WorldWideScience

Sample records for subarcsecond resolution interferometric

  1. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  2. MULTI-WAVELENGTH STUDY OF TRANSITION REGION PENUMBRAL SUBARCSECOND BRIGHT DOTS USING IRIS AND NST

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Na; Liu, Chang; Xu, Yan; Wang, Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Tian, Hui [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Kleint, Lucia, E-mail: na.deng@njit.edu [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstr. 6, 5210 Windisch (Switzerland)

    2016-10-01

    Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph ( IRIS ) mission, Tian et al. revealed numerous short-lived subarcsecond bright dots (BDs) above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether or not these subarcsecond TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. This paper presents a multi-wavelength study of the TR penumbral BDs using a coordinated observation of a near disk center sunspot with IRIS and the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory. NST provides high-resolution chromospheric and photospheric observations with narrowband H α imaging spectroscopy and broadband TiO images, respectively, complementary to IRIS TR observations. A total of 2692 TR penumbral BDs are identified from a 37 minute time series of IRIS 1400 Å slit-jaw images. Their locations tend to be associated more with downflowing and darker fibrils in the chromosphere, and weakly associated with bright penumbral features in the photosphere. However, temporal evolution analyses of the BDs show that there is no consistent and convincing brightening response in the chromosphere. These results are compatible with a formation mechanism of the TR penumbral BDs by falling plasma from coronal heights along more vertical and dense magnetic loops. The BDs may also be produced by small-scale impulsive magnetic reconnection taking place sufficiently high in the atmosphere that has no energy release in the chromosphere.

  3. Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution

    Science.gov (United States)

    Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo

    2017-06-01

    A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.

  4. THE 2014 MARCH 29 X-FLARE: SUBARCSECOND RESOLUTION OBSERVATIONS OF Fe XXI λ1354.1

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Tian, Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, Sarah [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2015-02-01

    The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe ∼10 MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI λ1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75 s) and sometimes offset by up to 1''. 100-200 km s{sup –1} blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of <2'', and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least six minutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly 131 Å filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at ≥1'', and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically <10 km s{sup –1}, and mean non-thermal motions fall from 43 km s{sup –1} at the flare peak to 26 km s{sup –1} six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of 1354.106 ± 0.023 Å.

  5. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H2CO and CCH

    International Nuclear Information System (INIS)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-01-01

    Subarcsecond (0.''5) images of H 2 CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ☉ . Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H 2 CO emission associated with the protostar.

  6. Most sub-arcsecond companions of Kepler exoplanet candidate host stars are gravitationally bound

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.

    2014-01-01

    Using the known detection limits for high-resolution imaging observations and the statistical properties of true binary and line-of-sight companions, we estimate the binary fraction of Kepler exoplanet host stars. Our speckle imaging programs at the WIYN 3.5 m and Gemini North 8.1 m telescopes have observed over 600 Kepler objects of interest and detected 49 stellar companions within ∼1 arcsec. Assuming binary stars follow a log-normal period distribution for an effective temperature range of 3000-10,000 K, then the model predicts that the vast majority of detected sub-arcsecond companions are long period (P > 50 yr), gravitationally bound companions. In comparing the model predictions to the number of real detections in both observational programs, we conclude that the overall binary fraction of host stars is similar to the 40%-50% rate observed for field stars.

  7. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  8. GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Lefloch, Bertrand; Ceccarelli, Cecilia, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Universite Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-10-10

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C{sub 3}H{sub 2} obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (∼10{sup 4} AU) outflow suggested previously from the {sup 12}CO (J = 3–2) observation, and to the morphology of infrared reflection near the protostar (∼200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position–velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  9. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K. [Center for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Østeer Voldgade 5-7, DK-1350 Copenhagen K. (Denmark); Van Dishoeck, Ewine F., E-mail: nami@taurus.phys.s.u-tokyo.ac.jp [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherland (Netherlands)

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  10. Modified interferometric imaging condition for reverse-time migration

    Science.gov (United States)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  11. TWENTY-FIVE SUBARCSECOND BINARIES DISCOVERED BY LUNAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea4work@gmail.com [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2013-09-15

    We report on 25 subarcsecond binaries, detected for the first time by means of lunar occultations in the near-infrared (near-IR) as part of a long-term program using the ISAAC instrument at the ESO Very Large Telescope. The primaries have magnitudes in the range K = 3.8-10.4, and the companions in the range K = 6.4-12.1. The magnitude differences have a median value of 2.8, with the largest being 5.4. The projected separations are in the range 6-748 mas and with a median of 18 mas, or about three times less than the diffraction limit of the telescope. Among our binary detections are a pre-main-sequence star and an enigmatic Mira-like variable previously suspected to have a companion. Additionally, we quote an accurate first-time near-IR detection of a previously known wider binary. We discuss our findings on an individual basis as far as made possible by the available literature, and we examine them from a statistical point of view. We derive a typical frequency of binarity among field stars of Almost-Equal-To 10%, in the resolution and sensitivity range afforded by the technique ( Almost-Equal-To 0.''003 to Almost-Equal-To 0.''5, and K Almost-Equal-To 12 mag, respectively). This is in line with previous results using the same technique but we point out interesting differences that we can trace up to sensitivity, time sampling, and average distance of the targets. Finally, we discuss the prospects for further follow-up studies.

