WorldWideScience

Sample records for subarctic boreal marsh

  1. Extensive forest leaf area survey aiming at detection of vegetation change in subarctic-boreal zone

    OpenAIRE

    Kusakabe,Tomoko; Tsuzuki,Hayato; Hughes,Gary; Sweda,Tatsuo

    2000-01-01

    The warming resulting from increasing anthropogenic carbon dioxide and other greenhouse gasses is expected to be most prominent in the subarctic-boreal region of the Northern Hemisphere. With the objective of setting up a baseline to monitor possible vegetation change in this region, a continuous vegetation profile extending 600km from Edmonton, Alberta to Cluff Lake, Saskatchewan, Canada was measured using an airborne infrared laser altimeter mounted on a helicopter. Then the distribution of...

  2. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  3. Analysis of the boreal forest-tundra ecotone: A test of AVIRIS capabilities in the Eastern Canadian subarctic

    Science.gov (United States)

    Goward, Samuel N.; Petzold, Donald E.

    1989-01-01

    A comparison was conducted between ground reflectance spectra collected in Schefferville, Canada and imaging spectrometer observations acquired by the AVIRIS sensor in a flight of the ER-2 Aircraft over the same region. The high spectral contrasts present in the Canadian Subarctic appeared to provide an effective test of the operational readiness of the AVIRIS sensor. Previous studies show that in this location various land cover materials possess a wide variety of visible/near infrared reflectance properties. Thus, this landscape served as an excellent test for the sensing variabilities of the newly developed AVIRIS sensor. An underlying hypothesis was that the unique visible/near infrared spectral reflectance patterns of Subarctic lichens could be detected from high altitudes by this advanced imaging spectrometer. The relation between lichen occurrence and boreal forest-tundra ecotone dynamics was investigated.

  4. Earthworm impacts on organo-mineral interactions and soil carbon inventories in Fennoscandian boreal and sub-arctic landscapes

    Science.gov (United States)

    Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan

    2017-04-01

    Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better

  5. Reindeer grazing in subarctic boreal forest - influences on the soil carbon dynamics

    Science.gov (United States)

    Koster, Kajar; Berninger, Frank; Köster, Egle; Pumpanen, Jukka

    2015-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems , which have many effects on plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil C dynamics. Earlier, the role of reindeer grazing in ground vegetation dynamics and in soil carbon (C) dynamics has been mostly investigated in open tundra heaths. The objectives of this study were to examine if and how the reindeer grazing (and the possible temperature changes in soil caused by heavy grazing) is affecting the soil C dynamics (CO2 efflux from the soil, C storage in soil, microbial biomass in the soil). In a field experiment in Finnish Lapland, in Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we have assessed the changes occurring in above- and belowground biomasses, and soil C dynamics (CO2 efflux, soil C content, soil microbial biomass C) among areas grazed and ungrazed by reindeer. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. The sample plots located in the Värriö Strict Nature Reserve (10 sample plots in total established in year 2013) are situated along the borderline between Finland and Russia, where the ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. To characterize the stands we have established circular sample plots on areas with a radius of 11.28 m, where different tree characteristics were measured (diameter at 1.3 m, height, height of a tree, crown height, crown diameter, stand age, etc.). On every sample plot

  6. Comparison of snow melt properties across multiple spatial scales and landscape units in interior sub-Arctic boreal Alaskan watersheds

    Science.gov (United States)

    Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.

    2013-12-01

    Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.

  7. Comparison of Vegetation Water Use Using the Horton Index in a Sub-arctic, Alaskan Boreal Forest Environment Using Hydrograph Analysis

    Science.gov (United States)

    Bolton, W. R.; Cable, J.

    2012-12-01

    The sub-arctic environment is in the zone of discontinuous permafrost. The extreme energy influx from winter to summer has a strong influence on water storage and release processes at the watershed scale. For example, the seven months of snow accumulation are followed by a short 2-week period of snow ablation in which approximately 1/3 of the annual precipitation is released into the system. In permafrost soils, the soils begin to thaw immediately at the conclusion of snow melt, increasing the storage capacity of the soils. The storage capacity of the soils reaches a maximum in late summer then rapidly decreases during the freeze-back period in October. In permafrost-free soils dominated by deciduous vegetation, the trees appear to have a major role in taking up and transpiring liquid precipitation to back to the atmosphere. Conversely, in permafrost soils dominated by coniferous vegetation, the trees appear to have a more minor role in the cycling of liquid water during precipitation events. The overarching goal of our research is to quantify the relative roles of vegetation water use and soil storage dynamics associated with permafrost presence/absence in determining the magnitude and timing of water pathways in the sub-Arctic boreal forest. As part of this goal, we quantified the Horton Index - a metric used to describe vegetation water use relative to available soil water - in two small sub-basins of the Caribou-Poker Creeks Research Watershed, located near Fairbanks, Alaska. The C2 (5.2 km2) and C3 (5.7km2) sub-basins are underlain by approximately 2 and 53% permafrost, and are dominated by deciduous (Betula neoalaskana and Populus tremuloides) and coniferous vegetation (Picea mariana), respectively. Catchment scale calculations of the Horton Index are made using stream flow analysis and during snow-free precipitation events over an 11-year period. In each sub-basin, the Horton Index varies with time with the greatest variation occurring in the spring and fall

  8. Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada.

    Science.gov (United States)

    Darnajoux, Romain; Lutzoni, François; Miadlikowska, Jolanta; Bellenger, Jean-Philippe

    2015-11-15

    Northeastern Canada is mostly free of anthropogenic activities. The extent to which this territory has been impacted by anthropogenic atmospheric depositions remains to be studied. The main goal of our study was to establish background levels for metals in boreal muscicolous/terricolous macrolichens over non-urbanized areas of northeastern Canada (Québec). Concentrations of 18 elements (Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, and Pb) were determined for three species of the genus Peltigera (Peltigera aphthosa (L.) Willd. s.l., Peltigera neopolydactyla (Gyeln.) Gyeln. s.l., Peltigera scabrosa Th. Fr. s.l.), and Nephroma arcticum (L.) Torss., along a 1080 km south-north transect and along a of 730 km west-east transect. We report that elemental contents in the sampled lichen thalli are very low and similar to background levels found in other studies performed in pristine places (high elevation or remote ecosystems) throughout the world. Overall, our results demonstrate that most of the boreal and subarctic zone of Québec (northeastern Canada) is still pristine. The elemental baseline established in these lichen populations will contribute to monitor metal pollution in boreal and sub-polar ecosystems due to global climate change and future industrial expansion. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem (subarctic...

  10. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  11. Remote Sensing Methods for Environmental Monitoring of Human Impact on sub-Arctic Ecosystems in Europe

    OpenAIRE

    Shipigina, Ekaterina

    2013-01-01

    The role and scale of human impact on the global environment is a question of special importance to the scientific community and the world as a whole. This impact has dramatically increased since the beginning of industrialisation, yet its understanding remains patchy. The sub-Arctic plays a central role in forming the global environment due to the vast territory of boreal forest and tundra. Severe climatic conditions make its ecosystems highly sensitive to any natural and human disturbances....

  12. Boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Essen, P.A.; Ericson, L. [Univ. of Umeaa, Dept. of Ecological Botany, Umeaa (Sweden); Ehnstroem, B. [Swedish Univ., of Agricultural Sciences, Swedish Threatened Species Unit, Uppsala (Sweden); Sjoeberg, K. [Swedish Univ. of Agricultural Sciences, Dept. of Animal Ecology, Umeaa (Sweden)

    1997-10-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man`s past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs.

  13. Suisun Marsh Secondary Management Area

    Data.gov (United States)

    California Department of Resources — Suisun Marsh or the 'Marsh' means tidal marsh, water-covered areas, diked-off wetlands, seasonal marshes, lowland grasslands, upland grasslands, and cultivated lands...

  14. Suisun Marsh Primary Management Area

    Data.gov (United States)

    California Department of Resources — Suisun Marsh or the 'Marsh' means tidal marsh, water-covered areas, diked-off wetlands, seasonal marshes, lowland grasslands, upland grasslands, and cultivated lands...

  15. The Legacy of Destructive Snow Goose Foraging on Supratidal Marsh Habitat in the Hudson Bay Lowlands

    OpenAIRE

    Koons, David

    2013-01-01

    Ecological succession and climate change are pushing tundra as well as Arctic and subarctic lowland plant communities toward increased woody vegetation cover. However, areas along the Hudson Bay Lowlands that are over-grazed by hyper-abundant lesser snow geese are experiencing drastic losses of grass, sedge, and woody cover. We assessed long-term changes in proportional ground cover and habitat patch characteristic at a subartic supratidal marsh that was largely vacated by breeding snow gee...

  16. Diazotrophy in alluvial meadows of subarctic river systems.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Bergman, Ingela; Díez, Beatriz; Bergman, Birgitta

    2013-01-01

    There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy) to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy) as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1) yr(-1) and was down regulated from over 60 kg N ha(-1) yr(-1) to 0 kg N ha(-1) yr(-1) by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  17. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  18. Browning boreal forests of western North America

    Science.gov (United States)

    Verbyla, David

    2011-12-01

    's boreal forest Remote Sens. 2 2729-47 Riordan B, Verbyla D and McGuire A D 2006 Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images J. Geophys. Res. 111 G04002 Ruess R W, McFarland J M, Trummer L M and Rohrs-Richey J K 2009 Disease-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in interior and south-central Alaska Ecosystems 12 489-502 Stafford J M, Wendler G and Curtis J 2000 Temperature and precipitation of Alaska: 50 year trend analysis Theor. Appl. Climatology 67 33-44 Stow D, Peterson A, Hope A, Engstrom R and Coulter L 2007 Greenness trends of Arctic tundra vegetation in the 1990s: comparison of two NDVI data sets from NOAA AVHRR systems Int. J. Remote Sens. 28 4807-22 van Mantgem P J et al 2009 Widespread increase of tree mortality rates in the western United States Science 323 521-4 Walsh, J E, Chapman W L, Romanovsky V, Christensen J H and Stendel M 2008 Global climate model performance over Alaska and Greenland J. Clim. 21 6156-74 Wendler G and Shulski M 2009 A century of climate change for Fairbanks, Alaska Arctic 62 295-300 Zhang K, Kimball J S, Hogg E H, Zhao M, Oechel W C, Cassano J J and Running S W 2008 Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity J. Geophys. Res. 113 G03033

  19. Early Salt-Marsh Development, an Example of a Turing Instability?

    Science.gov (United States)

    van de Koppel, J.

    2008-12-01

    In the past decades, regular spatial patterns have been described in a wide range of ecosystems, ranging from arid lands to boreal peat lands. Pattern formation mechanisms in many of these ecosystems are caused by scale-dependent interactions between organisms and geophysical processes, causing facilitation between organisms at small spatial scale, but inhibition at larger spatial scales. This conforms to the activation-inhibition principle laid out by Alan Turing in 1953. We present a combination of experimental and modeling studies on early salt-marsh development that indicate that similar scale-dependent interactions determine the establishment of salt-marsh vegetation and early geomorphological development of the marsh. Based on these studies, we argue that the early development of salt-marsh ecosystems is characterized by a Turing instability, placed into a complex landscape setting.

  20. Carpinteria Salt Marsh Habitat Polygons

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland. We then drew polygons around each habitat...

  1. Thresholds for Boreal Biome Transitions

    NARCIS (Netherlands)

    Scheffer, M.; Hirota, M.; Holmgren, M.; Nes, van E.H.; Chapin, F.S.

    2012-01-01

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at

  2. Nitrogen balance along a northern boreal forest fire chronosequence.

    Directory of Open Access Journals (Sweden)

    Marjo Palviainen

    Full Text Available Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1 and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  3. Nitrogen balance along a northern boreal forest fire chronosequence.

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  4. Regional-scale surface flux observations across the boreal forest during BOREAS

    DEFF Research Database (Denmark)

    Oncley, S.P.; Lenschow, D.H.; Campos, T.L.

    1997-01-01

    A major role of the National Center for Atmospheric Research (NCAR) Electra aircraft during the Boreal Ecosystem-Atmosphere Study (BOREAS) was to measure fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone on a transect that crossed the entire boreal forest biome...... forests to be more photosynthetically active than nearby coniferous forests. Coniferous forest fluxes across the transect from the BOREAS southern to northern study areas show no apparent spatial trend, though smaller-scale variability is large. The fluxes make a smooth transition from the BOREAS northern...... study area to the subarctic tundra. Typical midsummer, midday, large-scale net ecosystem exchanges of carbon dioxide were about -10 mu mol m(-2) s(-1) for primarily deciduous forests, about -6 mu mol m(-2) s(-1) for the primarily coniferous regions between and including the two BOREAS study areas...

  5. Biosphere 2's Marsh Biome

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  6. Trends in Ostracoda and Cladocera distribution and water chemistry in subarctic Canada: Churchill (Manitoba lakes and ponds revisited

    Directory of Open Access Journals (Sweden)

    Finn A. Viehberg

    2017-03-01

    Full Text Available Ponds and lakes distributed across northern treeline in the Hudson Bay Lowlands near Churchill (Manitoba were revisited to analyse and document the local ecoclimatic and limnological changes that occurred over the period 1997-2012. Our analyses revealed that single events may cause significant changes in salinity, pH and silicate content because of the limited buffer capacity of the inter-connected waters. Planktic freshwater microcrustaceans (Cladocera presented less diverse assemblages and appeared to favour waters that are situated in the boreal forest, while the diversity of benthic species assemblages (Cladocera and Ostracoda was highest in waters located closer to the coastline and in open tundra vegetation. We identified three species that are distinctive for the boreal ecozone (i.e., Candona acuta, Can. acutula and Can. decora and two species (i.e., Tonnacypris glacialis and Can. rawsoni that are elements of (sub-arctic landscapes and potentially endangered as the northern treeline expands due to rapid warming. These species are thought to be useful indicators for future ecosystem quality assessments and/or ecosystem service management programs. Our findings were compared to other studies completed in the boreal Yukon Territory and revealed that species diversity is closely linked to landscape history.

  7. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  8. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic......The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... populations may have epidemiological importance in relation to the recent changes in production and infrastructure in these former Soviet states....

  9. Habitat use of barnacle geese at a subarctic salt marsh in the Kolokolkova Bay, Russia

    NARCIS (Netherlands)

    van der Graaf, AJ; Lavrinenko, OV; Elsakov, [No Value; van Eerden, MR; Stahl, J

    2004-01-01

    Along the east Atlantic migratory flyway, goose and swan species rely on the availability of suitable coastal habitats as staging sites during migration and for breeding. Especially for the Russian part of the flyway, detailed descriptions of these habitats in relation to use by herbivores are

  10. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    Science.gov (United States)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  11. Louisiana Marsh Management Plan 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We sampled experimental research areas in the Barataria Basin of Louisiana during March and May, 1995, to examine the effects of structural marsh management on...

  12. Marsh and Water Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The three freshwater impoundments--North, Bill Forward, and Stage Island Pools were constructed by diking off salt marsh on the west side of the barrier island in...

  13. Oceanography of the subarctic Pacific region, 1960-71

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on the oceanography of the subarctic Pacific region 1969-1971. The background of the project is summarized. Next, a review of physical oceanography...

  14. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  15. Large difference in carbon emission – burial balances between boreal and arctic lakes.

    Science.gov (United States)

    Lundin, E J; Klaminder, J; Bastviken, D; Olid, C; Hansson, S V; Karlsson, J

    2015-09-15

    Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic - arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink - source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes.

  16. Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska

    Science.gov (United States)

    Larsen, A. S.; O'Donnell, J. A.; Schmidt, J. H.; Kristenson, H. J.; Swanson, D. K.

    2017-04-01

    Lakes are an important component of high-latitude regions, providing habitat for fish and wildlife and playing a critical role in biogeochemical and global carbon cycles. High-latitude lakes are sensitive to climate change, in part due to their development within permafrost soils. Considerable heterogeneity exists across arctic and subarctic landscapes, yet little is known about how this landscape variability influences chemical and physical attributes of lakes. We investigated the physical and chemical limnology of 617 lakes in Alaska's boreal forest and boreal-arctic transition zone. We categorized lakes into 10 basin types based on parent material, topography, genesis, and permafrost characteristics. Physical parameters varied across lake basin types, with the deepest lakes occurring in ice-poor glacial deposits and ice-rich terrain, while the shallowest lakes were observed in floodplain deposits and coastal lowlands. Dissolved inorganic nitrogen (N) and phosphorous (P) concentrations were generally low across all landscapes, whereas total N and P were highest in lakes underlain by ice-rich Pleistocene loess. Total N and P concentrations were significantly correlated with chlorophyll a, indicating a possible colimitation of primary productivity in these systems. Base cation concentrations helped elucidate lake basin hydrology and the relative influence of shallow versus deep groundwater inputs to surface water. Using these results, we developed a simple conceptual model for each lake and landscape type based on differences in physical and chemical parameters. Overall, we expect that the vulnerability of lake ecosystems to climate change will vary across lake basin types and will be mediated by spatial patterns in permafrost characteristics and subsurface hydrology.

  17. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change.

    Science.gov (United States)

    Zazula, Grant D; MacPhee, Ross D E; Metcalfe, Jessica Z; Reyes, Alberto V; Brock, Fiona; Druckenmiller, Patrick S; Groves, Pamela; Harington, C Richard; Hodgins, Gregory W L; Kunz, Michael L; Longstaffe, Fred J; Mann, Daniel H; McDonald, H Gregory; Nalawade-Chavan, Shweta; Southon, John R

    2014-12-30

    Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets.

  18. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  19. Galveston Bay Marsh Terracing 2001-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marsh terracing is used to restore coastal wetlands by converting shallow nonvegetated bottom to intertidal marsh. Terraces are constructed from excavated bottom...

  20. Nesting ecology of whimbrels in boreal Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Breeding ecology studies of boreal waders have been relatively scarce in North America. This paucity is due in part to boreal habitats being difficult to access, and...

  1. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska

    Science.gov (United States)

    Muhs, D.R.; Ager, T.A.; Skipp, G.; Beann, J.; Budahn, J.; McGeehin, J.P.

    2008-01-01

    Chemical weathering in soils has not been studied extensively in high-latitude regions. Loess sequences with modern soils and paleosols are present in much of subarctic Alaska, and allow an assessment of present and past chemical weathering. Five sections were studied in detail in the Fairbanks, Alaska, area. Paleosols likely date to mid-Pleistocene interglacials, the last interglacial, and early-to-mid-Wisconsin interstadiale. Ratios of mobile (Na, Ca, Mg, Si) to immobile (Ti or Zr) elements indicate that modern soils and most interstadial and interglacial paleosols are characterized by significant chemical weathering. Na2O/TiO2 is lower in modern soils and most paleosols compared to parent loess, indicating depletion of plagioclase. In the clay fraction, smectite is present in Tanana and Yukon River source sediments, but is absent or poorly expressed in modern soils and paleosols, indicating depletion of this mineral also. Loss of both plagioclase and smectite is well expressed in soils and paleosols as lower SiO 2/TiO2. Carbonates are present in the river source sediments, but based on CaO/TiO2, they are depleted in soils and most paleosols (with one exception in the early-to-mid-Wisconsin period). Thus, most soil-forming intervals during past interglacial and interstadial periods in Alaska had climatic regimes that were at least as favorable to mineral weathering as today, and suggest boreal forest or acidic tundra vegetation. ?? 2008 Regents of the University of Colorado.

  2. Methane emission from freshwater marshes

    NARCIS (Netherlands)

    Nat, Frans-Jaco Willy Anthony van der

    2000-01-01

    This thesis describes the results of a four-year study into the CH4 cycle of freshwater marshes dominated by reed and bulrush. This research was conducted in the framework of the research theme carbon and nutrient dynamics in vegetated littoral systems of the department of Littoral Vegetation of

  3. Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Forbes, Dean A; Reddy, G B; Hunt, Patrick G; Poach, M E; Ro, Kyoung S; Cyrus, Johnsely S

    2010-01-01

    Increased swine production in North Carolina has resulted in greater waste generation and is demanding some emerging new innovative technologies to effectively treat swine wastewater. One of the cost-effective and passive methods to treat swine wastewater is using constructed wetlands. The objective of this study was to evaluate the N removal under two N loads in 3 different wetland systems: aerated marsh-pond-marsh (M-P-M), aerated marsh-covered pond-marsh (M-FB-M), and continuous marsh (CM) with two days drain and five days flood cycle. Swine wastewater from an anaerobic lagoon was applied to the constructed wetland cells (11 m wide x 40 m length) at two N loading rates of 7 and 12 kg N ha(-1) day(-1)from June to July and August to September 2005, respectively. Weekly inflow and outflow samples were collected for N, P, TS, and COD analysis. Total N reductions (%) at low and high N loading rates were 85.8 and 51.8; 86.3 and 63.3; and 86.2 and 61.8 for M-P-M, M-FB-M, and CM, respectively. Aeration had no significant (P > 0.05) impact on N removal. However, significant (P 0.05) in N reduction was found among wetland systems. Vegetation uptake of N was negligible, ranging from 1.2 to 1.8 %. No significant (P > 0.05) differences in TS and COD removal were observed between the wetland systems.

  4. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  5. Acetaldehyde in the Alaskan subarctic snowpack

    Directory of Open Access Journals (Sweden)

    F. Domine

    2010-02-01

    Full Text Available Acetaldehyde is a reactive intermediate in hydrocarbon oxidation. It is both emitted and taken up by snowpacks and photochemical and physical processes are probably involved. Understanding the reactivity of acetaldehyde in snow and its processes of physical and chemical exchanges requires the knowledge of its incorporation mechanism in snow crystals. We have performed a season-long study of the evolution of acetaldehyde concentrations in the subarctic snowpack near Fairbanks (65° N, central Alaska, which is subjected to a vigorous metamorphism due to persistent elevated temperature gradients in the snowpack, between 20 and 200° C m−1. The snowpack therefore almost entirely transforms into depth hoar. We have also analyzed acetaldehyde in a manipulated snowpack where temperature gradients were suppressed. Snow crystals there transformed much more slowly and their original shapes remained recognizable for months. The specific surface area of snow layers in both types of snowpacks was also measured. We deduce that acetaldehyde is not adsorbed onto the surface of snow crystals and that most of the acetaldehyde is probably not dissolved in the ice lattice of the snow crystals. We propose that most of the acetaldehyde measured is either trapped or dissolved within organic aerosol particles trapped in snow, or that acetaldehyde is formed by the hydrolysis of organic precursors contained in organic aerosols trapped in the snow, when the snow is melted for analysis. These precursors are probably aldehyde polymers formed within the aerosol particles by acid catalysis, but might also be biological molecules. In a laboratory experiment, acetaldehyde-di-n-hexyl acetal, representing a potential acetaldehyde precursor, was subjected to our analytical procedure and reacted to form acetaldehyde. This confirms our suggestion that acetaldehyde detected in snow could be produced during the melting of snow for analysis.

  6. Subarctic physicochemical weathering of serpentinized peridotite

    Science.gov (United States)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by

  7. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Big Branch Marsh NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Model SummaryChanges in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that...

  8. Selected References on Arctic and Subarctic Prehistory and Ethnology. Revised.

    Science.gov (United States)

    Fitzhugh, William, Comp.; Loring, Stephen, Comp.

    This bibliography provides an introduction to the current literature, in English, on arctic and subarctic prehistory and ethnology. Leads for further research will be found in section 1. Publications listed are not available from the Smithsonian Institution but copies may be found in larger libraries or obtained through inter-library loan.…

  9. Leaf respiratory acclimation to climate: comparisons among boreal and temperate tree species along a latitudinal transect.

    Science.gov (United States)

    Dillaway, Dylan N; Kruger, Eric L

    2011-10-01

    In common gardens along an ∼900 km latitudinal transect through Wisconsin and Illinois, U.S.A., tree species typical of boreal and temperate forests were compared with respect to the nature and magnitude of leaf respiratory acclimation to contrasting climates. The boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while the temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). Assessments were conducted on seedlings grown from seed sources collected near southern and northern range boundaries, respectively. Nighttime rates of leaf dark respiration (R(d)) at common temperatures, as well as R(d)'s short-term temperature sensitivity (energy of activation, E(o)), were assessed for all species and gardens twice during a growing season. Little evidence of R(d) thermal acclimation was observed, despite a 12 °C range in average air temperature across gardens. Instead, R(d) variation at warm temperatures was linked most closely with prior leaf photosynthetic performance, while R(d) variation at cooler temperatures was most strongly related to leaf nitrogen concentration. Moreover, E(o) differences across species and gardens appeared to stem from the somewhat independent limitations on warm versus cool R(d). Based on this construct, an empirical model relying on R(d) estimates from leaf photosynthesis and nitrogen concentration explained 55% of the observed E(o) variation.

  10. Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect.

    Science.gov (United States)

    Dillaway, Dylan N; Kruger, Eric L

    2010-06-01

    Common gardens were established along a approximately 900 km latitudinal transect to examine factors limiting geographical distributions of boreal and temperate tree species in eastern North America. Boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). The species were compared with respect to adjustments of leaf photosynthetic metabolism along the transect, with emphasis on temperature sensitivities of the maximum rate of ribulose bisphosphate (RuBP) carboxylation (E(V)) and regeneration (E(J)). During leaf development, the average air temperature (T(growth)) differed between the coolest and warmest gardens by 12 degrees C. Evidence of photosynthetic thermal acclimation (metabolic shifts compensating for differences in T(growth)) was generally lacking in all species. Namely, neither E(V) nor E(J) was positively related to T(growth). Correspondingly, the optimum temperature (T(opt)) of ambient photosynthesis (A(sat)) did not vary significantly with T(growth). Modest variation in T(opt) was explained by the combination of E(V) plus the slope and curvature of the parabolic temperature response of mesophyll conductance (g(m)). All in all, species differed little in photosynthetic responses to climate. Furthermore, the adaptive importance of photosynthetic thermal acclimation was overshadowed by g(m)'s influence on A(sat)'s temperature response.

  11. Marsh and Water Management Plan : Muscatatuck National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Muscatatuck NWR Marsh and Water Management Plan outlines marsh and water management planning objectives, marsh management consideration, management of...

  12. Epipelagic nekton of the North Pacific Subarctic and Transition Zones

    Science.gov (United States)

    Brodeur, Richard; McKinnell, Skip; Nagasawa, Kazuya; Pearcy, William; Radchenko, Vladimir; Takagi, Shogo

    1999-03-01

    During the 1980s and 1990s, scientific research cruises and commercial gillnet operations with scientific observers aboard were conducted throughout much of the Subarctic and Transition Zones of the North Pacific Ocean. These studies produced one of the most extensive databases ever collected on the relative species composition and trophic structure of epipelagic nekton of the Subarctic and Transition Zones in the North Pacific Ocean. Data from Japanese high-seas gillnet research surveys (1981-1991) were examined using multivariate analytical techniques to analyse community structure of nektonic cephalopods, elasmobranchs, and teleosts in the North Pacific Subarctic and Transition Zones during the summer months, emphasizing differences between the eastern and western Subarctic Gyres. Species diversity generally increased going from west to east, which was apparently associated with the greater range of temperatures in the east. Discriminant analysis was able to correctly classify about half the catch locations into their respective regions. Catches from multinational drift gillnet commercial fisheries operations in 1990-1991 mainly in the Transition Zone were also examined. Classification techniques were employed to determine species associations and multivariate analyses were used to examine relationships of these assemblages to environmental data. We found that some species are often captured in the same gillnet sets and form species associations that are distinct in ordination space, but these associations are loose and may vary appreciably from year to year. We review recent studies on the feeding habits and daily ration of the dominant species and construct food webs for the eastern and western Subarctic and Transition Zone systems emphasizing the role that nekton play in these pelagic ecosystems.

  13. SubArctic Oceans and Global Climate

    Science.gov (United States)

    Rhines, P. B.

    2004-12-01

    The passages connecting the Arctic Ocean with the Atlantic and Pacific, and their `mediterranean' basins, are focal points for the global meridional overturning circulation, and all of the climate impacts which this implies. It is also a difficult region to model accurately: the sensitivity of climate models to subpolar ocean dynamics is well-known. In this talk we stress the need to instrument and analyze the subpolar oceans, and some examples of sustained observations developing there. Results from satellite altimetry, recent Seaglider deployments from Greenland, and mooring arrays will be described. In particular we show the first Seaglider sections of hydrography and bio-optical profiles of the Labrador Sea (one of the first extended deployments of this autonomous undersea vehicle); we discuss the decline during the 1990s of the subpolar gyre circulation of the Atlantic from its great strength during the positive NAO period of the early 1990s, and its relevance to the salinity decline observed over a much longer period; we review observations of the flows at the Iceland-Scotland Ridge and Davis Strait, argued in terms of volume transport plots on the potential temperature/salinity plane; we display maps of the `convection resistance' (related to dynamic height) and its sensitivity to surface low-salinity water masses and their partition between shallow continental shelves and deep ocean. This is a particularly exciting time for climate studies, with fundamental properties of the atmosphere-ocean circulation under debate, even before one considers natural and human-induced variability. Is the four-decade long decline in subArctic salinity the result of increased hydrologic cycle, increased or altered Arctic outflow to the Atlantic, or slowing of the subpolar circulation? Is the basic intensity of the MOC more dependent on high-latitude buoyancy forcing, or wind- or tide-driven mixing in the upwelling branch, or possibly wind-stress at high latitude? Is the

  14. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    Science.gov (United States)

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Grazing by reindeer in subarctic coniferous forests - how it is affecting three main greenhouse gas emissions from soils.

    Science.gov (United States)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, strongly affecting Arctic lichen dominated ecosystems. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics, and little is known about reindeer and their impact on greenhouse gas (GHG) emissions between the soil and atmosphere. In a field experiment in northern boreal subarctic coniferous forests in Finnish Lapland, we investigated the influence of reindeer grazing on soil GHG (CO2, CH4 and N2O) fluxes, ground vegetation coverage and biomass, soil temperature and water content. The study was carried out in the growing season of the year 2014. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the non-grazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that grazing by reindeer significantly affected lichen and moss biomasses. Lichen biomass was significantly lower in the grazed. We also observed that when lichens were removed, mosses were quickly overtaking the areas and moss biomass was significantly higher in grazed areas compared to non-grazed areas. Our results indicated that grazing by reindeer in the northern boreal subarctic forests affects the GHG emissions from the forest floor and these emissions largely depend on changes in vegetation composition. Soil was always a source of CO2in our study, and soil CO2 emissions were significantly smaller in non-grazed areas compared to grazed areas. The soils in our study areas were CH4 sinks through entire measurement period, and grazed areas consumed

  16. Carpinteria salt marsh habitat polygons

    Science.gov (United States)

    Lafferty, Kevin D.; Dunham, Eleca J.; Mancini, Frank T.; Stewart, Tara E.; Hechinger, Ryan F.

    2017-01-01

    We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland.  We then drew polygons around each habitat type identified from a registered and orthorectified aerial photograph and created a GIS shapefile. Polygons were ground-truthed in the field. From these habitat polygons, one can use GIS applications to estimate the area of each habitat type in this estuary. These data support the following publications: Kuris, Armand M., et al. "Ecosystem energetic implications of parasite and free-living biomass in three estuaries." Nature 454.7203 (2008): 515-518.Hechinger, Ryan F., Kevin D. Lafferty, Andy P. Dobson, James H. Brown, and Armand M. Kuris. "A common scaling rule for abundance, energetics, and production of parasitic and free-living species." Science 333, no. 6041 (2011): 445-448.Hechinger, Ryan F., Kevin D. Lafferty, John P. McLaughlin, Brian L. Fredensborg, Todd C. Huspeni, Julio Lorda, Parwant K. Sandhu et al. "Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries." Ecology 92, no. 3 (2011): 791-791.Buck, J.C., Hechinger, R.F., Wood, A.C., Stewart, T.E., Kuris, A.M., and Lafferty, K.D., "Host density increases parasite recruitment but decreases host risk in a snail-trematode system." Manuscript submitted for publication. Lafferty, K.D., Stewart, T.E., and Hechinger, R.F. (in press). Bird distribution surveys at Carpinteria Salt Marsh, California USA, January 2012 to March 2013: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7F47M95. 

  17. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  18. Shore Stabilization with Salt Marsh Vegetation.

    Science.gov (United States)

    1983-01-01

    result from the action of tidal currents. Marsh plantings as veil as estab- lished marshes are particularly vulnerable to undermining by strong tidal...Annual Confewence on the Reetoiation of CoaetaZ Vegetation in Flor -ida, R.R. Lewis, ed., 1975, pp. 132-161. TERNYIK, W.E., "Pilot Propagation of

  19. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  20. Tidal Marsh Vegetation of China Camp, San Pablo Bay, California

    OpenAIRE

    Baye, Peter R.

    2012-01-01

    China Camp (Marin County, California) preserves extensive relict stands of salt marsh vegetation developed on a prehistoric salt marsh platform with a complex sinuous tidal creek network. The low salt marsh along tidal creeks supports extensive native stands of Pacific cordgrass (Spartina foliosa). The outer salt marsh accreted following hydraulic gold mining sedimentation. It consists of a wave-scarped pickleweed-dominated (Sarcocornia pacifica) high salt marsh terrace with a broad fringing ...

  1. Marsh Bird Monitoring Activities in Vermont 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — As part of ongoing research into the status of Vermont's marsh birds, a statewide census of the black tern nesting population was undertaken again in the year 2000....

  2. F&G Street Marsh Contaminants Investigation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — F&G Street Marsh, located in San Diego Bay National Wildlife Refuge, Chula Vista, San Diego, California, is a tidally influenced wetland providing habitat for...

  3. Vegetation Composition and Marsh Surface Elevation, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data table contains plant composition and marsh surface elevation data for 64 plots where Salicornia pacifica litter was buried at 7 sites in 2015. These data...

  4. Carbon balance of the Alaskan boreal forest

    Science.gov (United States)

    John Yarie; Tim Hammond

    1996-01-01

    Determination of the carbon balance in a broad forest region like the Alaskan boreal forest requires the development of a number of important environmental (state factors) classes to allow for the development of carbon balance estimates.

