbanization, and the resulting land use/cover change, is a primary cause of the degradation of coastal wetland ecosystems. Reclamation projects are seen as a way to strike a balance between socioeconomic development and maintenance of coastal ecosystems. Our aim was to understand the ecological changes to Jiangsu’s coastal wetland resulting from land use change since 1977 by using remote sensing and spatial analyses. The results indicate that: (1 The area of artificial land use expanded while natural land use was reduced, which emphasized an increase in production-orientated land uses at the expense of ecologically important wetlands; (2 It took 34 years for landscape ecological security and 39 years for ecosystem services to regain equilibrium. The coastal reclamation area would recover ecological equilibrium only after a minimum of 30 years; (3 The total ecosystem service value decreased significantly from $2.98 billion per year to $2.31 billion per year from 1977 to 2014. Food production was the only one ecosystem service function that consistently increased, mainly because of government policy; (4 The relationship between landscape ecological security and ecosystem services is complicated, mainly because of the scale effect of landscape ecology. Spatial analysis of changing gravity centers showed that landscape ecological security and ecosystem service quality became better in the north than the south over the study period.

  16. Impact of special early harvest seasons on subarctic-nesting and temperate-nesting Canada geese

    Science.gov (United States)

    Sheaffer, S.E.; Kendall, W.L.; Bowers, E. Frank

    2005-01-01

    Dramatic changes in wintering distributions of Canada geese (Branta canadensis) have occurred over the past 50 years in eastern North America. Declines in numbers of subarctic-nesting geese wintering in southern states, and increases in numbers wintering in northern regions, have resulted in a northern shift in winter distributions. In contrast, numbers of temperate-nesting geese have increased throughout eastern North America. Management efforts to control overabundant temperate-nesting flocks have included the establishment of special early harvest seasons in September. However, the effect of early seasons on survival and harvest of subarctic-nesting populations has not been documented. Understanding the timing of migration movements and the fidelity of subarctic-nesting flocks to terminal winter refuges in the Southeast also is necessary to design early harvest seasons that target temperate-nesting flocks and protect subarctic-nesting populations. We used recoveries of marked geese to estimate survival and harvest rates before and after implementation of early harvest seasons within the Mississippi Flyway during 1976-1999. In addition, we used observations of neck-banded geese from the Southern James Bay Population (SJBP) to evaluate the hypothesis that subarctic-nesting geese arriving prior to mid-December on several key terminal winter refuges in the Southeast (early arriving migrants) were more likely to return to those refuges in subsequent years than were migrants, arriving after mid-December (late arriving migrants). September seasons during 1987-1994 were a minor source of mortality for subarctic-nesting populations and accounted for migrants had higher survival and higher return probabilities than did late arriving migrants or geese that failed to return, numbers of geese wintering on southeastern refuges likely declined because < 60% of the surviving geese affiliated with the refuges would return in a given year and because of lower survival for geese

  17. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.

    Directory of Open Access Journals (Sweden)

    Jon P Costanzo

    Full Text Available Wood frogs (Rana sylvatica exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle or two-thirds (liver of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.

  18. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.

    Science.gov (United States)

    Costanzo, Jon P; Reynolds, Alice M; do Amaral, M Clara F; Rosendale, Andrew J; Lee, Richard E

    2015-01-01

    Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to -8°C, either directly or following three cycles of freezing/thawing between -4 and 0°C, or -16°C increased the liver's synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.

  19. Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S., the Governing Board of the South Florida Water Management District (SFWMD authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000 of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms. Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the

  20. Krill community composition and grazing biology in a sub-Arctic Greenlandic fjord

    DEFF Research Database (Denmark)

    Teglhus, Frederik Wolff; Agersted, Mette Dalgaard; Arendt, Kristine Engel

    of organic material, i.e. the biological pump. Our aim is to improve the understanding and knowledge about the role of krill in a sub-Arctic fjord. During multiple cruises in the Godthåbsfjord, Southwest Greenland, krill abundance, distribution and grazing biology have been investigated trough field....... The present novel knowledge about krill abundance and grazing biology will provide the basis for a discussion of the role of krill in the pelagic food web of the sub-Arctic Godthåbsfjord...

  1. An eco-hydrological modeling framework for assessing trade-offs among ecosystem services in response to alternative land use scenarios

    Science.gov (United States)

    Mckane, R.; Abdelnour, A. G.; Brookes, A.; Djang, K.; Stieglitz, M.; Pan, F.; Bolte, J.; Papenfus, M.; Burdick, C.

    2012-12-01

    Scientists, policymakers, community planners and others have discussed ecosystem services for decades, however, society is still in the early stages of developing methodologies to quantify and value the services that ecosystems provide. For example, the U.S. Environmental Protection Agency recently established the Sustainable and Healthy Communities Research Program to develop such methodologies, so that natural capital can be better accounted for in decisions that affect the supply of the ecosystem goods and services upon which human well-being depends. Essential to this goal are highly integrated models that can be used to define policy and management strategies for entire ecosystems, not simply individual components of the ecosystem. We developed the VELMA (Visualizing Ecosystems for Land Management Assessments) eco-hydrologic modeling framework to help address this emerging risk assessment objective. Here we describe a proof-of-concept application of VELMA to the H.J. Andrews Experimental Forest, a forested 64 km2 basin and Long Term Ecological Research site in the western Cascade Range of Oregon, USA. VELMA is a spatially-distributed eco-hydrologic model that links a land surface hydrologic model with a terrestrial biogeochemistry model for simulating the integrated responses of vegetation, soil, and water resources to interacting stressors. We used the model to simulate the effects of three different land use scenarios (100% old-growth, 100% clearcut harvest, and present-day land cover consisting of 45% old-growth and 55% harvested) on trade-offs among five ecosystem services: timber production, carbon sequestration, greenhouse gas regulation, water quantity, and water quality. Compared to the old-growth simulation, over a 60-yr period the clearcut simulation reduced total ecosystem carbon stocks (-40%), and initially increased total stream discharge (+28%), stream nitrogen export (>300%), and total CO2 and N2O radiative forcing (>200%). The simulation for

  2. The hydrologic and biogeochemical response of undisturbed mountain ecosystems in the Western United States to multiple stressors: Interactions between climate variability and atmospheric deposition of contaminants

    Science.gov (United States)

    Campbell, D. H.; Mast, M. A.; Clow, D. W.; Ingersoll, G. P.; Nanus, L.

    2004-12-01

    Wilderness areas and national parks of the West are largely protected from acute changes in land use such as urbanization and natural resource development. However, the ecosystems in these areas are sensitive to both climate variability and atmospheric deposition of acids, nitrogen (N), and toxic contaminants, and these stressors interact in ways that we are just beginning to understand. Here we examine some examples of the interactions between climate variability and nitrogen and mercury cycling in high elevation watersheds. During the recent drought, which began in 2000, streamwater nitrate concentrations nearly doubled in the Loch Vale watershed in Rocky Mountain National Park, exceeding 60 μ M during early snowmelt. Much of the elevated nitrate resulted from an increased percentage contribution to streamwater of nitrate-rich shallow groundwater. In a nearby pond used for breeding by a threatened amphibian species, nitrate concentrations were negligible but ammonium concentrations were extremely high (850 μ M) during the drought. In this case, organic N in pond sediments was likely mineralized and released during cycles of drying and rewetting of pond sediments. Even after 2 years of near-average precipitation, water levels remained below normal and ammonium concentrations remained elevated, indicating that the hydrologic response of this small system has a timescale of many years. Mercury (Hg) deposition at high elevations of the Rocky Mountains is comparable to that of the Midwest and Northeast, but the processes that control Hg cycling in alpine/subalpine ecosystems are not well understood. Methylation and bioaccumulation of Hg must occur before Hg reaches levels harmful to the ecosystem or human health, and both climate and nutrient cycling affect these processes. Fluctuating water levels caused by climate variability can mobilize Hg from lake and pond sediments, increasing reactivity and bioavailability of Hg in the ecosystem. Increased nutrient release

  3. A REVIEW OF SINGLE SPECIES TOXICITY TESTS: ARE THE TESTS RELIABLE PREDICTORS OF AQUATIC ECOSYSTEM COMMUNITY RESPONSES?