  12. The Chandra HRC View of the Subarcsecond Structures in the Nuclear Region of NGC 1068

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido

    2012-09-01

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] λ5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT ~ 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 × 1038 erg s-1, a negligible fraction (10-4) of the estimated total jet power.

  13. THE CHANDRA HRC VIEW OF THE SUBARCSECOND STRUCTURES IN THE NUCLEAR REGION OF NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido, E-mail: juwang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-09-10

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] {lambda}5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT {approx} 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 Multiplication-Sign 10{sup 38} erg s{sup -1}, a negligible fraction (10{sup -4}) of the estimated total jet power.

  14. THE CHANDRA HRC VIEW OF THE SUBARCSECOND STRUCTURES IN THE NUCLEAR REGION OF NGC 1068

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido

    2012-01-01

    We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] λ5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT ∼ 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 × 10 38 erg s –1 , a negligible fraction (10 –4 ) of the estimated total jet power.

  15. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    Science.gov (United States)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  16. A novel lightweight Fizeau infrared interferometric imaging system

    Science.gov (United States)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  17. Interferometric and optical tests of water window imaging x ray microscopes

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  18. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  19. Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  20. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  1. SAR Interferogram Filtering of Shearlet Domain Based on Interferometric Phase Statistics

    Directory of Open Access Journals (Sweden)

    Yonghong He

    2017-02-01

    Full Text Available This paper presents a new filtering approach for Synthetic Aperture Radar (SAR interferometric phase noise reduction in the shearlet domain, depending on the coherent statistical characteristics. Shearlets provide a multidirectional and multiscale decomposition that have advantages over wavelet filtering methods when dealing with noisy phase fringes. Phase noise in SAR interferograms is directly related to the interferometric coherence and the look number of the interferogram. Therefore, an optimal interferogram filter should incorporate information from both of them. The proposed method combines the phase noise standard deviation with the shearlet transform. Experimental results show that the proposed method can reduce the interferogram noise while maintaining the spatial resolution, especially in areas with low coherence.

  2. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  3. Subarcsecond observations of NGC 7538 IRS 1: Continuum distribution and dynamics of molecular gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei; Shi, Hui [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wright, M. C. H. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Sandell, Göran [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); Wu, Yue-Fang [Department of Astronomy, Peking University, Beijing 100871 (China); Brogan, Crystal; Corder, Stuartt, E-mail: lzhu@nao.cas.cn [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2013-12-10

    We report new results based on the analysis of the Submillimeter Array (SMA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of NGC 7538 IRS 1 at 1.3 and 3.4 mm with subarcsecond resolutions. With angular resolutions ∼0.''7, the SMA and CARMA observations show that the continuum emission at 1.3 and 3.4 mm from the hyper-compact H II region IRS 1 is dominated by a compact source with a tail-like extended structure to the southwest of IRS 1. With a CARMA B-array image at 1.3 mm convolved to 0.''1, we resolve the hyper-compact H II region into two components: an unresolved hyper-compact core, and a north-south extension with linear sizes of <270 AU and ∼2000 AU, respectively. The fine structure observed with CARMA is in good agreement with the previous Very Large Array results at centimeter wavelengths, suggesting that the hyper-compact H II region at the center of IRS 1 is associated with an ionized bipolar outflow. We image the molecular lines OCS(19-18) and CH{sub 3}CN(12-11) as well as {sup 13}CO(2-1) surrounding IRS 1, showing a velocity gradient along the southwest-northeast direction. The spectral line profiles in {sup 13}CO(2-1), CO(2-1), and HCN(1-0) observed toward IRS 1 show broad redshifted absorption, providing evidence for gas infall with rates in the range of 3-10 × 10{sup –3} M {sub ☉} yr{sup –1} inferred from our observations.

  4. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  5. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  6. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  7. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  8. Sub-arcsecond imaging of the water emission in Arp 220⋆ ⋆⋆

    Science.gov (United States)

    König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.

    2017-01-01

    Aims Extragalactic observations of water emission can provide valuable insights into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, i.e. whether an active galactic nucleus or a starburst dominate. Methods We use sub-arcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313−220 line, in conjunction with new ALMA Band 7 H2O 515−422 data at 325 GHz, and supplementary 22 GHz H2O 616 − 523 VLA observations, are used to better constrain the parameter space in the excitation modelling of the water lines. Results We detect 183 GHz H2O and 325 GHz water emission towards the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. PMID:29151605

  9. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  10. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  11. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  12. Interferometric snapshot spectro-ellipsometry.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Choi, Inho; Chegal, Won; Kim, Daesuk

    2018-01-22

    We propose a snapshot spectroscopic ellipsometry and its applications for real-time thin-film thickness measurement. The proposed system employs an interferometric polarization-modulation module that can measure the spectroscopic ellipsometric phase for thin-film deposited on a substrate with a measurement speed of around 20 msec. It requires neither moving parts nor time dependent modulation devices. The accuracy of the proposed interferometric snapshot spectro-ellipsometer is analyzed through comparison with commercial equipment results.

  13. An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition

    Science.gov (United States)

    Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.