  5. Boreal forest health and global change.

    Science.gov (United States)

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. Copyright © 2015, American Association for the Advancement of Science.

  6. Sustaining Aquatic Ecosystems in Boreal Regions

    Directory of Open Access Journals (Sweden)

    David Schindler

    1998-12-01

    Full Text Available Few boreal waters are managed in a sustainable manner, because cumulative effects of a variety of human activities are not considered. Fisheries and water quality have declined in most large water bodies of the southern boreal zone. Some of the reasons are direct, including overexploitation of fisheries, alteration of flow patterns, introductions of non-native species, and discharge of eutrophying nutrients and persistent contaminants. However, improper management of watersheds and airsheds also causes degradation of aquatic ecosystems. Clear-cut logging, climatic warming, acid precipitation, and stratospheric ozone depletion are among the more important of these indirect stressors. There are important interactions among these stressors, requiring that they not be treated in isolation. Ecological sustainability of boreal waters would require that exploitation of all parts of the boreal landscape be much lower than it is at present. Unfortunately, management for sustainability is lagging far behind scientific understanding in most countries.

  7. Habitat heterogeneity: importance of salt marsh pools and high marsh surfaces to fish production in two Gulf of Maine salt marshes

    Science.gov (United States)

    R.A. MacKenzie; M. Dionne

    2008-01-01

    Both permanent high marsh pools and the intertidal surfaces of Spartina patens high marshes in southern Maine, USA, proved to be important habitat for resident mummichog Fundulus heteroclitus production. Manipulations of fish movement onto high marsh Surfaces revealed similar growth rates and production among fish that were (1) restricted to pools, (2) had access to...

  8. Sand in the salt marsh : Contribution of high-energy conditions to salt-marsh accretion

    NARCIS (Netherlands)

    de Groot, Alma V.; Veeneklaas, Roos M.; Bakker, Jan P.

    2011-01-01

    The environmental dynamics at barrier-island salt marshes are reflected in lateral and vertical textural patterns of the marsh sediment. During normal conditions, fine-grained sediment is deposited, whereas during high-energy conditions also sand accretion can occur. This paper describes the

  9. Sand in the salt marsh: Contribution of high-energy conditions to salt-marsh accretion

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Bakker, J.P.

    2011-01-01

    The environmental dynamics at barrier-island salt marshes are reflected in lateral and vertical textural patterns of the marsh sediment. During normal conditions, fine-grained sediment is deposited, whereas during high-energy conditions also sand accretion can occur. This paper describes the

  10. TYPES OF SALT MARSH EDGE AND EXPORT OF TROPHIC ENERGY FROM MARSHES TO DEEPER HABITATS

    Science.gov (United States)

    We quantified nekton and estimated trophic export at salt marshes with both erosional and depositional edges at the Goodwin Islands (York River, Virginia, USA). At depositional-edge marshes, we examined trophic flows through quantitative sampling with 1.75 m2 drop rings, and thro...

  11. Systematically enhanced subarctic Pacific stratification and nutrient utilization during glacials

    Science.gov (United States)

    Knudson, K. P.; Ravelo, A. C.

    2015-12-01

    The modern subarctic North Pacific is characterized as a high-nitrate, low-chlorophyll (HNLC) area, but evidence for increased nutrient utilization during the last glacial indicates that this region is highly dynamic. As such, this HNLC area is of particular interest in regard to understanding changes in the biological pump and carbon sequestration and predicting how biogeochemical processes will influence, or be influenced by, future climate change. While it has been suggested that changes in iron supply and/or ocean stratification could explain fluctuations in nutrient utilization and productivity in the subarctic Pacific, short records of nutrient utilization have previously hindered the evaluation of these potential mechanisms over long timescales. Here we present new, high-resolution records of bulk sediment δ15N from 0-1.2 Ma from Integrated Ocean Drilling Program Exp. 323 Site U1342, which are used to calculate Δδ15N (U1342 δ15Nbulk - ODP Site 1012 δ15Nbulk) as a nitrate utilization proxy. The unprecedented length and resolution of this new record allows us, for the first time, to determine orbital-scale systematic behavior in subarctic Pacific nutrient utilization over many glacial/interglacial cycles. Spectral analyses demonstrate that enhanced nutrient utilization was paced by climate on Milankovitch orbital cycles since the Mid-Pleistocene Transition (MPT; ~800 ka). Nitrate utilization maxima is statistically correlated with glacial maxima and enhanced dust/iron availability (represented by existing records of EPICA ice core dust, Southern Pacific Ocean sediment iron, and China loess) but shows low correlation to primary productivity, suggesting that stratification has systematically exerted an important control on subarctic Pacific nutrient utilization since the MPT. These findings imply that the presence of iron helped to change the region into a nitrate-limited, rather than iron-limited, region during glacials and that stratification, which

  12. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    Science.gov (United States)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  13. The Elusive Boreal Forest Thaumarchaeota

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2016-06-01

    Full Text Available In recent years, Archaea have, with increasing frequency, been found to colonize both agricultural and forest soils in temperate and boreal regions. The as yet uncultured group I.1c of the Thaumarchaeota has been of special interest. These Archaea are widely distributed in mature vegetated acidic soils, but little has been revealed of their physiological and biological characteristics. The I.1c Thaumarchaeota have been recognized as a microbial group influenced by plant roots and mycorrhizal fungi, but appear to have distinct features from their more common soil dwelling counterparts, such as the Nitrosotalea or Nitrososphaera. They appear to be highly dependent on soil pH, thriving in undisturbed vegetated soils with a pH of 5 or below. Research indicate that these Archaea require organic carbon and nitrogen sources for growth and that they may live both aerobically and anaerobically. Nevertheless, pure cultures of these microorganisms have not yet been obtained. This review will focus on what is known to date about the uncultured group I.1c Thaumarchaeota formerly known as the “Finnish Forest Soil” (FFS Archaea.

  14. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.

    Science.gov (United States)

    Hartley, Iain P; Hill, Timothy C; Wade, Thomas J; Clement, Robert J; Moncrieff, John B; Prieto-Blanco, Ana; Disney, Mathias I; Huntley, Brian; Williams, Mathew; Howden, Nicholas J K; Wookey, Philip A; Baxter, Robert

    2015-10-01

    Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4  m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4  m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4  m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general. © 2015 The

  15. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  16. Carbon sequestration by Australian tidal marshes

    Science.gov (United States)

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-03-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  17. Subarctic warming: Results from the global treeline project

    Energy Technology Data Exchange (ETDEWEB)

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  18. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  19. Salt marsh vegetation: examples from the Tijuana estuary

    National Research Council Canada - National Science Library

    Zedler, J.B

    Using the Tijuana Estuary in southern California as an example, this booklet describes salt marsh vegetation and explains how marsh plants are able to tolerate the stresses of their variable environment...

  20. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    Science.gov (United States)

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

  1. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale

    Science.gov (United States)

    Dinsmore, Kerry J.; Drewer, Julia; Levy, Peter E.; George, Charles; Lohila, Annalea; Aurela, Mika; Skiba, Ute M.

    2017-02-01

    Subarctic and boreal emissions of CH4 are important contributors to the atmospheric greenhouse gas (GHG) balance and subsequently the global radiative forcing. Whilst N2O emissions may be lower, the much greater radiative forcing they produce justifies their inclusion in GHG studies. In addition to the quantification of flux magnitude, it is essential that we understand the drivers of emissions to be able to accurately predict climate-driven changes and potential feedback mechanisms. Hence this study aims to increase our understanding of what drives fluxes of CH4 and N2O in a subarctic forest/wetland landscape during peak summer conditions and into the shoulder season, exploring both spatial and temporal variability, and uses satellite-derived spectral data to extrapolate from chamber-scale fluxes to a 2 km × 2 km landscape area.From static chamber measurements made during summer and autumn campaigns in 2012 in the Sodankylä region of northern Finland, we concluded that wetlands represent a significant source of CH4 (3.35 ± 0.44 mg C m-2 h-1 during the summer campaign and 0.62 ± 0.09 mg C m-2 h-1 during the autumn campaign), whilst the surrounding forests represent a small sink (-0.06 ± weighted by forest/wetland proportion (0.99 ± 0.16, 0.93 ± 0.12 mg C m-2 h-1, respectively). Hence we conclude that ignoring the detailed spatial variability in CH4 emissions within a landscape leads to a potentially significant underestimation of landscape-scale fluxes. Given the small magnitude of measured N2O fluxes a similar level of detailed upscaling was not needed; we conclude that N2O fluxes do not currently comprise an important component of the landscape-scale GHG budget at this site.

  2. A synthesis of growing-season and annual methane emissions among temperate, boreal, and arctic wetlands

    Science.gov (United States)

    Treat, Claire

    2017-04-01

    Wetlands are the largest natural source of methane to the atmosphere, but predicting methane emissions from wetlands using process-based modeling remains challenging due to the decoupling between production and emission. Furthermore, methane emissions are highly variable among sites, years, and temporal scales due to differences in production, oxidation, and transport pathways. Here, I synthesize growing season, non-growing season, and annual methane emissions from chamber and eddy-covariance measurements for >150 sites in undisturbed temperate, boreal, and arctic wetlands and adjacent uplands. I compare the magnitude of fluxes among regions, wetland classifications, vegetation classifications, environmental variables, and measurement methods. Growing season measurements were most abundant in bogs, fens, and tundra sites, while marshes, swamps, and permafrost thaw features were relatively undersampled. Methane emissions were largest from intermediate and rich fens (> 15 g CH4 m-2 y-1) and lowest from upland mineral soils and polygonal tundra (≤ 3 g CH4 m-2 y-1). Non-growing season emissions accounted for 20% of annual methane emissions. Across all sites, there were no significant differences in growing season methane emissions between autochambers, manual chambers, and eddy covariance. These results provide constraints for methane emissions from temporal, boreal, and arctic wetlands utilizing the numerous flux measurements conducted over the past 25 years.

  3. Vegetation Loss Decreases Salt Marsh Denitrification Capacity: Implications for Marsh Erosion.

    Science.gov (United States)

    Hinshaw, Sarra E; Tatariw, Corianne; Flournoy, Nikaela; Kleinhuizen, Alice; Taylor, Caitlin; Sobecky, Patricia A; Mortazavi, Behzad

    2017-08-01

    Salt marshes play a key role in removing excess anthropogenic nitrogen (N) loads to nearshore marine ecosystems through sediment microbial processes such as denitrification. However, in the Gulf of Mexico, the loss of marsh vegetation because of human-driven disturbances such as sea level rise and oil spills can potentially reduce marsh capacity for N removal. To investigate the effect of vegetation loss on ecosystem N removal, we contrasted denitrification capacity in marsh and subtidal sediments impacted by the Deepwater Horizon oil spill using a combination of 29N2 and 30N2 production (isotope pairing), denitrification potential measurements (acetylene block), and quantitative polymerase chain reaction (qPCR) of functional genes in the denitrification pathway. We found that, on average, denitrification capacity was 4 times higher in vegetated sediments because of a combination of enhanced nitrification and higher organic carbon availability. The abundance of nirS-type denitrifers indicated that marsh vegetation regulates the activity, rather than the abundance, of denitrifier communities. We estimated that marsh sediments remove an average of 3.6 t N km-2 y-1 compared to 0.9 t N km-2 y-1 in unvegetated sediments. Overall, our findings indicate that marsh loss results in a substantial loss of N removal capacity in coastal ecosystems.

  4. Application of a catchment characterization hydrologic model for exploring parameter sensitivities in a boreal forest, discontinuous permafrost ecosystem

    Science.gov (United States)

    Morton, D.; Bolton, W. R.; Young, J.; Hinzman, L. D.

    2013-12-01

    Many of the expected climate-driven changes in sub-arctic ecosystems, such as increased temperature and precipitation, decreased permafrost extent, tree-line expansion and vegetation composition, have been identified as potential mechanisms that may lead to shifts in the Arctic Ocean freshwater budget. Understanding the feedback mechanisms of the water cycle are paramount, in that small changes may result in dramatic threshold changes in the hydrology, ecology and surface energy balance. As part of a study on how vegetation water use and permafrost dynamics impact stream flow in the boreal forest discontinuous permafrost zone, we are integrating a vegetation water use model and a simple, first-order, non-linear hydrological model, utilizing a Bayesian analysis approach to fully account for and propagate uncertainty through this modeling system. With an overall goal of improving parameterizations of large-scale hydrological models, we are constructing a simple and portable hydrologic model within a Bayesian framework. Thus, uncertainty associated with the evaporation (E), transpiration (T), precipitation (P), and streamflow (Q) submodels will be propagated into the final hydrology model. An immediate application of the modeling system will be used to explore the hydrological impacts of different vegetation distributions found in the boreal forest. In this work, we describe the basic structure of this flexible, object-oriented model and test its performance against collected basin data from headwater catchments of varying permafrost extent and ecosystem structure (deciduous versus coniferous vegetation). We will also do analyses to assess model sensitivity to each parameter (E, T, P, Q) and to different climate scenarios. This model is a major advancement for hydrological models that will aid in assessing sources of uncertainty in boreal hydrological systems.

  5. VALUING AN INTERVENTION: MARSH MIGRATION AND ECOSYSTEM SERVICES

    Science.gov (United States)

    There is growing interest in valuing ecosystem services provided by marsh systems. Ecosystem services represent a flow of benefits to society from the existence or functioning of the marsh. Therefore, to “put a value on” the marsh itself, or estimate a value of the na...

  6. Recent Trends in Bird Abundance on Rhode Island Salt Marshes

    Science.gov (United States)

    Salt marsh habitat is under pressure from development on the landward side, and sea level rise from the seaward side. The resulting loss of habitat is potentially disastrous for salt marsh dependent species. To assess the population status of three species of salt marsh dependent...

  7. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  8. Nitrogen alters carbon dynamics during early succession in boreal forest

    Science.gov (United States)

    Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen. Treseder

    2010-01-01

    Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...

  9. Effects of Boreal Timber Rafting on the Composition of Arctic Driftwood

    Directory of Open Access Journals (Sweden)

    Lena Hellmann

    2016-10-01

    Full Text Available Wood from the boreal forest represents an important resource for paper production and sawmill processing. Due to poor infrastructure and high transportation costs on land, timbers are often transported over long distances along large river systems. Industrial river rafting activities started at the end of the 19th century and were intensified in western Russia and central Siberia from the 1920s to the 1980s. After initial single stem rafting, timber is today mostly floated in ship-guided rafts. Lost wood can be transported further to the Arctic Ocean, where it may drift within sea ice over several years and thousands of kilometers before being deposited along (sub-Arctic coastlines. Here, we introduce dendro-dated tree-ring width series of 383 driftwood samples from logged timber that were collected along different driftwood-recipient coastlines in Greenland, Iceland and Svalbard. The majority of driftwood is Pinus sylvestris from the southern Yenisei region in central Siberia, whereas Larix sp. and Picea sp. from western Russia and eastern Siberia are rare. Although our results are based on a small sample collection, they clearly show the importance of timber rafting on species, age and origin of Arctic driftwood and indicate the immense loss of material during wood industrial river floating.

  10. Modeling atmospheric CO2 concentration profiles and fluxes above sloping terrain at a boreal site

    Directory of Open Access Journals (Sweden)

    T. Aalto

    2006-01-01

    Full Text Available CO2 fluxes and concentrations were simulated in the planetary boundary layer above subarctic hilly terrain using a three dimensional model. The model solves the transport equations in the local scale and includes a vegetation sub-model. A WMO/GAW background concentration measurement site and an ecosystem flux measurement site are located inside the modeled region at a hilltop and above a mixed boreal forest, respectively. According to model results, the concentration measurement at the hill site was representative for continental background. However, this was not the case for the whole model domain. Concentration at few meters above active vegetation represented mainly local variation. Local variation became inseparable from the regional signal at about 60-100 m above ground. Flow over hills changed profiles of environmental variables and height of inversion layer, however CO2 profiles were more affected by upwind land use than topography. The hill site was above boundary layer during night and inside boundary layer during daytime. The CO2 input from model lateral boundaries dominated in both cases. Daily variation in the CO2 assimilation rate was clearly seen in the CO2 profiles. Concentration difference between the hill site and the forest site was about 5ppm during afternoon according to both model and measurements. The average modeled flux to the whole model region was about 40% of measured and modeled local flux at the forest site.

  11. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    Science.gov (United States)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  12. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming

    Czech Academy of Sciences Publication Activity Database

    Alatalo, J.M.; Jägerbrand, A.K.; Čuchta, Peter

    2015-01-01

    Roč. 5, December (2015), s. 18161 ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Collembola * alpine subarctic sites * experimental warming Subject RIV: EH - Ecology, Behaviour Impact factor: 5.228, year: 2015

  13. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  14. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  15. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours

    National Research Council Canada - National Science Library

    Johnsen, May Trude; Wynn, Rolf; Bratlid, Trond

    2013-01-01

    ...) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables...

  16. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  17. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  18. Probable limits of sea ice extent in the northwestern Subarctic Pacific during the last glacial maximum

    Science.gov (United States)

    Matul, A. G.

    2017-09-01

    The article summarizes and analyzes published data on the distribution of sea-ice and open-ocean diatoms in 42 cores of bottom sediments from the northwestern part of the Subarctic Pacific that accumulated during the last glacial maximum (LGM). Based on micropaleontological records, the extent of winter sea ice during the LGM could be limited to the Okhotsk and Bering seas. During the warm season, the surface water masses from the open Subarctic Pacific spread widely in the marginal seas.

  19. Optimal Sleep Duration in the Subarctic with Respect to Obesity Risk Is 8?9 Hours

    OpenAIRE

    May Trude Johnsen; Rolf Wynn; Trond Bratlid

    2013-01-01

    INTRODUCTION: Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration,...

  20. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    important for the lake annual emissions compared to the length of the period, as it turned the lake from a small summer CO2 sink into an annual source. Annual inter-annual variability was notable in the magnitude of the CH4 spring release and needs further investigation. The high temporal resolution......-out and the release of CH4 and CO2 was established. These results underline the crucial importance of shoulder seasons in the annual carbon emissions from seasonally frozen lakes. Overall, the lake was an important annual source of carbon to the atmosphere, partially compensating the higher, annual sink function......Ongoing climate warming is expected to affect the carbon functioning of subarctic ecosystems. Lakes and wetlands, which are common ecosystems of the high northern latitudes, are of utmost interest in this context because they exchange large amounts of the climate-forcing gases methane (CH4...

  1. Phytoremediation of subarctic soil contaminated with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Puhakka, J.A. [Tampere University of Technology (Finland). Institute of Environmental Engineering and Biotechnology; Pichtel, J. [Ball State University, Muncie, IN (United States). Natural Resources and Environmental Management

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Festuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions. (author)

  2. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    Science.gov (United States)

    Liljedahl, A. K.; Gädeke, A.; O'Neel, S.; Gatesman, T. A.; Douglas, T. A.

    2017-07-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15-28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  3. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    Science.gov (United States)

    Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.

    2017-01-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  4. Methane emission from tidal freshwater marshes

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    2000-01-01

    In two tidal freshwater marshes, methane emission, production and accumulation in the pore-water have been studied. The two sites differ in their dominant vegetation, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated in relation to the bulrush site and had

  5. Adventitious shoot regeneration of Fraxinus nigra Marsh

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Fraxinus nigra Marsh. (black ash) is a native ash species occurring in Newfoundland west to Manitoba and south to Iowa, Illinois, West Virginia, and Virginia. Although it is not a commercially important species, it has significant ethnobotanical importance to Native American tribes of the eastern United States.

  6. Wave attenuation by salt marsh vegetation

    NARCIS (Netherlands)

    Vuik, V.; Jonkman, S.N.

    2016-01-01

    Salt marshes are a characteristic feature of estuaries and coastal seas. They are found in the upper coastal intertidal zones between land and water, which are regularly flooded by tides and surges. They are covered with salt-tolerant vegetation types, such as herbs and grasses. Sheltering from

  7. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater.

    Science.gov (United States)

    Ro, Kyoung S; Hunt, Patrick G; Johnson, Melvin H; Matheny, Terry A; Forbes, Dean; Reddy, Gudigopuram B

    2010-01-01

    Oxygen transfer efficiencies of various components of the marsh-pond-marsh (M-P-M) and marsh-floating bed-marsh (M-FB-M) wetlands treating swine wastewater were determined by performing oxygen mass balance around the wetlands. Biological oxygen demand (BOD) and total nitrogen (TN) loading and escaping rates from each wetland were used to calculate carbonaceous and nitrogenous oxygen demands. Ammonia emissions were measured using a wind tunnel. Oxygen transfer efficiencies of the aerated ponds were estimated by conducting the ASCE standard oxygen transfer test in a tank using the same aeration device. Covering pond water surface with the floating bed slightly decreased oxygen transfer efficiency. The diffused membrane aeration (26.7 kg O2 ha-1 d-1) of M-P-M was surprisingly not as effective as plant aeration in the marsh (38.9 to 42.0 kg O2 ha-1 d-1). This unusually low oxygen transfer efficiency of the diffused aeration was attributed to its low submergence depth of 0.8 m compared to typical depth of 4.5 m. The wetlands consisting entirely of marsh removed similar amounts of C and N without investing additional equipment and energy costs of aerating ponds in the middle of wetlands.

  8. Effects of open marsh water management on numbers of larval salt marsh mosquitoes

    Science.gov (United States)

    James-Pirri, Mary-Jane; Ginsberg, Howard S.; Erwin, R. Michael; Taylor, Janith

    2009-01-01

    Open marsh water management (OMWM) is a commonly used approach to manage salt marsh mosquitoes than can obviate the need for pesticide application and at the same time, partially restore natural functions of grid-ditched marshes. OMWM includes a variety of hydrologic manipulations, often tailored to the specific conditions on individual marshes, so the overall effectiveness of this approach is difficult to assess. Here, we report the results of controlled field trials to assess the effects of two approaches to OMWM on larval mosquito production at National Wildlife Refuges (NWR). A traditional OMWM approach, using pond construction and radial ditches was used at Edwin B. Forsythe NWR in New Jersey, and a ditch-plugging approach was used at Parker River NWR in Massachusetts. Mosquito larvae were sampled from randomly placed stations on paired treatment and control marshes at each refuge. The proportion of sampling stations that were wet declined after OMWM at the Forsythe site, but not at the Parker River site. The proportion of samples with larvae present and mean larval densities, declined significantly at the treatment sites on both refuges relative to the control marshes. Percentage of control for the 2 yr posttreatment, compared with the 2 yr pretreatment, was >90% at both treatment sites.

  9. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  10. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  11. The browning of Alaska's boreal forest

    Science.gov (United States)

    Mary Beth Parent; David. Verbyla

    2010-01-01

    We used twelve Landsat scenes from the 1980s-2009 and regional 2000-2009 MODIS data to examine the long-term trend in the normalized difference vegetation index (NDVI) within unburned areas of the Alaskan boreal forest. Our analysis shows that there has been a declining trend in NDVI in this region, with the strongest "browning trend" occurring in eastern...

  12. Coastal Meringues: Are Salt Marshes Inflated with Excess Void Spaces?

    Science.gov (United States)

    Gunnell, J. R.

    2016-02-01

    Failure to stay above sea level is among many ways that salt marshes may be destroyed. This race against the sea is carried out by vertical accretion. Accretion is partly the accumulation of material mediated by vegetative and sedimentary feedbacks. Prognoses for salt marshes based on studies of these variables have proven useful, but they may also be failing to read between the lines. After all, the majority of a salt marsh's volume is typically comprised of void spaces, which seem to be under-examined in our current predictions of salt marsh survival. Salt marshes may be inflated with excess void spaces, occupying greater volumes than sedimentary predictions would otherwise assume. To test this hypothesis, benthic porosity measurements were drawn from a USGS database of thousands of seabed samples along the U.S. Atlantic and Gulf coasts. Seabed porosities were used to geostatistically interpolate expected porosities at selected salt marsh sites. Measurements of known salt marsh porosities were drawn from several case studies in the literature. These salt marsh porosity measurements were georeferenced so they could be compared to the expected seabed porosity determined by spatial interpolation. Initial results show that these salt marshes tend to be more porous than the benthic sediments surrounding them. This excess porosity can be an important contributor to marsh volume (i.e. elevation), and ultimately to marsh survival. Furthermore, it raises several questions about the source of this void space and the mechanism of its retention. Salt marsh volume appears to be greater than we would expect based on the sum of its parts. Therefore, predictions of salt marsh accretion may systematically underestimate void volumes and be overly pessimistic about marsh response to relative sea level rise.

  13. Boreal Forest Watch: A BOREAS Outreach Program

    Science.gov (United States)

    Rock, Barrett N.

    1999-01-01

    The Boreal Forest Watch program was initiated in the fall of 1994 to act as an educational outreach program for the BOREAS project in both the BOREAS Southern Study Area (SSA) and Northern Study Area (NSA). Boreal Forest Watch (13FW) was designed to introduce area high school teachers and their students to the types of research activities occurring as part of the BOREAS study of Canadian boreal forests. Several teacher training workshops were offered to teachers from central and northern Saskatchewan and northern Manitoba between May, 1995 and February, 1999; teachers were introduced to techniques for involving their students in on-going environmental monitoring studies within local forested stands. Boreal Forest Watch is an educational outreach program which brings high school students and research scientists together to study the forest and foster a sustainable relationship between people and the planetary life-support system we depend upon. Personnel from the University of New Hampshire (UNH), Complex Systems Research Center (CSRC), with the cooperation from the Prince Albert National Park (PANP), instituted this program to help teachers within the BOREAS Study Areas offer real science research experience to their students. The program has the potential to complement large research projects, such as BOREAS, by providing useful student- collected data to scientists. Yet, the primary goal of BFW is to allow teachers and students to experience a hands-on, inquiry-based approach to leaming science - emulating the process followed by research scientists. In addition to introducing these teachers to on-going BOREAS research, the other goals of the BFW program were to: 1) to introduce authentic science topics and methods to students and teachers through hands-on, field-based activities; and, 2) to build a database of student-collected environmental monitoring data for future global change studies in the boreal region.

  14. Effect of Vegetation on Sediment Transport across Salt Marshes

    Science.gov (United States)

    Coleman, D. J.; Kirwan, M. L.; Guntenspergen, G. R.; Ganju, N. K.

    2016-12-01

    Salt marshes are a classic example of ecogeomorphology where interactions between plants and sediment transport govern the stability of a rapidly evolving ecosystem. In particular, plants slow water velocities which facilitates deposition of mineral sediment, and the resulting change in soil elevation influences the growth and species distribution of plants. The ability of a salt marsh to withstand sea level rise (SLR) is therefore dependent, among other factors, on the availability of mineral sediment. Here we measure suspended sediment concentrations (SSC) along a transect from tidal channel to marsh interior, exploring the role biomass plays in regulating the magnitude and spatial variability in vertical accretion. Our study was conducted in Spartina alterniflora dominated salt marshes along the Atlantic Coast from Massachusetts to Georgia. At each site, we deployed and calibrated optical back scatter turbidity probes to measure SSC in 15 minute intervals in a tidal channel, on the marsh edge, and in the marsh interior. We visited each site monthly to measure plant biomass via clip plots and vertical accretion via two types of sediment tiles. Preliminary results confirm classic observations that biomass is highest at the marsh edge, and that SSC and vertical accretion decrease across the marsh platform with distance from the channel. We expect that when biomass is higher, such as in southern sites like Georgia and months late in the growing season, SSC will decay more rapidly with distance into the marsh. Higher biomass will likely also correspond to increased vertical accretion, with the greatest effect at marsh edge locations. Our study will likely demonstrate how salt marsh plants interact with sediment transport dynamics to control marsh morphology and thus contribute to marsh resilience to SLR.

  15. Effects of a warmer climate on seed germination in the subarctic

    Science.gov (United States)

    Milbau, Ann; Graae, Bente Jessen; Shevtsova, Anna; Nijs, Ivan

    2009-01-01

    Background and Aims In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined. Methods Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year. Key Results Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate. Conclusions Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration

  16. Salt Marsh Response and Recovery to Coseismic Subsidence

    Science.gov (United States)

    Aranda, A. N.; Carlin, J. A.; Rhodes, B. P.; Kirby, M.; Leeper, R. J.; Smith, R. W.

    2016-12-01

    Salt marshes worldwide are under increasing stress from eustatic sea level rise. Along the tectonically active west coast of North America, some salt marshes are also vulnerable to abrupt increases in relative sea level rise (RSLR) resulting from coseismic subsidence. Elevation zonation of sub-environments within a marsh provides the opportunity to interpret the sedimentary record in marshes to infer past earthquakes, which may improve understanding of regional seismic hazards and ecosystem response to increases in sea level. Our study area is the Seal Beach Wetlands (SBW), an 3 km2 salt marsh straddling the seismically active Newport-Inglewood fault zone in southern California. A previous study of the SBW identified sedimentary evidence of three coseismic subsidence events. Here, our goals were to identify coseismic subsidence events preserved in SBW stratigraphy and to quantify marsh recovery following an earthquake to assess marsh resiliency to rapid RSLR. To do this, we focused on one core collected near the fringe of the SBW and applied a suite of sedimentary and geochemical analyses. Our results indicated that the SBW may preserve sedimentary evidence of four potential coseismic subsidence events. Events were distinguished in the stratigraphy by a sharp upper contact interpreted as an abrupt shift in marsh depositional sub-environments, from a vegetated marsh, to an intertidal mudflat or a subtidal environment. This stratigraphy suggests that the marsh rapidly subsided, preserving the evidence of the vegetated marsh as a peat deposit overlain by a low-organic mud or muddy-sand layer. A typical marsh accretion facies succession occurred above each earthquake event in the core, suggesting full marsh recovery. From the core data, we also observed that the net average rate of marsh recovery, i.e., marsh accretion, was consistent. Estimated recovery rates between 0.6 and 1.1 mm/yr were comparable to the overall accretion rate and regional late Holocene RSLR rate

  17. Sea-Level Rise Impacts on Hudson River Marshes

    Science.gov (United States)

    Hooks, A.; Nitsche, F. O.

    2015-12-01

    The response of tidal marshes to increasing sea-level rise is uncertain. Tidal marshes can adapt to rising sea levels through vertical accretion and inland migration. Yet tidal marshes are vulnerable to submergence if the rate of sea-level rise exceeds the rate of accretion and if inland migration is limited by natural features or development. We studied how Piermont and Iona Island Marsh, two tidal marshes on the Hudson River, New York, would be affected by sea-level rise of 0.5m, 1m, and 1.5m by 2100. This study was based on the 2011-2012 Coastal New York LiDAR survey. Using GIS we mapped sea-level rise projections accounting for accretion rates and calculated the submerged area of the marsh. Based on the Hudson River National Estuarine Research Reserve Vegetation 2005 dataset, we studied how elevation zones based on vegetation distributions would change. To evaluate the potential for inland migration, we assessed land cover around each marsh using the National Land Cover Database 2011 Land Cover dataset and examined the slope beyond the marsh boundaries. With an accretion rate of 0.29cm/year and 0.5m of sea-level rise by 2100, Piermont Marsh would be mostly unchanged. With 1.5m of sea-level rise, 86% of Piermont Marsh would be flooded. For Iona Island Marsh with an accretion rate of 0.78cm/year, sea-level rise of 0.5m by 2100 would result in a 4% expansion while 1.5m sea-level rise would cause inundation of 17% of the marsh. The results indicate that Piermont and Iona Island Marsh may be able to survive rates of sea-level rise such as 0.5m by 2100 through vertical accretion. At rates of sea-level rise like 1.5m by 2100, vertical accretion cannot match sea-level rise, submerging parts of the marshes. High elevations and steep slopes limit Piermont and Iona Island Marsh's ability to migrate inland. Understanding the impacts of sea-level rise on Piermont and Iona Island Marsh allows for long-term planning and could motivate marsh conservation programs.

  18. Hawk migration over White Marsh, Maryland

    Science.gov (United States)

    Hackman, C.D.; Henny, C.J.

    1971-01-01

    The average number of hawks observed per hour in autumn migration between 1951-1954 and 1958-1961 at White Marsh, Maryland, was compared. The counts indicated that the status of the ten species observed may be divided into three categories: (1) relatively stable species (red-tailed hawk), (2) declining species (sparrow hawk, red-shouldered hawk, osprey, marsh hawk, and broad-winged hawk), and (3) rapidly declining species (peregrine falcon, Cooper?s hawk, bald eagle, and sharp-shinned hawk). The findings from this study are in agreement with the available literature and the status of the populations appears to be related to the food habits of the species.

  19. Experimental predator removal causes rapid salt marsh die-off.

    Science.gov (United States)

    Bertness, Mark D; Brisson, Caitlin P; Coverdale, Tyler C; Bevil, Matt C; Crotty, Sinead M; Suglia, Elena R

    2014-07-01

    Salt marsh habitat loss to vegetation die-offs has accelerated throughout the western Atlantic in the last four decades. Recent studies have suggested that eutrophication, pollution and/or disease may contribute to the loss of marsh habitat. In light of recent evidence that predators are important determinants of marsh health in New England, we performed a total predator exclusion experiment. Here, we provide the first experimental evidence that predator depletion can cause salt marsh die-off by releasing the herbivorous crab Sesarma reticulatum from predator control. Excluding predators from a marsh ecosystem for a single growing season resulted in a >100% increase in herbivory and a >150% increase in unvegetated bare space compared to plots with predators. Our results confirm that marshes in this region face multiple, potentially synergistic threats. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  20. Crenarchaeal heterotrophy in salt marsh sediments.