    Science.gov (United States)

    This document provides a comprehensive review to evaluate the reliability of indicator species toxicity test results in predicting aquatic ecosystem impacts, also called the ecological relevance of laboratory single species toxicity tests.

  4. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem.

    Science.gov (United States)

    Wang, Yuanqi; Hatt, Janet K; Tsementzi, Despina; Rodriguez-R, Luis M; Ruiz-Pérez, Carlos A; Weigand, Michael R; Kizer, Heidi; Maresca, Gina; Krishnan, Raj; Poretsky, Rachel; Spain, Jim C; Konstantinidis, Konstantinos T

    2017-04-15

    A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The value of this astonishing biodiversity for ecosystem functioning remains poorly understood, primarily due to the fact that microbial community

  5. Responses to abiotic environmental stresses among phylloplane and soil isolates of Beauveria bassiana from two holm oak ecosystems.

    Science.gov (United States)

    Fernández-Bravo, María; Garrido-Jurado, Inmaculada; Valverde-García, Pablo; Enkerli, Jürg; Quesada-Moraga, Enrique

    2016-11-01

    The response of entomopathogenic mitosporic ascomycete (EMAs) to abiotic stresses might be adapted to the microhabitats in which they inhabit. In phylloplane, these organisms are more exposed to such stresses than they are in soil, which may have led to adaptation to this environment. In the present work, we investigate whether Beauveria bassiana genotype or isolation habitat, i.e., soil or phylloplane, within the same geographic area influences their responses to key environmental stresses, such as temperature, moisture and ultraviolet radiation (UV-B), which can affect their successful use in microbial control. Twenty isolates of B. bassiana obtained from the soil and phylloplane in two ecosystems from southern Spain (holm oak dehesa and a reforested area) were selected to study the population distribution of these isolates and evaluate their thermal, humidity and UV-B requirements. Molecular characterization was conducted by using elongation factor-1α (EF-1α), the intergenic nuclear region Bloc and 15 microsatellite primers. The cluster analysis based on concatenated EF-1α and Bloc sequences grouped the 20 isolates into five clades within B. basiana, with Clades a, b, d and e containing both soil and phylloplane isolates and Clade c including three phylloplane isolates. The dendrogram and the minimal spanning network generated from the genetic distances among multilocus genotypes showed four divergent groups corresponding to the five clades obtained based on the sequence data (Clades b and d were represented in the same group), with a high degree of shared alleles within groups and few alleles shared among groups. Although no relationship was found between MLG and the habitat (soil or phylloplane) of isolation, isolates grouped into Clade c, all of which were collected from phylloplane, formed a separate group of MLGs. To investigate our hypothesis, the responses to temperature (germination and colony growth evaluated in the range 15-35°C), water activity

  6. Barcoding the Collembola of Churchill: a molecular taxonomic reassessment of species diversity in a sub-Arctic area.

    Science.gov (United States)

    Porco, David; Skarżyński, Dariusz; Decaëns, Thibaud; Hebert, Paul D N; Deharveng, Louis

    2014-03-01

    Although their functional importance in ecosystems is increasingly recognized, soil-dwelling micro-arthropods are usually poorly known in comparison with their above-ground counterparts. Collembola constitute a significant and species-rich component of the soil biodiversity, but it remains a woefully understudied group because of the taxonomic impediment. The ever-increasing use of molecular taxonomic tools, such as DNA barcoding, provides a possible solution. Here, we test the use of this approach through a diversity survey of Collembola from the vicinity of Churchill, Manitoba, Canada, and compare the results with previous surveys in the same area and in other sub-Arctic regions. The systematic barcoding campaign at Churchill revealed a diverse collembolan fauna consisting of 97 species-level MOTUs in six types of habitats. If all these MOTUs are confirmed as species, this richness would be far higher than prior records for Arctic Canada and could lead to reconsider the actual diversity of the group in Arctic environments. © 2013 John Wiley & Sons Ltd.

  7. What determines the current presence or absence of permafrost in the Torneträsk region, a sub-arctic landscape in northern Sweden?

    Science.gov (United States)

    Johansson, Margareta; Christensen, Torben R; Akerman, H Jonas; Callaghan, Terry V

    2006-06-01

    In a warming climate, permafrost is likely to be significantly reduced and eventually disappear from the sub-Arctic region. This will affect people at a range of scales, from locally by slumping of buildings and roads, to globally as melting of permafrost will most likely increase the emissions of the powerful greenhouse gas methane, which will further enhance global warming. In order to predict future changes in permafrost, it is crucial to understand what determines the presence or absence of permafrost under current climate conditions, to assess where permafrost is particularly vulnerable to climate change, and to identify where changes are already occurring. The Torneträsk region of northern sub-Arctic Sweden is one area where changes in permafrost have been recorded and where permafrost could be particularly vulnerable to any future climate changes. This paper therefore reviews the various physical, biological, and anthropogenic parameters that determine the presence or absence of permafrost in the Torneträsk region under current climate conditions, so that we can gain an understanding of its current vulnerability and potential future responses to climate change. A patchy permafrost distribution as found in the Torneträsk region is not random, but a consequence of site-specific factors that control the microclimate and hence the surface and subsurface temperature. It is also a product of past as well as current processes. In sub-Arctic areas such as northern Sweden, it is mainly the physical parameters, e.g., topography, soil type, and climate (in particular snow depth), that determine permafrost distribution. Even though humans have been present in the study area for centuries, their impacts on permafrost distribution can more or less be neglected at the catchment level. Because ongoing climate warming is projected to continue and lead to an increased snow cover, the permafrost in the region will most likely disappear within decades, at least at lower

  8. Structural and functional responses of the oligochaete and aeolosomatid assemblage in lowland streams: a one-way-pollution-modelled ecosystem

    Directory of Open Access Journals (Sweden)

    Maria V. López van Oosterom

    2015-03-01

    Full Text Available We investigated the responses of the assemblage of Oligochaeta and Aeolosomatidae to organic pollution; comparing taxonomic richness, diversity, abundance, and diet of the individuals inhabiting two lowland streams with different degrees of anthropic impact (the Rodríguez and the Carnaval belonging to the Río de la Plata basin, Argentina. The physicochemical parameters in the Rodríguez Stream indicated a strong deterioration of the water quality compared to that of the Carnaval. A canonical-correlation analysis indicated that the Tubificinae, Megadrili, Enchytraeidae, and Rhyacodrilinae were more closely associated with the Rodríguez Stream; whereas the Naidinae, Pristininae, and Opystocystidae were more highly represented in the Carnaval. The diversity and taxonomic richness in the Rodríguez Stream exhibited significant differences from those of the Carnaval (P<0.001, but the abundance was not different between the two sites. Schoener’s index revealed the higher degree of dietary overlap of the two streams because all the species analysed consumed a high proportion of detritus, especially the organisms in the Rodríguez. In the Carnaval Stream a higher number of alimentary items were consumed, and mainly by the Naidinae. This difference, probably reflecting the greater availability of this resource at sites impacted by organic pollution, underscores the fundamental role of oligochaetes in the food webs of aquatic ecosystems. The combined use of structural and functional parameters enables a more comprehensive view of how these lotic systems function and as such provides information that will serve to design tools for the management of such temperate environments.