    2018-04-01

    Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  14. AN IMPROVED INTERFEROMETRIC CALIBRATION METHOD BASED ON INDEPENDENT PARAMETER DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    J. Fan

    2018-04-01

    Full Text Available Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM. The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs. However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD. Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  15. Interferometric crosstalk reduction by phase scrambling

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.; Jonker, R.J.W.; Waardt, de H.

    2000-01-01

    Interferometric crosstalk, arising from the detection of undesired signals at the same nominal wavelength, may introduce large power penalties and bit-error rate (BER) floor significantly restricting the scalability of optical networks. In this paper, interferometric crosstalk reduction in optical

  16. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

  17. Interferometric redatuming by sparse inversion

    Science.gov (United States)

    van der Neut, Joost; Herrmann, Felix J.

    2013-02-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and artefacts due to incomplete acquisition require a different formulation. In this letter, we demonstrate the benefits of formulating the two steps that undergird interferometric redatuming in terms of a transform-domain sparsity-promoting program. By exploiting compressibility of seismic wavefields in the curvelet domain, the method not only becomes robust with respect to noise but we are also able to remove certain artefacts while preserving the frequency content. Although we observe improvements when we promote sparsity in the redatumed data space, we expect better results when interferometric redatuming would be combined or integrated with least-squares migration with sparsity promotion in the image space.

  18. MEMS Gyroscope with Interferometric Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a novel MEMS gyroscope that uses micro-interferometric detection to measure the motion of the proof mass. Using an interferometric...

  19. Interferometric redatuming by sparse inversion

    OpenAIRE

    Van der Neut, J.; Herrmann, F.J.

    2012-01-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional dec...

  20. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging

    International Nuclear Information System (INIS)

    Wang, Daqian; Ding, Lili; Zhang, Wei; Zhang, Enyao; Yu, Xinglong; Luo, Zhaofeng; Ou, Huichao

    2012-01-01

    A new high-throughput surface plasmon resonance (SPR) biosensor based on differential interferometric imaging is reported. The two SPR interferograms of the sensing surface are imaged on two CCD cameras. The phase difference between the two interferograms is 180°. The refractive index related factor (RIRF) of the sensing surface is calculated from the two simultaneously acquired interferograms. The simulation results indicate that the RIRF exhibits a linear relationship with the refractive index of the sensing surface and is unaffected by the noise, drift and intensity distribution of the light source. The affinity and kinetic information can be extracted in real time from continuously acquired RIRF distributions. The results of refractometry experiments show that the dynamic detection range of SPR differential interferometric imaging system can be over 0.015 refractive index unit (RIU). High refractive index resolution is down to 0.45 RU (1 RU = 1 × 10 −6 RIU). Imaging and protein microarray experiments demonstrate the ability of high-throughput detection. The aptamer experiments demonstrate that the SPR sensor based on differential interferometric imaging has a great capability to be implemented for high-throughput aptamer kinetic evaluation. These results suggest that this biosensor has the potential to be utilized in proteomics and drug discovery after further improvement. (paper)

  1. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein.

  2. Chemical and Physical Picture of IRAS 16293–2422 Source B at a Sub-arcsecond Scale Studied with ALMA

    Science.gov (United States)

    Oya, Yoko; Moriwaki, Kana; Onishi, Shusuke; Sakai, Nami; López–Sepulcre, Ana; Favre, Cécile; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Lefloch, Bertrand; Yamamoto, Satoshi

    2018-02-01

    We have analyzed the OCS, H2CS, CH3OH, and HCOOCH3 data observed toward the low-mass protostar IRAS 16293–2422 Source B at a sub-arcsecond resolution with ALMA. A clear chemical differentiation is seen in their distributions; OCS and H2CS are extended with a slight rotation signature, while CH3OH and HCOOCH3 are concentrated near the protostar. Such a chemical change in the vicinity of the protostar is similar to the companion (Source A) case. The extended component is interpreted by the infalling-rotating envelope model with a nearly face-on configuration. The radius of the centrifugal barrier of the infalling-rotating envelope is roughly evaluated to be (30–50) au. The observed lines show the inverse P-Cygni profile, indicating the infall motion within a few 10 au from the protostar. The nearly pole-on geometry of the outflow lobes is inferred from the SiO distribution, and thus, the infalling and outflowing motions should coexist along the line of sight to the protostar. This implies that the infalling gas is localized near the protostar and the current launching points of the outflow have an offset from the protostar. A possible mechanism for this configuration is discussed.

  3. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  4. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  5. Dynamics of Subarcsecond Bright Dots in the Transition Region above Sunspots and Their Relation to Penumbral Micro-jets

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Tanmoy; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Tian, Hui [School of Earth and Space Sciences, Peking University (China); Schanche, Nicole, E-mail: tsamanta@iiap.res.in, E-mail: huitian@pku.edu.cn, E-mail: dipu@iiap.res.in, E-mail: ns81@st-andrews.ac.uk [University of St. Andrews, St. Andrews (United Kingdom)

    2017-02-01

    Recent high-resolution observations have revealed that subarcsecond bright dots (BDs) with sub-minute lifetimes appear ubiquitously in the transition region (TR) above sunspot penumbra. The presence of penumbral micro-jets (PMJs) in the chromosphere was previously reported. It was proposed that both the PMJs and BDs are formed due to a magnetic reconnection process and may play an important role in heating of the penumbra. Using simultaneous observations of the chromosphere from the Solar Optical Telescope (SOT) on board Hinode and observations of the TR from the Interface Region Imaging Spectrograph , we study the dynamics of BDs and their relation to PMJs. We find two types of BDs, one that is related to PMJs, and another that does not show any visible dynamics in the SOT Ca ii H images. From a statistical analysis we show that these two types have different properties. The BDs that are related to PMJs always appear at the top of the PMJs, the vast majority of which show inward motion and originate before the generation of the PMJs. These results may indicate that the reconnection occurs at the lower coronal/TR height and initiates PMJs at the chromosphere. This formation mechanism is in contrast with the formation of PMJs by reconnection in the (upper) photosphere between differently inclined fields.