    Science.gov (United States)

    Seyler, Lauren M; McGuinness, Lora M; Kerkhof, Lee J

    2014-07-01

    Mesophilic Crenarchaeota (also known as Thaumarchaeota) are ubiquitous and abundant in marine habitats. However, very little is known about their metabolic function in situ. In this study, salt marsh sediments from New Jersey were screened via stable isotope probing (SIP) for heterotrophy by amending with a single (13)C-labeled compound (acetate, glycine or urea) or a complex (13)C-biopolymer (lipids, proteins or growth medium (ISOGRO)). SIP incubations were done at two substrate concentrations (30-150 μM; 2-10 mg ml(-1)), and (13)C-labeled DNA was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes. To test for autotrophy, an amendment with (13)C-bicarbonate was also performed. Our SIP analyses indicate salt marsh crenarchaea are heterotrophic, double within 2-3 days and often compete with heterotrophic bacteria for the same organic substrates. A clone library of (13)C-amplicons was screened to find matches to the (13)C-TRFLP peaks, with seven members of the Miscellaneous Crenarchaeal Group and seven members from the Marine Group 1.a Crenarchaeota being discerned. Some of these crenarchaea displayed a preference for particular carbon sources, whereas others incorporated nearly every (13)C-substrate provided. The data suggest salt marshes may be an excellent model system for studying crenarchaeal metabolic capabilities and can provide information on the competition between crenarchaea and other microbial groups to improve our understanding of microbial ecology.

  1. Environmental assessment of Al-Hammar Marsh, Southern Iraq

    OpenAIRE

    Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim

    2017-01-01

    Aim: (a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk...

  2. The Boreal Virtual Forest. [CD-ROM].

    Science.gov (United States)

    Indiana Univ.-Purdue Univ., Indianapolis.

    This CD-ROM is an educational CD-ROM aimed at classroom audiences in 5th grade and above. Using QuickTime Virtual Reality (QTVR), the Boreal Virtual Forest is designed so that students are able to see views from inside the central hardwood forest and look up or down or spin around 360 degrees. The program allows students to become familiar with…

  3. Browning boreal forests of western North America

    Science.gov (United States)

    David. Verbyla

    2011-01-01

    The GIMMS NDVI dataset has been widely used to document a “browning trend” in North American boreal forests (Goetz et al. 2005, Bunn et al. 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al. 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was...

  4. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    NARCIS (Netherlands)

    Struyf, E.; van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P.

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens

  5. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    Science.gov (United States)

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of

  6. Gulf-Wide Information System, Environmental Sensitivity Index Marsh, Geographic NAD83, LDWF (2001) [esi_fresh_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) fresh marsh data of coastal Louisiana. The ESI is a classification and ranking system, which...

  7. Ecohydrology of Interior Alaska boreal forest systems

    Science.gov (United States)

    Cable, J.; Bolton, W. R.

    2012-12-01

    The ecohydrology of boreal forest ecosystems of Interior Alaska is not well understood largely because of challenges posed by the presence of discontinuous permafrost. Near-surface permafrost results in storage-dominated systems with cold, poorly drained soils, and slow growing, low statured coniferous trees (Picea mariana) or CDE's. The transition to permafrost-free areas can occur over a few meters and is accompanied by a vegetation community dominated by large deciduous trees (Populus sp. and Betula sp.) or DDE's. Typically, areas with permafrost are on north facing slopes and valley bottoms, and areas without permafrost are south facing. In Alaska's boreal forest, the permafrost is very warm and vulnerable to the effects of climate change. Once permafrost begins to thaw, the vegetation community shifts from coniferous to deciduous dominated. Streamflow in watersheds with a larger permafrost distribution tends to be higher and more responsive to precipitation events than in watersheds with low permafrost distribution. In fact, precipitation events in the low permafrost areas do not infiltrate past the rooting zone of the deciduous trees (~5-40 cm). This suggests that the deciduous trees may remove water from the system via uptake and transpiration. We focus on how vegetation water use affects boreal forest hydrology in areas of discontinuous permafrost. Specifically, we ask: what are the patterns of vegetation water use in areas with and without permafrost? This study focuses on the CDE and DDE systems. Our research sites are established on low and high locations on each aspect (south facing DDE, north facing CDE) to capture the variability associated with the different hillside drainage properties. At each of the four sites during the growing season, we measured various aspects of plant water use dynamics, including water flux, water content, water sources, depth of water uptake in the soil, and water stress. We use a Bayesian framework to analyze the data. We

  8. Impact of special early harvest seasons on subarctic-nesting and temperate-nesting Canada geese

    Science.gov (United States)

    Sheaffer, S.E.; Kendall, W.L.; Bowers, E. Frank

    2005-01-01

    Dramatic changes in wintering distributions of Canada geese (Branta canadensis) have occurred over the past 50 years in eastern North America. Declines in numbers of subarctic-nesting geese wintering in southern states, and increases in numbers wintering in northern regions, have resulted in a northern shift in winter distributions. In contrast, numbers of temperate-nesting geese have increased throughout eastern North America. Management efforts to control overabundant temperate-nesting flocks have included the establishment of special early harvest seasons in September. However, the effect of early seasons on survival and harvest of subarctic-nesting populations has not been documented. Understanding the timing of migration movements and the fidelity of subarctic-nesting flocks to terminal winter refuges in the Southeast also is necessary to design early harvest seasons that target temperate-nesting flocks and protect subarctic-nesting populations. We used recoveries of marked geese to estimate survival and harvest rates before and after implementation of early harvest seasons within the Mississippi Flyway during 1976-1999. In addition, we used observations of neck-banded geese from the Southern James Bay Population (SJBP) to evaluate the hypothesis that subarctic-nesting geese arriving prior to mid-December on several key terminal winter refuges in the Southeast (early arriving migrants) were more likely to return to those refuges in subsequent years than were migrants, arriving after mid-December (late arriving migrants). September seasons during 1987-1994 were a minor source of mortality for subarctic-nesting populations and accounted for migrants had higher survival and higher return probabilities than did late arriving migrants or geese that failed to return, numbers of geese wintering on southeastern refuges likely declined because < 60% of the surviving geese affiliated with the refuges would return in a given year and because of lower survival for geese

  9. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles.

    Science.gov (United States)

    Korpela, Katri; Delgado, Maria; Henttonen, Heikki; Korpimäki, Erkki; Koskela, Esa; Ovaskainen, Otso; Pietiäinen, Hannu; Sundell, Janne; Yoccoz, Nigel G; Huitu, Otso

    2013-03-01

    Small rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low-amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high-amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High-amplitude multiannual vole cycles emerge in two climatic regimes: a winter-driven cycle in cold, and a summer-driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not

  10. A high-resolution record of carbon accumulation rates during boreal peatland initiation

    Directory of Open Access Journals (Sweden)

    I. F. Pendea

    2012-07-01

    Full Text Available Boreal peatlands are a major global C sink, thus having important feedbacks to climate. A decreased concentration in atmospheric CO2 7000–10 000 yr ago has been linked to variations in peatland C accumulation rates attributed to a warm climate and increased productivity. Yet, this period also corresponds to early stages of peatland development (as peatland was expanding following retreat of ice sheets and increases in C storage could be associated with wetland evolution via lake filling or following marine shoreline emergence. Unravelling past links amongst peatland dynamics, C storage, and climate will help us assess potential feedbacks from future changes in these systems, but most studies are hampered by low temporal resolution. Here we provide a decadal scale C accumulation record for a fen that has begun transformation from salt marsh within the last 70 yr on the isostatically rebounding coast of James Bay, Québec. We determined time frames for wetland stages using palynological analyses to reconstruct ecological change and 210Pb and 137Cs to date the deposit. The average short-term C accumulation rates during the low and high tidal marsh and incipient fen stage (42, 87 and 182 g C m−2 yr−1, respectively were as much as six times higher than the global long-term (millennial average for northern peatlands. We suggest that the atmospheric CO2 flux during the early Holocene could be attributed, in part, to wetland evolution associated with isostatic rebound, which makes land for new wetland formation. Future climate warming will increase eustatic sea level, decrease rates of land emergence and formation of new coastal wetlands, ultimately decreasing rates of C storage of wetlands on rebounding coastlines.

  11. Krill community composition and grazing biology in a sub-Arctic Greenlandic fjord

    DEFF Research Database (Denmark)

    Teglhus, Frederik Wolff; Agersted, Mette Dalgaard; Arendt, Kristine Engel

    of organic material, i.e. the biological pump. Our aim is to improve the understanding and knowledge about the role of krill in a sub-Arctic fjord. During multiple cruises in the Godthåbsfjord, Southwest Greenland, krill abundance, distribution and grazing biology have been investigated trough field....... The present novel knowledge about krill abundance and grazing biology will provide the basis for a discussion of the role of krill in the pelagic food web of the sub-Arctic Godthåbsfjord...

  12. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    Science.gov (United States)

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  13. Deciduous birch canopy as unexpected contributor to stand level atmospheric reactivity in boreal forests

    Science.gov (United States)

    Bäck, Jaana; Taipale, Ditte; Aalto, Juho

    2017-04-01

    In boreal forests, deciduous trees such as birches may in future climate become more abundant due to their large biomass production capacity, relatively good resource use ability and large acclimation potential to elevated CO2 levels and warmer climate. Increase in birch abundance may lead to unpredicted consequences in atmospheric composition. Currently it is acknowledged that conifers such as Scots pine and Norway spruce are important sources for volatile organic compounds (VOCs), especially monoterpenes, throughout the year, although the strong temperature relationships implies that emissions are highest in summertime. However, the dynamics of the deciduous birch foliage VOC emissions and their relationship with environmental drivers during the development, maturation and senescence of foliage has not been well analyzed. Long-term measurements of birch, which are unfortunately very sparse, can provide very useful information for the development of biosphere-atmosphere models that simulate boreal and subarctic forested areas where birch is often a sub-canopy species, occurs as a mixture among conifers or forms even pure stands in the higher latitudes. We measured the branch level VOC emissions from a mature Silver birch with proton transfer reaction mass spectrometer during 2014 and 2015 at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations), southern Finland. Our results showed that the Silver birch foliage is a huge source for both short-chained volatiles such as methanol, acetaldehyde and acetone, as well as for monoterpenes. The mean emission rates from birch leaves were 5 to 10 times higher than the corresponding emissions from Scots pine shoots. We compared several semi-empirical model approaches for determining the birch foliage monoterpene standardized emission potentials, and utilized the continuous emission measurements from the two growing seasons for development of a novel algorithm which accounts for the leaf development and

  14. The Stalled Recovery of the Iraqi Marshes

    Directory of Open Access Journals (Sweden)

    Richard H. Becker

    2014-01-01

    Full Text Available The Iraqi (Mesopotamian Marshes, an extensive wetlands system in Iraq, has been heavily impacted by both human and climate forces over the past decades. In the period leading up to the Second Gulf War in 2002, the marshlands were shrinking due to both a policy of draining and water diversion in Iraq and construction of dams upstream on the Tigris and Euphrates rivers. Following the war through 2006, this trend was reversed as the diversions were removed and active draining stopped. A combination of MODIS and GRACE datasets were used to determine the change in surface water area (SWA in the marshes, marshland extent and change in mass both upriver in the Tigris and Euphrates watersheds and in the marshlands. Results suggest that the post war dam removal and decreased pumping in 2003 provided only temporary respite for the marshlands (2003–2006 SWA: 1,477 km2 increase (600%, water equivalent depth (WED: +2.0 cm/yr.; 2006–2009: −860 km2 (−41% WED: −3.9 cm/yr.. Unlike in the period 2003–2006, from 2006 forward the mass variations in the marshes are highly correlated with those in the upper and middle watershed (R = 0.86 and 0.92 respectively, suggesting that any recovery due to that removal is complete, and that all future changes are tied more strongly to any climate changes that will affect recharge in the upper Tigris-Euphrates system. Precipitation changes in the watershed show a reduction of an average of 15% below the 15 yr mean in 2007–2011 This corresponds with published ensemble predictions for the 2071–2099 time period, that suggested similar marshland shrinkage should be expected in that time period.

  15. Does vegetation in restored salt marshes equal naturally developed vegetation

    NARCIS (Netherlands)

    Loon-Steensma, van J.M.; Dobben, van H.F.; Slim, P.A.; Huiskes, H.P.J.; Dirkse, G.M.

    2015-01-01

    Question: Do low stone dams built to prevent erosion and to restore salt marshes through increased sedimentation affect plant species composition? Location: Dutch Wadden Sea area (ca. 53°N 5°E). Methods: Relevés (N = 170) were made of the vegetation of two restored salt marsh sites on the barrier

  16. Spatial patterns in accretion on barrier-island salt marshes

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P.

    2011-01-01

    On minerogenic barrier-island salt marshes, sedimentation is spatially heterogeneous. Although the main forcing factors for sedimentation are known, much less is known about the characteristic sizes of this spatial patterning. Such patterning gives information on the spatial component of salt-marsh

  17. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    NARCIS (Netherlands)

    Gribsholt, B.; Struyf, E.; Tramper, A.; Andersson, M.G.I.; Brion, N.; de Brabandere, L.; van Damme, S.; Meire, P.; Middelburg, J.J.; Dehairs, F.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH 4 + to the flood water entering a 3477 m2 tidal freshwater marsh

  18. SALT MARSHES ALONG THE COAST OF THE NETHERLANDS

    NARCIS (Netherlands)

    BAKKER, JP; DELEEUW, J; DIJKEMA, KS; LEENDERTSE, PC; PRINS, HHT; ROZEMA, J

    1993-01-01

    The area of salt marshes does no longer increase. The recent erosion coincides with a rise on MHT-level in the last 25 years. Despite the decrease in area, sedimentation continues, especially in the lower salt marsh, which acts as a sink of nitrogen. Assimilation and mineralization of nitrogen are

  19. Dragonflies are biocontrol agents in Wisconsin cranberry marshes

    Science.gov (United States)

    Dragonflies (Order Odonata) are abundant predators that emerge in large hatch events each summer in Wisconsin cranberry marshes. They seem to be a potential group of biocontrol agents for pest management that may be influenced by the diversity found on the marsh. In fact, our evidence shows that dra...

  20. An Ecological Study of Gray Goose Marsh, Alviso California

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The area of our study is located in the heart of the 300m wide strip of land just north of Triangle Marsh, known as Gray Goose Marsh. This land used to be part of an...

  1. Heterotrophic bacterium Pseudomonas saponiphila and sunlight as impact factors on organo-mineral colloids transformations in boreal humic waters

    Science.gov (United States)

    Oleinikova, Olga; Drozdova, Olga; Shirokova, Liudmila; Lapitskiy, Sergey; Bychkov, Andrew; Pokrovsky, Oleg

    2017-04-01

    Two of the main factors of carbon balance in high latitudes, known to govern the CO2 flux from the lakes and rivers to the atmosphere, are bacterial mineralization (respiration) of allochthonous dissolved organic matter (DOM) and photochemical degradation of DOM. Yet, in contrast to large numbers of experimental and field studies on these factors impact on the utilization of DOM of different origin, the fate of metals bound to colloids during bacterial processing of DOM and behavior of trace element (TE) during photodegradation of DOM remains poorly constrained. This is especially important in view of essentially organic and organo-mineral colloidal status of TE in most boreal waters. To answer this questions, a monoculture of Pseudomonas saponiphila from a boreal creek in NW Karelia (Russia) was separated and allowed to interact with boreal peat leachate in nutrient-free media. We quantified colloidal transformation of the peat leachate during 5-days activity of live bacteria using 3 kDa, 50 kDa Amicon® centrifugal filtration and 0.45 µm syringe filtration. The total net decrease of the concentration of Dissolved Organic Carbon (DOC) over 93 h of exposure was within 5% of the initial value for all fractions except low molecular weight one (< 3 kDa), which yielded a 16%-decrease due to long-term bio-uptake or coagulation. Elements most affected by bacterial presence were Al, Mn, (Ni), Cu, Ga, REEs, Y, U which exhibited essentially the adsorption at the cell surface over first hrs of reaction, and Fe, Ti, (Zr), and Nb showing short-term adsorption and long-term assimilation. Towards a better understanding of concentration, size fractionation and speciation change of TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water from pristine zone of Northern Karelia (Russian subarctic). After 5 days of exposure, the DOM in stream photodegraded in a much smaller degree than that in the bog water with 25

  2. Rock, Paper, Protest: The Fight for the Boreal Forest

    Science.gov (United States)

    Gunz, Sally; Whittaker, Linda

    2016-01-01

    Canada's boreal forests are second only to the Amazon in producing life-giving oxygen and providing a habitat for thousands of species, from the large woodland caribou to the smallest organisms. The boreal forests are the lifeblood of many Aboriginal communities and the thousands of workers, Aboriginal and non-Aboriginal, who harvest and process…

  3. Controls on moss evaporation in a boreal black spruce forest

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  4. Ecology of Canada lynx in southern boreal forests [Chapter 13

    Science.gov (United States)

    Keith B. Aubry; Gary M. Koehler; John R. Squires

    2000-01-01

    Canada lynx occur throughout boreal forests of North America, but ecological conditions in southern regions differ in many respects from those in Canada and Alaska. To evaluate the extent to which lynx ecology and population biology may differ between these regions, we review existing information from southern boreal forests and compare our findings to...

  5. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  6. Performance of insulated pipelines in sub-Arctic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. [Garneau Inc., Calgary, AB (Canada); D' Agostino, C. [Nova Chemicals, Calgary, AB (Canada)

    2000-07-01

    A systematic investigation was conducted to determine the main reasons why the insulating value of a pipeline overcoated with extruded polyethylene might fail, particularly in sub-Arctic regions. An insulated pipeline should have excellent insulation values as well as perfect anti-corrosion barrier coatings and an excellent adhesion between the anti-corrosion coating and the polyurethane foam. An insulated pipeline should also be bendable at the ambient construction temperature without damage to the foam or other components of the system. It should also be protected by an outer coating to withstand high mechanical impact. Three types of anti-corrosion barrier coatings are fusion bond epoxy, polyethylene tape, and three layer polyolefin. Polyurethane foam is one of the best heat insulating materials available with an average thermal conductivity of 0.22 W/mK, but it possesses very little mechanical strength. Therefore, it must be overcoated by an external jacket of either polyethylene pipeline tape, extruded polyethylene or spray applied elastomeric polyurethane coatings. An extensive laboratory testing program was initiated to respond to field failures of insulated pipe and low temperatures. The objective was to verify the mechanical properties of insulated pipe at different temperatures. It was shown that at low temperatures, high density polyethylene (HDPE) had significantly reduced elongation properties and its tensile strength increased. It was also determined that double and triple outer jackets provided better impact resistance at low temperature than the single jacket of equivalent thickness. Comparison tests were also conducted with low density polyethylenes. Linear low density polyethylene (LLDPE) was found to be particularly resistant to low temperature damage. In addition, a black jacket proved to be much warmer than a white jacket. On sunny days, the temperature difference could be as high as 15 degrees C. 5 tabs.

  7. Salt marsh stability modelled in relation to sea level rise

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Bartholdy, Anders; Kroon, Aart

    2010-01-01

    Accretion on a natural backbarrier salt marsh was modeled as a function of high tide level, initial salt marsh level and distance to the source. Calibration of the model was based on up to ca 80 year old marker horizons, supplemented by 210Pb/137Cs datings and subsequent measurements of clay...... thickness. Autocompaction was incorporated in the model, and shown to play a major role for the translation of accretion rates measured as length per unit time to accumulation rates measured as mass per area per unit time. This is important, even for shallow salt marsh deposits for which it is demonstrated...... marsh base. In general, deeper located markers will indicate successively smaller accretion rates with the same sediment input. Thus, stability analysis made on the basis of newly established marker horizons will be biased and indicate salt marsh stabilities far above the correct level. Running...

  8. Lichen conservation in heavily managed boreal forests.

    Science.gov (United States)

    McMullin, Richard Troy; Thompson, Ian D; Newmaster, Steven G

    2013-10-01

    Lichens are an important component of the boreal forest, where they are long lived, tend to accumulate in older stands, and are a major food source for the threatened woodland caribou (Rangifer tarandus caribou). To be fully sustainable, silvicultural practices in the boreal forest must include the conservation of ecological integrity. Dominant forest management practices, however, have short-term negative effects on lichen diversity, particularly the application of herbicides. To better understand the long-term effects of forest management, we examined lichen regeneration in 35 mixed black spruce (Picea mariana) and jack pine (Pinus banksiana) forest stands across northern Ontario to determine recovery following logging and postharvest silvicultural practices. Our forest stands were 25-40 years old and had undergone 3 common sivilcultural treatments that included harvested and planted; harvested, planted, and treated with N-[phosphonomethyl] glycine (glyphosate); and harvested, planted, and treated with 2,4-dichlorophenoxyacetic acid (2,4-D). Forest stands with herbicide treatments had lower lichen biomass and higher beta and gamma diversity than planted stands that were not treated chemically or control stands. In northwestern Ontario, planted stands that were not treated chemically had significantly greater (p < 0.05) alpha diversity than stands treated with herbicides or control stands. Our results show that common silvicultural practices do not emulate natural disturbances caused by wildfires in the boreal forest for the lichen community. We suggest a reduction in the amount of chemical application be considered in areas where lichen biomass is likely to be high and where the recovery of woodland caribou is an objective. © 2013 Society for Conservation Biology.

  9. Evaluating permafrost thaw vulnerabilities and hydrologic impacts in boreal Alaska (USA) watersheds by integrating field data and cryohydrogeologic modeling

    Science.gov (United States)

    Walvoord, Michelle; Voss, Clifford; Ebel, Brian; Minsley, Burke

    2017-04-01

    Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.

  10. Restoring Ecological Function to a Submerged Salt Marsh

    Science.gov (United States)

    Stagg, C.L.; Mendelssohn, I.A.

    2010-01-01

    Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.

  11. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  12. Long-term surface elevation change in salt marshes : a prediction of marsh response to future sea-level rise

    NARCIS (Netherlands)

    van Wijnen, HJ; Bakker, JP

    Accretion rates and surface elevation changes were measured in three natural salt marshes in the Wadden Sea. Derived from these measurements, a simple predictive model was made which describes changes in surface elevation during more than 100 years of salt-marsh development at several sea-level rise

  13. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake.

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčová, Jana; Knudsen, Rune; Kuhn, Jesper A; Henriksen, Eirik H; Siwertsson, Anna; Shaw, Jenny C; Kuris, Armand M; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D; Kostadinova, Aneta

    2017-05-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages) and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages. Copyright © 2017 Australian Society for Parasitology. All rights reserved.

  14. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  15. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  16. Trophic role and top-down control of a subarctic protozooplankton community

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Swalethorp, Rasmus; Kjellerup, Sanne

    2014-01-01

    Plankton succession was investigated in the subarctic Godthåbsfjord, Western Greenland, from March to August 2010. The trophic role of protozooplankton (ciliates and heterotrophic dinoflagellates) was evaluated with emphasis on their seasonal succession and as prey for the copepod community. The ...

  17. Future climate change will favour non-specialist mammals in the (subarctics.

    Directory of Open Access Journals (Sweden)

    Anouschka R Hof

    Full Text Available Arctic and subarctic (i.e., [sub]arctic ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (subarctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (subarctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature.

  18. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  19. Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Myvatn, Iceland

    DEFF Research Database (Denmark)

    Canedo-Argueles, Miguel; Sgarzi, Serena; Arranz, Ignasi

    2017-01-01

    . To study this, we conducted a 3-month in situ-controlled experiment in sub-Arctic Lake MA 1/2 vatn, Iceland. We used the planktivorous fish three-spined sticklebacks (Gasterosteus aculeatus) as the main top predator. The cladocerans Eurycercus lamellatus and Acroperus harpae were significantly associated...

  20. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before...

  1. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  2. Assessing Salt Marsh Recovery Utilizing Improved Computer-Aided Tomography Technology (CTT)

    Science.gov (United States)

    In 2001 the Padanarum marsh, a small 7.2-acre marsh in Dartmouth, MA, was chosen as a Tidal Hydrology Restoration site. The site was initially characterized as a brackish mostly freshwater deteriorating marsh. In May 2003 the seawater input to this marsh was increased by replacin...

  3. 75 FR 66780 - Suisun Marsh Habitat Management, Preservation, and Restoration Plan, California

    Science.gov (United States)

    2010-10-29

    ... Bureau of Reclamation Fish and Wildlife Service Suisun Marsh Habitat Management, Preservation, and... Act State lead agency, have made available for public review and comment the Suisun Marsh Habitat... Suisun Marsh (Marsh), with the focus on achieving an acceptable multi- stakeholder approach to the...

  4. Spectral properties of subarctic plants for remote ecosystem assessment

    Science.gov (United States)

    Golubeva, Elena; Tutubalina, Olga; Rees, Gareth; Zimin, Mikhail; Mikheeva, Anna

    2014-05-01

    Multispectral and hyperspectral satellite images are increasingly used to identify properties of vegetation, its state, dynamics and productivity. Arctic vegetation is sensitive to changing habitat conditions related to both natural causes (in particular climatic trends), and human impact (both direct and indirect, e.g. associated with air, soil and water pollution). Change in the state of individual plants and of vegetation cover in general enables their use as indicators of natural and anthropogenic processes, manifested in satellite images through change of their spectral reflectance properties. These processes can be studied by identifying significant links between spectral properties of objects in satellite images and corresponding properties of plants, recorded in situ. We focus on the spectral signatures of subarctic plants dominating treeline ecotone ecosystems to assess the feasibility of mapping the spatial structure and dynamics of vegetation using multispectral and hyperspectral satellite imagery. Our model objects are tundra plants and ecosystems in both natural and technogenically disturbed environments in the central part of the Kola Peninsula, Russia. We conducted ground spectroradiometry with two spectroradiometers: ASD FieldSpec 3 Hi-res (350-2500 nm range with resolution from 3 to 10 nm) and SkyeInstruments SpectroSense 2+ (bands centred at 480, 550, 680, 840 nm, 50-130 nm wide) for samples of different species: Betula pubescens S.L., B. tortuosa, Picea abies, Betula nana, Ledum palustre, Vaccinium uligimosum, V. myrtillus, V. vitis-idaea, Empetrum hermaphroditum, Cetraria islandica (L), Flavocetraria nivalis (Cetraria nivalis), Alectoria ochroleuca, Cladonia arbuscula S.L., Hylocomium splendens and Pleurozium Shreberi. The results demonstrate the ability of green vegetation to selectively reflect solar radiation, depending on the species composition and state of the plants. Our results will be included in a spectral library of northern plants

  5. Marsh canopy structure changes and the Deepwater Horizon oil spill

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  6. Environmental controls on multiscale spatial patterns of salt marsh vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2010-01-01

    physical processes operate. This study investigated such a topography-vegetation relationship in a Danish salt marsh, focusing upon two scales: a macro-scale (ca. 500 m) across the marsh platform, encompassing seaward and landward areas, and a meso-scale ( ca. 25 m) across tidal creeks. While long-term sea...... represented an ecological sequence from early to late succession, and strongly correlated with surface elevation. However, the gradient did not show any significant relationship with distance from shoreline or tidal channels. Our results suggest that, in salt marshes, elevation plays a still more important...

  7. Impact of Hurricane Sandy on salt marshes of New jersey

    Science.gov (United States)

    Elsey-Quirk, Tracy

    2016-12-01

    Hurricane Sandy, one of the largest Atlantic hurricanes on record, made landfall as an extratropical cyclone on the coast of New Jersey (29 October 2012) along a track almost perpendicular to the coast. Ten days later a northeaster caused heavy precipitation and elevated water levels along the coast. Two years of pre-storm monitoring and research in marshes of Barnegat Bay and the Delaware Estuary provided an opportunity to evaluate the impacts of Hurricane Sandy and the succeeding northeaster across the region. Peak water levels during Sandy ranged from 111 to 184 cm above the marsh surface in Barnegat Bay and 75-135 cm above the marsh surface in the Delaware Estuary. Despite widespread flooding and damage to coastal communities, the storm had modest and localized impacts on coastal marshes of New Jersey. Measurements made on the marsh platform illustrated localized responses to the storms including standing biomass removal, and changes in peak biomass the following summer. Marsh surface and elevation changes were variable within marshes and across the region. Localized elevation changes over the storm period were temporary and associated with subsurface processes. Over the long-term, there was no apparent impact of the 2012 storms, as elevations and regression slopes pre- and several months post-storm were not significant. Vegetation changes in the summer following the fall 2012 storms were also variable and localized within and among marshes. These results suggest that Hurricane Sandy and the succeeding northeaster did not have a widespread long-term impact on saline marshes in this region. Possible explanations are the dissipation of surge and wave energy from the barrier island in Barnegat Bay and the extreme water levels buffering the low-lying marsh surface from waves, winds, and currents, and carrying suspended loads past the short-statured marsh grasses to areas of taller vegetation and/or structure. These findings demonstrate that major storms that have

  8. Recent Advances in Studies of Coastal Marsh Sedimentation

    Science.gov (United States)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in

  9. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.

    2011-01-01

    as indicators of global climate change, focusing upon three major aspects: sedimentary, vegetation, and biogeochemical dynamics. The previous literature concerned with these aspects commonly argues that the primary impact of climate change on salt marshes occurs via sea-level variations, because hydrologic......, where plant-plant interactions such as facilitation and competition are important, vegetation dynamics in salt marshes may not be an immediate, sole function of sealevel and climate variations. Also, specifically in the field of salt marsh biogeochemistry, enough long-term data have not been collected...

  10. Optimal Sleep Duration in the Subarctic with Respect to Obesity Risk Is 8-9 Hours: e56756

    National Research Council Canada - National Science Library

    May Trude Johnsen; Rolf Wynn; Trond Bratlid

    2013-01-01

    ...) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables...

  11. Effects of Sea Level Rise and Coastal Marsh Transgression on Soil Organic Matter in a Chesapeake Bay Salt Marsh

    Science.gov (United States)

    Van Allen, R.; Schreiner, K. M.; Guntenspergen, G. R.

    2016-12-01

    Salt marsh, mangrove swamp, and seagrass bed ecosystems comprise a global carbon stock known as "blue carbon." While vegetated coastal ecosystems have a small global areal extent, their total carbon burial rates are comparable to global marine carbon burial rates. Under global climate change-induced sea level rise, the role of these systems in the global carbon cycle could change significantly. This study aims to develop a more complete view of how coastal marsh transgression into terrestrial upland environments impacts soil organic matter characteristics. A US Geological Survey study site in Blackwater National Wildlife Refuge on the eastern coast of Chesapeake Bay, Maryland was chosen for this study. This marsh has undergone transgression into adjacent upland forest as local relative sea level has risen, making it an ideal location to study the source and stability of organic matter underlying the shifting marsh-forest boundary. Peat cores and vegetation samples were collected from the study site in May 2015 and June 2016. Care was taken to sample marsh soils underlying a range of elevations and vegetation types from the intertidal zone through the transition to upland forest. Radiocarbon and lead-210 dating give age estimates for basal peat layers within the cores. Analysis of stable carbon isotopes in bulk soils in this site suggests a broad shift towards C4-dominated marsh vegetation. Finally, cupric oxide oxidation products of soil organic matter provide information about the changing molecular organic geochemistry of the marsh soils as sea level rises and the marsh transgresses. This represents a novel molecular-level study of the changing organic geochemistry of marsh soils with sea level rise and resulting vegetation changes.

  12. Investigations of Marsh Losses at Blackwater National Wildlife Refuge 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A large body of scientific study over the last thirty years has resulted in ever increasing appreciation of the value of marshes and other wetlands as valuable...

  13. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...... area, and traced the ammonium processing and retention in four subsequent tide cycles. In this paper we present the results for the water-phase components of the marsh system and compare them to a similar experiment conducted in spring/early summer (May). Changes in concentration and isotopic......, but the absolute ammonium transformation rate was 3 times higher in May. While the marsh surface area was crucial for nitrification in May this was less pronounced in September. Denitrification, on the other hand, appeared more important in September compared to May....

  14. Sears Point Tidal Marsh Restoration Project: Phase II

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  15. Sears Point Tidal Marsh Restoration Project: Phase I

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase I project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Ankeny - Peregrine Marsh Restoration: Reed Canary-Grass Restitution

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Peregrine Marsh will be a focal point of the Ankeny Hill Nature Center, a joint partnership between USFWS and Salem Audubon Society (SAS), which is a planned...

  17. Prime Hook NWR Marsh Restoration Project Summary & Monitoring Plan 2015

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This living document provides a condensed explanation of wetland management history and a large-scale tidal marsh restoration project at Prime Hook NWR in Delaware....

  18. Some Biological Effects Of Ditching Tidewater Marshes Research Report 19

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Studies conducted over a 12-year period, 1935-47, of the biological effects of ditching tidewater marshes in Delaware for mosquito control showed that marked...

  19. Marsh Survey Data 1991 - 1994 Seatuck National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a series of charts outlining and comparing the results of various marsh suveys that occurred at Seatuck National Wildlife Refuge between 1991 and 1994.

  20. OMWM - Quality Mosquito Control on Cordgrass Salt Marshes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Open marsh water management ( OMWM) has evolved from over twenty years of cooperative efforts between mosquito control and conservation agencies. Its beginning came...

  1. Agassiz National Wildlife Refuge : Marsh and Water Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Marsh and Water Management Plan (MWMP) is intended to guide the management of Agassiz NWR wetlands into the twenty-first century. The foundation on which this...

  2. An inventory of wildlife resources, Marsh Fork, summer 1973

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Bureau of Sport Fisheries and Wildlife contracted us to do a wildlife resource inventory of the Marsh Fork in summer, 1973. We had planned the inventory in two...

  3. Marsh and Water Management Plan: Back Bay National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Back Bay National Wildlife Refuge Marsh and Water Management Plan has been developed to meet the station objectives set forth in the Master Plan. The purpose of...

  4. Preliminary survey of biodiversity in New Chicago Marsh

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the late winter and early springs 1995, we conducted a preliminary survey of biodiversity in New Chicago Marsh (NCM), at the south end of San Francisco Bay,...

  5. Salt Marshes of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to map all salt marshes along the coastline of the Arctic National Wildlife Refuge, from the Canning River to the Canadian border....

  6. Big Branch Marsh National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Big Branch Marsh NWR for the next 15 years. This plan outlines the Refuge vision and...

  7. Marsh and Water Management Plan: Trempealeau National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives for marsh and water management on the Trempealeau NWR are: 1. to provide habitat for waterfowl, other migratory birds, and endangered or threatened...