  9. Performance of insulated pipelines in sub-Arctic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. [Garneau Inc., Calgary, AB (Canada); D' Agostino, C. [Nova Chemicals, Calgary, AB (Canada)

    2000-07-01

    A systematic investigation was conducted to determine the main reasons why the insulating value of a pipeline overcoated with extruded polyethylene might fail, particularly in sub-Arctic regions. An insulated pipeline should have excellent insulation values as well as perfect anti-corrosion barrier coatings and an excellent adhesion between the anti-corrosion coating and the polyurethane foam. An insulated pipeline should also be bendable at the ambient construction temperature without damage to the foam or other components of the system. It should also be protected by an outer coating to withstand high mechanical impact. Three types of anti-corrosion barrier coatings are fusion bond epoxy, polyethylene tape, and three layer polyolefin. Polyurethane foam is one of the best heat insulating materials available with an average thermal conductivity of 0.22 W/mK, but it possesses very little mechanical strength. Therefore, it must be overcoated by an external jacket of either polyethylene pipeline tape, extruded polyethylene or spray applied elastomeric polyurethane coatings. An extensive laboratory testing program was initiated to respond to field failures of insulated pipe and low temperatures. The objective was to verify the mechanical properties of insulated pipe at different temperatures. It was shown that at low temperatures, high density polyethylene (HDPE) had significantly reduced elongation properties and its tensile strength increased. It was also determined that double and triple outer jackets provided better impact resistance at low temperature than the single jacket of equivalent thickness. Comparison tests were also conducted with low density polyethylenes. Linear low density polyethylene (LLDPE) was found to be particularly resistant to low temperature damage. In addition, a black jacket proved to be much warmer than a white jacket. On sunny days, the temperature difference could be as high as 15 degrees C. 5 tabs.

  10. Inside Ecosystems.

    Science.gov (United States)

    Moll, Gary; And Others

    1995-01-01

    The third in a series of articles featuring the urban ecosystem. Discusses the inner workings of an ecosystem and the links that connect its elements, including the link between people and the environment. Graphics illustrate "layers" of the landscape. (LZ)

  11. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  12. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    Science.gov (United States)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  13. Contrasting Responses of the Humboldt Current Ecosystem between the Holocene and MIS5e Interglacials Revealed from Multiple Sediment Records

    Science.gov (United States)

    Salvatteci, R.; Schneider, R. R.; Blanz, T.; Martinez, P.; Crosta, X.

    2016-12-01

    The Humboldt Current Ecosystem (HCE) off Peru yields about 10% of the global fish catch, producing more fish per unit area than any other region in the world. The high productivity is maintained by the upwelling of cold, nutrient-rich water from the oxygen minimum zone (OMZ), driven by strong trade winds. However, the potential impacts of climate change on upwelling dynamics and oceanographic conditions in the near future are uncertain, threatening local and global economies. Here, we unravel the response of the HCE to contrasting climatic conditions during the last two interglacials (i.e. Holocene and MIS5e) providing an independent insight about the relation between climatic factors and upwelling and productivity dynamics. For this purpose, we used multiple cores to reconstruct past changes in OMZ and upwelling intensity, productivity and fish biomass variability. Chronologies for the Holocene were obtained by multiple 14C ages and laminae correlations among cores, while for the MIS5e they were mainly done by correlation of prominent features in several proxies with other published records. We used a multiproxy approach including alkenones to reconstruct sea surface temperatures, δ15N as a proxy for water column denitrification, redox sensitive metals as proxies for sediment redox conditions, and diatom and fish debris assemblages to reconstruct ecological changes. The results show a very different response of the HCE to climate conditions during the last 2 interglacials, likely driven by changes in Tropical Pacific dynamics. During the Holocene we find that 1) the Late Holocene exhibits higher multi-centennial scale variability compared to the Early Holocene, 2) increased upwelling and a weak OMZ during the mid-Holocene, and 3) long term increase in productivity (diatoms and fishes) from the Early to the Late Holocene. During the MIS5e we find an 1) intense OMZ, 2) strong water column stratification, 3) high siliceous biomass, and 4) low fish biomass compared

  14. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.

    Science.gov (United States)

    Hartley, Iain P; Hill, Timothy C; Wade, Thomas J; Clement, Robert J; Moncrieff, John B; Prieto-Blanco, Ana; Disney, Mathias I; Huntley, Brian; Williams, Mathew; Howden, Nicholas J K; Wookey, Philip A; Baxter, Robert

    2015-10-01

    Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4  m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4  m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4  m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general. © 2015 The

  15. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra.

    Science.gov (United States)

    Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A

    2003-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.

  16. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  17. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Qing Li

    2014-01-01

    Full Text Available The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  18. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  19. Trophic role and top-down control of a subarctic protozooplankton community

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Swalethorp, Rasmus; Kjellerup, Sanne

    2014-01-01

    Plankton succession was investigated in the subarctic Godthåbsfjord, Western Greenland, from March to August 2010. The trophic role of protozooplankton (ciliates and heterotrophic dinoflagellates) was evaluated with emphasis on their seasonal succession and as prey for the copepod community. The ...

  20. Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Myvatn, Iceland

    DEFF Research Database (Denmark)

    Canedo-Argueles, Miguel; Sgarzi, Serena; Arranz, Ignasi

    2017-01-01

    . To study this, we conducted a 3-month in situ-controlled experiment in sub-Arctic Lake MA 1/2 vatn, Iceland. We used the planktivorous fish three-spined sticklebacks (Gasterosteus aculeatus) as the main top predator. The cladocerans Eurycercus lamellatus and Acroperus harpae were significantly associated...

  1. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before...

  2. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  3. The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland

    DEFF Research Database (Denmark)

    Sowerby, A.; Emmett, B.A.; Williams, D.

    2010-01-01

    emissions of C have been predicted to result in terrestrial ecosystems becoming a net source of C by 2050. Indeed, both forms of C loss have been linked to climate-related changes, such as warming and/or changes in precipitation. In our field-based drought manipulation experiment on an upland moorland...... drainage of water from the drought-treated soils resulted in an overall decrease of 9% in total DOC export. Calculating the carbon (C) balance for the below-ground component of the ecosystem reveals that DOC represents 3% of gross C export. Previous studies at the site have demonstrated large increases....... The repeated drought treatment has thus resulted in the ecosystem switching from a net sink for C into a net source....

  4. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  5. The Ecosystem Concept and Linking Models of Physical-Chemical Processes to Ecological Responses: Introduction and Annotated Bibliography

    Science.gov (United States)

    2007-07-01

    interactions between components at the intervening levels are also incorporated. For example, a model of leaf photosynthesis scaled directly to the whole...D. L. DeAngelis, J. B. Waide, and T. F. H. Allen. 1986. A hierarchical concept of ecosystems. Monographs in Biology, No. 23. Princeton, NJ

  6. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  7. Dynamics of ecosystem service values in response to landscape pattern changes from 1995 to 2005 in Guangzhou, Southern China

    Science.gov (United States)

    Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli

    2015-01-01

    This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...

  8. Central Hardwoods ecosystem vulnerability assessment and synthesis: a report from the Central Hardwoods Climate Change Response Framework project

    Science.gov (United States)

    Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve. Westin

    2014-01-01

    The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...

  9. Enhanced precipitation-variability effects on water losses and ecosystem functioning: Differential response of arid and mesic regions

    Science.gov (United States)

    Climate change will result in increased precipitation variability with more extreme events across a range of temporal scales. We used a process-based ecosystem model to simulate water losses and soil water availability to plants at 35 grassland locations in the central U.S. under four level of prec...