  6. Interferometric scattering (iSCAT) microscopy: studies of biological membrane dynamics

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; Lagerholm, B. Christoffer; Cole, Daniel; Kukura, Philipp; Eggeling, Christian

    2018-02-01

    The study of the organization and dynamics of molecules in model and cellular membranes is an important topic in contemporary biophysics. Imaging and single particle tracking in this particular field, however, proves particularly demanding, as it requires simultaneously high spatio-temporal resolution and high signal-to-noise ratios. A remedy to this challenge might be Interferometric Scattering (iSCAT) microscopy, due to its fast sampling rates, label-free imaging capabilities and, most importantly, tuneable signal level output. Here we report our recent advances in the imaging and molecular tracking on phase-separated model membrane systems and live-cell membranes using this technique.

  7. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  8. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  9. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  10. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  11. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    Science.gov (United States)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two

  12. Accurate formulas for the penalty caused by interferometric crosstalk

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Liu, Fenghai; Jeppesen, Palle

    2000-01-01

    New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas.......New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas....

  13. (abstract) Studies of Interferometric Penetration into Vegetation Canopies using Multifrequency Interferometry Data at JPL

    Science.gov (United States)

    Hensley, Scott; Rodriguez, Ernesto; Truhafft, Bob; van Zyl, Jakob; Rosen, Paul; Werner, Charles; Madsen, Sren; Chapin, Elaine

    1997-01-01

    Radar interferometric observations both from spaceborne and airborne platforms have been used to generate accurate topographic maps, measure milimeter level displacements from earthquakes and volcanoes, and for making land cover classification and land cover change maps. Interferometric observations have two basic measurements, interferometric phase, which depends upon the path difference between the two antennas and the correlation. One of the key questions concerning interferometric observations of vegetated regions is where in the canopy does the interferometric phase measure the height. Results for two methods of extracting tree heights and other vegetation parameters based upon the amount of volumetric decorrelation will be presented.

  14. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  15. Interferometric detection of single gold nanoparticles calibrated against TEM size distributions

    DEFF Research Database (Denmark)

    Zhang, Lixue; Christensen, Sune; Bendix, Pól Martin

    2015-01-01

    Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate...

  16. SUBARCSECOND ANALYSIS OF THE INFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aikawa, Yuri [Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Kahane, Claudine [Universite de Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, Emmanuel; Vastel, Charlotte [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling–rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling–rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  17. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  18. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    Science.gov (United States)

    Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian

    2017-09-01

    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.

  19. Refractive Index Compensation in Over-Determined Interferometric Systems

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2012-10-01

    Full Text Available We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  20. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  1. The design and evaluation of a selectively modulated interferometric dispersive spectrometer

    International Nuclear Information System (INIS)

    Fitzgerald, J.J.

    1986-01-01

    In approaching the problem of rapid simultaneous multielement analysis, the large light gathering power, wide spectral range and high resolution of a Fourier Transform Spectrometer (FTS) should be of benefit. The severe mechanical tolerances required in the construction and operation of a classical Michelson interferometer for use in the UV-Visible spectral region have limited investigations in the application of simultaneous trace quantitative analysis. Theory is presented demonstrating that replacement of the fixed mirror in one arm of the Michelson interferometer with a rotating grating preserves most of the FTS advantages and results in a greatly simplified detector system. No mathematical Fourier transform is required. The need for a computer is eliminated. An instrument, SEMIDS (Selectively Modulated Interferometric Dispersive Spectrometer), was constructed to investigate the mathematical model. Design criteria and basic operational performance as a flame emission spectrometer are presented. SEMIDS achieved high resolution, high throughput and greatly simplified operation compared to a Michelson interferometer. Performance as a trace quantitative tool was disappoint because of unanticipated noise contributions from flame background. A summary of the noise component contributions is discussed

  2. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  3. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  4. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  5. Interferometric study of the small magellanic cloud

    International Nuclear Information System (INIS)

    Torres, G.; Carranza, G.J.

    1986-01-01

    interferometric observations of the general radial velocity field in the small magellanic cloud are being carried out. We present preliminary results in reasonable agreement with H I measurements. (author)

  6. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  7. Interferometric crosstalk suppression using polarization multiplexing technique and an SOA

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA.......Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA....