  8. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000 system.

  9. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem...

  10. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000...

  11. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  12. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  13. NPP Boreal Forest: Flakaliden, Sweden, 1986-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format) for an established 8.25 ha boreal forest dominated by Norway spruce, Picea abies, at Flakaliden (64.12 N 19.45 E) in...

  14. NPP Boreal Forest: Kuusamo, Finland, 1967-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal forest...

  15. NPP Boreal Forest: Kuusamo, Finland, 1967-1971, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal...

  16. [A new source of methane in boreal forests].

    Science.gov (United States)

    Mukhin, V A; Voronin, P Iu

    2008-01-01

    Methane was found among the gases evolved during natural wood decay caused by bracket fungi in boreal forests. Methane was detected both in decaying wood and fungal fruiting bodies. A scheme of symbiotic association of wood-degrading fungi and anaerobic microorganisms providing the methanogenesis in the wood was proposed. The scale of mycogenic methane emission has to be consistent with the huge volume of decaying wood in boreal forest ecosystems.

  17. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2012-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  18. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  19. Resistance of the boreal forest to high burn rates.

    Science.gov (United States)

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.

  20. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  1. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase......The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... the understanding of the controls of BVOC emissions from subarctic ecosystems under climate change by studying the responses to long-term manipulations from leaf level to small ecosystem scale. Leaf-level studies showed different anatomical responses for warming and shading manipulations between studied species...

  2. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund

    2010-01-01

    • Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....

  3. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    Science.gov (United States)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  4. Modelling the long-term vertical dynamics of salt marshes

    Science.gov (United States)

    Zoccarato, Claudia; Teatini, Pietro

    2017-04-01

    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes with a strong influence on the dynamics of the marsh evolution. The estimation and prediction of the elevation of a salt-marsh platform is crucial to forecast the marsh growth or regression under different scenarios considering, for example, the potential climate changes. The long-term vertical dynamics of a salt marsh is predicted with the aid of an original finite-element (FE) numerical model accounting for the marsh accretion and compaction and for the variation rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modelling approach is based on a 2D groundwater flow simulator, which provides the pressure evolution within a compacting/accreting vertical cross-section of the marsh assuming that the groundwater flow obeys the relative Darcy's law, coupled to a 1D vertical geomechanical module following Terzaghi's principle of effective intergranular stress. Soil porosity, permeability, and compressibility may vary with the effective intergranular stress according to empirically based relationships. The model also takes into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The element geometry changes in time to follow the deposit consolidation and the element number increases in time to follow the sedimentation of new material. The numerical model is tested on different realistic configurations considering the influence of (i) the spatial distribution of the sedimentation rate in relation to the distance from the marsh margin, (ii

  5. Comparison of shallow-water and marsh-surface habitats associated with pipeline canals and natural channels in Louisiana salt marshes

    Energy Technology Data Exchange (ETDEWEB)

    Rozas, L.P.

    1992-11-01

    The primary objective of the study was to assess the effects of pipeline canals on the habitat function of inside-levee marshes. The degree to which inside-levee marshes function as nursery habitat for nekton residing in canals was examined by comparing densities of nekton on marshes adjacent to pipeline canals (inside-levee marshes) and natural tidal creeks. In addition, shallow subtidal habitats in the two environments (canals and natural channels) were compared by sampling nekton along the marsh edge at low tide and measuring predator encounter rates in both habitats.

  6. Influence of snowfall and melt timing on tree growth in subarctic Eurasia

    Science.gov (United States)

    Vaganov, E. A.; Hughes, M. K.; Kirdyanov, A. V.; Schweingruber, F. H.; Silkin, P. P.

    1999-07-01

    The causes of a reduced sensitivity of high-latitude tree growth to variations in summer temperature for recent decades,, compared to earlier this century, are unknown. This sensitivity change is problematic, in that relationships between tree-ring properties and temperature are widely used for reconstructing past climate. Here we report an analysis of tree-ring and climate data from the forest-tundra zone, in combination with a mechanistic model of tree-ring growth, to argue that an increasing trend of winter precipitation over the past century in many subarctic regions led to delayed snow melt in these permafrost environments. As a result, the initiation of cambial activity (necessary for the formation of wood cells) has been delayed relative to the pre-1960 period in the Siberian subarctic. Since the early 1960s, less of the growth season has been during what had previously been the period of maximal growth sensitivity to temperature. This shift results not only in slower growth, but also in a reduced correlation between growth and temperature. Our results suggest that changes in winter precipitation should be considered in seeking explanations for observed changes in the timing of the `spring greening' of high-latitude forests, and should be taken into account in the study of the role of the Siberian subarctic forest in the global carbon cycle.

  7. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr

    Science.gov (United States)

    Knudson, Karla P.; Ravelo, Ana Christina

    2015-11-01

    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary δ15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux.

  8. Slow acidification of the winter mixed layer in the subarctic western North Pacific

    Science.gov (United States)

    Wakita, Masahide; Nagano, Akira; Fujiki, Tetsuichi; Watanabe, Shuichi

    2017-08-01

    We used carbon dioxide (CO2) system data collected during 1999-2015 to investigate ocean acidification at time series sites in the western subarctic region of the North Pacific Ocean. The annual mean pH at station K2 decreased at a rate of 0.0025 ± 0.0010 year-1 mostly in response to oceanic uptake of anthropogenic CO2. The Revelle factor increased rapidly (0.046 ± 0.022 year-1), an indication that the buffering capacity of this region of the ocean has declined faster than at other time series sites. In the western subarctic region, the pH during the winter decline at a slower rate of 0.0008 ± 0.0004 year-1. This was attributed to a reduced rate of increase of dissolved inorganic carbon (DIC) and an increase of total alkalinity (TA). The reduction of DIC increase was caused by the decline of surface water density associated with the pycnocline depression and the reduction of vertical diffusion flux from the upper pycnocline. These physical changes were probably caused by northward shrinkage of the western subarctic gyre and global warming. Meanwhile, the contribution of the density decline to the TA increase is canceled out by that of the reduced vertical diffusive flux. We speculated that the winter TA increase is caused mainly by the accumulation of TA due to the weakened calcification by organisms during the winter.

  9. Towards a Manitoba Hydro boreal woodland caribou strategy: Outcomes from Manitoba Hydro boreal woodland caribou workshop

    Directory of Open Access Journals (Sweden)

    Fiona E. Scurrah

    2012-03-01

    Full Text Available Manitoba Hydro is responsible for the continued supply of energy to meet the needs of the province and is committed to protecting the environment when planning the construction and operation of its facilities. Corporate policy dictates ongoing improvement of Environmental Management Systems (EMS in order to meet or surpass regulatory requirements. Environmental objectives are reviewed annually and programs are modified when necessary to address improvements in environmental performance. Manitoba Hydro plans and constructs major transmission projects throughout northern Manitoba which includes areas occupied by boreal woodland caribou. In recognition of the potential issues associated with hydro transmission construction in boreal caribou range, Manitoba Hydro hosted an expert workshop on May 8, 2007 to provide objective advice in the development of a draft corporate strategy that effectively directs targeted monitoring and research for environmental assessment and mitigation. The workshop focused on assessing the potential threats to boreal woodland caribou from a transmission line construction and operation perspective, and identifying appropriate approaches in site selection and environmental assessment (SSEA and long-term monitoring and research. A total of nine threat categories were reviewed to determine the degree and magnitude of potential effects that may result from transmission construction and operation; and of the original nine, five final threat categories were delineated. The main elements of the workshop provided strategic approaches for proactive pre-construction monitoring, research on recruitment and mortality for local populations impacted by ROWs and control areas, and various habitat monitoring, management, and mitigation techniques. Research and monitoring priorities have been identified and continued collaboration with Manitoba Conservation and other land users were also identified.

  10. Methane dynamics in different boreal lake types

    Directory of Open Access Journals (Sweden)

    S. Juutinen

    2009-02-01

    Full Text Available This study explores the variability in concentrations of dissolved CH4 and annual flux estimates in the pelagic zone in a statistically defined sample of 207 lakes in Finland. The lakes were situated in the boreal zone, in an area where the mean annual air temperature ranges from −2.8 to 5.9°C. We examined how lake CH4 dynamics related to regional lake types assessed according to the EU water framework directive. Ten lake types were defined on the basis of water chemistry, color, and size. Lakes were sampled for dissolved CH4 concentrations four times per year, at four different depths at the deepest point of each lake. We found that CH4 concentrations and fluxes to the atmosphere tended to be high in nutrient rich calcareous lakes, and that the shallow lakes had the greatest surface water concentrations. Methane concentration in the hypolimnion was related to oxygen and nutrient concentrations, and to lake depth or lake area. The surface water CH4 concentration was related to the depth or area of lake. Methane concentration close to the bottom can be viewed as proxy of lake status in terms of frequency of anoxia and nutrient levels. The mean pelagic CH4 release from randomly selected lakes was 49 mmol m−2 a−1. The sum CH4 flux (storage and diffusion correlated with lake depth, area and nutrient content, and CH4 release was greatest from the shallow nutrient rich and humic lakes. Our results support earlier lake studies regarding the regulating factors and also the magnitude of global emission estimate. These results propose that in boreal region small lakes have higher CH4 fluxes per unit area than larger lakes, and that the small lakes have a disproportionate significance regarding to the CH4 release.

  11. Snow and Vegetation Interactions at Boundaries in Alaska's Boreal Forest

    Science.gov (United States)

    Hiemstra, C. A.; Sturm, M.

    2012-12-01

    There has been increased attention on snow-vegetation interactions in Arctic tundra because of rapid climate-driven changes affecting that snow-dominated ecosystem. Yet, far less attention is paid to boreal forest snow-vegetation interactions even though climatic conditions are changing there as well. Further, it is the prevalent terrestrial biome on the planet. The forest is a variable patchwork of trees, shrubs, grasses, and forbs shaped by wind, fire, topography, water drainage, and permafrost. These patches and their boundaries have a corresponding effect on boreal snow distributions; however, measurements characterizing boreal snow are sparse and focus within patches (vs. between patches). Unfortunately, remote sensing approaches in such forested areas frequently fall short due to coarse footprint size and dense canopy cover. Over the last several years we have been examining the characteristics of snow cover within and across boundaries in the boreal forest, seeking to identify gradients in snow depth due to snow-vegetation interactions as well identifying methods whereby boreal forest surveys could be improved. Specifically, we collected end-of-season snow measurements in the Alaska boreal forest during long-distance traverses in the Tanana Basin in 2010 (26 sites) and within the Yukon Flats National Wildlife Refuge in 2011 (26 sites). At each site (all relatively flat), hundreds of snow depths were collected using a GPS-equipped Magnaprobe, which is an automated tool for measuring and locating individual snow depths. Corresponding canopy properties included NDVI determined from high-resolution satellite imagery; canopy properties were variable among the 1ha sites and some areas had recently burned. Among sites, NDVI had the largest correlation with snow depths; elevation was not significant. Vegetation transition zones play important roles in explaining observed snow depth. Similar to treeline work showing nutrient and energy gradients are influenced by

  12. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  13. Environmental gradients and macroalgae in Mediterranean marshes: the case of Pego-Oliva marsh (East Iberian Peninsula).

    Science.gov (United States)

    García, María Eugenia; Aboal, Marina

    2014-03-15

    Although Mediterranean marshes have historically suffered high anthropogenic pressure, they have maintained their remarkable biodiversity. They are severely threatened but remain comparatively unexplored systems from the algological point of view. For example, most of the indexes proposed for monitoring ecological quality are based on diatoms and very few have explored the use of macroalgae. The Pego-Oliva marsh is located in the east of the Iberian Peninsula close to the Mediterranean coast with warm annual temperature and fairly high precipitation. The aims of this study were to ascertain the ecological variables that explained macroalgal distribution in the Pego-Oliva marsh and to assess their indicator value. Macroalgal biodiversity was seen to be high (50 taxa) despite the high nitrogen concentration of the marsh. All the environmental variables studied had a broad range of variation throughout the marsh, especially conductivity (500-12290 μS/cm), temperature (14.3-31.7 °C), nitrate (9.493-64.113 mg/L) and ammonium (0.004-0.814 mg/L). A clear gradient of conductivity and dissolved oxygen was observed from fresh to saltwater. Batrachospermum arcuatum, Calothrix parietina, Chaetophora tuberculosa, Draparnaldia mutabilis, Hildenbrandia angolensis and Leptolyngbya angustissima were seen to act as indicators of low conductivity and dissolved inorganic nitrogen, and high dissolved oxygen, while Calothrix pulvinata, Ulva intestinalis, Homoeothrix violacea, Phormidium tergestinum and Thorea violacea were indicators of high conductivity and low dissolved nitrogen habitats. Cladophora glomerata, Compsopogon coeruleus, Polysiphonia subtilissima and Ulva flexuosa are the most widespread species and have a broad ecological range. Irrigation ditches have high ammonium and low dissolved oxygen concentrations and host infrequently reported species like Kumanoa mahlacensis. The data presented confirm the usefulness of macroalgae for the ecological monitoring of marshes

  14. Threshold Responses of Aspen and Spruce Growth to Temperature May Presage a Regime Shift in the Boreal Forest

    Science.gov (United States)

    Lloyd, A. H.; Duffy, P.; Mann, D. H.; Leonawicz, M.; Blumstein, M.; Pendall, E.

    2011-12-01

    Warming in boreal regions may eventually lead to the demise of evergreen coniferous forest and its replacement by either an open parkland of more drought-tolerant deciduous species like aspen, or by treeless steppe vegetation. We examined the possibility of warming-induced regime shifts in the boreal forest by quantifying the response of tree growth to climate on steep, south-facing bluffs in interior Alaska. These sites are the ecotone between forest and subarctic steppe vegetation, and represent the warmest, driest sites occupied by trees in the boreal forests of interior Alaska. We collected tree cores from aspen (Populus tremula) and white spruce (Picea glauca) at south-facing bluffs in interior Alaska (n=9 for white spruce, n=5 for aspen). Crossdated chronologies of detrended, standardized ring-widths were produced for each species at each site, and growth response to climate was quantified using generalized boosting models (spruce) and random forest regression (aspen). These analyses yielded three important insights into the potential for regime shifts in the warmer areas of the boreal forest. First, our results highlighted the surprising similarity in growth response of aspen and spruce. We expected to find that aspen would be more tolerant of warm, dry conditions than white spruce. In contrast, we found that the two species had broadly similar responses to climate, preferring cooler and wetter conditions. This finding suggests that a continued trend towards warmer and drier conditions is more likely to lead rapidly to the replacement of forest vegetation by steppe grassland, rather than the replacement of white spruce by aspen. Second, we identified strongly nonlinear responses to climate in both species; the use of analytical methods capable of detecting and describing nonlinear relationships between growth and climate thus proved to be critical. For both species, steep thresholds in growth response to temperature occurred, particularly in spring. Small

  15. Biogeochemical effects of seawater restoration to diked salt marshes

    Science.gov (United States)

    Portnoy, J.W.; Giblin, A.E.

    1997-01-01

    We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.

  16. Collected Data from The Boreal Ecosystem-Atmosphere Study, NASA, CD-ROM

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Boreal Ecosystem-Atmosphere Study (BOREAS) project information and data collected at selected sites in the boreal forest of Saskatchewan and...

  17. [Quivira National Wildlife Refuge water quality data : Big and Little Salt Marsh, June 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water quality results from samples taken June 18th, 1991 at Quivira National Wildlife Refuge from Big Salt Marsh, Little Salt Marsh, and from a small wetland pool...

  18. Vertical growth of a young back barrier salt marsh, Skallingen, SW Denmark

    DEFF Research Database (Denmark)

    Nielsen, Niels; Nielsen, Jørgen

    2002-01-01

    salt marsh, rate of sediment accretion, sea-level rise, storm surge frequency, Danish wadden sea......salt marsh, rate of sediment accretion, sea-level rise, storm surge frequency, Danish wadden sea...

  19. Salt Marsh Integrity Nekton Data at Cape May and Supawna National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Salt Marsh Integrity (SMI) project involves monitoring several salt marsh metrics such as: historical condition and geomorphic setting; ditch density;...

  20. Salt Marsh Integrity Nekton Data at Rachel Carson National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Salt Marsh Integrity (SMI) project involves monitoring several salt marsh metrics such as: historical condition and geomorphic setting; ditch density;...

  1. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Pelican Island NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  2. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, includin...

  3. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.1) to Amagansett NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  4. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Ten Thousand Islands NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on Ten...

  5. Salt Marsh Integrity Bird Data at Rachel Carson National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Salt Marsh Integrity (SMI) project involves monitoring several salt marsh metrics such as: historical condition and geomorphic setting; ditch density;...

  6. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Potomac River NWR Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  7. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Blackbeard Island NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  8. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.1) to Seatuck NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  9. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Hobe Sound NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on Hobe...

  10. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Monomoy NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  11. Salt Marsh Integrity Vegetation Data at Rachel Carson National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Salt Marsh Integrity (SMI) project involves monitoring several salt marsh metrics such as: historical condition and geomorphic setting; ditch density;...

  12. Tidal Marsh Inventory for York County Virginia and town of Poquoson

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This inventory report and marsh guidelines study will explain marsh vegetation types and their evaluation throughout York County Virginia and the town of Poquoson....

  13. Boreal forests, aerosols and the impacts on clouds and climate.

    Science.gov (United States)

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  14. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA

    Science.gov (United States)

    Edwards, K.R.; Proffitt, C.E.

    2003-01-01

    The use of dredge material is a well-known technique for creating or restoring salt marshes that is expected to become more common along the Gulf of Mexico coast in the future. However, the effectiveness of this restoration method is still questioned. Wetland structural characteristics were compared between four created and three natural salt marshes in southwest Louisiana, USA. The created marshes, formed by the pumping of dredge material into formerly open water areas, represent a chronosequence, ranging in age from 3 to 19 years. Vegetation and soil structural factors were compared to determine whether the created marshes become more similar over time to the natural salt marshes. Vegetation surveys were conducted in 1997, 2000, and 2002 using the line-intercept technique. Site elevations were measured in 2000. Organic matter (OM) was measured in 1996 and 2002, while bulk density and soil particle-size distribution were determined in 2002 only. The natural marshes were dominated by Spartina alterniflora, as were the oldest created marshes; these marshes had the lowest mean site elevations ( 35 cm NGVD) and became dominated by high marsh (S. patens, Distichlis spicata) and shrub (Baccharis halimifolia, Iva frutescens) species. The higher elevation marsh seems to be following a different plant successional trajectory than the other marshes, indicating a relationship between marsh elevation and species composition. The soils in both the created and natural marshes contain high levels of clays (30-65 %), with sand comprising < 1 % of the soil distribution. OM was significantly greater and bulk density significantly lower in two of the natural marshes when compared to the created marshes. The oldest created marsh had significantly greater OM than the younger created marshes, but it may still take several decades before equivalency is reached with the natural marshes. Vegetation structural characteristics in the created marshes take only a few years to become similar

  15. Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration

    Science.gov (United States)

    Man, Rongzhou; Lu, Pengxin; Dang, Qing-Lai

    2017-01-01

    Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white birch (Betula papyrifera Marsh.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours) differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (Effects, however, depended on both the species’ chilling requirements and the chilling–heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours. PMID:28861091

  16. Environmental assessment of Al-Hammar Marsh, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Hind Fadhil Abdullah Al-Gburi

    2017-02-01

    Discussion and conclusions: Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.

  17. The changing effects of Alaska's boreal forest on the climate system

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...

  18. Ecology of snowshoe hares in southern boreal and montane forests [Chapter 7

    Science.gov (United States)

    Karen E. Hodges

    2000-01-01

    Snowshoe hares occur in many of the montane and sub-boreal forests of the continental United States, as well as throughout the boreal forests of Canada and Alaska. Population dynamics in their southern range were previously thought to be noncyclic, in contrast to the strong 10-year fluctuation that typifies boreal populations of snowshoe hares. Time series data and...

  19. 77 FR 57107 - Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos, Tillamook, and...

    Science.gov (United States)

    2012-09-17

    ... Fish and Wildlife Service Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos... conservation plans and environmental assessments (Draft CCP/EAs) for three Oregon refuges-- Bandon Marsh... . Include ``Bandon Marsh, Nestucca Bay, and Siletz Bay draft CCP and EA'' in the subject line of the message...

  20. 78 FR 27989 - Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos, Tillamook, and...

    Science.gov (United States)

    2013-05-13

    ... Fish and Wildlife Service Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos... Assessments (EAs) for three Oregon refuges--Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife... ``Bandon Marsh, Nestucca Bay, and Siletz Bay final CCPs and FONSIs'' in the subject line of the message. U...

  1. 75 FR 73121 - Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos, Tillamook, and...

    Science.gov (United States)

    2010-11-29

    ... Fish and Wildlife Service Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos... prepare a comprehensive conservation plan (CCP) for the Bandon Marsh, Nestucca Bay, and Siletz Bay... ``Bandon Marsh, Nestucca Bay, and Siletz Bay CCP'' in the subject line of the message. Fax: Attn: Project...

  2. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    Zonal patterns of salt marsh plants and physical conditions have been addressed primarily across the elevation gradient from inland to coastline rather than across tidal creeks in relation to their hydro-geomorphic processes such as bar formation and bank erosion. We found at a Danish marsh...... to fully understand the underlying structure and geographic variability in salt marshes....

  3. Impacts of adjacent land use and isolation on marsh bird communities.

    Science.gov (United States)

    Smith, Lyndsay A; Chow-Fraser, Patricia

    2010-05-01

    Over the next half century the human population is expected to grow rapidly, resulting in the conversion of rural areas into cities. Wetlands in these regions are therefore under threat, even though they have important ecosystem services and functions. Many obligate marsh-nesting birds in North America have shown declines over the past 40 years, and it is important to evaluate marsh bird community response to increased urbanization. We surveyed 20 coastal marshes in southern Ontario, Canada, and found that obligate marsh-nesting birds preferred rural over urban wetlands, generalist marsh-nesting birds showed no preference, while synanthropic species showed a trend towards increased richness and abundance in urban marshes. The Index of Marsh Bird Community Integrity (IMBCI) was calculated for each wetland and we found significantly higher scores in rural compared to urban wetlands. The presence of a forested buffer surrounding the marsh was not an important factor in predicting the distribution of generalists, obligates, synanthropic species, or the IMBCI. More isolated marshes had a lower species richness of obligate marsh-nesters and a lower IMBCI than less isolated marshes. Based on our results, we recommend that urban land use is not the dominant land use within 1000 m from any wetland, as it negatively affects the abundance and richness of obligate marsh-nesters, and the overall integrity of the avian community. We also recommend that all existing wetlands be conserved to mitigate against isolation effects and to preserve biodiversity.

  4. 78 FR 24717 - Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project...

    Science.gov (United States)

    2013-04-26

    ... Forest Service Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project... statement (EIS) for a project called Marsh, in the southwestern portion of the Crescent Ranger District just... areas such as the Marsh project area provide to people. The focal point of the planning area is Big...

  5. 75 FR 65371 - Klamath Marsh National Wildlife Refuge, Klamath County, OR

    Science.gov (United States)

    2010-10-22

    ... Fish and Wildlife Service Klamath Marsh National Wildlife Refuge, Klamath County, OR AGENCY: Fish and...) for the Klamath Marsh National Wildlife Refuge (NWR). The CCP describes how we will manage the Refuge... Web Site: Download a copy of the document(s) at http://www.fws.gov/klamathbasinrefuges/KlamathMarshCCP...

  6. Ecological structure and function in a restored versus natural salt marsh.

    Science.gov (United States)

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  7. 75 FR 6696 - Draft Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California

    Science.gov (United States)

    2010-02-10

    ... Fish and Wildlife Service Draft Recovery Plan for Tidal Marsh Ecosystems of Northern and Central... draft recovery plan for Tidal Marsh Ecosystems of Northern and Central California for public review and... Salt Marsh Harvest Mouse Recovery Plan. The plan also addresses several federally endangered plant...

  8. Use of herbicides to control alligatorweed and restore native plants in managed marshes

    Science.gov (United States)

    Shannon L. Allen; Gary R. Hepp; James H. Miller

    2007-01-01

    Marsh management is used to improve the quality of wetland habitats for a variety of waterfowl and other waterbirds. However, alien plants, such as alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.), may impact success of marsh management by competing with and displacing important native plants. In managed marshes, we tested effects of...

  9. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh

    Science.gov (United States)

    Roman, C.T.; Raposa, K.B.; Adamowicz, S.C.; James-Pirri, M.J.; Catena, J.G.

    2002-01-01

    Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide-restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide-restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7-ha tide-restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3-ha Spartina -dominated unrestricted control marsh (analysis of similarities randomization test, p nekton compared with the tide-restricted marsh (analysis of variance, p nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide-restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.

  10. Impacts of storm events on salt marsh sediment dynamics

    Science.gov (United States)

    Castagno, K. A.; Jiménez-Robles, A. M.; Fagherazzi, S.; Donnelly, J. P.

    2016-12-01

    Salt marshes have long been lauded as buffers to storm surges, wind-generated waves, and elevated water levels. Following Redfield's bi-directional model of salt marsh evolution, salt marshes along the eastern coast of the United States keep pace with moderate sea-level rise. Recent geological evidence, however, suggests that some extreme storm events may cause significant marsh erosion. This has major implications for coastal inundation risk to lives and property, as well as the resilience of these coastal wetlands to a changing climate. This study analyzes the relationship between storm intensity and net sediment fluxes in the Virginia Coast Reserve (VCR), a system of salt marshes and coastal bays along the Atlantic side of the Delmarva Peninsula, USA. The study explores the differences in sediment dynamics between tropical cyclones and nor'easters, both of which regularly impact the VCR. To investigate the processes that determine sediment fluxes both between the VCR and open sea and between the different coastal bays of VCR, we used the fully coupled coastal hydrodynamic, sediment transport and wave model Delft3D-SWAN. This work builds on previous sediment composition results based on the framework of the VCR LTER program. During the period from 2009 to 2016, a total of 52 storm events where identified using a Peaks Over Threshold method. For each storm, wind characteristics, water levels, and wave conditions data were obtained from the National Oceanic and Atmospheric Administration (NOAA). A model calibration process achieved good agreement between field data and Delft3D-SWAN results, using water levels inside the VCR and wave height and directions in the closest NOAA buoy to VCR. The results of this study will be useful in determining the response of marsh systems to extreme storm events.

  11. Searching for the Source of Salt Marsh Buried Mercury.

    Science.gov (United States)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  12. Mangrove expansion and salt marsh decline at mangrove poleward limits.

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. © 2013 John Wiley & Sons Ltd.

  13. Impacts of forestry on boreal forests: An ecosystem services perspective.

    Science.gov (United States)

    Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko

    2017-11-01

    Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.

  14. Groundwater controls ecological zonation of salt marsh macrophytes.

    Science.gov (United States)

    Wilson, Alicia M; Evans, Tyler; Moore, Willard; Schutte, Charles A; Joye, Samantha B; Hughes, Andrea H; Anderson, Joseph L

    2015-03-01

    Ecological zonation of salt marsh macrophytes is strongly influenced by hydrologic factors, but these factors are poorly understood. We examined groundwater flow patterns through surficial sediments in two saltmarshes in the southeastern United States to quantify hydrologic differences between distinct ecological zones. Both sites included tall- or medium-form Spartina alterniflora near the creek bank; short-form Spartina alterniflora in the mid-marsh; salt flats and Salicornia virginica in the high marsh; and Juncus roemarianus in brackish-to-fresh areas adjacent to uplands. Both sites had relatively small, sandy uplands and similar stratigraphy consisting of marsh muds overlying a deeper sand layer. We found significant hydrologic differences between the four ecological zones. In the zones colonized by S. alterniflora, the vertical flow direction oscillated with semi-diurnal tides. Net flow (14-day average) through the tall S. alterniflora zones was downward, whereas the short S. alterniflora zones included significant periods of net upward groundwater flow. An examination of tidal efficiency at these sites suggested that the net flow patterns rather than tidal damping controlled the width of the tall S. alterniflora zone. In contrast to the S. alterniflora zones, hypersaline zones populated by S. virginica were characterized by sustained periods (days) of continuous upward flow of saline water during neap tides. The fresher zone populated by J. roemarianus showed physical flow patterns that were similar to the hypersaline zones, but the upwelling porewaters were fresh rather than saline. These flow patterns were influenced by the hydrogeologic framework of the marshes, particularly differences in hydraulic head between the upland water table and the tidal creeks. We observed increases in hydraulic head of approximately 40 cm from the creek to the upland in the sand layers below both marshes, which is consistent with previous observations that sandy aquifers

  15. Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

    Science.gov (United States)

    Nguyen, C. T.; Starek, M. J.; Gibeaut, J. C.; Lord, A.

    2015-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (marsh elevation response away from the measurement site. Terrestrial Laser Scanning (TLS) offers potential for high definition monitoring of marsh surface evolution. However, several challenges must be overcome in the application of the technology for geodetic imaging of marsh surfaces. These challenges include surface occlusion by dense vegetation, error propagation due to scan co-registration and referencing across time, impacts of scan angle, and filtering of non-ground points. Researchers at Texas A&M University-Corpus Christi conducted a field-survey of a marsh within the Grand Bay National Estuarine Research Reserve using TLS and RTK GPS for comparison. Grand Bay in Mississippi USA is one of the most biologically productive estuarine ecosystems in the Gulf of Mexico. The study region is covered by dense and tall saw-grass that makes it a challenging environment for bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed

  16. A Baseline Study of Piermont Marsh as Nekton Habitat

    Science.gov (United States)

    Ortega, M.; Bloomfield, F.; Torres, T.; Ward, J.; Sanders, D.; Lobato, A.

    2011-12-01

    Between 2007 and 2011 we have conducted a study of fish populations and water quality in the Piermont Marsh, a brackish tidal wetland about 40 km north of Manhattan. This 5-year period represents the baseline for an ongoing ecological study of the marsh. The marsh, along with similar wetlands between the Federal Dam at Troy and the Battery, is an important refuge for juvenile fish, and it is believed that estuarine wetland dynamics are critical in population recruitment for coastal fisheries. Piermont Marsh has undergone a rapid transition from a primarily Spartina alternaflora and Spartina pattens setting to one dominated by an invasive genotype of common reed Phragmites australis. The impact of this shift on local fish populations, species diversity, and adult recruitment are not well understood. The long term goal of this study is to tease apart factors in by use of the marsh as a nekton habitat. Fish were collected in unbaited minnow gee traps which were deployed at slack tide and left for 24 hours. Samples were preserved in 10% buffered formalin. All organisms were identified to the lowest practical taxonomic level, enumerated, and measured. Gross weight was recorded for each sample set. Water quality measurements such as temperature, salinity and dissolved oxygen were collected concurrently with all sampling events. Sample collections were focused on the tidal creeks crossing the marsh, which provide the primary exchange of water and nutrients between the marsh interior and Hudson River estuary. As expected, most minnows captured were Fundulus heteroclitus. However a wide variety of other nekton, including species that are important to commercial and recreational coastal Atlantic fish stocks, was recorded as well. Comparisons are made between habitats such as erosional and depostional banks, rivulets, and exterior and interior marsh settings. Also involved were transient conditions such as temperature, salinity, dissolved oxygen levels, and hydroperiod

  17. The distribution of radioactive caesium in boreal forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R. [National Defence Research Establishment, Dept. of NBC Defence, Umeaa (Sweden)

    1994-12-31

    The behaviour of radioactive caesium (Cs-134 and Cs-137) in boreal forests of the Nordic countries is reviewed with emphasis on its distribution in various time perspectives. The analysis has thus been focused on data of relevance for both early and later phases after fallout over forest areas. Possibilities and limitation in using data from other time periods or regions, than that characterised by fallout over the boreal zones after the Chernobyl event are also discussed. This concerns extrapolations from information pertaining to neighbouring ecological areas - at higher altitudes (alpine, and sub-alpine regions) or below the southern limit (i.e. in the hemiboreal and nemoboreal zones), and to future time with respect to predictions of the behaviour of Cs-137, based on results for OLD (i.e. from atmospheric weapons tests - mainly in the sixties) versus CHERNOBYL caesium. Beside the principal terrestrial constituents of the soil-plant-animal system, the BOREAL FOREST ECOSYSTEM will for the present purpose be considered to comprise the semi-aquatic and aquatic components pertaining to peat, open peat bog, and ground water. This implies that run-off from a catchment constitutes the main link between the terrestrial part considered here and the aquatic ecosystem proper. In boreal forests the humus layer usually retains a major fraction of the fallout of radioactive caesium, evidently even several decades after deposition. This notable feature, as well as a persistent high availability in important food-chains, emerges from the present Nordic radioecological research. Both constitute facets of a singularity conservative - although not at all static - situation prevailing for radioactive caesium in the boreal forest. The implication is that for Cs-137 physical decay will be the major factor of loss from the boreal ecosystem in a long-term perspective, and that runoff, particularly from peat bogs, is expected to be the second in order of importance. (orig./HP).

  18. Boreal Wood Centre, Manning, Alberta: Project update, 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, H.

    1996-12-31

    The Boreal Wood Centre in Manning, Alberta was created to promote the wise use of timber resources in the boreal forest of north-west Alberta. The Centre encourages sustainable practices in woodlands operations and assists manufacturers of solid wood to add more value to their products. The Centre carries out its mandate by applied research, training in forestry or wood products manufacturing, and educating the public and industry on the importance of value-added manufacturing. This report outlines the progress of the Centre in its first year of development. It includes a draft action plan for 1996-97.

  19. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  20. Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014.

    Science.gov (United States)

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi

    2017-08-01

    We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours.