  10. Modification of plant-induced responses by an insect ecosystem engineer influences the colonization behaviour of subsequent shelter-users

    NARCIS (Netherlands)

    Uesugi, Akane; Morrell, Kimberly; Poelman, Erik H.; Raaijmakers, Ciska E.; Kessler, André

    2016-01-01

    * Herbivores that modify plant morphology, such as gall-forming insects, can disproportionately impact arthropod community on their host plants by providing novel habitats and shelters from biotic and abiotic stresses. These ecosystem engineers could also modify plant chemical properties, but how

  11. Modification of plant-induced responses by an insect ecosystem engineer influences the colonization behaviour of subsequent shelter-users

    NARCIS (Netherlands)

    Uesugi, Akane; Morrell, Kimberly; Poelman, Erik H.; Raaijmakers, Ciska E.; Kessler, André

    2016-01-01

    Herbivores that modify plant morphology, such as gall-forming insects, can disproportionately impact arthropod community on their host plants by providing novel habitats and shelters from biotic and abiotic stresses. These ecosystem engineers could also modify plant chemical properties, but how

  12. Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...

  13. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  14. Urban Demand Responsive Transport in the Mobility as a Service Ecosystem: Its Role and Potential Market Share

    NARCIS (Netherlands)

    Alonso González, M.J.; van Oort, N.; Cats, O.; Hoogendoorn, S.P.

    2017-01-01

    Mobility as a Service (MaaS) is entering the transportation market. MaaS aims at the full integration of the existing transportation services and it offers tailored mobility packages to the user. In MaaS ecosystems, on-demand services play an important role as complement to public transport due to

  15. Germination responses of the invasive Calotropis procera (Ait. R. Br. (Apocynaceae: comparisons with seeds from two ecosystems in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    LAURA C. LEAL

    2013-09-01

    Full Text Available Life history traits are considered key indicators of plant invasibility. Among them, the germination behavior of seeds is of major relevance because it is influenced by environmental factors of invaded ecosystem. Here, we investigated how seed traits and seed tolerance to environmental factors on seed germination of Calotropis procera vary depending on the invaded ecosystems in northeastern Brazil. We have tested seeds from two vegetation types – Caatinga and Restinga – to different levels of light intensity, salinity, and water stress. Previous to those experiments, seed-set and morphometric analysis were carried out for both studied populations. We have observed a higher seed-set in Caatinga. Seeds produced in this ecosystem had lower seed moisture content. Seeds from Restinga showed lower germination time when light intensity decreased. We observed a reduction in both the germinability and the synchronization index with decreasing osmotic potential and increasing salinity. Nevertheless, both populations exhibited changes in photoblastism when seeds were submitted to water and saline stress. In conclusion, C. procera seeds are tolerant to environmental factors assessed. That characteristic ensures the colonization success and wide distribution of this plant species in the studied ecosystems.

  16. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming

    Science.gov (United States)

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2...

  17. Germination responses of the invasive Calotropis procera (Ait.) R. Br. (Apocynaceae): comparisons with seeds from two ecosystems in Northeastern Brazil.

    Science.gov (United States)

    Leal, Laura C; Meiado, Marcos V; Lopes, Ariadna V; Leal, Inara R

    2013-09-01

    Life history traits are considered key indicators of plant invasibility. Among them, the germination behavior of seeds is of major relevance because it is influenced by environmental factors of invaded ecosystem. Here, we investigated how seed traits and seed tolerance to environmental factors on seed germination of Calotropis procera vary depending on the invaded ecosystems in northeastern Brazil. We have tested seeds from two vegetation types - Caatinga and Restinga - to different levels of light intensity, salinity, and water stress. Previous to those experiments, seed-set and morphometric analysis were carried out for both studied populations. We have observed a higher seed-set in Caatinga. Seeds produced in this ecosystem had lower seed moisture content. Seeds from Restinga showed lower germination time when light intensity decreased. We observed a reduction in both the germinability and the synchronization index with decreasing osmotic potential and increasing salinity. Nevertheless, both populations exhibited changes in photoblastism when seeds were submitted to water and saline stress. In conclusion, C. procera seeds are tolerant to environmental factors assessed. That characteristic ensures the colonization success and wide distribution of this plant species in the studied ecosystems.

  18. Responses of Regional Vegetation and Peatland Ecosystems to Climate Change Over the Last Millennium in the Western Lowlands of Kamchatka, Russia

    Science.gov (United States)

    Cleary, K.; Hunt, S. J.; Yu, Z.; Beilman, D.; Dirksen, V.; Bochicchio, C. J.; Loisel, J.

    2013-12-01

    Climate in high-latitude regions has warmed rapidly over the recent decades, causing widespread changes in sea-ice cover and terrestrial ecosystem dynamics such as greening of the Arctic. However, regional patterns of ecosystem response to warming are still poorly understood in several regions of the Arctic due to data gaps. In particular, we still lack detailed records in the Far East of Russia in terms of regional vegetation and peatland responses to recent warming. Kamchatka, located between the Sea of Okhotsk and the Pacific Ocean, is an ideal region for studying climate and ecosystem change due to minimum human impacts. Here we present multi-proxy data from a peat core (core KAM12-B1; 53.9146° N, 155.9361° E; approximately 1 km from the Sea of Okhotsk at an elevation of 15 m) in the western lowlands of Kamchatka to investigate regional vegetation and peatland responses to climate change during the last millennium. Chronology of the 1-m-long peat core was controlled by 7 AMS 14C dates, covering the last 900 years. Pollen analysis shows a ca. 10% decrease in tree pollen (mostly tree birches) at 1600-1900 AD, while macrofossil results show an increase in brown mosses (Drepanocladus sp.) during the same period. These ecological changes suggest a cool and possibly wet climate in a period corresponding to the widely documented Little Ice Age (LIA). The peatland also shows a slight decrease in carbon accumulation during the LIA. The most pronounced changes in the record have occurred since 50 years ago (post-LIA) and include (1) an increase in the abundance of pollen from warm-adapted tree species, including Betula ermanii (stone birch) and Betula platyphylla (white birch); (2) the dominance of peat mosses (Sphagnum) in macrofossil assemblages suggesting a drying trend due to climate or successional change; and (3) higher carbon accumulation rates. Taken together, these results from the pollen-based regional vegetation reconstruction and the macrofossil-based local

  19. Optimal Sleep Duration in the Subarctic with Respect to Obesity Risk Is 8-9 Hours: e56756

    National Research Council Canada - National Science Library

    May Trude Johnsen; Rolf Wynn; Trond Bratlid

    2013-01-01

    ...) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables...

  20. Contrasting trends in hydrologic extremes for two sub-arctic catchments in northern Sweden - Does glacier melt matter?

    Science.gov (United States)

    Dahlke, H. E.; Lyon, S. W.; Stedinger, J. R.; Rosqvist, G.; Jansson, P.

    2012-04-01

    Climate warming in the high-latitude environments of Sweden is raising concerns about its impacts upon hydrology. In order to manage future water resources in these snowmelt-dominated high-latitude and altitude catchments there is a need to determine how climatic change will influence glacial meltwater rates and terrestrial hydrology. This uncertainty is particularly acute for hydrologic extremes (flood events) because understanding the frequency of such unusual events requires long records of observation not often available for high-latitude and altitude catchments. This study presents a statistical analysis of trends in the magnitude and timing of hydrologic extremes (flood events) and the mean summer (June-August) discharge in two sub-arctic catchments, Tarfalajokk and Abiskojokk, in northern Sweden. The catchments have different glacier covers of 30% and 1%, respectively. Statistically significant hydrologic trends (at the 5% level) were identified for both catchments on an annual and on a seasonal scale (3-months averages) using the Mann-Kendall trend test and were related to observed changes in the precipitation and air temperature. Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985-2009 (Tarfalajokk & Abiskojokk pflood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the hydrologic response in the highly glaciated catchment and a dampening of the response in the non-glaciated catchment. The glaciated mountain catchment showed a statistically significant increasing trend in the mean summer discharge that is clearly correlated to the decrease in glacier mass balance and the increase in air temperature. However, the catchment showed also a significant increase in the flood magnitudes, which are clearly correlated to the occurrence of extreme precipitation events, indicating a shift of the dominant storm runoff mechanism towards rainfall

  1. Net ecosystem exchange of carbon dioxide and evapotranspiration response of a high elevation Rocky Mountain (Wyoming, USA) forest to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2011-12-01