  8. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  9. The linearized inversion of the generalized interferometric multiple imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-06

    The generalized interferometric multiple imaging (GIMI) procedure can be used to image duplex waves and other higher order internal multiples. Imaging duplex waves could help illuminate subsurface zones that are not easily illuminated by primaries such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI procedure yields migrated images that suffer from low spatial resolution, migration artifacts, and cross-talk noise. To alleviate these problems, we propose a least-squares GIMI framework in which we formulate the first two steps as a linearized inversion problem when imaging first-order internal multiples. Tests on synthetic datasets demonstrate the ability to localize subsurface scatterers in their true positions, and delineate a vertical fault plane using the proposed method. We, also, demonstrate the robustness of the proposed framework when imaging the scatterers or the vertical fault plane with erroneous migration velocities.

  10. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  11. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  12. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    Science.gov (United States)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  13. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    Science.gov (United States)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  14. Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis

    International Nuclear Information System (INIS)

    Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F

    2010-01-01

    A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization

  15. Adjustable Grazing-Incidence X-Ray Optics

    Science.gov (United States)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  16. Interferometric Imaging and its Application to 4D Imaging

    KAUST Repository

    Sinha, Mrinal

    2018-03-01

    This thesis describes new interferometric imaging methods for migration and waveform inversion. The key idea is to use reflection events from a known reference reflector to ”naturally redatum” the receivers and sources to the reference reflector. Here, ”natural redatuming” is a data-driven process where the redatuming Green’s functions are obtained from the data. Interferometric imaging eliminates the statics associated with the noisy overburden above the reference reflector. To mitigate the defocussing caused by overburden errors I first propose the use of interferometric least-squares migration (ILSM) to estimate the migration image. Here, a known reflector is used as the reference interface for ILSM, and the data are naturally redatumed to this reference interface before imaging. Numerical results on synthetic and field data show that ILSM can significantly reduce the defocussing artifacts in the migration image. Next, I develop a waveform tomography approach for inverting the velocity model by mitigating the velocity errors in the overburden. Unresolved velocity errors in the overburden velocity model can cause conventional full-waveform inversion to get stuck in a local minimum. To resolve this problem, I present interferometric full-waveform inversion (IFWI), where conventional waveform tomography is reformulated so a velocity model is found that minimizes the objective function with an interferometric crosscorrelogram misfit. Numerical examples show that IFWI, compared to FWI, computes a significantly more accurate velocity model in the presence of a nearsurface with unknown velocity anomalies. I use IFWI and ILSM for 4D imaging where seismic data are recorded at different times over the same reservoir. To eliminate the time-varying effects of the near surface both data sets are virtually redatumed to a common reference interface before migration. This largely eliminates the overburden-induced statics errors in both data sets. Results with

  17. FIRST L-BAND INTERFEROMETRIC OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF MWC 419

    International Nuclear Information System (INIS)

    Ragland, S.; Armandroff, T.; Wizinowich, P. L.; Akeson, R. L.; Millan-Gabet, R.; Colavita, M. M.; Traub, W. A.; Vasisht, G.; Danchi, W. C.; Hillenbrand, L. A.; Ridgway, S. T.

    2009-01-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  18. First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Science.gov (United States)

    Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.

    2009-09-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  19. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  20. Segmentation of high-resolution InSar data of tropical forest using Fourier parameterised deformable models

    NARCIS (Netherlands)

    Varekamp, C.; Hoekman, D.H.

    2001-01-01

    Currently, tree maps are produced from field measurements that are time consuming and expensive. Application of existing techniques based on aerial photography is often hindered by cloud cover. This has initiated research into the segmentation of high resolution airborne interferometric Synthetic

  1. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.

  2. Self Calibrating Interferometric Sensor

    DEFF Research Database (Denmark)

    Sørensen, Henrik Schiøtt

    mask. The fabricated micro structures have been electroplated for later injection molding, showing the potential of the MIBD sensor to be mass produced with high reproducibility and sensitivity. In part three MIBD experiments on vital biological systems are described. Label–free binding studies of bio......This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals...

  3. High Resolution Near-IR Imaging of VY Canis Majoris with LBT / LMIRCam (2 - 5 μm)

    Science.gov (United States)

    Shenoy, Dinesh; Jones, T. J.; Humphreys, R. M.; LMIRCam Instrument Team

    2013-06-01

    HST imaging of the famous red hypergiant VY Canis Majoris shows a complex circumstellar reflection nebula indicative of multiple asymmetric ejection episodes. Constructing a more complete picture of the mass loss mechanism compels extending high resolution imaging of massive stars such as VY CMa into the near-infrared, where the mechanism for emission from circumstellar ejecta transitions from scattering to thermal. We present LBT/LMIRCam observations of VY CMa at Ks (2.2 μm), L' (3.8 μm) and M (4.9 μm) at sub-arcsecond resolution, comparable to the HST in the optical. The peculiar Southwest (SW) Clump, first identified as a highly reddened feature seen only at the longest wavelength (1 μm) in the HST images, appears bright in the three LMIRCam filters. The SW Clump is found to be optically thick at all three wavelengths. A silicate grain model yields a lower limit mass on the order of 7E-4 M⊙

  4. An interferometer for high-resolution optical surveillance from geostationary orbit

    Science.gov (United States)

    Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Loix, N.; Musso, F.

    2017-11-01

    The activities described in this paper have been developed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. They have been focused on the definition of an interferometric instrument optimised for the high-resolution optical surveillance from geostationary orbit (GEO) by means of the synthetic aperture technique, and on the definition and development of the related enabling technologies. In this paper we describe the industrial team, the selected mission specifications and overview of the whole design and manufacturing activities performed.