    Directory of Open Access Journals (Sweden)

    May Trude Johnsen

    Full Text Available INTRODUCTION: Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration, including lifestyle variables, health variables and biological factors. METHODS: The cross sectional population Tromsø Study was conducted in northern Norway, above the Arctic Circle. 6413 persons aged 30-65 years completed questionnaires including self-reported sleep times, lifestyle and health. They also measured height, weight, waist and hip circumference, and biological factors (non-fasting serum level of cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and glucose. The study period was from 1 October 2007 to 19 December 2008. RESULTS: The optimal sleep length regarding BMI and waist circumference was found to be 8-9 hours. Short sleepers (<6 h had about 80% increased risk of being in the BMI≥25 kg/m2 group and male short sleepers had doubled risk of having waist circumference ≥102 cm compared to 8-9 hours sleepers. We found no impact of chronotype or social jetlag on BMI or abdominal obesity after controlling for health, lifestyle, and biological parameters. CONCLUSIONS: In our subarctic population, the optimal sleep duration time regarding risk of overweight and abdominal obesity was 8-9 hours, which is one hour longer compared to findings from other studies. Short sleepers had 80% increased risk of being overweight, and men had a doubled risk of having abdominal obesity. We found no associations between chronotype or social jetlag and BMI or abdominal obesity, when we took a range of life-style, health and biological variables into

  2. Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing.

    Directory of Open Access Journals (Sweden)

    Emilie Champagne

    Full Text Available Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots and nitrogen-fertilisation (0 and 10 g m(-2 experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions.

  3. Tolerance of an Expanding Subarctic Shrub, Betula glandulosa, to Simulated Caribou Browsing

    Science.gov (United States)

    Champagne, Emilie; Tremblay, Jean-Pierre; Côté, Steeve D.

    2012-01-01

    Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots) and nitrogen-fertilisation (0 and 10 g m−2) experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions. PMID:23272191

  4. The Atmosphere's Imprint on the Hydrologic and Carbon Cycle in the Alaskan Arctic and Subarctic

    Science.gov (United States)

    Nichols, J. E.; Peteet, D. M.; Moy, C. M.

    2011-12-01

    The Alaskan arctic and subarctic is a region rich with terrestrial carbon stored in peatlands which have been accumulating thoughout the Holocene. Such peatlands are important players in the terrestrial carbon cycle. One major influence on the amount of carbon stored in peatlands is the amount and seasonality of precipitation, which is controlled, in turn, by changes in atmospheric circulation. The Holocene changes in atmospheric circulation over the North Pacific, and the Gulf of Alaska in particular is poorly understood. In the case of the Alaskan subarctic, for example, the Aleutian Low is an important driver of moisture balance change. Further, changes in the Aleutian low also control fluxes of important micronutrients such as iron from the land surface to the Gulf of Alaska, an area of the ocean where phytoplankton growth is iron limited. We reconstructed the hydrogen isotopes of precipitation, the amount of surface evaporation, and the overall moisture balance through the Holocene at three peatland sites in the Alaskan arctic and subarctic: Goldmine Bog, Fairbanks, (65°N, 147°W), Phalarope Bog, Kodiak (57°N, 154°W), and Bear Bog, Cordova (60°N, 145°W). These data reveal large, regionally consistent changes in atmospheric circulation throughout the Holocene that play an important role in changing the amount of carbon stored in peatlands. Understanding the relationships among atmospheric circulation, the hydrologic cycle, and the carbon cycle in the past provide an important guide for predicting the carbon cycle changes that will result from future climate warming.

  5. Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra

    Science.gov (United States)

    Vandeplas, Nicolas; Kockelbergh, Fred; Nijs, Ivan

    2017-01-01

    Abstract Climate change is expected to force many species in arctic regions to migrate and track their climatic niche. This requires recruitment from seed, which currently shows very low rates in arctic regions, where long-lived and vegetatively reproducing plants dominate. Therefore, we pose the question whether recruitment (germination and seedling establishment) in arctic regions will significantly improve in a warmer world, and thus allow species to follow their climatic niche. We used a full factorial experiment to examine if realistic warmer temperatures (+3 °C; infrared radiation) and increased nitrogen availability (+1.4 g N m−2 year−1) affected germination, seedling survival and above- and below-ground seedling biomass in five species common in subarctic regions (Anthoxanthum odoratum, Betula nana, Pinus sylvestris, Solidago virgaurea, Vaccinium myrtillus). We found that warming increased seedling emergence in all species, but that subsequent mortality also increased, resulting in no net warming effect on seedling establishment. Warming slightly increased above-ground seedling biomass. Fertilization, on the other hand, did not influence seedling biomass, but it increased seedling establishment in B. nana while it reduced establishment in V. myrtillus. This may help B. nana dominate over V. myrtillus in warmer tundra. Surprisingly, no interactive effects between warming and fertilization were found. The lack of a general positive response of seedling establishment to warmer and more nutrient-rich conditions suggests that (sub)arctic species may experience difficulties in tracking their climatic niche. Predictions of future species distributions in arctic regions solely based on abiotic factors may therefore overestimate species’ ranges due to their poor establishment. Also, the opposite response to fertilization of two key (sub)arctic dwarf shrubs, i.e. B. nana and V. myrtillus, could have important implications for the future development of arctic

  6. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  7. Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific

    Directory of Open Access Journals (Sweden)

    Hongmei Jing

    2017-06-01

    Full Text Available Community composition and abundance of ammonia-oxidizing archaea (AOA in the ocean were affected by different physicochemical conditions, but their responses to physical barriers (such as a chain of islands were largely unknown. In our study, geographic distribution of the AOA from the surface photic zone to the deep bathypelagic waters in the western subarctic Pacific adjacent to the Kuril Islands was investigated using pyrosequencing based on the ammonia monooxygenase subunit A (amoA gene. Genotypes of clusters A and B dominated in the upper euphotic zone and the deep waters, respectively. Quantitative PCR assays revealed that the occurrence and ammonia-oxidizing activity of ammonia-oxidizing archaea (AOA reached their maxima at the depth of 200 m, where a higher diversity and abundance of actively transcribed AOA was observed at the station located in the marginal sea exposed to more terrestrial input. Similar community composition of AOA observed at the two stations adjacent to the Kuril Islands maybe due to water exchange across the Bussol Strait. They distinct from the station located in the western subarctic gyre, where sub-cluster WCAII had a specific distribution in the surface water, and this sub-cluster seemed having a confined distribution in the western Pacific. Habitat-specific groupings of different WCB sub-clusters were observed reflecting the isolated microevolution existed in cluster WCB. The effect of the Kuril Islands on the phylogenetic composition of AOA between the Sea of Okhotsk and the western subarctic Pacific is not obvious, possibly because our sampling stations are near to the Bussol Strait, the main gateway through which water is exchanged between the Sea of Okhotsk and the Pacific. The vertical and horizontal distribution patterns of AOA communities among stations along the Kuril Islands were essentially determined by the in situ prevailing physicochemical gradients along the two dimensions.

  8. Optimal sleep duration in the subarctic with respect to obesity risk is 8-9 hours.

    Science.gov (United States)

    Johnsen, May Trude; Wynn, Rolf; Bratlid, Trond

    2013-01-01

    Sleep duration, chronotype and social jetlag have been associated with body mass index (BMI) and abdominal obesity. The optimal sleep duration regarding BMI has previously been found to be 7-8 hours, but these studies have not been carried out in the subarctic or have lacked some central variables. The aims of our study were to examine the associations between sleep variables and body composition for people living in the subarctic, taking a range of variables into consideration, including lifestyle variables, health variables and biological factors. The cross sectional population Tromsø Study was conducted in northern Norway, above the Arctic Circle. 6413 persons aged 30-65 years completed questionnaires including self-reported sleep times, lifestyle and health. They also measured height, weight, waist and hip circumference, and biological factors (non-fasting serum level of cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and glucose). The study period was from 1 October 2007 to 19 December 2008. The optimal sleep length regarding BMI and waist circumference was found to be 8-9 hours. Short sleepers (hours sleepers. We found no impact of chronotype or social jetlag on BMI or abdominal obesity after controlling for health, lifestyle, and biological parameters. In our subarctic population, the optimal sleep duration time regarding risk of overweight and abdominal obesity was 8-9 hours, which is one hour longer compared to findings from other studies. Short sleepers had 80% increased risk of being overweight, and men had a doubled risk of having abdominal obesity. We found no associations between chronotype or social jetlag and BMI or abdominal obesity, when we took a range of life-style, health and biological variables into consideration.

  9. Impact of Euro-Canadian agrarian practices: in search of sustainable import-substitution strategies to enhance food security in subarctic Ontario, Canada.

    Science.gov (United States)

    Spiegelaar, Nicole F; Tsuji, Leonard J S

    2013-01-01

    traditional foods), and yet little knowledge sharing of agricultural practices occurred. When the residential school and agrarian movement came to an end in the 1970s, First Nation community members were left to become reliant on an import food system. The mission's agrarian techniques resulted in overall degradation of soil quality and ecological integrity: compared the natural boreal forest, the cultivated area had been colonized by invasive species and had significantly lower soil levels of nitrogen, magnesium and organic carbon, and significantly higher levels of phosphorus and bulk density. Because the agrarian initiative was not a viable long-term approach to food security in Fort Albany, the people became more reliant on imported goods. Taking into account climate change, there exists an opportunity whereby fruits and vegetables, historically stunted-in-growth or outside the distributional range of subarctic Canada, could now grow in the north. Together, agroecosystem stewardship practices and community-based, autonomous food security programs have the potential to increase locally grown food availability in a sustainable manner.

  10. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    Science.gov (United States)

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  11. Specific discharge variability in a boreal landscape

    Science.gov (United States)

    Lyon, Steve W.; Nathanson, Marcus; Spans, André; Grabs, Thomas; Laudon, Hjalmar; Temnerud, Johan; Bishop, Kevin H.; Seibert, Jan

    2012-08-01

    Specific discharge variations within a mesoscale catchment were studied on the basis of three synoptic sampling campaigns. These were conducted during stable flow conditions within the Krycklan catchment study area in northern Sweden. During each campaign, about 80 individual locations were measured for discharge draining from catchment areas ranging between 0.12 and 67 km2. These discharge samplings allowed for the comparison between years within a given season (September 2005 versus September 2008) and between seasons within a given year (May 2008 versus September 2008) of specific discharge across this boreal landscape. There was considerable variability in specific discharge across this landscape. The ratio of the interquartile range (IQR) defined as the difference between the 75th and 25th percentiles of the specific discharges to the median of the specific discharges ranged from 37% to 43%. Factor analysis was used to explore potential relations between landscape characteristics and the specific discharge observed for 55 of the individual locations that were measured in all three synoptic sampling campaigns. Percentage wet area (i.e., wetlands, mires, and lakes) and elevation were found to be directly related to the specific discharge during the drier September 2008 sampling while potential annual evaporation was found to be inversely related. There was less of a relationship determined during the wetter post spring flood May 2008 sampling and the late summer rewetted September 2005 sampling. These results indicate the ability of forests to "dry out" parts of the catchment over the summer months while wetlands "keep wet" other parts. To demonstrate the biogeochemical implications of such spatiotemporal variations in specific discharge, we estimate dissolved organic carbon (DOC) exports with available data for the May 2008 and September 2008 samplings using both the spatially variable observed specific discharges and the spatially constant catchment average

  12. [Sources of Methane in the Boreal Region

    Science.gov (United States)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition

  13. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  14. Gulf-Wide Information System, Environmental Sensitivity Index Brackish Marsh, Geographic NAD83, LDWF (2001) [esi_brackish_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) brackish marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  15. Gulf-Wide Information System, Environmental Sensitivity Index Intermediate Marsh, Geographic NAD83, LDWF (2001) [esi_intermediate_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) intermediate marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  16. Anthropocene Survival of Southern New England’s Salt Marshes

    Science.gov (United States)

    In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene backgrou...

  17. Daily energy expenditure of male and female Marsh Harrier nestlings

    NARCIS (Netherlands)

    Riedstra, Bernd; Dijkstra, Cornelis; Daan, Serge

    We used the doubly labeled water (DLW) method to measure daily energy expenditure (DEE) in eight brother-sister pairs of free-living Marsh Harrier (Circus aeruginosus) nestlings. We calculated metabolizable energy intake (ME) from DEE and body-mass change. In each pair, males had lower body mass,

  18. Regeneration of plants from Fraxinus nigra Marsh. hypocotyls

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2013-01-01

    Fraxinus nigra Marsh. (black ash) is a native North American hardwood tree species that is ecologically important and has ethnobotanical significance to American Indian communities of the eastern United States. Black ash has immature embryos at seed set, combined with complex stratification requirements, making natural regeneration difficult. This,...

  19. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  20. Avifauna of Vwaza Marsh Wildlife Reserve, Malawi | Engel | Journal ...

    African Journals Online (AJOL)

    Despite having a well-documented avifauna, some areas of Malawi, such as Vwaza Marsh Wildlife Reserve (986 km²), are still poorly known ornithologically. We spent 12 days in October 2009, before the wet season, and two days in November 2009, after the first rains, documenting the birds of Vwaza. We found six new ...

  1. Impacts of intensified agriculture developments on marsh wetlands.

    Science.gov (United States)

    Luan, Zhaoqing; Zhou, Demin

    2013-01-01

    A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  2. A simple, dynamic, hydrological model of a mesotidal salt marsh

    Science.gov (United States)

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  3. Oiling accelerates loss of salt marshes, southeastern Louisiana

    Science.gov (United States)

    Beland, Michael; Biggs, Trent W.; Roberts, Dar A.; Peterson, Seth H.; Kokaly, Raymond F.; Piazza, Sarai

    2017-01-01

    The 2010 BP Deepwater Horizon (DWH) oil spill damaged thousands of km2 of intertidal marsh along shorelines that had been experiencing elevated rates of erosion for decades. Yet, the contribution of marsh oiling to landscape-scale degradation and subsequent land loss has been difficult to quantify. Here, we applied advanced remote sensing techniques to map changes in marsh land cover and open water before and after oiling. We segmented the marsh shorelines into non-oiled and oiled reaches and calculated the land loss rates for each 10% increase in oil cover (e.g. 0% to >70%), to determine if land loss rates for each reach oiling category were significantly different before and after oiling. Finally, we calculated background land-loss rates to separate natural and oil-related erosion and land loss. Oiling caused significant increases in land losses, particularly along reaches of heavy oiling (>20% oil cover). For reaches with ≥20% oiling, land loss rates increased abruptly during the 2010–2013 period, and the loss rates during this period are significantly different from both the pre-oiling (p loss rates across oiled and non-oiled reaches (p = 0.557). We conclude that oiling increased land loss by more than 50%, but that land loss rates returned to background levels within 3–6 years after oiling, suggesting that oiling results in a large but temporary increase in land loss rates along the shoreline.

  4. Elders Point East Marsh Island Restoration Monitoring Data Analysis

    Science.gov (United States)

    2017-09-21

    existing vegetated areas and the sheltered and exposed mudflats out to the 1974 footprint of marsh coverage (USACE-NYD 2007). The restoration of...11 2.2 Vegetation ...21 2.2.4 Height of Spartina alterniflora ..................................................................................... 22 2.2.5 Vegetation

  5. [Lake Mason and Soo Line Marsh project design approval

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This letter is the approval from the U.S. Fish and Wildlife Service of the designs created by Ducks Unlimited, Inc. for the Lake Mason and Soo Line Marsh National...

  6. Nutrient limitation and plant species composition in temperate salt marshes

    NARCIS (Netherlands)

    Kiehl, K.; Esselink, P.; Bakker, JP

    Addition of inorganic nitrogen, phosphorus and potassium in a factorial design in two ungrazed Wadden-Sea salt marshes at low and high elevations showed that nitrogen was the limiting nutrient. No effects of nutrient addition were detected in the Ist year, probably due to a considerable rainfall

  7. Meiobenthos of Saphala salt marsh, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Ansari, Z.A.; Parulekar, A.H.

    Benthic fauna of the salt marsh comprised 10 taxonomic groups, dominated by nematodes (63.9%), harpacticoids (18.5%), turbellaria (5.6%), crustacean nauplii (5.4%) and polychaetes (4.1%). The population density varied from 282 to 17300 (10 cm)-2...

  8. Burrowing and foraging activity of marsh crabs under different ...

    Science.gov (United States)

    New England salt marshes are susceptible to degradation and habitat loss as a result of increased periods of inundation as sea levels rise. Increased inundation may exacerbate marsh degradation that can result from crab burrowing and foraging. Most studies to date have focused on how crab burrowing and foraging can impact the dominant low marsh plant species, Spartina alterniflora. Here we used a mesocosm experiment to examine the relationship of foraging and burrowing activity in two dominant New England crab species, Sesarma reticulatum and Uca pugilator, and the combined effect of inundation, on the dominant high marsh plant species Spartina patens using a 3 × 2 factorial design with three crab treatments (Sesarma, Uca, control) at two levels of inundation (low, high). Plants were labeled with a nitrogen (N) stable isotope tracer to estimate plant consumption by the two crab species. At both levels of inundation, we found that S. reticulatum had a significant negative impact on both above- and below-ground biomass by physically clipping and uprooting the plants, whereas U. pugilator had no significant impact. Low inundation treatments for both crab species had significantly greater aboveground biomass than high inundation. Stable N isotope tracer levels were roughly the same for both S. reticulatum and U. pugilator tissue, suggesting that the impact of S. reticulatum on S. patens was not through consumption of the plants. Overall, our results suggest the pot

  9. Pepperweed's Ecosystem Impacts in Suisun Marsh: Methods for Control

    OpenAIRE

    Whitcraft, Christine R

    2010-01-01

    Perennial pepperweed (Lepidium latifolium) is an aggressive, non-native herbaceous weed displacing native vegetation in marshes, floodplains, prairies and rangeland throughout California. You can even find it growing along roadsides and highways. But does the plant’s ubiquity really mean it is an ecological problem warranting costly eradication efforts?

  10. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  11. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    Science.gov (United States)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and

  12. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  13. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil...

  14. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  15. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  16. Resilience of Alaska's boreal forest to climate change

    Science.gov (United States)

    F.S. Chapin; A.D. McGuire; R.W. Ruess; T.N. Hollingsworth; M.C. Mack; J.F. Johnstone; E.S. Kasischke; E.S. Euskirchen; J.B. Jones; M.T. Jorgenson; K. Kielland; G.P. Kofinas; M.R. Turetsky; J. Yarie; A.H. Lloyd; D.L. Taylor

    2010-01-01

    This paper assesses the resilience of Alaska's boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters...

  17. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  18. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  19. Silviculture for restoration of degraded temperate and boreal forests

    Science.gov (United States)

    John A. Stanturf; Palle Madsen; Emile S. Gardiner

    2004-01-01

    Throughout the temperate and boreal zones, human intervention has influenced landscapes and forests for millennia. The degree of human disturbance has only been constrained by the technology and resources available to different cultures and by time since initial habitation. Humans have influenced forests by regulating populations of browsers, clearing for agriculture,...

  20. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  1. Spatial variability of suspended sediment concentration within a tidal marsh in San Francisco Estuary

    Science.gov (United States)

    Swanson, K.; Drexler, J. Z.; Schoellhamer, D. H.; Buffington, K.; Takekawa, J.

    2012-12-01

    The sustainability of existing marshes and feasibility of future marsh restoration projects in San Francisco Estuary and elsewhere are threatened by a potential imbalance between accelerating sea-level rise and tidal marsh accretion rates. Marsh accretion is, in large part, dependent upon the availability of suspended sediment supplied from adjacent waterways. As water and sediment move across a marsh plain, suspended sediment settles and is trapped by vegetation near the source, resulting in less suspended-sediment concentration (SSC) and deposition in the interior of the marsh. Measurements of deposition and limited observations of SSC within marshes have confirmed a decrease in sediment supply and accumulation from the marsh edge to the marsh interiors, but the spatial variability of SSC has not been quantified in a manner that allows for comparison to a theoretical sediment transport model. For this study, transects of SSC were collected within a marsh at China Camp State Park in the San Francisco Estuary which demonstrate that a dominant pattern of settling can be quantified and generally matches the exponentially decreasing pattern of SSC predicted by a simple advection-settling model. The observed pattern suggests that sediment settling and marsh flow characteristics are consistent both spatially (between transects) and temporally (between monthly sampling events). However, deviations from the predicted pattern occurred systematically at some locations and are likely related to resuspension of sediment from the marsh surface or small, unmapped creek channels that supply sediment to the marsh. Despite these deviations, our data show this simple 1-D model of advection and settling can be used to generalize within-marsh sediment transport as a function of distance from the nearest sediment source.

  2. Soil Dynamics Following Fire in Juncus and Spartina Marshes

    Science.gov (United States)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1992-01-01

    We examined soil changes in the O-5 and 5-15 cm layers for one year after a fire in burned Juncus roemerianus and Spartina bakeri marshes and an unburned Juncus marsh. Each marsh was sampled (N = 25) preburn, immediately postburn, and 1, 3, 6, 9, and 12 months postburn. All marshes were flooded at the time of the fire; water levels declined below the surface by 6 months but reflooded at 12 months after the fire. Soil samples were analyzed for pH, conductivity, organic matter, exchangeable Ca, Mg, and K, available PO4-P, total Kjeldahl nitrogen (TKN), exchangeable NO3-N, NO2-N, and NH4-N. Changes due to burning were most pronounced in the surface (0-5 cm) layer. Soil pH increased 0.16-0.28 units immediately postburn but returned to preburn levels in 1 month. Organic matter increased by 1 month and remained elevated through 9 months after the fire. Calcium, Mg, K, and PO4-P all increased by 1 month after burning, and the increases persisted for 6 to 12 months. Conductivity increased in association with these cations. Burning released ions from organic matter as indicated by the increase in pH, conductivity, Ca, Mg, K, and PO4-P. NH4-N in burned marshes was elevated 6 months and NO3-N 12 months after burning. TKN showed seasonal variations but no clear fire-related changes. Nitrogen species were affected by the seasonally varying water levels as well as fire; these changes differed from those observed in many upland systems.

  3. Factors limiting the recovery of boreal toads (Bufo b. boreas)

    Science.gov (United States)

    Carey, C.; Corn, P.S.; Jones, M.S.; Livo, L.J.; Muths, E.; Loeffler, C.W.; Lannoo, M.

    2005-01-01

    Boreal toads (Bufo b. boreas) are widely distributed over much of the mountainous western United States. Populations in the Southern Rocky Mountains suffered extensive declines in the late 1970s through early 1980s (Carey, 1993). At the time, these mass mortalities were thought to be associated with a bacterial infection (Carey, 1993). Although the few populations that survived the mass die-offs were not systematically monitored until at least 1993, no mass mortalities had been observed until 1996 when die-offs were observed. A mycotic skin infection associated with a chytrid fungus is now causing mortality of toads in at least two of the populations (M.S. Jones and D.E. Green, unpublished data; Muths et al., 2003). Boreal toads are now absent throughout large areas of their former distribution in Colorado and southern Wyoming and may be extinct in New Mexico (Corn et al., 1989; Carey, 1993; Stuart and Painter, 1994). These toads are classified as “endangered” by Colorado and New Mexico and are designated as a protected non-game species in Wyoming. The U.S. Fish and Wildlife Service has categorized the Southern Rocky Mountain populations for federal listing and is currently reviewing their designation as a “warranted but precluded” species for possible listing in the next few years. For the management of boreal toads and their habitats, a Boreal Toad Recovery Team was formed by the Colorado Division of Wildlife in 1995 as part of a collaborative effort with federal agencies within the United States’ departments of the Interior and Agriculture and with agencies in two adjoining states. To date, conservation agreements have been signed by eight state and federal agencies and by the Colorado Natural Heritage Program. Although boreal toads were considered common throughout their range in Colorado, no comprehensive surveys of the numbers and sizes of their populations were conducted prior to mass die-offs in the 1970s. Surveys completed in the late 1980s to

  4. Can Oregon Marshes Keep Up With The Rising Tide? A Study of Short and Long Term Marsh Accretion.

    Science.gov (United States)

    More frequent inundation of Oregon coastal marshlands associated with rising sea level threatens these important and diverse habitats. Study plot accretion rates determined by the marker horizon method and longer term peak Cs137 detection in eight marsh systems from Coquille to ...

  5. Can Oregon marshes keep up with the rising tide? A study of short and long term marsh accretion - CERF 2015

    Science.gov (United States)

    More frequent inundation of Oregon coastal marshlands associated with rising sea level threatens these important and diverse habitats. Accretion rates determined by the marker horizon method and longer term peak Cs137 detection in nine marsh systems from Coquille to Tillamook we...

  6. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene.

    Science.gov (United States)

    Taranu, Zofia E; Gregory-Eaves, Irene; Leavitt, Peter R; Bunting, Lynda; Buchaca, Teresa; Catalan, Jordi; Domaizon, Isabelle; Guilizzoni, Piero; Lami, Andrea; McGowan, Suzanne; Moorhouse, Heather; Morabito, Giuseppe; Pick, Frances R; Stevenson, Mark A; Thompson, Patrick L; Vinebrooke, Rolf D

    2015-04-01

    Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  8. Unexpected differences in the population genetics of phasmavirids (Bunyavirales) from subarctic ponds.

    Science.gov (United States)

    Ballinger, Matthew J; Medeiros, Andrew S; Qin, Jie; Taylor, Derek J

    2017-01-01

    Little is known of the evolution of RNA viruses in aquatic systems. Here, we assess the genetic connectivity of two bunyaviruses (Kigluaik phantom orthophasmavirus or KIGV and Nome phantom orthophasmavirus or NOMV) with zooplanktonic hosts from subarctic ponds. We expected weak genetic structure among populations as the hosts (phantom midges) have a terrestrial winged dispersal stage. To test whether their respective viruses mirror this structure, we collected and analyzed population datasets from 21 subarctic freshwater ponds and obtained sequences from all four genes in the viral genomes. Prevalence averaged 66 per cent for 514 host specimens and was not significantly different between recently formed thaw ponds and glacial ponds. Unexpectedly, KIGV from older ponds showed pronounced haplotype divergence with little evidence of genetic connectivity. However, KIGV populations from recent thaw ponds appeared to be represented by a closely related haplotype group, perhaps indicating a genotypic dispersal bias. Unlike KIGV, NOMV had modest structure and diversity in recently formed thaw ponds. For each virus, we found elevated genetic diversity relative to the host, but similar population structures to the host. Our results suggest that non-random processes such as virus-host interactions, genotypic bias, and habitat effects differ among polar aquatic RNA viruses.

  9. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean

    Directory of Open Access Journals (Sweden)

    Hok Sum Fok

    2013-01-01

    Full Text Available While the barotropic ocean tides in the deep ocean are well modeled to ~2 cm RMS, accurate tidal prediction in the ice-covered polar oceans and near coastal regions remain elusive. A notable reason is that the most accurate satellite altimeters (TOPEX/Jason-1/-2, whose orbits are optimized to minimize the tidal aliasing effect, have spatial coverage limited to largely outside of the polar ocean. Here, we update the assessment of tidal models using 7 contemporary global and regional models, and show that the altimetry sea surface height (SSH anomaly residual after tidal correction is 9 - 12 cm RMS in the Subarctic Ocean. We then address the hypothesis whether plausible evidence of variable tidal signals exist in the seasonally ice-covered Subarctic Ocean, where the sea ice cover is undergoing rapid thinning. We first found a difference in variance reduction for multi-mission altimeter SSH anomaly residuals during the summer and winter seasons, with the residual during winter season 15 - 30% larger than that during the summer season. Experimental seasonal ocean tide solutions derived from satellite altimetry reveals that the recovered winter and summer tidal constituents generally differ by a few cm in amplitude and tens of degrees in phase. Relatively larger seasonal tidal patterns, in particular for M2, S2 and K1 tides, have been identified in the Chukchi Sea study region near eastern Siberia, coincident with the seasonal presence and movement of sea ice.

  10. BOREAS (Boreal Ecosystem-Atmosphere Study): Global change and biosphere-atmosphere interactions in the boreal forest

    Science.gov (United States)

    Sellers, Piers J.

    1991-01-01

    The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.

  11. Population dynamics and life history strategies of the dominant copepods in a sub-arctic Greenlandic fjord

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Nielsen, Torkel Gissel

    Investigations of the Arctic and Sub-Arctic pelagic food web have previously focused on the copepod genus Calanus, as they often dominate the mesozooplankton community and serve as a lipid rich food source for higher trophic levels. However, if night samples are considered a different food web mi...

  12. A comparison of annual and seasonal carbon dioxide effluxes between subarctic Sweden and high-arctic Svalbard

    DEFF Research Database (Denmark)

    Björkman, Mats P.; Morgner, Elke; Björk, Robert G.

    2010-01-01

    estimated in High-Arctic Adventdalen, Svalbard, and sub-Arctic Latnjajaure, Sweden, using a new trace gas-based method to track real-time diffusion rates through the snow. Summer measurements from snow-free soils were made using a chamber-based method. Measurements were obtained from different snow regimes...

  13. Population dynamics and production of the small copepod Oithona spp. in a subarctic fjord of West Greenland

    DEFF Research Database (Denmark)

    Zamora-Terol, Sara; Kjellerup, Sanne; Swalethorp, Rasmus

    2014-01-01

    The small cyclopoid copepod Oithona is widely occurring in polar areas; however, knowledge of its biology and ecology is very limited. Here, we investigate the population dynamics, vertical distribution, and reproductive characteristics of Oithona spp. from late winter to summer, in a subarctic f...

  14. Variation in genetic traits of the Baltic clam Macoma balthica from a tidal gradient in the subarctic

    NARCIS (Netherlands)

    Hummel, H.; Gunther, C.P.; Bogaards, R.H.; Fedyakov, V.

    1998-01-01

    In a subarctic tidal gradient, strong heterogeneity in genetic traits of the Baltic clam Macoma balthica was found. The heterogeneity was stronger within the intertidal gradient, over a distance of only about GO mi than along a horizontal gradient over a distance of 1200 km in clams from the west

  15. Sub-arctic hydrology and climate change : a case study of the Tana River Basin in Northern Fennoscandia

    NARCIS (Netherlands)

    Dankers, Rutger

    2002-01-01

    The most significant changes in climate, due to the well-known enhanced greenhouse effect, are generally expected to occur at northern high latitudes. Sub-arctic environments, that are dominated by the presence of a seasonal snow cover, may therefore be particularly sensitive to global warming. The

  16. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms

    DEFF Research Database (Denmark)

    Grogan, P.; Michelsen, A.; Ambus, P.

    2004-01-01

    of which is realistic of in situ spatial and temporal variation in field conditions, on C and N dynamics in sub-arctic heath tundra mesocosms. In addition, N-15 isotopic label was used to follow the partitioning of a labile N pool between major ecosystem components, both during the freeze-thaw treatments...

  17. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Nicole M. Herman-Mercer; Elli Matkin; Melinda J. Laituri; Ryan C. Toohey; Maggie Massey; Kelly Elder; Paul F. Schuster; Edda A. Mutter

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation...

  18. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species

    NARCIS (Netherlands)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M.; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-01-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such

  19. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Science.gov (United States)

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  20. Environmental assessment of Al-Hammar Marsh, Southern Iraq.

    Science.gov (United States)

    Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim

    2017-02-01

    (a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results

  1. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  2. Coupled Wave Energy and Erosion Dynamics along a Salt Marsh Boundary, Hog Island Bay, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anthony M. Priestas

    2015-09-01

    Full Text Available The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN. We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters, a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters, this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes.

  3. Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California.

    Science.gov (United States)

    Walton, W E; Workman, P D

    1998-03-01

    The species composition and abundance of larval mosquitoes were studied in the vegetated regions of 2 types of experimental constructed wetlands: one-phase marshes, which have continuous vegetation throughout the marsh, and 3-phase marshes, which have 2 vegetated regions separated by a region of comparatively deeper open water. Larvae of Culex spp. were significantly more abundant in one-phase marshes than in 3-phase marshes. Larval populations in one-phase marshes also contained proportionately more older larval instars (stages III and IV) than did populations in 3-phase marshes. Mortality rates of larvae increased during the summer and were higher in 3-phase marshes than in one-phase marshes during the initial 6 wk of the study. Differences in mortality rates between marsh types were related to predator abundance during the first 6 wk of the study and thereafter were not strongly associated with predator populations. An infusion of decaying bulrush (Schoenoplectus californicus) stimulated oviposition by gravid Culex stigmatosoma more than by gravid Culex quinquefasciatus and Culex tarsalis. Culex erythrothorax was the most abundant host-seeking species collected in CO2-baited traps; however, larvae were rarely collected during routine dip sampling and egg rafts were never collected in oviposition studies.

  4. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    NARCIS (Netherlands)

    Vandenbruwaene, W.; Maris, T.; Cox, T.J.S.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced

  5. We adapt… but is it good or bad? Locating the political ecology and social-ecological systems debate in reindeer herding in the Swedish Sub-Arctic.

    NARCIS (Netherlands)

    Gallardo, Gloria; Saunders, Fred; Sokolova, Tatiana; Börebäck, Kristina; van Laerhoven, F.S.J.; Kokko, Suvi; Tuvendal, Magnus

    2017-01-01

    Abstract Reindeer herding (RDH) is a livelihood strategy deeply connected to Sami cultural tradition. This article explores the implications of two theoretical and methodological approaches for grasping complex socioenvironmental relationships of RDH in Subarctic Sweden. Based on joint fieldwork,

  6. Middle to Late Holocene Fluctuations of C3 and C4 Vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B J; Moore, K A; Lehmann, C; Bohlen, C; Brown, T A

    2006-05-26

    A 3.1 meter sediment core was analyzed for stable carbon isotope composition of organic matter and higher plant leaf wax (HPLW) lipid biomarkers to determine Holocene shifts in C{sub 3} (higher high marsh) and C{sub 4} (low and/or high marsh) plant deposition at the Sprague River Salt Marsh, Phippsburg, Maine. The carbon isotope composition of the bulk sediment and the HPLW parallel each other throughout most of the core, suggesting that terrestrial plants are an important source of organic matter to the sediments, and diagenetic alteration of the bulk sediments is minimal. The current salt marsh began to form 2500 cal yr BP. Low and/or high C{sub 4} marsh plants dominated deposition at 2000 cal yr BP, 700 cal yr BP, and for the last 200 cal yr BP. Expansion of higher high marsh C{sub 3} plants occurred at 1300 and 600 cal yr BP. These major vegetation shifts result from a combination of changes in relative sea-level rise and sediment accumulation rates. Average annual carbon sequestration rates for the last 2500 years approximate 40 g C yr{sup -1} m{sup -2}, and are in strong agreement with other values published for the Gulf of Maine. Given that Maine salt marshes cover an area of {approx}79 km{sup 2}, they represent an important component of the terrestrial carbon sink. More detailed isotopic and age records from a network of sediment cores at Sprague Marsh are needed to truly evaluate the long term changes in salt marsh plant communities and the impact of more recent human activity, including global warming, on salt marsh vegetation.