    Bark beetle epidemics have caused major disturbance in the forests of western North America where significant tree mortality alters the balance of ecosystem photosynthesis, carbon balance, and water exchange. In this study we investigate the change in the growing-season light-response of net ecosystem exchange of carbon dioxide (NEE) and evapotranspiration (ET) in a high elevation Rocky Mountain forest over the three years preceding and three years following a bark beetle outbreak. The GLEES AmeriFlux site (southeastern Wyoming, USA) is located in a high elevation subalpine forest dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) and recently experienced an epidemic of spruce beetle (Dendroctonus rufipennis). The peak beetle outbreak occurred in 2008, and has impacted 35% of the stems and 90% of the basal area of Engelmann spruce, which accounts for 30% of the trees and 70% of the basal area of the forest. Two semi-empirical light response curves for eddy-covariance carbon flux were compared, with a logistic sigmoid performing better because of residual bias than a rectangular hyperbola (Michaelis-Menten) at estimating the quantum yield of photosynthesis. In the first two years after the peak beetle outbreak the original quantum yield of 0.015 mol mol-1 was reduced by 25%. By the third year it was reduced by a half, which was composed of declines of 45% in the ecosystem's responses to diffuse radiation and 60% to direct radiation. The light-saturated rate of photosynthesis decreased by 10% in the first two years post outbreak, and fell by 40% in the third year. After the peak outbreak, the cumulative NEE over the growing season was reduced by over a half from a sink of 185 gC m-2 to 80 gC m-2, and by the third year it was reduced to near zero, or carbon neutral. The change in the ET response to light was similar in all years after the peak outbreak where the slope of the response curve was decreased by 25%. This led to a

  2. Improving ecosystem-scale modeling of evapotranspiration using ecological mechanisms that account for compensatory responses following disturbance

    Science.gov (United States)

    Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale

    2017-09-01

    Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.

  3. Diurnal and seasonal variations of pH for a year in the western subarctic North Pacific observed by using a hybrid pH sensor

    Science.gov (United States)

    Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya

    2017-04-01

    Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the

  4. Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark

    Science.gov (United States)

    Hede, Mikkel Ulfeldt; Rasmussen, Peter; Noe-Nygaard, Nanna; Clarke, Annemarie L.; Vinebrooke, Rolf D.; Olsen, Jesper

    2010-05-01

    A sediment succession from Højby Sø, a lake in eastern Denmark, covering the time period 9400-7400 cal yr BP was studied using high-resolution geochemistry, magnetic susceptibility, pollen, macrofossil, diatom, and algal pigment analysis to investigate responses of the terrestrial and aquatic ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250-8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.2 ka cold event as registered in the Greenland ice cores. At Højby Sø, the climate anomaly appears to have started 200-250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500 cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP.

  5. Environmental factors influencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra (Abisko, Sweden).

    Science.gov (United States)

    Tsyganov, Andrey N; Milbau, Ann; Beyens, Louis

    2013-05-01

    Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Integration of observations, modelling approaches and remote sensing to address ecosystem response to climate change and disturbance in Africa

    Science.gov (United States)

    Falge, Eva; Brümmer, Christian

    2017-04-01

    African societies face growing global change challenges and several associated risks. These include rapidly changing patterns of human settlements and an intensified use of ecosystem services. At the same time, climate variability and change are amplifying stress on the functionality of ecosystems and their critical role as important greenhouse gas sinks. A recent review (Valentini et al. 2014) attests Africa a key role in the global carbon cycle contributing an absolute annual carbon sink (-0.61 ± 0.58 Pg C yr-1), which may partly been offset through understudied emissions of CH4 and N2O. The net sink strength is characterized by a substantial sub-regional spatial variability due to biome distribution and degree of anthropogenic influences. 52% of the global carbon emissions by fire are due to African wildfires, which contribute with 1.03 ± 0.22 Pg C yr-1 twice the emissions caused by land use change in Africa (0.51 ± 0.10 Pg C yr-1). Moreover, a quarter of the interannual variability of the global carbon budget is due to the year-to-year variation (± 0.5 Pg C yr-1) of carbon fluxes on the African continent. Among the archetypes to address the above-mentioned challenges in an integrated and multidisciplinary way are better data bases which serve as constraints for atmospheric data and models, thorough attempts to reduce GHG flux uncertainties, or enhanced understanding of climatic, hydrological, and socio-economic drivers of temporal and spatial variability of GHG balances. Some examples from the ARS-AfricaE project that will serve to illustrate the wide range of such activities include: Measurements of CO2 exchange, ecosystem structure and eco-physiological properties at paired sites with natural and managed vegetation, Further development and application of the adaptive Dynamic Global Vegetation Model 2 (aDGVM2) to investigate the influence of different atmospheric CO2 scenarios on carbon pools and fluxes of a selected ecosystem in Skukuza, Kruger National

  7. Reindeer grazing in subarctic boreal forest - influences on the soil carbon dynamics

    Science.gov (United States)

    Koster, Kajar; Berninger, Frank; Köster, Egle; Pumpanen, Jukka

    2015-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems , which have many effects on plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil C dynamics. Earlier, the role of reindeer grazing in ground vegetation dynamics and in soil carbon (C) dynamics has been mostly investigated in open tundra heaths. The objectives of this study were to examine if and how the reindeer grazing (and the possible temperature changes in soil caused by heavy grazing) is affecting the soil C dynamics (CO2 efflux from the soil, C storage in soil, microbial biomass in the soil). In a field experiment in Finnish Lapland, in Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we have assessed the changes occurring in above- and belowground biomasses, and soil C dynamics (CO2 efflux, soil C content, soil microbial biomass C) among areas grazed and ungrazed by reindeer. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. The sample plots located in the Värriö Strict Nature Reserve (10 sample plots in total established in year 2013) are situated along the borderline between Finland and Russia, where the ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. To characterize the stands we have established circular sample plots on areas with a radius of 11.28 m, where different tree characteristics were measured (diameter at 1.3 m, height, height of a tree, crown height, crown diameter, stand age, etc.). On every sample plot

  8. Extensive forest leaf area survey aiming at detection of vegetation change in subarctic-boreal zone

    OpenAIRE

    Kusakabe,Tomoko; Tsuzuki,Hayato; Hughes,Gary; Sweda,Tatsuo

    2000-01-01

    The warming resulting from increasing anthropogenic carbon dioxide and other greenhouse gasses is expected to be most prominent in the subarctic-boreal region of the Northern Hemisphere. With the objective of setting up a baseline to monitor possible vegetation change in this region, a continuous vegetation profile extending 600km from Edmonton, Alberta to Cluff Lake, Saskatchewan, Canada was measured using an airborne infrared laser altimeter mounted on a helicopter. Then the distribution of...

  9. Influence of snowfall and melt timing on tree growth in subarctic Eurasia

    Science.gov (United States)

    Vaganov, E. A.; Hughes, M. K.; Kirdyanov, A. V.; Schweingruber, F. H.; Silkin, P. P.

    1999-07-01

    The causes of a reduced sensitivity of high-latitude tree growth to variations in summer temperature for recent decades,, compared to earlier this century, are unknown. This sensitivity change is problematic, in that relationships between tree-ring properties and temperature are widely used for reconstructing past climate. Here we report an analysis of tree-ring and climate data from the forest-tundra zone, in combination with a mechanistic model of tree-ring growth, to argue that an increasing trend of winter precipitation over the past century in many subarctic regions led to delayed snow melt in these permafrost environments. As a result, the initiation of cambial activity (necessary for the formation of wood cells) has been delayed relative to the pre-1960 period in the Siberian subarctic. Since the early 1960s, less of the growth season has been during what had previously been the period of maximal growth sensitivity to temperature. This shift results not only in slower growth, but also in a reduced correlation between growth and temperature. Our results suggest that changes in winter precipitation should be considered in seeking explanations for observed changes in the timing of the `spring greening' of high-latitude forests, and should be taken into account in the study of the role of the Siberian subarctic forest in the global carbon cycle.