  5. A portfolio of products from the rapid terrain visualization interferometric SAR

    Science.gov (United States)

    Bickel, Douglas L.; Doerry, Armin W.

    2007-04-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.

  6. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  7. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    Science.gov (United States)

    Li, T.; Zhang, J.

    2016-05-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  8. Precision interferometric measurement of right angles with the aid of an etalon

    International Nuclear Information System (INIS)

    Oreb, B.; Walsh, C.; Leistner, A.

    2000-01-01

    Full text: An interferometric set up has been developed to measure right angles between faces of components such as prisms or cubes, to sub arc second resolution. The component to be measured is placed inside an air spaced etalon and the right angle is measured by a Fizeau interferometer with respect to a transmission reference flat. The etalon consists of two precision glass flats which are aligned to be parallel by optically contacting these to a cylindrical Zerodur sleeve having flat and parallel ends. A circular cut out in the cylindrical sleeve is made to allow the test component and the light from the interferometer to enter the etalon. The phase difference in the two halves of the interferogram corresponding to the two sides of the test component is a measure of the angle deviation from 90 deg

  9. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    International Nuclear Information System (INIS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-01-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.

  10. Interferometric interpolation of sparse marine data

    KAUST Repository

    Hanafy, Sherif M.

    2013-10-11

    We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

  11. Automated data reduction for optical interferometric data

    International Nuclear Information System (INIS)

    Boyd, R.D.; Miller, D.J.; Ghiglia, D.C.

    1983-01-01

    The potential for significant progress in understanding many transport processes exists through the use of a rapid and automated data reduction process of optical interferometric data. An example involving natural convection in a horizontal annulus is used to demonstrate that the accuracy possible in automated techniques is better than 99.0%

  12. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-01-01

    surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI

  13. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  14. Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure

    Science.gov (United States)

    Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.

    2017-08-01

    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large

  15. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  16. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution

    Science.gov (United States)

    Orłowska, Karolina; Świåtkowski, Michał; Kunicki, Piotr; Gotszalk, Teodor

    2018-04-01

    In the present paper, we describe a high sensitivity intensity fibre-optic displacement sensor with tens of picometre resolution combined with a sub-picometre resolution interferometric calibration system. Both integrated components form the so-called "2 in one ferrule" system 2iOF. The design and construction of the presented device depend on integrating two sensors' systems within one fibre-optic measuring head, which allows performing in situ calibration process with no additional time-consuming adjustment procedure. The resolution of the 2iOF system is 31 pm/Hz1/2 obtained with an interferometric Fabry-Perot based calibration system—providing accuracy better than tens of fm/Hz1/2 within 1 MHz bandwidth in the measurement range of up to 100 μm. The direct response from the intensity sensor is then the 2iOF output one. It is faster and more convenient to analyze in comparison, with much better resolution (3 orders of magnitude higher) but on the other hand also more time consuming and dependent on the absolute sample position interferometer. The proposed system is flexible and open to various applications. We will present the results of the piezoelectrical actuator displacement measurements, which were performed using the developed system.

  17. Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry

    Science.gov (United States)

    Mahadeswaraswamy, Chetan

    First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2

  18. Multiple reflection Michelson interferometer with picometer resolution.

    Science.gov (United States)

    Pisani, Marco

    2008-12-22

    A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.

  19. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern

    Science.gov (United States)

    König, Jörg; Czarske, Jürgen

    2017-10-01

    Small scale flow phenomena play an important role across engineering, biological and chemical sciences. To gain deeper understanding of the influence of those flow phenomena involved, measurement techniques with high spatial resolution are often required, presuming a calibration of very low uncertainty. To enable such measurements, a method for the in situ calibration of an interferometric flow velocity profile sensor is presented. This sensor, with demonstrated spatial resolution better than 1 μm, allows for spatially-resolving measurements with low velocity uncertainty in flows with high velocity gradients, on condition that the spatial behavior of the interference fringe systems is well-known by calibration with low uncertainty, especially challenging to obtain at applications with geometries difficult to access. The calibration method described herein uses three interfering beams to form the interference fringe systems of the sensor, yielding Doppler burst signals exhibiting two peaks in the frequency domain whose amplitude ratio varies periodically along the measurement volume major z-axis, giving a further independent value of the axial tracer particle position that can be used to determine the calibration functions of the sensor during the flow measurement. A flow measurement in a microchannel experimentally validates that the presented approach allows for simultaneously estimating the calibration functions and the velocity profile, providing flow measurements with very low systematic measurement errors of the particle position of less than 400 nm (confidence interval 95%). In that way, the interferometric flow velocity profile sensor utilizing the in situ self-calibration method promises valuable insights on small scale flow phenomena, such as those given in shear and boundary layer flows, by featuring reliable flow measurements due to minimum systematic and statistical measurement errors.

  20. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  1. Low-cost interferometric TDM technology for dynamic sensing applications

    Science.gov (United States)

    Bush, Jeff; Cekorich, Allen

    2004-12-01

    A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.

  2. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  3. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    Science.gov (United States)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  4. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  5. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen; Yu, Jianhua; Huang, Yunsong; Hanafy, Sherif M.; Schuster, Gerard T.