  7. Nekton assemblage structure in natural and created marsh-edge habitats of the Guadalupe Estuary, Texas, USA

    Science.gov (United States)

    Zeug, Steven C.; Shervette, Virginia R.; Hoeinghaus, David J.; Davis, Stephen E., III

    2007-02-01

    Natural and created Spartina brackish marsh habitats in the Guadalupe Estuary, adjacent to the Aransas National Wildlife Refuge, Texas, USA were surveyed during spring, summer, and fall 2004 to evaluate the equivalence of nekton assemblages in an old (>30 years) created marsh. During each season, six replicate samples were collected in each marsh type using a 1-m 2 drop sampler. Multivariate analysis revealed significant differences in nekton assemblage structure among marsh type, both within and across seasons. Species richness was significantly higher in the natural marsh in spring and summer but not in fall. Several species that were dominant in the natural marsh but rare or absent in the created marsh had strong correlations with the presence of oyster substrate that was only encountered in natural marsh samples. Although cumulative richness was greater in the natural marsh, eight species were collected only from the created marsh. Shrimp and fish biomass was significantly higher in natural marsh. Analysis of the density, biomass and size structure of three commercially important crustaceans indicated that the created marsh supported similar biomass of some species (white shrimp, blue crab); however, the size structure of some populations was variable among marshes (blue crab, brown shrimp). We conclude that lower substrate complexity (specifically oyster) and soil organic content in the created marsh reduced measures of nekton similarity and recommend that these features be addressed in future restoration efforts.

  8. Spatial patch occupancy patterns of the Lower Keys marsh rabbit

    Science.gov (United States)

    Eaton, Mitchell J.; Hughes, Phillip T.; Nichols, James D.; Morkill, Anne; Anderson, Chad

    2011-01-01

    Reliable estimates of presence or absence of a species can provide substantial information on management questions related to distribution and habitat use but should incorporate the probability of detection to reduce bias. We surveyed for the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) in habitat patches on 5 Florida Key islands, USA, to estimate occupancy and detection probabilities. We derived detection probabilities using spatial replication of plots and evaluated hypotheses that patch location (coastal or interior) and patch size influence occupancy and detection. Results demonstrate that detection probability, given rabbits were present, was population trends of Lower Keys marsh rabbits from historical data and to guide management decisions for species recovery. The sampling and analytical methods we used may be useful for researchers and managers of other endangered lagomorphs and cryptic or fossorial animals occupying diverse habitats.

  9. Oiling accelerates loss of salt marshes, southeastern Louisiana.

    Directory of Open Access Journals (Sweden)

    Michael Beland

    Full Text Available The 2010 BP Deepwater Horizon (DWH oil spill damaged thousands of km2 of intertidal marsh along shorelines that had been experiencing elevated rates of erosion for decades. Yet, the contribution of marsh oiling to landscape-scale degradation and subsequent land loss has been difficult to quantify. Here, we applied advanced remote sensing techniques to map changes in marsh land cover and open water before and after oiling. We segmented the marsh shorelines into non-oiled and oiled reaches and calculated the land loss rates for each 10% increase in oil cover (e.g. 0% to >70%, to determine if land loss rates for each reach oiling category were significantly different before and after oiling. Finally, we calculated background land-loss rates to separate natural and oil-related erosion and land loss. Oiling caused significant increases in land losses, particularly along reaches of heavy oiling (>20% oil cover. For reaches with ≥20% oiling, land loss rates increased abruptly during the 2010-2013 period, and the loss rates during this period are significantly different from both the pre-oiling (p < 0.0001 and 2013-2016 post-oiling periods (p < 0.0001. The pre-oiling and 2013-2016 post-oiling periods exhibit no significant differences in land loss rates across oiled and non-oiled reaches (p = 0.557. We conclude that oiling increased land loss by more than 50%, but that land loss rates returned to background levels within 3-6 years after oiling, suggesting that oiling results in a large but temporary increase in land loss rates along the shoreline.

  10. Boreal Forest Biomass Classification with TanDEM-X

    Science.gov (United States)

    Torano Caicoya, Astor; Kugler, Florian; Hajnsek, Irena; Papathanassiou, Kostas

    2013-08-01

    High spatial resolution X-band interferometric SAR data from TanDEM-X acquired in the operational DEM generation mode are sensitive to forest structure and can therefore be used for thematic boreal forest classification. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equations with sufficient accuracy and can therefore, be used for thematic classification applications. Two test sites in mid- and southern Sweden are investigated. A maximum of 4 biomass classes, up to 150 Mg/ha, for a single baseline scenario and 5 biomass classes up to 250 Mg/ha for a dual baseline scenario, are achieved.

  11. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  12. Salt marsh vegetation promotes efficient tidal channel networks

    Science.gov (United States)

    Kearney, W. S.; Fagherazzi, S.

    2014-12-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes and mudflats. Biology feeds back into channel morphodynamics through vegetation's influence on the cohesive strength of channel banks. Understanding the morphology of a tidal channel network is thus essential to understanding both the biological functioning of intertidal ecosystems and the topographic signature of life. A critical measure of the morphology of a channel network is the unchanneled path length, which is characteristic of the efficiency with which a network dissects the marsh platform. However, the processes which control the formation and maintenance of an efficient tidal channel network remain unclear. Here we show that an unvegetated marsh platform (Estero La Ramada, Baja California, Mexico) is dissected by a less efficient channel network than a vegetated one (Barnstable, Massachusetts, United States). The difference in geometric efficiency reflects a difference in the branching and meandering characteristics of the network, characteristics controlled by the density of vegetation on the channel banks. Our results suggest a feedback between network geometry and vegetation, mediated by fluxes of nutrients and salinity through the channel network, maintains the observed network geometries. An efficient network can support a denser vegetation community which stabilizes channel banks, leading to an efficient meandering geometry.

  13. Distribution and metabolism of quaternary amines in salt marshes

    Science.gov (United States)

    King, Gary M.

    1985-01-01

    Quaternary amines such as glycine betaine (GBT) are common osmotically active solutes in much of the marine biota. GBT is accumulated by various bacteria, algae, higher plants, invertebrates, and vertebrates in response to salinity or water stresses; in some species, GBT occurs at tens to hundreds of millimolar concentrations and can account for a significant fraction of total nitrogen. Initial studies suggest that GBT is readily converted to two potential methane precursors, trimethylamine (TMA) and acetate, in anoxic sediments. TMA is apparently the most important methane precursor in surface sediments containing sulfate reducing bacteria. In salt marshes, the bulk of the methane formed may be due to the metabolism of TMA rather than other substrates. Current research is focussed on testing this hypothesis and on determining the role of quaternary amino osmoregulatory solutes in methane fluxes from marine environments. Preliminary studies have dealt with several problems: (1) determination of GBT concentrations in the dominant flora and fauna of salt marshes; (2) synthesis of radiolabelled GBT for metabolic studies; and (3) determination of fates of BGT in marine sediments using radiotracers. Both GC and HPLC techniques have been used to assay GBT concentrations in plant and animal tissues. S. alterniflora is probably the only significant source of GBT (and indirectly of methane) since the biomass and distribution of most other species is limited. Current estimates suggest that S. alterniflora GBT could account for most of the methane efflux from salt marshes.

  14. Boreal forest albedo and its spatial and temporal variation

    OpenAIRE

    Kuusinen, Nea

    2014-01-01

    Surface albedo refers to the fraction of solar irradiance that is reflected by a surface. Accurate characterisation of the albedo of various land cover types is required for evaluating the energy exchange between the Earth s surface and the atmosphere. The optical and structural properties of a surface determine its albedo. Boreal forest albedo can vary due to factors such as tree species composition, forest structure, understorey vegetation composition, and seasonal changes in vegetation and...

  15. Foreword to the special issue: the Boreal Triassic

    OpenAIRE

    Mørk, Atle; Nakrem, Hans Arne; Hounslow, Mark; Weitschat, Wolfgang

    2008-01-01

    This collection of papers on the Boreal Triassic grew from a conference in 2002, which was initiated as part of the networking activities linked to the International Geosciences Project (IGCP) 467—Triassic Time and Trans-Panthalassa Correlations—from an original suggestion by Mark Hounslow and Mike Orchard of the International Union of Geological Sciences Subcommission on Triassic Stratigraphy. The aim of the conference was to provide insight on improved Low- to High-Latitude correlations, an...

  16. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  17. The protective role of coastal marshes: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Christine C Shepard

    Full Text Available BACKGROUND: Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7, salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30. Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. CONCLUSIONS/SIGNIFICANCE: Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision

  18. Multiple stressors and the potential for synergistic loss of New England salt marshes

    OpenAIRE

    Crotty, Sinead M.; Angelini, Christine; Bertness, Mark D.

    2017-01-01

    Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analys...

  19. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  20. The protective role of coastal marshes: a systematic review and meta-analysis.

    Science.gov (United States)

    Shepard, Christine C; Crain, Caitlin M; Beck, Michael W

    2011-01-01

    Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7), salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30). Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision makers employ natural systems to maximize the benefits and ecosystem services provided by

  1. Carbon balance and climate change in boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. S.; Laird, L. D.; Banfield, E. [Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada); Van Kooten, G. C. [Victoria Univ., Dept. of Economics, Victoria, BC (Canada); Apps, M. J. [Canadian Forest Service, Pacific Forestry Centre, Victoria, BC (Canada); Campbell, I. D. [Natural Resources Canada, Geological Survey of Canada, Ottawa, ON (Canada); Campbell, C. [Canadian Forest Service, Ottawa, ON (Canada); Turetsky, M. R. [U. S. Geological Survey, Western Region Center, Menlo Park, CA (United States); Yu, Z. [Lehigh Univ., Earth and Environmental Sciences, Bethlehem, PA (United States)

    2003-07-01

    Carbon is exchanged between terrestrial ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion, hence its importance to global climate. To explain that role, this chapter discusses the role of the boreal forest in the carbon cycle, the expected impacts of climate change on the boreal ecosystem, and the effects of various natural and human factors on the carbon balance of the forest. Economic and forest management issues in relation to carbon resources of the forest are also explored in light of the Kyoto Protocol commitments to reduce greenhouse gas emissions, along with challenges to sustainable forest management seen from the vantage point of climatic change. Among natural disasters, fire, infestation by insects and pathogens,storms, floods, and landslides receive attention, whereas in the area of human impacts attention is focused on land-use practices, and forest stand and landscape-level management. An overview of the Kyoto Protocol, Canada's commitments, the concepts of emissions trading, and carbon credits and the role of forestry, is provided. Other subjects explored include options for minimizing carbon emission in boreal forestry, and the economic impacts of adaptation to climate change on forestry. 245 refs., 5 tabs., 13 figs.

  2. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  3. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland

    2007-01-01

    Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim...... was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon...... the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate...

  4. DECOMPOSITION OF SUB-ARCTIC PLANTS WITH DIFFERING NITROGEN ECONOMIES: A FUNCTIONAL ROLE FOR HEMIPARASITES

    DEFF Research Database (Denmark)

    Quested, H.M.; Cornelissen, J.H.C.; Press, M.C.

    2003-01-01

    in these processes, a comparison of leaf and litter tissue quality, nitrogen (N) resorption, and decomposability with those of a wide range of other plant groups (involving a total of 72 species and including other groups with access to alternative nutrient sources, such as nitrogen fixers and carnivorous plants...... and perennial hemiparasite litter contained, on average, 3.1% and 1.9% N, respectively, compared with 0.77–1.1% for groups without a major alternative N source. Hemiparasite litter lost significantly more mass during decomposition than many, but not all, co-occurring species. These results were combined...... with those of a litter trapping experiment to assess the potential impact of hemiparasites on nutrient cycling. The common sub-arctic hemiparasite Bartsia alpina was estimated to increase the total annual N input from litter to the soil by 42% within 5 cm of its stems, and by 53% across a site with a Bartsia...

  5. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...

  6. Switching predominance of organic versus inorganic carbon exports from an intermediate-size subarctic watershed

    Science.gov (United States)

    Dornblaser, Mark M.; Striegl, Robert G.

    2015-01-01

    Hydrologic exports of dissolved inorganic and organic carbon (DIC, DOC) reflect permafrost conditions in arctic and subarctic river basins. DIC yields in particular, increase with decreased permafrost extent. We investigated the influence of permafrost extent on DIC and DOC yield in a tributary of the Yukon River, where the upper watershed has continuous permafrost and the lower watershed has discontinuous permafrost. Our results indicate that DIC versus DOC predominance switches with interannual changes in water availability and flow routing in intermediate-size watersheds having mixed permafrost coverage. Large water yield and small concentrations from mountainous headwaters and small water yield and high concentrations from lowlands produced similar upstream and downstream carbon yields. However, DOC export exceeded DIC export during high-flow 2011 while DIC predominated during low-flow 2010. The majority of exported carbon derived from near-surface organic sources when landscapes were wet or frozen and from mineralized subsurface sources when infiltration increased.

  7. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003......Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated...... herbivory affect vegetation, soil nutrient concentrations and soil microbial communities after 10-13 years of exposure. 2 We established a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisj rvi, Finland, in 1994. Warming was carried out using the open-top chamber...

  8. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T.N.; Gabrielsen, G.W.; Falk-Petersen, S.

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  9. Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season

    DEFF Research Database (Denmark)

    Campioli, Matteo; Samson, Roeland; Michelsen, Anders

    2009-01-01

    Bryophytes and lichens abound in many arctic ecosystems and can contribute substantially to the ecosystem net primary production (NPP). Because of their growth seasonality and their potential for growth out of the growing season peak, bryophyte and lichen contribution to NPP may be particularly...... significant when vascular plants are less active and ecosystems act as a source of carbon (C). To clarify these dynamics, nonvascular and vascular aboveground NPP was compared for a subarctic heath during two contrasting periods of the growing season, viz. early-mid summer and late summer-early autumn....... Nonvascular NPP was determined by assessing shoot biomass increment of three moss species (Hylocomium splendens, Pleurozium schreberi and Dicranum elongatum) and by scaling to ecosystem level using average standing crop. For D. elongatum, these estimates were compared with production estimates obtained from...

  10. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  11. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.

    Science.gov (United States)

    Rochlin, Ilia; Morris, James T

    2017-08-01

    The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise. © 2017 by the Ecological Society of America.

  12. Coastal marsh response to rising sea levels in the Grand Bay, MS estuary

    Science.gov (United States)

    Alizad, K.; Hagen, S. C.; Morris, J. T.; Medeiros, S. C.; Bilskie, M. V.; Passeri, D. L.

    2015-12-01

    The Grand Bay estuary, situated along the border of Alabama and Mississippi, is a marine dominant estuary. Juncus roemerianus and Spartina alterniflora cover approximately 49% of the estuary (Eleuterius and Criss, 1991); However, this marsh system is prone to erosion more than other marsh systems in the state (Mississippi Department of Marine Resources 1999). Water level and wind-driven waves are critical factors that cause erosion in the Grand Bay estuary. Sediment transport induced by wave forces from the Gulf of Mexico and sea level rise force salt marshes to migrate landward (Schmid 2000). Understanding projected variations in vegetation can aid in productive restoration planning and coastal management decisions. An integrated hydro-marsh model was developed to incorporate the dynamic interaction between tidal hydrodynamics and salt marsh system. This model projects salt marsh productivity by coupling a two-dimensional, depth-integrated ADvanced CIRCulation (ADCIRC) finite element model and a parametric marsh model (Morris et al., 2002). The model calculates marsh productivity as a function of mean low water (MLW), mean high water (MHW), and the elevation of the marsh platform. The coupling exchange process is divided into several time intervals that capture the rate of sea level rise, and update the elevation and bottom friction from the computed marsh productivity. Accurate description of salt marsh platform is necessary for calculating accurate biomass results (Hagen et al. 2013). Lidar-derived digital elevation models (DEM) over-estimate marsh platform elevations, but can be corrected with Real Time Kinematic (RTK) survey data (Medeiros et al., 2015). Using RTK data, the salt marsh platform was updated and included in a high resolution hydrodynamic model. Four projections of sea level rise (Parris et al., 2012) were used to project salt marsh productivity for the year 2100 for the Grand Bay, MS estuary. The results showed a higher productivity under low sea

  13. Nursery function of an estuarine tidal marsh for the brown shrimp Crangon crangon

    Science.gov (United States)

    Cattrijsse, André; Dankwa, Hederick R.; Mees, Jan

    1997-12-01

    The brown shrimp Crangon crangon migrates into the brackish part of the Westerschelde estuary (southwest Netherlands) shortly after metamorphosis and uses the tidal marsh habitat as a nursery until reaching a total length of about 15 mm. The importance of the marsh as a nursery was evaluated by estimating foraging activity, predation mortality and residence time. In early postlarval stages, C. crangon utilised the intertidal creeks of an estuarine tidal marsh from early spring (March-April) until late autumn (October-November). Postlarval shrimp leaving the marsh with the ebb tide always had significantly more food in their stomachs than shrimp entering the marsh with the incoming flood water. Predation upon the shrimp population was relatively low during most months, but in increased between August and October when common gobies, Pomatoschistus microps, were present in high densities. There was also predation by the small seabass Dicentrarchus labrax. The marsh creeks function both as foraging areas and as predation refuge. Depending on temperature, postlarval shrimp stayed in the marsh for a period of two to three weeks. Quantitatively, the value of the marsh as a nursery area had changed drastically during a second year of sampling, illustrating high natural year-to-year variability. However, the seasonal pattern remained. Recruitment to the subtidal adult population represents an export of animals from the marsh to the estuary. This export is negligible in terms of biomass (as compared to the total biomass of the estuarine population) but it may be important in terms of numbers of individuals.

  14. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  15. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J S; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  16. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  17. Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010

    Science.gov (United States)

    Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,

    2015-07-23

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types (that is, fresh, intermediate, brackish, and saline) for modeling habitat capacities and needs of marsh dependent taxa (such as waterfowl and alligator). Detailed information on the extent and distribution of emergent marsh vegetation types throughout the northern Gulf of Mexico coast has been historically unavailable. In response, the U.S. Geological Survey, in collaboration with the Gulf Coast Joint Venture, the University of Louisiana at Lafayette, Ducks Unlimited, Inc., and the Texas A&M University-Kingsville, produced a classification of emergent marsh vegetation types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama.

  18. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  19. Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.

    Science.gov (United States)

    Leblans, Niki I W; Sigurdsson, Bjarni D; Vicca, Sara; Fu, Yongshuo; Penuelas, Josep; Janssens, Ivan A

    2017-11-01

    The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming-induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground-level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short- and long-term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming-driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high-latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming-induced extension of LOS has important implications for the C-sink potential of subarctic grasslands under climate

  20. A systems approach to understanding subarctic critical zone changes in a warming climate (Invited)

    Science.gov (United States)

    Rich, V. I.; McCalley, C. K.; Woodcroft, B. J.; Kim, E.; Hodgkins, S. B.; Tfaily, M. M.; Wehr, R. A.; Logan, T.; Jones, R.; Mondav, R.; Hurst, G.; Verberkmoes, N.; Li, C.; Frolking, S. E.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Tyson, G. W.

    2013-12-01

    Climate change is dramatically altering the subarctic and Arctic Critical Zone. Permafrost, which currently holds approximately one third of global soil carbon in a relatively unavailable form, is predicted to be virtually eliminated by the end of the century. One endpoint for permafrost habitat thaw is wetlands, which are a major source of the microbially-produced greenhouse gas methane. This creates a potentially large positive feedback to climate change. Our team is using a systems approach spanning diverse geochemical (high-resolution greenhouse gas isofluxes and soil/peat geochemistry) and molecular (16S rRNA gene amplicon, metagenomic and metaproteomic sequencing) measurements to track parallel changes in carbon cycling and in situ microbiology across a natural permafrost thaw gradient. Thaw at this site results in a three-stage habitat shift from ericaceous shrubs, to peat moss, to sedges, concomitant with a substantial increase in methane emissions. Isotopically, emitted methane shifts along the thaw gradient away from hydrogenotrophic methane production, in parallel with the appearance of acetoclastic methanogens in the microbial community. Community data have also revealed the presence of a novel, highly-active methanogen from the euryarchaeal lineage Rice Cluster-II, dubbed Candidatus Methanoflorens stordalenmirensis. Its ';species' is present in numerous other global wetland datasets, has the genomic capacity (inferred from its population genome) for hydrogenotrophic methanogenesis, and was the highest environmental correlate of emitted methane's isotopic signature. In situ community global protein expression profiles (i.e. metaproteomes) revealed that it strongly expresses its hydrogentrophic methanogensis genes, and that methanogenesis is a dominant signal in the overall community proteome. As we generate a portrait of how thaw impacts this major subarctic critical zone habitat, we are working with ecosystem process modelers to integrate new

  1. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    Science.gov (United States)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p pH and soil C-to-N ratio (r = -0.76, p enzyme activity and soil C-to-N ratio (r = 0.78, p effect on soil pH.

  2. Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance

    Directory of Open Access Journals (Sweden)

    Clara J. M. Hoppe

    2017-07-01

    Full Text Available In order to understand how ocean acidification (OA and enhanced irradiance levels might alter phytoplankton eco-physiology, productivity and species composition, we conducted an incubation experiment with a natural plankton assemblage from sub-surface Subarctic waters (Davis Strait, 63°N. The phytoplankton assemblage was exposed to 380 and 1,000 μatm pCO2 at both 15 and 35% surface irradiance over 2 weeks. The incubations were monitored and characterized in terms of their photo-physiology, biomass stoichiometry, primary production and dominant phytoplankton species. We found that the phytoplankton assemblage exhibited pronounced high-light stress in the first days of the experiment (20–30% reduction in photosynthetic efficiency, Fv/Fm. This stress signal was more pronounced when grown under OA and high light, indicating interactive effects of these environmental variables. Primary production in the high light treatments was reduced by 20% under OA compared to ambient pCO2 levels. Over the course of the experiment, the assemblage fully acclimated to the applied treatments, achieving similar bulk characteristics (e.g., net primary production and elemental stoichiometry under all conditions. We did, however, observe a pCO2-dependent shift in the dominant diatom species, with Pseudonitzschia sp. dominating under low and Fragilariopsis sp. under high pCO2 levels. Our results indicate an unexpectedly high level of resilience of Subarctic phytoplankton to OA and enhanced irradiance levels. The co-occurring shift in dominant species suggests functional redundancy to be an important, but so-far largely overlooked mechanism for resilience toward climate change.

  3. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean

    Science.gov (United States)

    Maldonado, Maria T.; Price, Neil M.

    1999-11-01

    Experiments were conducted along a coastal-oceanic transect in the NE subarctic Pacific to examine acquisition of organically complexed Fe by autotrophic and heterotrophic plankton. During short-term experiments, plankton took up Fe bound to the siderophores desferrioxamine B and E, microbial Fe chelates with a high affinity for Fe. Uptake occurred in all size fractions: 0.2-1, 1-3, and >3 μm. Heterotrophic bacteria had higher Fe : C ratios (1.5 to 2 times) than phytoplankton, and accounted for 70±8% of the total Fe uptake by the community (mol Fe ml -1 h -1). This latter result was partially explained by the higher C biomass of bacteria, but was not related to their productivity. Carbon-specific uptake rates of Fe were also faster (1.6±1.5 times) in bacteria than phytoplankton. When the rates were normalized per cell surface area, however, phytoplankton were observed to transport Fe at a rate more than 30 times that of bacteria. Large phytoplankton greater than 3 μm reduced Fe bound to organic ligands extracellularly. Their Fe : C ratios and rates of uptake and reduction of organically bound Fe were very similar at all stations along the transect and were characteristic of Fe-stressed phytoplankton. A strong seasonal trend of Fe uptake and reduction was apparent. The results suggest that heterotrophic bacteria are responsible for a large fraction of dissolved Fe uptake and that the indigenous plankton of the subarctic Pacific are able to acquire Fe bound to strong organic ligands, the predominant form of dissolved Fe in the sea.

  4. Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic

    Science.gov (United States)

    Matti, B.; Dahlke, H. E.; Lyon, S. W.

    2015-12-01

    There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical

  5. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  6. Fire impacts on European Boreal soils: A review

    Science.gov (United States)

    Pereira, Paulo; Oliva, Marc; Cerda, Artemi

    2016-04-01

    Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research

  7. Tree Water Use May Significantly Impact Boreal Hydrology

    Science.gov (United States)

    Young, J. M.; Bolton, W. R.

    2013-12-01

    The ecohydrology of boreal forest ecosystems of Interior Alaska is not well understood largely because of challenges posed by the presence of discontinuous permafrost. Near-surface permafrost results in storage-dominated systems with cold, poorly drained soils, and slow growing, low statured coniferous trees (Picea mariana) or CDE's. The transition to permafrost-free areas can occur over a few meters and is accompanied by a vegetation community dominated by large deciduous trees (Populus sp. and Betula sp.) or DDE's. Typically, areas with permafrost are on north facing slopes and valley bottoms, and areas without permafrost are south facing. In Alaska's boreal forest, the permafrost is very warm and vulnerable to the effects of climate change. Once permafrost begins to thaw, the vegetation community shifts from coniferous to deciduous dominated. Streamflow in watersheds with a larger permafrost distribution tends to be higher and more responsive to precipitation events than in watersheds with low permafrost distribution. In fact, precipitation events in the low permafrost areas do not infiltrate past the rooting zone of the deciduous trees (~5-40 cm). This suggests that the deciduous trees may remove water from the system via uptake and transpiration. We focus on how vegetation water use affects boreal forest hydrology in areas of discontinuous permafrost. Specifically, we ask: what are the patterns of vegetation water use in areas with and without permafrost? This study focuses on the CDE and DDE systems. Our research sites are established on low and high locations on each aspect (south facing DDE, north facing CDE) to capture the variability associated with the different hillside drainage properties. At each of the four sites during the growing season, we measured various aspects of plant water use dynamics, including water flux, water content, water sources, depth of water uptake in the soil, and water stress. We use a Bayesian framework to analyze the data. We

  8. TALL-HERB BOREAL FORESTS ON NORTH URAL

    Directory of Open Access Journals (Sweden)

    A. A. Aleinikov

    2016-09-01

    Full Text Available Background. One of the pressing aims of today’s natural resource management is its re-orientation to preserving and restoring ecological functions of ecosystems, among which the function of biodiversity maintenance plays an indicator role. The majority of today’s forests have not retained their natural appearance as the result of long-standing human impact. In this connection, refugia studies are becoming particularly interesting, as they give us an insight into the natural appearance of forests. Materials and methods. Studies were performed in dark conifer forests of the Pechora–Ilych reserve, in the lower reaches of the Bol’shaya Porozhnyaya River in 2013 yr. Vegetation data sampling was done at 50 temporary square plots of a fixed size (100 m2 randomly placed within a forest type. A list of plant species with species abundance was made for each forest layer. The overstorey (or tree canopy layer was denoted by the Latin letter A. The understorey layer (indicated by the letter B included tree undergrowth and tall shrubs. Ground vegetation was subdivided into the layers C and D. Layer C (field layer comprised the herbaceous species (herbs, grasses, sedges and dwarf shrubs together with low shrubs, tree and shrub seedlings. The height of the field layer was defined by the maximal height of the herbaceous species, ferns, and dwarf shrubs; the height varied from several cm to more than 200 cm in the ‘tall-herb’ forest types. Layer D (bottom layer included cryptogamic species (bryophytes and lichens. Species abundance in the each layer was usually assessed using the Braun-Blanquet cover scale (Braun-Blanquet 1928. The nomenclature used follows Cherepanov’s (1995 for vascular plants, and Ignatov & Afonina’s (1992. Results. The present article contains descriptions of unique tall-herb boreal forests of European Russia preserved in certain refugia which did not experience prolonged anthropogenic impact or any other catastrophes

  9. Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake

    Energy Technology Data Exchange (ETDEWEB)

    Shirokova, L.S. [Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Science, Naberezhnaya Severnoi Dviny, 23, Arkhangelsk, 163000 (Russian Federation); GET UMR 5563 CNRS, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse (France); Pokrovsky, O.S., E-mail: oleg@get.obs-mip.fr [Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Science, Naberezhnaya Severnoi Dviny, 23, Arkhangelsk, 163000 (Russian Federation); GET UMR 5563 CNRS, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse (France); Moreva, O.Yu.; Chupakov, A.V.; Zabelina, S.A.; Klimov, S.I.; Shorina, N.V.; Vorobieva, T.Ya. [Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Science, Naberezhnaya Severnoi Dviny, 23, Arkhangelsk, 163000 (Russian Federation)

    2013-10-01

    The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa–0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30 °C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70–80% to only 20–30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90–98% in most summers and winters to approximately 60–70% in August 2010. During this hot summer, measurable and significant (> 30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (< 0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic

  10. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.

    Directory of Open Access Journals (Sweden)

    Peter I Macreadie

    Full Text Available Increased recognition of the global importance of salt marshes as 'blue carbon' (C sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2 if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora sediment C levels following seagrass (Thallasiatestudinum wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA, we recorded 296 patches (7.5 ± 2.3 m(2 mean area ± SE of vegetation loss (aged 3-12 months in a salt marsh meadow the size of a soccer field (7 275 m(2. Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

  11. The transformation and fate of sub-Arctic microphytobenthos carbon revealed through 13C-labeling

    DEFF Research Database (Denmark)

    Oakes, Joanne M.; Rysgaard, Søren; Glud, Ronnie N.

    2016-01-01

    Cm(-2)h(-1)) was comparable to that reported for temperate regions. Some of the C-13 fixed by sub-Arctic MPB was rapidly (within 0.5 d) transferred to deeper sediments (below 2 cm), but most was retained within surface sediments (>70.2% of the C-13 present at any time during the study). At any time, MPB...... accounted for49.8% of this C-13. The C-13 content of sediment organic carbon declined over time, but>31% of the C-13 fixed within the first tidal cycle remained after 31 d, suggesting that sub-Arctic MPB may contribute to coastal carbon retention during the productive season. Over 21 d, 10.6% of the fixed C...... conditions are more important than climate differences for determining the processing and fate of MPB-C....

  12. The Conservation of Tidal Marsh Birds: Guiding action at the intersection of our changing land and seascapes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Project Objectives: To identify critical areas for tidal marsh bird conservation and identify which marshes and species in the Northeast/Mid‐Atlantic are most...

  13. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.0) to Shell Keys National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on Shell...

  14. Development of a Climate Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  15. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.0) to Pinellas National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  16. Application of the Sea-Level Affecting Marshes Model (SLAMM 5.0) to Caloosahatchee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Sea-Level Affecting Marshes Model (SLAMM) report presents a model for projecting the effects of sea-level rise on coastal marshes and related habitats on...

  17. Development of a Climate-Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  18. Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis

    National Research Council Canada - National Science Library

    Thomas J. Minello; Kenneth W. Able; Michael P. Weinstein; Cynthia G. Hays

    2003-01-01

    We examined the nursery role of salt marshes for transient nekton by searching the literature for data on density, growth, and survival of juvenile fishes and decapod crustaceans in marshes and using...

  19. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

    Science.gov (United States)

    van Geffen, Koert G; Berg, Matty P; Aerts, Rien

    2011-12-01

    As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.

  20. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

    OpenAIRE

    Geffen, van, LCMM; Berg, M.P.; Aerts, R.

    2011-01-01

    As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all pos...

  1. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Kelly Elder,; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  2. Changing times, changing stories: generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Directory of Open Access Journals (Sweden)

    Nicole M. Herman-Mercer

    2016-09-01

    Full Text Available Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1 intergenerational observations of change were common among interview participants in all four communities, (2 older generations observed more overall change than younger generations interviewed by us, and (3 how change was perceived varied between generations. We defined "observations" as the specific examples of environmental and weather change that were described, whereas "perceptions" referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  3. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    Science.gov (United States)

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  4. Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization?

    Science.gov (United States)

    Kienast, S.S.; Hendy, I.L.; Crusius, J.; Pedersen, Thomas F.; Calvert, S.E.

    2004-01-01

    The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micro-nutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ???35??N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today. ?? The Oceanographic Society of Japan.

  5. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    Science.gov (United States)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  6. Vegetation effects on fish distribution in impounded salt marshes

    Science.gov (United States)

    Stolen, Eric D.; Collazo, Jaime; Percival, H. Franklin

    2009-01-01

    We compared the density and biomass of resident fish in vegetated and unvegetated flooded habitats of impounded salt marshes in the northern Indian River Lagoon (IRL) Estuary of east-central Florida. A 1-m2 throw trap was used to sample fish in randomly located, paired sample plots (n = 198 pairs) over 5 seasons in 7 impoundments. We collected a total of 15 fish taxa, and 88% of the fishes we identified from the samples belonged to three species: Cyprinodon variegatus (Sheepshead Minnow), Gambusia holbrooki (Eastern Mosquitofish), and Poecilia latipinna (Sailfin Molly). Vegetated habitat usually had higher density and biomass of fish. Mean fish density (and 95% confidence interval) for vegetated and unvegetated sites were 8.2 (6.7–9.9) and 2.0 (1.6–2.4) individuals m-2, respectively; mean biomass (and 95%) confidence interval) for vegetated and unvegetated sites were 3.0 (2.5–3.7) and 1.1 (0.9–1.4) g m-2, respectively. We confirmed previous findings that impounded salt marshes of the northern IRL Estuary produce a high standing stock of resident fishes. Seasonal patterns of abundance were consistent with fish moving between vegetated and unvegetated habitat as water levels changed in the estuary. Differences in density, mean size, and species composition of resident fishes between vegetated and unvegetated habitats have important implications for movement of biomass and nutrients out of salt marsh by piscivores (e.g., wading birds and fishes) via a trophic relay.