  10. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr

    Science.gov (United States)

    Knudson, Karla P.; Ravelo, Ana Christina

    2015-11-01

    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary δ15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux.

  11. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  12. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas.

    Science.gov (United States)

    Ibarra, José Tomás; Martin, Michaela; Cockle, Kristina L; Martin, Kathy

    2017-06-30

    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.

  13. Response of Yellowstone grizzly bears to changes in food resources: A synthesis. Final report to the Interagency Grizzly Bear Committee and Yellowstone Ecosystem Subcommittee

    Science.gov (United States)

    ,; van Manen, Frank T.; Cecily M, Costello; Haroldson, Mark A.; Daniel D, Bjornlie; Michael R, Ebinger; Kerry A, Gunther; Mary Frances, Mahalovich; Daniel J, Thompson; Megan D, Higgs; Irvine, Kathryn M.; Kristin, Legg; Daniel, Tyers; Landenburger, Lisa; Steven L, Cain; Frey, Kevin L.; Aber, Bryan C.; Schwartz, Charles C.

    2013-01-01

    The Yellowstone grizzly bear (Ursus arctos) was listed as a threatened species in 1975 (Federal Register 40 FR:31734-31736). Since listing, recovery efforts have focused on increasing population size, improving habitat security, managing bear mortalities, and reducing bear-human conflicts. The Interagency Grizzly Bear Committee (IGBC; partnership of federal and state agencies responsible for grizzly bear recovery in the lower 48 states) and its Yellowstone Ecosystem Subcommitte (YES; federal, state, county, and tribal partners charged with recovery of grizzly bears in the Greater Yelowston Ecosystem [GYE]) tasked the Interagency Grizzly Bear Study Team to provide information and further research relevant to three concerns arising from the 9th Circuit Court of Appeals November 2011 decision: 1) the ability of grizzly bears as omnivores to find alternative foods to whitebark pine seeds; 2) literature to support their conclusions; and 3) the non-intuitive biological reality that impacts can occur to individuals without causing the overall population to decline. Specifically, the IGBC and YES requested a comprehensive synthesis of the current state of knowledge regarding whitebark pinbe decline and individual and population-level responses of grizzly bears to changing food resources in the GYE. This research was particularly relevant to grizzly bear conservation given changes in the population trajectory observed during the last decade.

  14. Ecosystem functioning

    National Research Council Canada - National Science Library

    Jax, Kurt

    2010-01-01

    "In the face of decreasing biodiversity and ongoing global changes, maintaining ecosystem functioning is seen both as a means to preserve biological diversity as well as for safeguarding human well...

  15. Introduced predators transform subarctic islands from grassland to tundra

    Science.gov (United States)

    Croll, D.A.; Maron, J.L.; Estes, J.A.; Danner, E.M.; Byrd, G.V.

    2005-01-01

    Top predators often have powerful direct effects on prey populations, but whether these direct effects propagate to the base of terrestrial food webs is debated. There are few examples of trophic cascades strong enough to alter the abundance and composition of entire plant communities. We show that the introduction of arctic foxes (Alopex lagopus) to the Aleutian archipelago induced strong shifts in plant productivity and community structure via a previously unknown pathway. By preying on seabirds, foxes reduced nutrient transport from ocean to land, affecting soil fertility and transforming grasslands to dwarf shrub/forb-dominated ecosystems.

  16. Long term responses of a subtropical rainforest ecosystem to logging in the Australian Main Range Volcanics CZO

    Science.gov (United States)

    Santini, T.; Larsen, J.; Howell, S. R.

    2014-12-01

    The recently established Main Range National Park Critical Zone Observatory is located within the Australian Gondwana Rainforests remnant basalt volcanic landscape, which is the largest area of subtropical rainforest in the world and represents an excellent natural laboratory in which to investigate processes of landscape evolution, soil weathering, vegetation succession, and nutrient cycling. In 1962, permanent monitoring plots were established within the Main Range Volcanics rainforest to investigate the effects of logging on vegetation dynamics and hydrology. Establishment of the CZO site within the National Park includes these plots as well as a rainforest to eucalypt forest ecotone, and has extended the range of parameters being collected to include soil chemical and physical properties, micrometeorology, and fauna. Here, we present preliminary results from a study integrating vegetation dynamics with changes in soil chemistry, microbiology, and hydrology within the logging plots to gain a more holistic understanding of how the rainforest ecosystem responds to anthropogenic forcings such as logging.

  17. Remediation of metal-contaminated land for plant cultivation in the Arctic/subarctic region

    Science.gov (United States)

    Kikuchi, Ryunosuke; Gorbacheva, Tamara T.; Ferreira, Carla S.

    2017-04-01

    Hazardous activities and/or industries involve the use, storage or disposal of hazardous substances. These substances can sometimes contaminate the soil, which can remain contaminated for many years. The metals can have severe effects of on ecosystems. In the Arctic/subarctic regions, the Kola Peninsula (66-70°N and 28°30'-41°30'E) in Russia is one of the seriously polluted regions: close to the nickel-copper smelters, the deposition of metal pollutants has severely damaged the soil and ground vegetation, resulting in a desert area. An area of 10-15 km around the smelters on the Kola Peninsula is today dry sandy and stony ground. A great amount of financial aid is usually required to recover theland. Considering cost performance, a pilot-scale (4ha) field test was carried out to investigate how to apply municipal sewage sludge for rehabilitation of degraded land near the Ni-Cu smelter complex on the Kola Peninsula. The above-mentioned field test for soil rehabilitation was performed while smelting activities were going on; thus, the survey fields were suffering from pollution emitted by the metallurgical industry, and may continue to suffer in the future. After the composting of sewage sludge, the artificial substratum made from the compost was introduced to the test field for the polluted-land remediation, and then willows, birches and grasses were planted on the substratum. The following remarkable points in pollution load were observed between the background field and the rehabilitation test field (e.g. polluted land): (i) the annual precipitation amount of SO42- (5668 g/ha) in the rehabilitation test field was over 5 times greater than that in the background field; (ii) the Pb amount (1.5 g/ha) in the rehabilitation test field was 29 times greater than that in the background field; (iii) the Co amount (10.9 g/ha) in the rehabilitation test field was 54 times greater than that in the background field; (iv) the Cu amount (752 g/ha) in the rehabilitation field

  18. Predicted responses of invasive mammal communities to climate-related changes in mast frequency in forest ecosystems.

    Science.gov (United States)

    Tompkins, Daniel M; Byrom, Andrea E; Pech, Roger P

    2013-07-01

    Predicting the dynamics and impacts of multiple invasive species can be complex because ecological relationships, which occur among several trophic levels, are often incompletely understood. Further, the complexity of these trophic relationships exacerbates our inability to predict climate change effects on invaded ecosystems. We explore the hypothesis that interactions between two global change drivers, invasive vertebrates and climate change, will potentially make matters worse for native biodiversity. In New Zealand beech (Nothofagus spp.) forests, a highly irruptive invasive mammal community is driven by multi-annual resource pulses of beech seed (masting). Because mast frequency is predicted to increase with climate change, we use this as a model system to explore the extent to which such effects may influence invasive vertebrate communities, and the implications of such interactions for native biodiversity and its management. We build on an established model of trophic interactions in the system, combining it with a logistic probability mast function, the parameters of which were altered to simulate either contemporary conditions or conditions of more or less frequent masting. The model predicts that increased mast frequency will lead to populations of a top predator (the stoat) and a mesopredator (the ship rat) becoming less irruptive and being maintained at appreciably higher average abundances in this forest type. In addition, the ability of both current and in-development management approaches to suppress invasive mammals is predicted to be compromised. Because invasive mammals are key drivers of native fauna extinction in New Zealand, with the additional loss of associated functions such as pollination and seed dispersal, these predictions imply potentially serious adverse impacts of climate change for the conservation of biodiversity and ecosystem function. Our study also highlights the importance of long-term monitoring data for assessing and managing