    2015-01-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  6. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    internally multiply scattered seismic waves to obtain highly resolved images delineating vertical faults that are otherwise not easily imaged by primaries. Seismic interferometry is conventionally based on the cross-correlation and convolution of seismic traces to transform seismic data from one acquisition geometry to another. The conventional interferometric transformation yields virtual data that suffers from low temporal resolution, wavelet distortion, and correlation/convolution artifacts. I therefore incorporate a least-squares datuming technique to interferometrically transform vertical-seismic-profile surface-related multiples to surface-seismic-profile primaries. This yields redatumed data with high temporal resolution and less artifacts, which are subsequently imaged to obtain highly resolved subsurface images. Tests on synthetic examples demonstrate the efficiency of the proposed techniques, yielding highly resolved migrated sections compared with images obtained by imaging conventionally redatumed data. I further advance the recently developed cost-effective Generalized Interferometric Multiple Imaging procedure, which aims to not only image first but also higher-order multiples as well. I formulate this procedure as a linearized inversion framework and solve it as a least-squares problem. Tests of the least-squares Generalized Interferometric Multiple imaging framework on synthetic datasets and demonstrate that it could provide highly resolved migrated images and delineate vertical fault planes compared with the standard procedure. The results support the assertion that this linearized inversion framework can illuminate subsurface zones that are mainly illuminated by internally scattered energy.

  7. DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS

    International Nuclear Information System (INIS)

    Bhat, N. D. R.; Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S.; Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W.

    2013-01-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg 2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  8. Detection of Fast Transients with Radio Interferometric Arrays

    Science.gov (United States)

    Bhat, N. D. R.; Chengalur, J. N.; Cox, P. J.; Gupta, Y.; Prasad, J.; Roy, J.; Bailes, M.; Burke-Spolaor, S.; Kudale, S. S.; van Straten, W.

    2013-05-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  9. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...

  10. Super-virtual interferometric diffractions as guide stars

    KAUST Repository

    Dai, Wei

    2011-01-01

    A significant problem in seismic imaging is seismically seeing below salt structures: large velocity contrasts and the irregular geometry of the salt-sediment interface strongly defocus both the downgoing and upgoing seismic wavefields. This can result in severely defocused migration images so as to seismically render some subsalt reserves invisible. The potential cure is a good estimate of the subsalt and salt velocity distributions, but that is also the problem: severe velocity contrasts prevent the appearance of coherent subsalt reflections in the surface records so that MVA or tomographic methods can become ineffective. We now present an interferometric method for extracting the diffraction signals that emanate from diffractors, also denoted as seismic guide stars. The signal-to-noise ratio of these interferometric diffractions is enhanced by N, where N is the number of source points coincident with the receiver points. Thus, diffractions from subsalt guide stars can then be rendered visible and so can be used for velocity analysis, migration, and focusing of subsalt reflections. Both synthetic and field data records are used to demonstrate the benefits and limitations of this method. © 2011 Society of Exploration Geophysicists.

  11. Direct Interferometric Imaging with IOTA Interferometer: Morphology of the Water Shell around U Ori

    Science.gov (United States)

    Pluzhnik, Eugene; Ragland, S.; Le Coroller, H.; Cotton, W.; Danchi, W.; Traub, W.; Willson, L.

    2007-12-01

    Optical interferometric observations of Mira stars with adequate resolution using the 3-telescope Infrared Optical Telescope Array (IOTA) interferometer have shown detectable asymmetry in several Mira stars. Several mechanisms have been proposed to explain the observed asymmetry. In this paper, we present subsequent IOTA observations of a Mira star, namely, U Ori taken at 1.51, 1.64 and 1.78 μm in 2005. The reconstructed images based on a model independent algorithm are also presented. These images show asymmetric structures of the water shell that is similar to the structure of 22 GHz masers obtained by Vlemmings et al. in 2003. We explore the possibility of the detection of molecular shell rotation with a period of about 30 years by comparing our results with radio observations and discuss a possible geometric structure of the shell.

  12. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.

    Science.gov (United States)

    Xie, Xianming

    2016-08-22

    A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

  13. Improving the performance of interferometric imaging through the use of disturbance feedforward.

    Science.gov (United States)

    Böhm, Michael; Glück, Martin; Keck, Alexander; Pott, Jörg-Uwe; Sawodny, Oliver

    2017-05-01

    In this paper, we present a disturbance compensation technique to improve the performance of interferometric imaging for extremely large ground-based telescopes, e.g., the Large Binocular Telescope (LBT), which serves as the application example in this contribution. The most significant disturbance sources at ground-based telescopes are wind-induced mechanical vibrations in the range of 8-60 Hz. Traditionally, their optical effect is eliminated by feedback systems, such as the adaptive optics control loop combined with a fringe tracking system within the interferometric instrument. In this paper, accelerometers are used to measure the vibrations. These measurements are used to estimate the motion of the mirrors, i.e., tip, tilt and piston, with a dynamic estimator. Additional delay compensation methods are presented to cancel sensor network delays and actuator input delays, improving the estimation result even more, particularly at higher frequencies. Because various instruments benefit from the implementation of telescope vibration mitigation, the estimator is implemented as a separate, independent software on the telescope, publishing the estimated values via multicast on the telescope's ethernet. Every client capable of using and correcting the estimated disturbances can subscribe and use these values in a feedforward for its compensation device, e.g., the deformable mirror, the piston mirror of LINC-NIRVANA, or the fast path length corrector of the Large Binocular Telescope Interferometer. This easy-to-use approach eventually leveraged the presented technology for interferometric use at the LBT and now significantly improves the sky coverage, performance, and operational robustness of interferometric imaging on a regular basis.