  7. Climate changes in mangrove forests and salt marshes

    Directory of Open Access Journals (Sweden)

    Yara Schaeffer-Novelli

    Full Text Available Abstract This synthesis is framed within the scope of the Brazilian Benthic Coastal Habitat Monitoring Network (ReBentos WG 4: Mangroves and Salt Marshes, focusing on papers that examine biodiversity-climate interactions as well as human-induced factors including those that decrease systemic resilience. The goal is to assess difficulties related to the detection of climate and early warning signals from monitoring data. We also explored ways to circumvent some of the obstacles identified. Exposure and sensitivity of mangrove and salt marsh species and ecosystems make them extremely vulnerable to environmental impacts and potential indicators of sea level and climate-driven environmental change. However, the interpretation of shifts in mangroves and salt marsh species and systemic attributes must be scrutinized considering local and setting-level energy signature changes; including disturbance regime and local stressors, since these vary widely on a regional scale. The potential for adaptation and survival in response to climate change depends, in addition to the inherent properties of species, on contextual processes at the local, landscape, and regional levels that support resilience. Regardless of stressor type, because of the convergence of social and ecological processes, coastal zones should be targeted for anticipatory action to reduce risks and to integrate these ecosystems into adaptation strategies. Management must be grounded on proactive mitigation and collaborative action based on long-term ecosystem-based studies and well-designed monitoring programs that can 1 provide real-time early warning and 2 close the gap between simple correlations that provide weak inferences and process-based approaches that can yield increasingly reliable attribution and improved levels of anticipation.

  8. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    Science.gov (United States)

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  9. OIL DETECTION IN A COASTAL MARSH WITH POLARIMETRIC SAR

    Directory of Open Access Journals (Sweden)

    E. Ramsey III

    2012-09-01

    Full Text Available The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD and Cloude-Pottier (CP decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  10. Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico.

    Science.gov (United States)

    Heard, Richard W.

    The major groups of marine and estuarine macroinvertebrates of the tidal marshes of the northern Gulf of Mexico are described in this guide for students, taxonomists and generalists. Information on the recognition characteristics, distribution, habitat, and biology of salt marsh species from the coelenterate, annelid, mollusk and arthropod phyla…

  11. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    Science.gov (United States)

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  12. Salt marsh stability and patterns of sedimentation across a backbarrier platform

    DEFF Research Database (Denmark)

    Bartholdy, Anders; Bartholdy, Jesper; Kroon, Aart

    2010-01-01

    Long term observations of clay thicknesses from 1949 to 2007 and measurements of the bulk dry density of salt marsh on the backbarrier of Skallingen (west Denmark) formed the basis of constructing a space distributed model of salt marsh deposition. The deposition potential (an empirical constant,...

  13. On autochtonous organic production and its implication for the consolidation of temperate salt marshes

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Bartholdy, Anders; Kim, Daehyun

    2014-01-01

    The organic production related to minerogene salt marsh deposits represents a challenge to all attempts to model the development of these areas, and evaluate their chances of survival under different sea level scenarios. Salt marsh deposits on a typical temperate backbarrier saltmarsh area at the...

  14. POTENTIAL FOR THE DEVELOPMENT OF MARSH VEGETATION FROM THE SEED BANK AFTER A DRAWDOWN

    NARCIS (Netherlands)

    TERHEERDT, GNJ; DROST, HJ

    1994-01-01

    In the inundated part of the Oostvaardersplassen, a marsh in The Netherlands, most of the emergent vegetation disappeared due to herbivory and erosion, resulting in a shallow lake. The emergent vegetation was successfully re-established by means of a drawdown. A comparable flooded marsh was studied

  15. Contribution of Cultural Eutrophication to Marsh Loss in Jamaica Bay (NY)

    Science.gov (United States)

    Loss of salt marsh area in the Jamaica Bay Estuary (NY) has accelerated in recent years, with loss rates as high as 45 acres per year. A contributing factor to this acceleration is likely cultural eutrophication due to over 6 decades of sewage effluent inputs. We examined marsh...

  16. The effect of flooding on the recruitment of reed marsh and tall forb plant species

    NARCIS (Netherlands)

    Lenssen, J.P.M.; Ten Dolle, G.E.; Blom, C.W.P.M.

    1998-01-01

    Recruitment of plant species in wetlands dominated by Phragmites australis often results in a zonation of two vegetation types. A development of reed marshes takes place in the shallow flooded parts where the dominant P. australis becomes accompanied by interstitial marsh species. The vegetation on

  17. Community structure and abundance of benthic infaunal invertebrates in Maine fringing marsh ecosystems

    Science.gov (United States)

    Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan

    2015-01-01

    Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...

  18. Zooming in and out: scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    NARCIS (Netherlands)

    Wang, H.; van der Wal, D.; Li, X.; van Belzen, J.; Herman, P.M.J.; Hu, Z.; Ge, Z.; Zhang, L.; Bouma, T.J.

    2017-01-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and

  19. Burrowing and foraging activity of marsh crabs under different inundation regimes

    Science.gov (United States)

    New England salt marshes are susceptible to degradation and habitat loss as a result of increased periods of inundation as sea levels rise. Increased inundation may exacerbate marsh degradation that can result from crab burrowing and foraging. Most studies to date have focused on...

  20. Experimental salt marsh islands: A model system for novel metacommunity experiments

    Science.gov (United States)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  1. Marsh soil responses to tidal water nitrogen additions contribute to creek bank fracturing and slumping

    Science.gov (United States)

    Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...

  2. Ecosystem metabolism in a temporary Mediterranean marsh (Donana National Park, SW Spain)

    DEFF Research Database (Denmark)

    Geertz-Hansen, O.; Montes, C.; Duarte, C.M.

    2011-01-01

    metabolic balance of the open waters supporting submerged macrophytes of the Donana marsh (SW Spain) was investigated in spring, when community production is highest. The marsh community (benthic + pelagic) was net autotrophic with net community production rates averaging 0.61 g C m(-2) d(-1...

  3. Impacts of the Deepwater Horizon Oil Spill on Salt Marsh Periwinkles (Littoraria irrorata).

    Science.gov (United States)

    Zengel, Scott; Montague, Clay L; Pennings, Steven C; Powers, Sean P; Steinhoff, Marla; Fricano, Gail; Schlemme, Claire; Zhang, Mengni; Oehrig, Jacob; Nixon, Zachary; Rouhani, Shahrokh; Michel, Jacqueline

    2016-01-19

    Deepwater Horizon was the largest marine oil spill in U.S. waters, oiling large expanses of coastal wetland shorelines. We compared marsh periwinkle (Littoraria irrorata) density and shell length at salt marsh sites with heavy oiling to reference conditions ∼16 months after oiling. We also compared periwinkle density and size among oiled sites with and without shoreline cleanup treatments. Densities of periwinkles were reduced by 80-90% at the oiled marsh edge and by 50% in the oiled marsh interior (∼9 m inland) compared to reference, with greatest numerical losses of periwinkles in the marsh interior, where densities were naturally higher. Shoreline cleanup further reduced adult snail density as well as snail size. Based on the size of adult periwinkles observed coupled with age and growth information, population recovery is projected to take several years once oiling and habitat conditions in affected areas are suitable to support normal periwinkle life-history functions. Where heavily oiled marshes have experienced accelerated erosion as a result of the spill, these habitat impacts would represent additional losses of periwinkles. Losses of marsh periwinkles would likely affect other ecosystem processes and attributes, including organic matter and nutrient cycling, marsh-estuarine food chains, and multiple species that prey on periwinkles.

  4. Parasite Recruitment and Host Risk in a Snail-Trematode System at Carpinteria Salt Marsh

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The project is located at Carpinteria Salt Marsh, part of the University of California Reserve System. The marsh is located at 34.40°N, 119.53°W, which is near the...

  5. Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Melanie J Beazley

    Full Text Available Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05 once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.

  6. Trade-offs between biodiversity and flood protection services of coastal salt marshes

    NARCIS (Netherlands)

    Loon-Steensma, van J.M.; Vellinga, P.

    2013-01-01

    Coastal salt marshes provide a range of ecosystem services. However, their area is steadily diminishing as a result of human-made modifications to the coastal zone. The accelerated rise of sea level is another challenge to the self-generating capacity of coastal salt marshes. This is a subject of

  7. Multiple stressors and the potential for synergistic loss of New England salt marshes.

    Science.gov (United States)

    Crotty, Sinead M; Angelini, Christine; Bertness, Mark D

    2017-01-01

    Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.

  8. Effects of Tide Stage on the Use of Salt Marshes by Wading Birds in Rhode Island

    Science.gov (United States)

    To determine how tide stage affects wading bird abundance, behavior, and foraging in three Narragansett Bay salt marshes (RI), we conducted surveys at 10-min intervals—across the full tidal range—during six days at each marsh in July/September of 2006. The wading bird community ...

  9. Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton

    Science.gov (United States)

    Vegetated salt-marsh surfaces provide refuge, forage, and spawning habitat for estuarine nekton, yet are threatened by accelerating rates of sea-level rise in southern New England and elsewhere. Nekton responses to ongoing marsh surface changes need to be evaluated with effective...

  10. Effects of salinity variations on pore water flow in salt marshes

    Science.gov (United States)

    Shen, Chengji; Jin, Guangqiu; Xin, Pei; Kong, Jun; Li, Ling

    2015-06-01

    Spatial and temporal salinity variations in surface water and pore water commonly exist in salt marshes under the combined influence of tidal inundation, precipitation, evapotranspiration, and inland freshwater input. Laboratory experiments and numerical simulations were conducted to investigate how density gradients associated with salinity variations affect pore water flow in the salt marsh system. The results showed that upward salinity (density) gradients could lead to flow instability and the formation of salt fingers. These fingers, varying in size with the distance from the creek, modified significantly the pore water flow field, especially in the marsh interior. While the flow instability enhanced local salt transport and mixing considerably, the net effect was small, causing only a slight increase in the overall mass exchange across the marsh surface. In contrast, downward salinity gradients exerted less influence on the pore water flow in the marsh soil and slightly weakened the surface water and groundwater exchange across the marsh surface. Numerical simulations revealed similar density effects on pore water flow at the field scale under realistic conditions. These findings have important implications for studies of marsh soil conditions concerning plant growth as well as nutrient exchange between the marsh and coastal marine system.

  11. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.

    Science.gov (United States)

    Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E

    2009-08-01

    A primary focus among microbial ecologists in recent years has been to understand controls on the distribution of microorganisms in various habitats. Much less attention has been paid to the way that environmental disturbance interacts with processes that regulate bacterial community composition. We determined how human disturbance affected the distribution and community structure of salt marsh sediment bacteria by using denaturing gradient gel electrophoresis of 16S rRNA in five different habitats in each of four salt marshes located in northeastern Massachusetts, USA. Two of the four marsh creeks were experimentally enriched 15 x above background by the addition of nitrogen and phosphorus fertilizers for two or more growing seasons. Our results indicate that extrinsic factors acting at broad scales do not influence the distribution of salt marsh sediment bacteria. Intrinsic factors, controlled by local-scale environmental heterogeneity, do play a role in structuring these sediment microbial communities, although nutrient enrichment did not have a consequential effect on the microbial community in most marsh habitats. Only in one habitat, a region of the marsh creek wall that is heavily colonized by filamentous algae, did we see any effect of fertilization on the microbial community structure. When similar habitats were compared among marshes, there was considerable convergence in the microbial community composition during the growing season. Environmental factors that correlated best with microbial community composition varied with habitat, suggesting that habitat-specific intrinsic forces are primarily responsible for maintaining microbial diversity in salt marsh sediments.

  12. alpha- and beta-diversity in moth communities in salt marshes is driven by grazing management

    NARCIS (Netherlands)

    Rickert, C.; Fichtner, A.; van Klink, R.; Bakker, J. P.

    This study evaluates the effects of long-term sheep grazing in salt marshes on the diversity of moths and derives conclusive management suggestions for the conservation of invertebrate diversity in salt marshes. Study sites were located on the Hamburger Hallig, on the Western coast of

  13. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Weyde, van der C.; Esselink, P.; Smit, C.; Wieren, van S.E.; Bakker, J.P.

    2017-01-01

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  14. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Van der Weyde, C; Esselink, Peter; Smit, C.; Van Wieren, S.E.; Bakker, Jan P.

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  15. Summer movements of boreal toads (Bufo boreas boreas) in two western Montana basins

    Science.gov (United States)

    David A. Schmetterling; Michael K. Young

    2008-01-01

    The Boreal Toad (Bufo boreas boreas) is widely distributed in the western United States but has declined in portions of its range. Research directed at conserving Boreal Toads has indicated that their movements are largely terrestrial and often limited after the breeding season. We used a combination of stream-based netting, PIT tagging, and radio...

  16. The effect of fire intensity on soil respiration in Siberia boreal forest

    Science.gov (United States)

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  17. Pennsylvania boreal conifer forests and their bird communities: past, present, and potential

    Science.gov (United States)

    Douglas A. Gross

    2010-01-01

    Pennsylvania spruce (Picea spp.)- and eastern hemlock (Tsuga canadensis)-dominated forests, found primarily on glaciated parts of the Allegheny Plateau, are relicts of boreal forest that covered the region following glacial retreat. The timber era of the late 1800s and early 1900s (as late as 1942) destroyed most of the boreal...

  18. Age-related seasonal variation in captures of stream-borne Boreal Toads (Bufo boreas boreas, Bufonidae) in western Montana

    Science.gov (United States)

    Michael K. Young; David A. Schmetterling

    2009-01-01

    Like many species of amphibians, Boreal Toads (Bufo boreas boreas, Bufonidae) are declining throughout portions of their range. Recent efforts have focused on describing the ecology of this species, yet few studies have evaluated demographic characteristics that may influence the persistence of Boreal Toad populations. Because Boreal Toads often...

  19. Mercury Cycling in Salt Marsh Pond Ecosystems: Cape Cod, MA

    Science.gov (United States)

    Ganguli, P. M.; Gonneea, M. E.; Lamborg, C. H.; Kroeger, K. D.; Swarr, G.; Vadman, K. J.; Baldwin, S.; Brooks, T. W.; Green, A.

    2014-12-01

    We are measuring total mercury (HgT) and monomethylmercury (CH3Hg+ or MMHg) in pore water, surface water, and sediment cores from two salt marsh pond systems on the south shore of Cape Cod, MA to characterize the distribution of mercury species and to identify features that influence mercury speciation and transport. Sage Lot Pond is relatively undisturbed and has low nitrogen loading (12 kg ha-1 y-1). It is part of the Waquoit Bay National Estuarine Reserve and is surrounded by undeveloped wooded uplands. In contrast, Great Pond is highly impacted. Nitrogen loading to the site is elevated (600 kg ha-1 y-1) and the marsh is adjacent to a large residential area. In both systems, a 1 to 2 m organic-rich peat layer overlies the permeable sand aquifer. Groundwater in this region is typically oxic, where pore water within salt marsh peat is suboxic to anoxic. We hypothesize that redox gradients at the transition from the root zone to peat and at the peat-sand interface may provide habitat for MMHg-producing anaerobic bacteria. Preliminary results from a 2-m nearshore depth profile at Sage Lot Pond indicate HgT in groundwater within the sand aquifer occurred primarily in the > 0.2 μm fraction, with unfiltered concentrations exceeding 100 pM. Filtered (< 0.2 μm) HgT in groundwater was substantially lower (~ 5 pM). In contrast, HgT concentrations in filtered and unfiltered pore water within the peat layer were similar and ranged from about 2 to 3 pM. Complexation between mercury and dissolved organic carbon may account for the elevated fraction of filtered HgT in peat pore water. Although MMHg in both groundwater and pore water remained around 1 pM throughout our depth profile, we observed an increase in sediment MMHg (0.3 to 1.6 μg/kg) at the peat-sand interface. MMHg comprised ~50% of the HgT concentration in pore water suggesting mercury in the salt marsh peat is biologically available.

  20. Food habits of redheads at the Horicon marsh, Wisconsin

    Science.gov (United States)

    Kenow, K.P.; Rusch, D.H.

    1996-01-01

    Food habits of Redheads (Aythya americana) investigated at the Horicon National Wildlife Refuge, Wisconsin, during 1983-1985. Prelaying females consumed plant material almost exclusively, primarily seeds of moist-soil plant species. The diet of laying and incubating females was dominated by seeds but also contained 16-17% animal matter. Consumption of animal matter during egg production was substantially lower than reported in other studies of food habits of Redheads. The diet of Juvenile Redheads changed with age. Animal foods were nearly half of the diet of ducklings diversity of flooding regimes may promote plant communities that produce importance food resources for Redheads on the Horicon Marsh.

  1. 76 FR 76180 - Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Suisun Marsh...

    Science.gov (United States)

    2011-12-06

    ... Report (EIS/EIR) for the Suisun Marsh Habitat Management, Preservation and Restoration Plan, California... prepared the Suisun Marsh Habitat, Management, Preservation, and Restoration Plan (SMP) Final EIS/EIR. The SMP is a comprehensive plan designed to address the various conflicts regarding use of Suisun Marsh...

  2. 78 FR 1246 - Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the...

    Science.gov (United States)

    2013-01-08

    ... Sweetwater Marsh Unit of the San Diego Bay National Wildlife Refuge, California; Intent To Prepare an... restoration of estuarine and salt marsh (subtidal and intertidal wetlands) habitats within the western... Diego Bay National Wildlife Refuge-Sweetwater Marsh Unit. We originally published a notice of intent on...

  3. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  4. Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico.

    Science.gov (United States)

    Walker, Allison K; Campbell, Jinx

    2010-01-01

    Marine fungal communities of created salt marshes of differing ages were compared with those of two reference natural salt marshes. Marine fungi occurring on the lower 30 cm of salt marsh plants Spartina alterniflora and Juncus roemerianus were inventoried with morphological and molecular methods (ITS T-RFLP analysis) to determine fungal species richness, relative frequency of occurrence and ascomata density. The resulting profiles revealed similar fungal communities in natural salt marshes and created salt marshes 3 y old and older with a 1.5 y old created marsh showing less fungal colonization. A 26 y old created salt marsh consistently exhibited the highest fungal species richness. Ascomata density of the dominant fungal species on each host was significantly higher in natural marshes than in created marshes at all three sampling dates. This study indicates marine fungal saprotroph communities are present in these manmade coastal salt marshes as early as 1 y after marsh creation. The lower regions of both plant hosts were dominated by a small number of marine ascomycete species consistent with those species previously reported from salt marshes of the East Coast of USA.

  5. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds

    Science.gov (United States)

    Hodge, Joshua; Williams, Harry

    2016-12-01

    This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual

  6. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva

    the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...... ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from...... in relation to N loading in Sippewissett. Clearly more work is needed to understand what determines the relative importance of removal versus recycling processes in salt marsh ecosystems....

  7. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P nekton use as compared to pre-restoration conditions (open water samples) by providing marsh edge habitat, but failed to support a nekton community similar to unmanaged marsh (restoration goals) or coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  8. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...... of estuaries have emphasized the negative consequences of its disappearance. In addition, as a result of increasing global population and increasing human activities, salt marshes, estuaries and other coastal waters have been subjected to increasing nutrient loadings with anthropogenic origin. This chapter...... aims to draw attention to the sequestration capacity of salt marshes for the excess of nutrients, and to evaluate the ecological services provided by salt marsh halophytes by regulating the biogeochemical cycles of nitrogen (N) and phosphorus (P). In this context, two case studies will be presented...

  9. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forest s * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  10. Hydrogen peroxide distribution, production, and decay in boreal lakes

    OpenAIRE

    Häkkinen, P J; Anesio, Alexandre Magno; Granéli, Wilhelm

    2004-01-01

    The distribution, production, and decay of hydrogen peroxide (H2O2) were studied in 10 boreal lakes of differing physical-chemical characteristics. Diurnal and vertical fluctuations in H2O2 concentration were followed in the lakes by sampling at six depths three times per day. In addition, incubations of water filtered through 0.2-mu mesh were made under artificial irradiation to study the abiotic production and decay of H2O2. H2O2 concentrations after 8 h of artificial irradiation were signi...

  11. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds......We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  12. Trace gas emissions from chaparral and boreal forest fires

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  13. Association of climatic factors with infectious diseases in the Arctic and subarctic region – a systematic review

    Directory of Open Access Journals (Sweden)

    Christina Hedlund

    2014-07-01

    Full Text Available Background: The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. Objectives: To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. Methods: A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. Results: In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14, the rest from Sweden (n=6, Finland (n=4, Norway (n=2, Russia (n=2, and Alaska, US (n=1. Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. Conclusions: More studies of high quality

  14. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific

    Science.gov (United States)

    Janssen, D. J.; Abouchami, W.; Galer, S. J. G.; Cullen, J. T.

    2017-08-01

    We present dissolved cadmium (Cd) concentrations, [Cd], and stable isotope compositions, ε 112 / 110Cd, in high-resolution depth profiles from five stations along the Line P transect in the subarctic northeast Pacific Ocean. In addition to profiles collected in 2012, subsurface isopycnal samples and surface samples were collected in 2013 and 2014 respectively, providing both temporal and spatial coverage. Surface waters are characterized by Cd depletion relative to phosphate (4 3-PO) compared to deepwater 4 -3Cd:PO, and high inferred remineralization ratios in the nutricline (0.45nmolμmol-1) are observed, consistent with Cd enrichment relative to phosphorus (P) in surface-derived biogenic particles. The correlation between Cd and 4 3-PO weakens at depths where oxygen is highly depleted as shown by local minima in dissolved [Cd] and the tracer Cd*. The decoupling, which is driven by a deficit of Cd relative to 4 3-PO, appears consistent with the recent hypothesis of dissolved Cd removal in oxygen-depleted regions by insoluble metal sulfide formation. Dissolved ε 112 / 110Cd indicates a biologically driven fractionation in surface waters with more positive (heavy) values in the upper water column and lower (light) values in deeper waters. The highest ε 112 / 110Cd observed in our sample set (5.19 ± 0.23) is comparable to observations from the Southern Ocean but is significantly lighter than maximum reported surface values from the subtropical North Pacific of ε 112 / 110Cd ≥ 15. A global compilation of low [Cd] surface water shows similar differences in maximum ε 112 / 110Cd. A surface water intercalibration should be prioritized to help determine if these differences at low [Cd] reflect true physical or biological variability or are due to analytical artefacts. Surface samples from the 2012 sampling campaign fit a closed-system Rayleigh fractionation model; however, surface waters sampled in 2014 had much lower [Cd] with relatively constant ε 112 / 110Cd

  15. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    Science.gov (United States)

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  16. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill.

    Science.gov (United States)

    Silliman, Brian R; van de Koppel, Johan; McCoy, Michael W; Diller, Jessica; Kasozi, Gabriel N; Earl, Kamala; Adams, Peter N; Zimmerman, Andrew R

    2012-07-10

    More than 2 y have passed since the BP-Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here we report on not only rapid salt-marsh recovery (high resilience) but also permanent marsh area loss after the BP-Deepwater Horizon oil spill. Field observations, experimental manipulations, and wave-propagation modeling reveal that (i) oil coverage was primarily concentrated on the seaward edge of marshes; (ii) there were thresholds of oil coverage that were associated with severity of salt-marsh damage, with heavy oiling leading to plant mortality; (iii) oil-driven plant death on the edges of these marshes more than doubled rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent; and (iv) after 18 mo, marsh grasses have largely recovered into previously oiled, noneroded areas, and the elevated shoreline retreat rates observed at oiled sites have decreased to levels at reference marsh sites. This paper highlights that heavy oil coverage on the shorelines of Louisiana marshes, already experiencing elevated retreat because of intense human activities, induced a geomorphic feedback that amplified this erosion and thereby set limits to the recovery of otherwise resilient vegetation. It thus warns of the enhanced vulnerability of already degraded marshes to heavy oil coverage and provides a clear example of how multiple human-induced stressors can interact to hasten ecosystem decline.

  17. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill

    Science.gov (United States)

    Silliman, Brian R.; van de Koppel, Johan; McCoy, Michael W.; Diller, Jessica; Kasozi, Gabriel N.; Earl, Kamala; Adams, Peter N.; Zimmerman, Andrew R.

    2012-01-01

    More than 2 y have passed since the BP–Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here we report on not only rapid salt-marsh recovery (high resilience) but also permanent marsh area loss after the BP–Deepwater Horizon oil spill. Field observations, experimental manipulations, and wave-propagation modeling reveal that (i) oil coverage was primarily concentrated on the seaward edge of marshes; (ii) there were thresholds of oil coverage that were associated with severity of salt-marsh damage, with heavy oiling leading to plant mortality; (iii) oil-driven plant death on the edges of these marshes more than doubled rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent; and (iv) after 18 mo, marsh grasses have largely recovered into previously oiled, noneroded areas, and the elevated shoreline retreat rates observed at oiled sites have decreased to levels at reference marsh sites. This paper highlights that heavy oil coverage on the shorelines of Louisiana marshes, already experiencing elevated retreat because of intense human activities, induced a geomorphic feedback that amplified this erosion and thereby set limits to the recovery of otherwise resilient vegetation. It thus warns of the enhanced vulnerability of already degraded marshes to heavy oil coverage and provides a clear example of how multiple human-induced stressors can interact to hasten ecosystem decline. PMID:22733752

  18. Taxonomic synopsis of Notiospathius Matthews & Marsh, 1973 (Hymenoptera: Braconidae) from Colombia.

    Science.gov (United States)

    Rodriguez-Jimenez, Andrea; Sarmiento, Carlos E

    2016-06-29

    Notiospathius Matthews & Marsh, 1973 is the second most diverse genus of Doryctinae in the Neotropical region, however, in Colombia only two species have been reported and no studies on the diversity of the genus have been conducted. We present a taxonomic synopsis of the genus from Colombia. Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) allowed the taxonomic evaluation of morphometric characters used by other authors and those proposed in the present study to differentiate the species. Forty seven of 104 characters studied are useful to discriminate the species. Twenty three species are reported. The following new records for Colombia are: Notiospathius angustus Marsh, 2002; N. badius Marsh, 2002; N. bicolor Marsh, 2002; N. ninae Marsh, 2002; N. rugonotum Marsh, 2002; N. shawi Marsh, 2002; N. tinctipennis (Cameron, 1887) and N. venezuelae López-Estrada & Zaldívar-Riverón, 2012. The following 14 new species are described: N. alejandroi sp. nov., N. amazonensis sp. nov., N. carmenae sp. nov., N. cundinamarcensis sp. nov., N. farallonensis sp. nov., N. julianoi sp. nov., N. magdalenensis sp. nov., N. marshi sp. nov., N. payae sp. nov., N. putumayensis sp. nov., N. quimbayensis sp. nov., N. tayronensis sp. nov., N. utriae sp. nov., N. vallensis sp. nov. Notiospathius ugaldei Marsh, 2002 is the junior synonym of N. columbianus (Enderlein, 1912); Notiospathius mariachi Reséndiz-Flores, Nunes and Zaldívar-Riverón, 2014 is the junior synonym of N. carolinae (Marsh, 2002); and N. chinanteco Reséndiz-Flores, Nunes and Zaldívar-Riverón, 2014 is the junior synonym of N. rugonotum Marsh, 2002. A comprehensive taxonomic key with illustrations is presented.

  19. Temporal and spatial variation in CO2 exchange in a salt marsh dominated estuary (PIE LTER)

    Science.gov (United States)

    Forbrich, I.; Giblin, A. E.; Morris, J. T.; Hopkinson, C.

    2016-12-01

    Salt marshes are important carbon sinks, but large uncertainties about current rates of carbon exchange with the atmosphere and the ocean remain. These need to be constrained for a better assessment of changes in long-term drivers such as sea level and climate. At the Plum Island Ecosystems LTER, we are expecting a transition from the current Spartina patens dominated high marsh to a more frequently flooded Spartina alterniflora dominated low marsh with increasing sea level. We have set up two eddy covariance sites, one in a high marsh (starting in 2013) and one in a low marsh (starting in 2015) to study net ecosystem CO2 exchange and evapotranspiration (ET). We use a broad-band NDVI to monitor phenology at both sites, which is tightly coupled to the CO2 fluxes. While the temporal dynamics do not vary much between the years, the magnitude in NDVI and CO2 fluxes does: For the high marsh site, we observe lower NDVI (and smaller overall net CO2 uptake) in years with low rainfall during the growing season, e.g. in 2014 and likely in 2016. In 2014, a low rainfall period occurred at the beginning of the growing season, during which ET was slightly higher than in other years, which likely increased soil salinity. In 2016, the period of low rainfall has extended much longer into the growing season (on-going) which seems to have an overall stronger effect (i.e. decrease) on low marsh net CO2 uptake than on the high marsh. We will discuss our findings in the context of salt marsh hydrology and carbon cycling in high and low marsh.

  20. Complex population structure of Lyme borreliosis group spirochete Borrelia garinii in subarctic Eurasia.

    Science.gov (United States)

    Comstedt, Pär; Asokliene, Loreta; Eliasson, Ingvar; Olsen, Björn; Wallensten, Anders; Bunikis, Jonas; Bergström, Sven

    2009-06-09

    Borrelia garinii, a causative agent of Lyme borreliosis in Europe and Asia, is naturally maintained in marine and terrestrial enzootic cycles, which primarily involve birds, including seabirds and migratory passerines. These bird groups associate with, correspondingly, Ixodes uriae and Ixodes ricinus ticks, of which the latter species may bite and transmit the infection to humans. Studies of the overlap between these two natural cycles of B. garinii have been limited, in part due to the absence of representative collections of this spirochete's samples, as well as of the lack of reliable measure of the genetic heterogeneity of its strains. As a prerequisite for understanding the epidemiological correlates of the complex maintenance of B. garinii, the present study sought to assess the diversity and phylogenetic relationships of this species' strains from its natural hosts and patients with Lyme borreliosis from subarctic Eurasia. We used sequence typing of the partial rrs-rrl intergenic spacer (IGS) of archived and prospective samples of B. garinii from I. uriae ticks collected predominantly on Commander Islands in North Pacific, as well as on the islands in northern Sweden and arctic Norway. We also typed B. garinii samples from patients with Lyme borreliosis and I. ricinus ticks infesting migratory birds in southern Sweden, or found questing in selected sites on the islands in the Baltic Sea and Lithuania. Fifty-two (68%) of 77 B. garinii samples representing wide geographical range and associated with I. ricinus and infection of humans contributed 12 (60%) of total 20 identified IGS variants. In contrast, the remaining 25 (32%) samples recovered from I. uriae ticks from a few islands accounted for as many as 10 (50%) IGS types, suggesting greater local diversity of B. garinii maintained by seabirds and their ticks. Two IGS variants of the spirochete in common for both tick species were found in I. ricinus larvae from migratory birds, an indication that B

  1. Complex population structure of Lyme borreliosis group spirochete Borrelia garinii in subarctic Eurasia.

    Directory of Open Access Journals (Sweden)

    Pär Comstedt

    Full Text Available Borrelia garinii, a causative agent of Lyme borreliosis in Europe and Asia, is naturally maintained in marine and terrestrial enzootic cycles, which primarily involve birds, including seabirds and migratory passerines. These bird groups associate with, correspondingly, Ixodes uriae and Ixodes ricinus ticks, of which the latter species may bite and transmit the infection to humans. Studies of the overlap between these two natural cycles of B. garinii have been limited, in part due to the absence of representative collections of this spirochete's samples, as well as of the lack of reliable measure of the genetic heterogeneity of its strains. As a prerequisite for understanding the epidemiological correlates of the complex maintenance of B. garinii, the present study sought to assess the diversity and phylogenetic relationships of this species' strains from its natural hosts and patients with Lyme borreliosis from subarctic Eurasia. We used sequence typing of the partial rrs-rrl intergenic spacer (IGS of archived and prospective samples of B. garinii from I. uriae ticks collected predominantly on Commander Islands in North Pacific, as well as on the islands in northern Sweden and arctic Norway. We also typed B. garinii samples from patients with Lyme borreliosis and I. ricinus ticks infesting migratory birds in southern Sweden, or found questing in selected sites on the islands in the Baltic Sea and Lithuania. Fifty-two (68% of 77 B. garinii samples representing wide geographical range and associated with I. ricinus and infection of humans contributed 12 (60% of total 20 identified IGS variants. In contrast, the remaining 25 (32% samples recovered from I. uriae ticks from a few islands accounted for as many as 10 (50% IGS types, suggesting greater local diversity of B. garinii maintained by seabirds and their ticks. Two IGS variants of the spirochete in common for both tick species were found in I. ricinus larvae from migratory birds, an indication

  2. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-02-17

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes.

  3. German flooding of the Pontine Marshes in World War II.

    Science.gov (United States)

    Geissler, Erhard; Guillemin, Jeanne

    2010-03-01

    The German army's 1943 flooding of the Pontine Marshes south of Rome, which later caused a sharp rise in malaria cases among Italian civilians, has recently been described by historian Frank Snowden as a unique instance of biological warfare and bioterrorism in the European theater of war and, consequently, as a violation of the 1925 Geneva Protocol prohibiting chemical and biological warfare. We argue that archival documents fail to support this allegation, on several counts. As a matter of historical record, Hitler prohibited German biological weapons (BW) development and consistently adhered to the Geneva Protocol. Rather than biological warfare against civilians, the Wehrmacht used flooding, land mines, and the destruction of vital infrastructure to obstruct the Allied advance. To protect its own troops in the area, the German army sought to contain the increased mosquito breeding likely to be caused by the flooding. Italians returning to the Pontine Marshes after the German retreat in 1944 suffered malaria as a result of environmental destruction, which was banned by the 1899 and 1907 Hague Conventions and by subsequent treaties. In contrast, a state's violation of the Geneva Protocol, whether past or present, involves the use of germ weapons and, by inference, a state-level capability. Any allegation of such a serious violation demands credible evidence that meets high scientific and legal standards of proof.