  19. Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming

    Science.gov (United States)

    Mu, Cuicui; Wu, Xiaodong; Zhao, Qian; Smoak, Joseph M.; Yang, Yulong; Hu, Lian; Zhong, Wen; Liu, Guimin; Xu, Haiyan; Zhang, Tingjun

    2017-10-01

    Relict permafrost regions are characterized by thin permafrost and relatively high temperatures. Understanding the ecosystem respiration rate (ERR) and its relationship with soil hydrothermal conditions in these areas can provide knowledge regarding the permafrost carbon cycle in a warming world. In this study, we examined a permafrost area, a boundary area, and a seasonally frozen ground area within a relict permafrost region on the east edge of the Qinghai-Tibetan Plateau, China. Measurements from July 2015 to September 2016 showed that the mean annual ecosystem CO2 emissions for the boundary area were greater than the permafrost area. The Q10 value of the ERRs in the seasonally frozen ground area was greater than the permafrost area, indicating that the carbon emissions in the nonpermafrost areas were more sensitive to warming. The 1 year open-top chamber (OTC) warming increased soil temperatures in both the permafrost and seasonally frozen ground areas throughout the year, and the warming increased the ERRs by 1.18 (0.99-1.38, with interquartile range) and 1.13 (0.75-1.54, with interquartile range) μmol CO2 m-2 s-1 in permafrost and seasonally frozen ground areas, respectively. The OTC warming increased annual ERRs by approximately 50% for both permafrost and seasonally frozen ground areas with half the increase occurring during the nongrowing seasons. These results suggest that the ERRs in relict permafrost are high in comparison with arctic regions, and the carbon balance in relict permafrost areas could be greatly changed by climate warming.

  20. Organic matter control on the distribution of arsenic in lake sediments impacted by ~65years of gold ore processing in subarctic Canada.

    Science.gov (United States)

    Galloway, Jennifer M; Swindles, Graeme T; Jamieson, Heather E; Palmer, Michael; Parsons, Michael B; Sanei, Hamed; Macumber, Andrew L; Timothy Patterson, R; Falck, Hendrik

    2017-10-27

    Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to contamination and it is not known how cumulative effects of resource extraction and climate warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic Canada, operated from 1938 to 2004 and released >20,000t of arsenic trioxide (As2O3) to the environment through stack emissions. This release resulted in elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. A meta-analytical approach is used to better understand controls on As distribution in lake sediments within a 30-km radius of historic mineral processing activities. Arsenic concentrations in the near-surface sediments range from 5mg·kg-1 to over 10,000mg·kg-1 (median 81mg·kg-1; n=105). Distance and direction from the historic roaster stack are significantly (p<0.05) related to sedimentary As concentration, with highest As concentrations in sediments within 11km and lakes located downwind. Synchrotron-based μXRF and μXRD confirm the persistence of As2O3 in near surface sediments of two lakes. Labile organic matter (S1) is significantly (p<0.05) related to As and S concentrations in sediments and this relationship is greatest in lakes within 11km from the mine. These relations are interpreted to reflect labile organic matter acting as a substrate for microbial growth and mediation of authigenic precipitation of As-sulphides in lakes close to the historic mine where As concentrations are highest. Continued climate warming is expected to lead to increased biological productivity and changes in organic geochemistry of lake sediments that are likely to play an important role in the mobility and fate of As in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights

  1. Perception, acquisition and use of ecosystem services: human behavior, and ecosystem management and policy implications

    Science.gov (United States)

    Stanley T. Asah; Anne D. Guerry; Dale J. Blahna; Joshua J. Lawler

    2014-01-01

    Ecosystem services, fundamental to livelihoods and well-being, are reshaping environmental management and policy. However, the behavioral dimensions of ecosystem services and the responses of ordinary people to the management of those services, is less well understood. The ecosystem services framework lends itself to understanding the relationship between ecosystems...

  2. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    . This prevents in particular accurate estimates of the total emission of CH4 and CO2 from seasonally ice-covered lakes. This thesis aims to address these spatial and temporal issues to improve quantification and understanding of surface-atmosphere exchange of CH4 and CO2 by using the eddy covariance method...... of an ice lid in winter over the lake surface likely prevents gas exchange with the atmosphere and allows buildup of CH4 in the anoxic bottom. Although the contribution of winter and spring to annual emissions of CH4 and CO2 was significant for both ecosystems, spring season emissions were disproportionally...... important for the lake annual emissions compared to the length of the period, as it turned the lake from a small summer CO2 sink into an annual source. Annual inter-annual variability was notable in the magnitude of the CH4 spring release and needs further investigation. The high temporal resolution...

  3. Responses of the molluscan fauna to environmental variations in a Halodule wrightii Ascherson ecosystem from Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    KCRISHNA V.S. BARROS

    2013-10-01

    Full Text Available ABSTRACT This study observed the spatial and temporal distributions of molluscs in a Halodule wrightii meadow, verifying if they respond satisfactorily to seasonal changes in this seagrass ecosystem. Twenty-four species were identified. Chitons were rare, bivalves had greater number of species (11, followed by gastropods (9 which were also the most abundant class (73%. All classes were more abundant in the belowground. The most common species was Tricolia affinis, especially in aboveground. The occurrence of some species in both strata or out of the expected stratum may have been influenced by shallow layer of the sediment considered in this study, hydrodynamic, and low biomass of the studied meadow. According to univariate and multivariate analyses, despite of molluscan descriptors had been related to variables associated with rainfall, the seagrasses had an important role on the seasonal and vertical variations of the molluscan fauna. The biomass of the epiphyte Hypnea musciformis was correlated to temporal variations of the species from aboveground, indicating its secondary role for this community. The molluscs were sensible to environmental variations, and also reflected seasonal changes of the seagrass, showing that damages on these meadows reflect even at lower levels of the marine food web.

  4. Alien species in a brackish water temperate ecosystem: annual-scale dynamics in response to environmental variability.

    Science.gov (United States)

    Ojaveer, Henn; Kotta, Jonne; Põllumäe, Arno; Põllupüü, Maria; Jaanus, Andres; Vetemaa, Markus

    2011-10-01

    Alien species contribute to global change in all marine ecosystems. Environmental variability can affect species distribution and population sizes, and is therefore expected to influence alien species. In this study, we have investigated temporal variability of 11 alien species representing different trophic levels and ecological functions in two gulfs of the brackish Baltic Sea in relation to environmental change. Independent of the invasion time, organism group or the life-history stage, abundance and/or biomass of the investigated alien species was either stable or displayed abrupt increases over time. Timing in population shifts was species-specific and exhibited no generic patterns, indicating that the observed large shifts in environmental parameters have no uniform consequences to the alien biota. In general, the inter-annual dynamics of alien and native species was not largely different, though native species tended to exhibit more diverse variability patterns compared to the alien species. There were no key environmental factors that affected most of the alien species, instead, the effects varied among the studied gulfs and species. Non-indigenous species have caused prominent structural changes in invaded communities as a result of exponential increase in the most recent invasions, as well as increased densities of the already established alien species. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990--94 growing season (June--August) to determine the local and regional patterns of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar Arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993--94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993--94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990--91 growing seasons.

  6. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community

    NARCIS (Netherlands)

    Wendt-Rasch, L.; Brink, van den P.J.; Crum, S.J.H.; Woin, P.

    2004-01-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated

  7. Lost in the city: the responsible consumption as message, and the city of Madrid as communication ecosystem

    Directory of Open Access Journals (Sweden)

    Concepción Piñeiro

    2012-03-01

    Full Text Available The current rate of consumption is much higher than the ecology capacity of our environment. This is substantially important in cities where the imbalance of metabolic fluxes is greater. In this sense, to promote responsible consumption is the key to look for the urban sustainability, where the major communication messages are based on the current consumer society. Therefore we ask: what messages of responsible consumption are in the city? what discourses and practices related to responsible consumption are in Madrid? This work is an exploratory approach to that context and we use the technique of drift (28 drifts out in 2009 and distributed in four districts of the city of Madrid. We identify multiple and diverse discourses and practices associated with responsible consumption, especially in areas such as mobility, energy and water consumption or the use of time and space.Escuchar

  8. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  9. The roles of ecological first principles and evolutionary contingency in unraveling ecosystem response and reconstruction during the Permian-Triassic transition.

    Science.gov (United States)

    Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.

    2016-12-01

    The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability

  10. Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance.

    Directory of Open Access Journals (Sweden)

    M Clara F do Amaral

    Full Text Available The wood frog, Rana sylvatica, from Interior Alaska survives freezing at -16°C, a temperature 10-13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA. In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype's exceptional freeze tolerance, which is necessary for their survival in a subarctic climate.

  11. Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2013-01-01

    The wood frog, Rana sylvatica, from Interior Alaska survives freezing at -16°C, a temperature 10-13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA). In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold) increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype's exceptional freeze tolerance, which is necessary for their survival in a subarctic climate.

  12. Hyperspectral remote sensing of the responses of vegetation ecosystems to physical and biological changes of the environment

    Science.gov (United States)

    Krezhova, Dora; Krezhov, Kiril; Maneva, Svetla; Moskova, Irina; Petrov, Nikolay

    2016-07-01

    Hyperspectral remote sensing technique, based on reflectance measurements acquired in a high number of contiguous spectral bands in the visible and near infrared spectral ranges, was used to detect the influence of some environmental changes to vegetation ecosystems. Adverse physical and biological conditions give rise to morphological, physiological, and biochemical changes in the plants that affect the manner in which they interact with the light. All green vegetation species have unique spectral features, mainly because of the chlorophyll and carotenoid, and other pigments, and water content. Because spectral reflectance is a function of the illumination conditions, tissue optical properties and biochemical content of the plants it may be used to collect information on several important biophysical parameters such as color and the spectral signature of features, vegetation chlorophyll absorption characteristics, vegetation moisture content, etc. Remotely sensed data collected by means of a portable fiber-optics spectrometer in the spectral range 350-1100 nm were used to extract information on the influence of some environmental changes. Stress factors such as enhanced UV-radiation, salinity, viral infections, were applied to some young plants species (potato, tomato, plums). The test data were subjected to different digital image processing techniques. This included statistical (Student's t-criterion), first derivative and cluster analyses and some vegetation indices. Statistical analyses were carried out in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (680-720 nm) and near infrared (720-780 nm). The strong relationship, which was found between the results from the remote sensing technique and some biochemical and serological analyses (stress markers, DAS-ELISA), indicates the importance of hyperspectral reflectance data for conducting, easily and without damage, rapid assessments of plant biophysical

  13. Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014.

    Science.gov (United States)

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi

    2017-08-01

    We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Predicting the response of a temperate forest ecosystem to atmospheric CO{sub 2} increase. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Bazzaz, F.A.

    1993-03-01

    This report summarizes the second year of research progress. Included are progress reports for the following studies: the responses of temperate forest tree to 3 years of exposure to elevated carbon dioxide, and high and low nutrient and light levels; pot-size limitations in carbon dioxide studies, interactive effects of carbon dioxide and soil moisture availability on tree seedling`s tissue water relations, growth, and niche characteristics; individual versus population responses to elevated carbon dioxide levels in two species of annual weeds; and the development of gypsy moth larvae raised on gray and yellow birth foliage grown in ambient and elevated carbon dioxide environments.

  15. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    Science.gov (United States)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-10-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.

  16. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours.

    Directory of Open Access Journals (Sweden)

    May Trude Johnsen

    Full Text Available INTRODUCTION: Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration, including lifestyle variables, health variables and biological factors. METHODS: The cross sectional population Tromsø Study was conducted in northern Norway, above the Arctic Circle. 6413 persons aged 30-65 years completed questionnaires including self-reported sleep times, lifestyle and health. They also measured height, weight, waist and hip circumference, and biological factors (non-fasting serum level of cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and glucose. The study period was from 1 October 2007 to 19 December 2008. RESULTS: The optimal sleep length regarding BMI and waist circumference was found to be 8-9 hours. Short sleepers (<6 h had about 80% increased risk of being in the BMI≥25 kg/m2 group and male short sleepers had doubled risk of having waist circumference ≥102 cm compared to 8-9 hours sleepers. We found no impact of chronotype or social jetlag on BMI or abdominal obesity after controlling for health, lifestyle, and biological parameters. CONCLUSIONS: In our subarctic population, the optimal sleep duration time regarding risk of overweight and abdominal obesity was 8-9 hours, which is one hour longer compared to findings from other studies. Short sleepers had 80% increased risk of being overweight, and men had a doubled risk of having abdominal obesity. We found no associations between chronotype or social jetlag and BMI or abdominal obesity, when we took a range of life-style, health and biological variables into

  17. The Atmosphere's Imprint on the Hydrologic and Carbon Cycle in the Alaskan Arctic and Subarctic

    Science.gov (United States)

    Nichols, J. E.; Peteet, D. M.; Moy, C. M.

    2011-12-01

    The Alaskan arctic and subarctic is a region rich with terrestrial carbon stored in peatlands which have been accumulating thoughout the Holocene. Such peatlands are important players in the terrestrial carbon cycle. One major influence on the amount of carbon stored in peatlands is the amount and seasonality of precipitation, which is controlled, in turn, by changes in atmospheric circulation. The Holocene changes in atmospheric circulation over the North Pacific, and the Gulf of Alaska in particular is poorly understood. In the case of the Alaskan subarctic, for example, the Aleutian Low is an important driver of moisture balance change. Further, changes in the Aleutian low also control fluxes of important micronutrients such as iron from the land surface to the Gulf of Alaska, an area of the ocean where phytoplankton growth is iron limited. We reconstructed the hydrogen isotopes of precipitation, the amount of surface evaporation, and the overall moisture balance through the Holocene at three peatland sites in the Alaskan arctic and subarctic: Goldmine Bog, Fairbanks, (65°N, 147°W), Phalarope Bog, Kodiak (57°N, 154°W), and Bear Bog, Cordova (60°N, 145°W). These data reveal large, regionally consistent changes in atmospheric circulation throughout the Holocene that play an important role in changing the amount of carbon stored in peatlands. Understanding the relationships among atmospheric circulation, the hydrologic cycle, and the carbon cycle in the past provide an important guide for predicting the carbon cycle changes that will result from future climate warming.

  18. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours.

    Science.gov (United States)

    Johnsen, May Trude; Wynn, Rolf; Bratlid, Trond

    2013-01-01

    Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration, including lifestyle variables, health variables and biological factors. The cross sectional population Tromsø Study was conducted in northern Norway, above the Arctic Circle. 6413 persons aged 30-65 years completed questionnaires including self-reported sleep times, lifestyle and health. They also measured height, weight, waist and hip circumference, and biological factors (non-fasting serum level of cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and glucose). The study period was from 1 October 2007 to 19 December 2008. The optimal sleep length regarding BMI and waist circumference was found to be 8-9 hours. Short sleepers (hours sleepers. We found no impact of chronotype or social jetlag on BMI or abdominal obesity after controlling for health, lifestyle, and biological parameters. In our subarctic population, the optimal sleep duration time regarding risk of overweight and abdominal obesity was 8-9 hours, which is one hour longer compared to findings from other studies. Short sleepers had 80% increased risk of being overweight, and men had a doubled risk of having abdominal obesity. We found no associations between chronotype or