  4. Habitat Evaluation Procedures (HEP) Report : Ladd Marsh, 2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife

    2001-10-01

    ]) have been working together since 1991 to coordinate the planning, selection, and implementation of BPA-funded wildlife mitigation projects. In 1997, the Oregon wildlife managers developed a programmatic project for mitigation planning and implementation within Oregon. The Ladd Marsh Wildlife Area Additions project is one of many habitat acquisition and restoration projects proposed under the Oregon wildlife managers programmatic project that have been approved and recommended for funding by the NWPPC. The Ladd Marsh Wildlife Area Additions mitigation project will protect and restore wetland, riparian and other habitats on newly acquired parcels at ODFW's Ladd Marsh Wildlife Area (LMWA). Wildlife habitat values resulting from the acquisition and enhancement of Ladd Marsh Wildlife Area lands will contribute towards mitigating for habitat lost as a result of the development and operation of the Columbia Basin hydropower system. This report summarizes the HEP survey conducted in June 2001 to document the baseline habitat values on four parcels recently added to the Ladd Marsh Wildlife Area: the 309.66-acre Wallender property, the 375.54-acre Simonis property, the 161.07-acre Conley Lake property, and the 74.55-acre Becker property. The 2001 HEP Team was comprised of the following members and agencies: Susan Barnes (ODFW), Allen Childs (CTUIR), Tracy Hames (Yakama Indian Nation), Dave Larson (ODFW), Cathy Nowak (Cat Tracks Wildlife Consulting), and Ken Rutherford (ODFW). Results of the HEP will be used to (1) determine the pre-restoration habitat values of the project sites, (2) the number of Habitat Units to be credited to BPA for protection of habitats within the project area, (3) determine the enhancement potential of the sites, and (4) develop a habitat management plan for the area.

  5. Modeling the Response of Boreal Forest Expansion on the Summer Arctic Frontal Zone

    Science.gov (United States)

    Liess, S.; Snyder, P. K.; Harding, K. J.

    2010-12-01

    Arctic warming over the last 100 years has resulted in a longer growing season in boreal and tundra ecosystems, especially during summertime. This has led to a northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have generally contributed to a broad region of warming over areas where boreal forest has expanded into tundra. Mesoscale and synoptic scale dynamics are likewise affected. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study focuses on the effects of boreal forest expansion on the summer Arctic frontal zone when albedo differences between tundra and boreal forest are at a maximum. The Arctic climate during the month of June was simulated with the WRF regional model coupled to the NOAH land surface model with 30 km horizontal resolution over the polar stereographic domain north of 50°N. The current distribution of vegetation is based on a recent MODIS-derived land cover data set. Two sets of experiments were conducted. One control experiment with observed land cover, and one sensitivity experiment where all grid points classified as open shrubland north of the boreal forest were replaced with either evergreen or deciduous boreal needleleaf forest depending on the type of boreal forest presently located south of a given open shrubland location. Both the boreal expansion and control simulations consist of 13 ensemble members. Results show a significant increase in storm track activity over areas with expanded boreal forest and to the north, where the increase in the meridional temperature gradient is strongest, particularly in eastern Russia, and eastern North America. A blocking high over eastern Russia contributes to a northward shift in the jet stream over this area. Storm track activity also increases over northern Europe and central Russia to the south of

  6. Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes

    Directory of Open Access Journals (Sweden)

    Jatta eSaarenheimo

    2015-07-01

    Full Text Available Denitrification is an important microbial process in aquatic ecosystems that can reduce the effects of eutrophication. Here, quantification and pyrosequencing of nirS, nirK and nosZ genes encoding for nitrite and nitrous oxide reductases was performed in sediment samples from four boreal lakes to determine the structure and seasonal stability of denitrifying microbial populations. Sediment quality and nitrate concentrations were linked to the quantity and diversity of denitrification genes, the abundance of denitrifying populations (nirS and nosZ genes correlated with coupled nitrification-denitrification (Dn, and the denitrification of the overlying water (Dw correlated with the nirS/nirK ratio. The number of core nirS, nirK and nosZ OTUs was low (6, 7 and 3, respectively, and most of these core OTUs were shared among the lakes. Dominant nirK sequences matched best with those of the order Rhizobiales, which was one of the main bacterial orders present in the sediment microbiomes, whereas the dominant nirS sequences were affiliated with the order Burkholderiales. Over half of the nosZ sequences belonged to a single OTU of the order Burkholderiales, but coupled nitrification-denitrification rate correlated with another dominant nosZ OTU assigned to the order Rhodospirillales. The study indicates that a few core proteobacterial clusters may drive denitrification in boreal lake sediments, as the same Alpha- and Betaproteobacteria denitrifier clusters were present in different lakes and seasons.

  7. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

    Directory of Open Access Journals (Sweden)

    Jean Legault

    2013-07-01

    Full Text Available The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50, were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol, which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.

  8. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

    Science.gov (United States)

    Legault, Jean; Girard-Lalancette, Karl; Dufour, Dominic; Pichette, André

    2013-01-01

    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity. PMID:26784337

  9. Leaf area dynamics of a boreal black spruce fire chronosequence.

    Science.gov (United States)

    Bond-Lamberty, B; Wang, C; Gower, S T; Norman, J

    2002-10-01

    Specific leaf area (SLA) and leaf area index (LAI) were estimated using site-specific allometric equations for a boreal black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Stands ranged from 3 to 131 years in age and had soils that were categorized as well or poorly drained. The goals of the study were to: (i) measure SLA for the dominant tree and understory species of boreal black spruce-dominated stands, and examine the effect of various biophysical conditions on SLA; and (ii) examine leaf area dynamics of both understory and overstory for well- and poorly drained stands in the chronosequence. Overall, average SLA values for black spruce (n = 215), jack pine (Pinus banksiana Lamb., n = 72) and trembling aspen (Populus tremuloides Michx., n = 27) were 5.82 +/- 1.91, 5.76 +/- 1.91 and 17.42 +/- 2.21 m2 x kg-1, respectively. Foliage age, stand age, vertical position in the canopy and soil drainage had significant effects on SLA. Black spruce dominated overstory LAI in the older stands. Well-drained stands had significantly higher overstory LAI (P 40%) of total leaf area in all stands except the oldest.

  10. The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea

    NARCIS (Netherlands)

    Esselink, Peter; Zijlstra, W; Dijkema, KS; van Diggelen, R

    To restore natural salt-marsh habitats, maintenance of the artificial drainage system was discontinued and cattle grazing was reduced in man-made salt marshes in the Dollard estuary, the Netherlands. We studied the vegetation development in these marshes shortly after these marshes became a nature

  11. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  12. Responses of salt marsh ecosystems to mosquito control management practices along the Atlantic Coast (U.S.A.)

    Science.gov (United States)

    James-Pirri, Mary-Jane; Erwin, R. Michael; Prosser, Diann J.; Taylor, Janith D.

    2012-01-01

    Open marsh water management (OMWM) of salt marshes modifies grid-ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid-ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch-plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non-target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.

  13. Feasibility analysis of a smart grid photovoltaics system for the subarctic rural region in Alaska

    Science.gov (United States)

    Yao, Lei

    A smart grid photovoltaics system was developed to demonstrate that the system is feasible for a similar off-grid rural community in the subarctic region in Alaska. A system generation algorithm and a system business model were developed to determine feasibility. Based on forecasts by the PV F-Chart software, a 70° tilt angle in winter, and a 34° tilt angle in summer were determined to be the best angles for electrical output. The proposed system's electricity unit cost was calculated at 32.3 cents/kWh that is cheaper than current unsubsidized electricity price (46.8 cents/kWh) in off-grid rural communities. Given 46.8 cents/kWh as the electricity unit price, the system provider can break even when 17.3 percent of the total electrical revenue through power generated by the proposed system is charged. Given these results, the system can be economically feasible during the life-cycle period. With further incentives, the system may have a competitive advantage.

  14. Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers.

    Science.gov (United States)

    Callaghan, Terry V; Jonasson, Christer; Thierfelder, Tomas; Yang, Zhenlin; Hedenås, Henrik; Johansson, Margareta; Molau, Ulf; Van Bogaert, Rik; Michelsen, Anders; Olofsson, Johan; Gwynn-Jones, Dylan; Bokhorst, Stef; Phoenix, Gareth; Bjerke, Jarle W; Tømmervik, Hans; Christensen, Torben R; Hanna, Edward; Koller, Eva K; Sloan, Victoria L

    2013-08-19

    The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.

  15. Food web topology and parasites in the pelagic zone of a subarctic lake

    Science.gov (United States)

    Amundsen, Per-Arne; Lafferty, K.D.; Knudsen, R.; Primicerio, R.; Klemetsen, A.; Kuris, A.M.

    2009-01-01

    Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite-host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. 5. The study supports a prominent role for parasites in ecological networks and demonstrates that their incorporation may substantially alter considerations of food-web structure and functioning. ?? 2009 British Ecological Society.

  16. Impact of early and late winter icing events on sub-arctic dwarf shrubs.

    Science.gov (United States)

    Preece, C; Phoenix, G K

    2014-01-01

    Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub-arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January-iced plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Europeanization of sub-Arctic environments: soils based evidence from Norse Greenland

    Science.gov (United States)

    Simpson, Ian; Collinge, Kirsty; Adderley, Paul; Wilson, Clare

    2014-05-01

    Europeanization of sub-Arctic environments by Norse communities in Greenland from the early 11th to mid 15th centuries AD varied spatially and temporally, with pastoral agriculture and associated homefield management at the heart of this transformation. This process is poorly understood and so from inner, middle and outer fjord areas of the Norse Eastern settlement in Greenland we contribute a chronologically constrained homefield soils and sediments-based historical ecodynamic analysis. Our findings demonstrate a range of homefield management activities in contrasting environmental and social settings including a) 'recipe effects' - the partitioning of turf, domestic animal manure and domestic waste resources used to manage soil fertility and the effects of eroded material deposition in the homefield; b) field irrigation management to overcome seasonal water limitations; and c) 'non-management' where homefield productivities relied on natural soil fertilities. These management practices created an anthrosols soil environment overlying and distinct from the podsolic environment at settlement. In doing so Norse settlers increased soil nutrient status relative to pre-settlement levels in some homefields, whilst nutrient levels in other areas of the homefield were allowed to decline, resulting in a situation of 'partial sustainability'. We demonstrate that in historical contexts, local 'partial sustainability' can lead to resilience amongst agricultural communities in the face of climatic deterioration, but that ultimately this may only be as effective as the broader social framework in which it is found.

  18. Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China

    Directory of Open Access Journals (Sweden)

    Yunjun Yao

    2014-10-01

    Full Text Available Although deforestation affects hydrological and climatic variables over tropical regions, its actual contributions to changes in evapotranspiration (ET over subarctic China remain unknown. To establish a quantitative relationship between deforestation and terrestrial ET variations, we estimated ET using a semi-empirical Penman (SEMI-PM algorithm driven by meteorological and satellite data at both local and regional scales. The results indicate that the estimated ET can be used to analyse the observed inter-annual variations. There is a statistically significant positive relationship between local-scale forest cover changes (∆F and annual ET variations (∆ET of the following form: ∆ET = 0.0377∆F – 2.11 (R2 = 0.43, p < 0.05. This relationship may be due to deforestation-induced increases in surface albedo and a reduction in the fractional vegetation cover (FVC. However, the El Niño/Southern Oscillation (ENSO, rather than deforestation, dominates the multi-decadal ET variability due to regional-scale wind speed changes, but the exact effects of deforestation and ENSO on ET are challenging to quantify.

  19. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David N.; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... of 56 mg C m(-2), derived from a sea-ice-related gross primary production of 153 mg C m(-2) and a bacterial carbon demand of 97 mg C m(-2). Primary production contributed only marginally to the TCO2 depletion of the sea ice (7-25 %), which was mainly controlled by physical export by brine drainage...

  20. The Recovery of Two Polluted Subarctic Lakes—Towards Nutrient Management or a Pristine State?

    Directory of Open Access Journals (Sweden)

    Erik Grönlund

    2012-10-01

    Full Text Available Two small subarctic lakes were eutrophicated due to wastewater discharge from 1964. In 1975, a wastewater treatment plant was built and a recovery process started. This paper will: (1 compile the 1972–1974, 1978–1980 and 1985–1988 investigation data regarding phosphorous and microalgae for one of the lakes; (2 complement with unpublished data from 1985 and 2003; and (3 introduce a discussion regarding three alternatives for future development of the lakes in their last phase of recovery. In the latest investigation, 2003, the lakes were assessed as almost recovered. They had returned to an oligotrophic state, but not fully to a pre-sewage situation. In the upper lake, more heavily polluted, the total phosphorous levels had decreased from an average of 168 µg P/L in 1972–1974 to an average of 12 µg P/L in 2003. The phytoplankton biomass had decreased twentyfold during the same period, from 11.2 mg/L to 0.6 mg/L. The Secchi depth had increased from 1.3 m to 2.8 m. The low oxygen level in late winter was still not recovered, thereby profoundly affecting residential organisms in the lakes. The low winter oxygen is assumed to remain so for a long time due to phosphorus release from sediments in the lakes.

  1. Potential of C and X Band SAR for Shrub Growth Monitoring in Sub-Arctic Environments

    Directory of Open Access Journals (Sweden)

    Yannick Duguay

    2015-07-01

    Full Text Available The Arctic and sub-Arctic environments have seen a rapid growth of shrub vegetation at the expense of the Arctic tundra in recent decades. In order to develop better tools to assess and understand this phenomenon, the sensitivity of multi-polarized SAR backscattering at C and X band to shrub density and height is studied under various conditions. RADARSAT-2 and TerraSAR-X images were acquired from November 2011 to March 2012 over the Umiujaq community in northern Quebec (56.55°N, 76.55°W and compared to in situ measurements of shrub vegetation density and height collected during the summer of 2009. The results show that σ0 is sensitive to changes in shrub coverage up to 20% and is sensitive to changes in shrub height up to around 1 m. The cross-polarized backscattering (σ0 HV displays the best sensitivity to both shrub height and density, and RADARSAT-2 is more sensitive to shrub height, as TerraSAR-X tends to saturate more rapidly with increasing volume scattering from the shrub branches. These results demonstrate that SAR data could provide essential information, not only on Remote Sens. 2015, 7 9411 the spatial expansion of shrub vegetation, but also on its vertical growth, especially at early stages of colonization.

  2. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.

    Science.gov (United States)

    Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M

    2016-08-17

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. © 2016 The Author(s).

  3. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.

    2017-06-01

    The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.

  4. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic.

    Science.gov (United States)

    Hassett, Brandon T; Ducluzeau, Anne-Lise L; Collins, Roy E; Gradinger, Rolf

    2017-02-01

    Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. UAV Remote Sensing Surveillance of a Mine Tailings Impoundment in Sub-Arctic Conditions

    Directory of Open Access Journals (Sweden)

    Anssi Rauhala

    2017-12-01

    Full Text Available Mining typically involves extensive areas where environmental monitoring is spatially sporadic. New remote sensing techniques and platforms such as Structure from Motion (SfM and unmanned aerial vehicles (UAVs may offer one solution for more comprehensive and spatially continuous measurements. We conducted UAV campaigns in three consecutive summers (2015–2017 at a sub-Arctic mining site where production was temporarily suspended. The aim was to monitor a 0.5 km2 tailings impoundment and measure potential subsidence of tailings. SfM photogrammetry was used to produce yearly topographical models of the tailings surface, which allowed the amount of surface displacement between years to be tracked. Ground checkpoints surveyed in stable areas of the impoundment were utilized in assessing the vertical accuracy of the models. Observed surface displacements were linked to a combination of erosion, tailings settlement, and possible compaction of the peat layer underlying the tailings. The accuracy obtained indicated that UAV-assisted monitoring of tailings impoundments is sufficiently accurate for supporting impoundment management operations and for tracking surface displacements in the decimeter range.

  6. Residency times and patterns of movement of postbreeding dunlin on a subarctic staging area in Alaska

    Science.gov (United States)

    Warnock, Nils; Handel, Colleen M.; Gill, Robert E.; McCaffery, Brian J.

    2013-01-01

    Understanding how individuals use key resources is critical for effective conservation of a population. The Yukon-Kuskokwim Delta (YKD) in western Alaska is the most important postbreeding staging area for shorebirds in the subarctic North Pacific, yet little is known about movements of shorebirds there during the postbreeding period. To address this information gap, we studied residency times and patterns of movement of 17 adult and 17 juvenile radio-marked Dunlin (Calidris alpina) on the YKD between early August and early October 2005. Throughout this postbreeding period, during which Dunlin were molting, most birds were relocated within a 130 km radius of their capture site on the YKD, but three birds were relocated more than 600 km to the south at estuaries along the Alaska Peninsula. On average, juvenile Dunlin were relocated farther away from the banding site (median relocation distance = 36.3 km) than adult Dunlin (median relocation distance = 8.8 km). Post-capture, minimum lengths of stay by Dunlin on the YKD were not significantly different between juveniles (median = 19 days) and adults (median = 23 days), with some birds staging for more than 50 days. Body mass at time of capture was the best single variable explaining length of stay on the YKD, with average length of stay decreasing by 2.5 days per additional gram of body mass at time of capture. Conservation efforts for postbreeding shorebirds should consider patterns of resource use that may differ not only by age cohort but also by individual condition.

  7. The Biogeochemical Response to Inter-decadal Atmospheric Forcing Across Watershed Scales in Canada's Subarctic

    Science.gov (United States)

    Spence, C.

    2016-12-01

    Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.

  8. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    Science.gov (United States)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  9. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (pmarsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  10. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  11. Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill.

    Science.gov (United States)

    Beazley, Melanie J; Martinez, Robert J; Rajan, Suja; Powell, Jessica; Piceno, Yvette M; Tom, Lauren M; Andersen, Gary L; Hazen, Terry C; Van Nostrand, Joy D; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (pmarsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.

  12. Composition of breeding bird communities in Gulf Coast Chenier Plain marshes: Effects of winter burning

    Science.gov (United States)

    Gabrey, S.W.; Afton, A.D.

    2004-01-01

    Marsh managers along the Gulf Coast Chenier Plain frequently use winter burns to alter marsh vegetation and improve habitat quality for wintering waterfowl. However, effects of these burns on marsh avifauna are not well documented. We recorded abundances of breeding bird species and vegetation structure in burned and unburned control marshes during one breeding season before (1996) and two breeding seasons after (1997, 1998) experimental winter burns. We used non-metric multidimensional scaling analysis to assess the extent and direction of changes in bird community compositions of burned and unburned control marshes and to investigate the influence of vegetation structure on bird community composition. Overall, we found that Seaside Sparrows (Emberizidae: Ammodramus maritimus [Wilson]) and Red-winged Blackbirds and Boat-tailed Grackles (Icteridae: Agelaius phoeniceus [L.] and Quiscalus major Vieillot, respectively) comprised > 85% of observed birds. In burned marshes during the first breeding season following experimental burns (1997), icterid abundance increased while Seaside Sparrow abundance decreased relative to pre-burn (1996) conditions. This pattern was reversed during the second breeding season post-burn. No obvious patterns of change in avian abundance were detected in unburned control marshes over the 3-year period. Qualitative changes in breeding bird community composition were related to effects of winter burning on percent cover of dead vegetation and Spartina patens (Aiton) Muhl.

  13. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  14. National recovery strategy for woodland caribou (Rangifer tarandus caribou, boreal population, in Canada

    Directory of Open Access Journals (Sweden)

    Dave Hervieux

    2007-04-01

    Full Text Available Recovery planning for the boreal population of woodland caribou is a complex task, spanning eight Canadian provinces and territories. To accommodate unique situations across the country, recovery planning for this Species at Risk Act-listed threatened species is occurring at both provincial/ territorial and national levels. The national recovery strategy strives to identify nationally important issues and provide direction for provinces and territories as they plan and implement boreal caribou recovery within their jurisdictions. The national vision is to conserve and recover boreal caribou and their habitat across Canada. Specific goals are to: 1 Prevent extirpation of local boreal caribou populations from all existing caribou ranges; and 2 Maintain or enhance local boreal caribou populations at or to self-sustaining levels within all existing caribou ranges; and 3 Maintain or enhance boreal caribou habitat to support self-sustaining local populations. Nineteen broad national approaches are identified. These approaches include items relating to: habitat planning and management, caribou population monitoring and management, management of human-caused mortality, management of other wildlife species, consideration of government legislation and policy,promotion of stewardship and public outreach, and research. Specific outcomes are provided for each stated recovery approach. For more information on Canada's national recovery strategy for the boreal population of woodland caribou please see www.speciesatrisk.gc.ca/recovery/default_e.cfm

  15. The effects of boreal forest expansion on the summer Arctic frontal zone

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Stefan; Snyder, Peter K.; Harding, Keith J. [University of Minnesota, Department of Soil, Water, and Climate, Saint Paul, MN (United States)

    2012-05-15

    Over the last 100 years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6 C at and near the surface during June with some locations warming by 1-2 C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer. (orig.)

  16. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads

    Science.gov (United States)

    Mosher, Brittany A.; Bailey, Larissa L.; Muths, Erin L.; Huyvaert, Kathryn P

    2018-01-01

    Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situdisease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bdsystems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.

  17. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Science.gov (United States)

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  18. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system

    Science.gov (United States)

    Lorenzo-Trueba, Jorge; Mariotti, Giulio

    2017-08-01

    The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is studied by coupling two existing numerical models. The barrier model accounts for the interaction between shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh. Model results show that a number of factors that are not typically associated with the dynamics of coastal barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated backbarriers as part of an integrated system in which sediment is exchanged.

  19. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    Science.gov (United States)

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  20. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Directory of Open Access Journals (Sweden)

    Anna R Armitage

    Full Text Available Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans expansion and salt marsh (Spartina alterniflora and other grass and forb species loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  1. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast

    Science.gov (United States)

    Brody, Samuel D.; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss. PMID:25946132

  2. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives

    Science.gov (United States)

    2012-01-01

    Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western

  3. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives.

    Science.gov (United States)

    Uprety, Yadav; Asselin, Hugo; Dhakal, Archana; Julien, Nancy

    2012-01-30

    The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. A review of the literature published in scientific journals, books, theses and reports. A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western boreal forest. In addition, several

  4. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  5. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  6. On the Lateral Retreat of Salt Marshes: Field Monitoring in the Venice Lagoon (Italy)

    Science.gov (United States)

    Solari, L.

    2015-12-01

    Salt marshes are geomorphic structures located in ecotone environments such as lagoon and estuaries, providing lot of ecosystem services to local population. In the last decades they are disappearing due to several factors such as sea level rise, subsidence and edge erosion due to surface waves. The latter is likely the chief mechanism modeling marsh boundaries and leading to the loss of wide marsh areas. In the case of the Venice Lagoon, from the beginning of the last century, the whole salt marsh surface has more than halved and trends indicate that the salt marshes might completely disappear over the next 50 years. Here, we present a field monitoring activity on a retreating salt marsh located in the north part of the Lagoon of Venice (Italy). The marsh is subject to North-East (Bora) wind. Marsh area loss during the last decades has been documented through the comparison of georeferenced aerial photographs showing a retreat rate of the order of 1 m/year. Field measurements started by the end of November 2013 and consist of: salt marsh bank geometry at different cross-sections and wave climate in the lagoon about 30 m in front of the salt marsh. Erosion data are obtained by means of erosion pins located horizontally on the marsh scarp; at higher banks (about 0.9 m), two pins are located along the same vertical direction, for lower banks (about 0.4 m), only one pin is employed. Significant wave height has been measured during three storm surges by means of pressure transducers. The measured wave climate in front of the bank was then put into relationship with the offshore wave climate estimated using wind data (intensity and direction) and bathymetric data. Wind intensity and direction is measured hourly by several measurement stations located in the Lagoon of Venice. In this way, it is possible to extrapolate wave climate hourly at the monitored marsh and calculate the wave power that acted on the bank in a given time interval. Field survey revealed that the

  7. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    Science.gov (United States)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  8. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests

    Science.gov (United States)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

    2013-12-01

    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  9. Diet Composition of Mummichogs, Fundulus heteroclitus, from Restoring and Unrestricted Regions of a New England (U.S.A.) Salt Marsh

    Science.gov (United States)

    James-Pirri, M. J.; Raposa, K. B.; Catena, J. G.

    2001-08-01

    Diet composition of mummichogs, Fundulus heteroclitus, from three marsh habitats (creeks, pools, and marsh surface) within tidally restored and an adjacent unrestricted (reference) region of Sachuest Point salt marsh (Middletown, RI, U.S.A.) was examined. Major diet components were detritus, copepods, diatoms, insects (larvae and adults), ostracods, and chironomids. Total length, wet weight, and gut fullness of mummichogs were equivalent within habitats between the restoring and unrestricted marshes. Diet composition and percent abundance of diet items were also similar within habitats between the unrestricted and restoring marshes. However, differences in diet patterns were observed among habitats (creeks, pools, and marsh surface) within each marsh. Fish collected from creeks had fuller guts than those sampled from the marsh surface for both the restoring and unrestricted marsh. Diet composition also differed among marsh habitats, but only within the restoring marsh. In the restoring marsh, fish sampled from the creeks consumed primarily detritus, diatoms, and ostracods, whereas fish from the pools consumed mainly detritus, copepods, chironomids, and insects. Differences in diet composition among habitats were most likely a reflection of prey availability. This study provides evidence that tidally restored marshes can provide similar food resources as unrestricted marshes, in terms of consumption patterns of dominant marsh consumers, within the first year after restoration, before major shifts in dominant vegetation (i.e. from Phragmites australis to Spartina spp.) occur.

  10. Groundwater nitrogen processing in Northern Gulf of Mexico restored marshes.

    Science.gov (United States)

    Sparks, Eric L; Cebrian, Just; Tobias, Craig R; May, Christopher A

    2015-03-01

    Groundwater nitrogen processing was examined in a restored black needlerush (Juncus roemerianus) marsh to assess its potential for removing land-derived nitrogen pollution. Two restoration designs, one initially planted at 50% cover (half density plots) and the other one at 100% cover (full density plots), were compared with non-vegetated controls. The introduction via groundwater of a NO3(-) solution with a conservative tracer (Br(-)) and labeled isotopically ((15)N) allowed calculation of nitrogen removal in the plots following two methods. The first method used changes in the ratio [NOx]:[Br(-)] as the groundwater plume traveled through the plot, and the second method relied on balancing (15)N input with (15)N export. Both methods showed ≈97% of the N from the simulated groundwater plume was removed (i.e. not delivered to the open waters of the adjacent estuary) in vegetated plots and ≈86% was removed in non-vegetated controls. The most dominant routes of N removal from the introduced solution were N2 production and assimilation into macrophyte biomass, which were similar in magnitude for the vegetated plots, whereas N2 production dominated in the unvegetated plots. The majority of N removed from the introduced solution occurred in the first 30 cm the solution traveled in the vegetated treatments. In addition, ambient porewater concentrations of dissolved inorganic nitrogen (DIN) were similar between full and half density plots, but lower than the non-vegetated control (≈8.5× and 7.5×), suggesting full and half density plots removed more DIN than non-vegetated plots. These results suggest that restoring marshes by planting 50% of the area may be a more cost-effective restoration design in terms of mitigating land-derived nutrient pollution than planting 100% of the area since it requires less effort and cost while removing similar quantities of N. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Atmospheric chemistry in the Arctic and subarctic - Influence of natural fires, industrial emissions, and stratospheric inputs

    Science.gov (United States)

    Wofsy, S. C.; Sachse, G. W.; Gregory, G. L.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Barrick, J. A.; Harriss, R. C.; Talbot, R. W.

    1992-01-01

    Layers with enhanced concentrations of trace gases intercepted by the NASA Electra aircraft over Alaska during the Arctic Boundary Layer Expedition (ABLE 3A) in July-August 1988 are discussed. Haze layers apparently associated with boreal fires were enriched in hydrocarbons and NO(y), with emission factors corresponding closely to laboratory data for smoldering combustion. It is argued that atmospheric composition was strongly modified by wildfires during several periods of the ABLE 3A mission. The associated enhancement of NO(y) was smaller than observed for most other combustion processes but was nonetheless significant in the context of very low background concentrations. Ozone production in fire plumes was negligible. Ambient O3 was supplied by the stratosphere, with little direct input from midlatitude source during summer. It is argued that NO(y) was supplied about equally by the stratosphere and by wildfires. Hydrocarbons and CO appear to derive from biomass fires and from human activities.

  12. Establishing the Role of Digital Repeat Photography in Understanding Phenology and Carbon Cycling in a Subarctic Peatland

    Science.gov (United States)

    Garnello, Anthony John

    In this thesis, I establish and explore the role of phenology in understanding the rapidly changing environment of a subarctic peatland. First, I demonstrate how digital repeat photography can be used to characterize and differentiate distinct plant communities using two years of images. Each habitat is composed of different plant functional groups, promoting the individualistic approach to characterization that near-earth remote sensing tools can provide. The camera-product Relative Greenness successfully characterized interannual variability in seasonal growth for each habitat type. Across habitats, there was a direct relationship between advancement of spring onset and active season growth though this overall pattern showed habitat-specific variance. The camera images were also useful in characterizing the flowering phenology of an eriophorum-rich fen habitat, for which a metric named Intensity was created. These results suggest that employment of phenology cameras in highly heterogeneous subarctic environments is a robust method to characterize phenology on a habitat to species scale. Next, I explored the role that this phenology product has in modeling Net Ecosystem Exchange (NEE) also measured at the field site. I hypothesized that the explanatory power of the phenology index, which is conceptually tied to a measure of photosynthetic capacity, would be tightly linked to the timescale it was used for: At sub-daily timescales, environmental forces would dominate, though when averaged over days to weekly scales, the biology represented through the camera index would be more influential. I show that at multiple time scales the environmental factors outperform the camera index when modeling NEE. Together, these studies begin to explore the applicability of phenology camera systems in subarctic environments.

  13. Subarctic wintertime dissolved iron speciation driven by thermal constraints on Fe(II) oxidation, dissolved organic matter and stream reach

    Science.gov (United States)

    Morita, Yuichiroh; Yamagata, Kei; Oota, Atsuki; Ooki, Atsushi; Isoda, Yutaka; Kuma, Kenshi

    2017-10-01

    We studied the seasonal variations in Fe(II), Fe(III), humic-like dissolved organic matter (DOM), nitrate and nitrite (NO3 + NO2), and silicate (Si(OH)4) in river waters of three subarctic rivers flowing into Hakodate Bay in southwestern Hokkaido, Japan from May 2010 to February 2014. High Fe(II) concentrations were detected in winter at the sampling sites where the river bottom was comprised of sandy or silty sediment, primarily the lower and middle reaches of the rivers. Conversely, from early spring to late autumn Fe(II) levels were low or undetectable. We infer that soluble Fe(II) concentration in these subarctic river waters is driven by the balance between the influx of Fe(II) to the river and the Fe(II) oxidation rates that determines the dynamics in Fe(II) concentration in the river water. The Fe(II) may originate from reductive dissolution of Fe(III) in the river sediment or from Fe(II)-bearing groundwater. The latter seems to be the most likely source during winter time. The high Fe(II) concentrations during winter is predominantly attributed to the extremely slow oxidation rate of Fe(II) to Fe(III) at low water temperature rather than to an actual increase in the flux of reduced Fe(II). Nevertheless, we propose that the flux of reduced Fe(II) from river sediments and groundwater in lowland area of the catchment to overlying river waters might be the most important sources of iron in river waters. This provides an important insight into the role of river processes and the interaction between climate and river morphology in determining the inputs of iron to subarctic coastal marine waters.

  14. Subpopulation structure of caribou (Rangifer tarandus L.) in arctic and subarctic Canada.

    Science.gov (United States)

    Nagy, John A; Johnson, Deborah L; Larter, Nicholas C; Campbell, Mitch W; Derocher, Andrew E; Kelly, Allicia; Dumond, Mathieu; Allaire, Danny; Croft, Bruno

    2011-09-01

    Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.

  15. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  16. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Johnson, Richard K.

    2013-01-01

    1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change

  17. Distributions and seasonal abundances of krill eggs and larvae in the sub-Arctic Godthåbsfjord, SW Greenland

    DEFF Research Database (Denmark)

    Teglhus, Frederik Wolff; Agersted, Mette Dalgaard; Akther, Hasna

    2015-01-01

    The larval krill community (Thysanoessa spp.) was investigated along the sub-Arctic Godthåbsfjord, SW Greenland, in June 2010. In addition, the progress of krill development from egg to furcilia was studied from March to August 2010 in a fjord branching off the Godthåbsfjord. Krill spawned from...... and furcilia stages lasted 22 and 63 d, respectively. The growth rate from metanauplius to calyptopis was 0.12 d−1, while the growth rate across all developmental stages was 0.05 d−1. Mortality rates were calculated as 25% from eggs to nauplii, 48% from eggs to calyptopes and 83% from eggs to furcilia. During...

  18. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic

    Directory of Open Access Journals (Sweden)

    M. Jammet

    2017-11-01

    Full Text Available Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4 and carbon dioxide (CO2 with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface–atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for

  19. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic

    Science.gov (United States)

    Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto; Parmentier, Frans-Jan W.; Wik, Martin; Crill, Patrick; Friborg, Thomas

    2017-11-01

    Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33

  20. Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden

    DEFF Research Database (Denmark)

    Kokfelt, U.; Reuss, N.; Struyf, E.

    2010-01-01

    -induced changes in hydrology may further have affected the inflow of alkaline water from the catchment. Elevated contents of biogenic silica and diatom pigments in lake sediments during periods of poor fen and bog expansion further indicate that terrestrial vegetation influenced the amount of nutrients entering...... insight into nutrient and permafrost dynamics in a subarctic wetland and imply that continued permafrost decay and related vegetation changes towards minerotrophy may increase carbon and nutrient storage of mire deposits and reduce nutrient fluxes in runoff. Rapid permafrost degradation may on the other...