  14. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities

    Directory of Open Access Journals (Sweden)

    Stefano Perna

    2016-01-01

    Full Text Available We present in this work a first assessment of the imaging and topographic mapping capabilities of the InSAeS4 system, which is a single-pass interferometric airborne X-Band Synthetic Aperture Radar (SAR. In particular, we first provide a brief description of the InSAeS4 sensor. Then, we discuss the results of our analysis on the SAR and interferometric SAR products relevant to the first flight-test campaign. More specifically, we have exploited as reference the GPS measurements relevant to nine Corner Reflectors (CRs deployed over the illuminated area during the campaign and a laser scanner Digital Elevation Model (DEM. From the analysis carried out on the CRs we achieved a mean geometric resolution, for the SAR products, of about 0.14 m in azimuth and 0.49 m in range, a positioning misalignment with standard deviation of 0.07 m in range and 0.08 m in azimuth, and a height error with standard deviation of 0.51 m. From the comparison with the laser scanner DEM we estimated a height error with standard deviation of 1.57 m.

  15. Investigation of organic light emitting diodes for interferometric purposes

    Science.gov (United States)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  16. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint

    Directory of Open Access Journals (Sweden)

    Deng Yuan

    2014-08-01

    Full Text Available In the MOtion COmpensation (MOCO approach to airborne repeat-pass interferometric Synthetic Aperture Radar (SAR based on motion measurement data, the measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS and the positioning errors of the target, which may contribute to the residual uncompensated motion errors, affect the imaging result and interferometric measurement. Considering the effects of the two types of error, this paper builds a mathematical model of residual motion errors in presence of squint, and analyzes the effects on the residual motion errors induced by the measurement inaccuracies of IMU/GPS and the positioning errors of the target. In particular, the effects of various measurement inaccuracies of IMU/GPS on interferometric SAR image quality, interferometric phase, and digital elevation model precision are disscussed. Moreover, the paper quantitatively researches the effects of residual motion errors on airborne repeat-pass interferometric SAR through theoretical and simulated analyses and provides theoretical bases for system design and signal processing.

  17. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Directory of Open Access Journals (Sweden)

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  18. Linear projection of technical noise for interferometric gravitational-wave detectors

    International Nuclear Information System (INIS)

    Smith, J R; Ajith, P; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B; Hough, J; Danzmann, K

    2006-01-01

    An international network of interferometric gravitational-wave detectors is now in operation, and has entered a period of intense commissioning focused on bringing the instruments to their theoretical sensitivity limits. To expedite this process, noise analysis techniques have been developed by the groups associated with each instrument. We present methods of noise analysis that were developed and utilized for the commissioning of the GEO 600 detector. The focal point of this paper is a technique called noise projection that is used to determine the levels of contribution of various noise sources to the detector output. Example applications of this method to control loops typical of those employed in an interferometric GW detector are presented. Possible extensions of noise projections, including technical noise subtraction and gravitational-wave vetoes are also discussed

  19. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  20. Advanced Virgo: a second-generation interferometric gravitational wave detector

    NARCIS (Netherlands)

    Acernese, F.; Bulten, H.J.; Rabeling, D.S.; van den Brand, J.F.J.

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and

  1. High spatial resolution observations of the T Tau system - II. Interferometry in the mid-infrared

    International Nuclear Information System (INIS)

    Ratzka, Thorsten

    2008-01-01

    Each time the resolution was improved, observations of the young low-mass star T Tau led to new insights. Initially classified as the prototype of low-mass pre-main-sequence stars, measurements with high resolution techniques in the near-infrared revealed the existence of a deeply embedded companion only 0.7 arcsec to the south. Later on, this companion itself has been resolved into two sources with a separation of only about 50 mas. We investigated both the optically bright northern component and the embedded southern binary with the MID-infrared Interferometric instrument (MIDI). The resulting visibilities of the northern component decrease with wavelength, independent of the baseline's position angle. This is a clear sign of the large face-on circumstellar disc. With a simultaneous fit of a radiative transfer model to both the interferometric results and the spectral energy distribution, the properties of this disc can be determined without the high degeneracy of fits to the spectral energy distribution alone. Since the visibilities of the southern binary are clearly dominated by the typical sinusoidal binary signal, we could for the first time in the mid-infrared derive separate spectra for both components together with a very precise relative position. This position is in excellent agreement with the orbit found from a fit to the near-infrared adaptive optics measurements. The orbit with its small periastron distance indicates tidally truncated discs, which are consistent with the interferometric measurements. The peculiar properties of the infrared companion can be explained by the model of an intermediate mass star extincted by an almost edge-on disc.

  2. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  3. Interferometric architectures based All-Optical logic design methods and their implementations

    Science.gov (United States)

    Singh, Karamdeep; Kaur, Gurmeet

    2015-06-01

    All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.

  4. Coherent change detection and interferometric ISAR measurements in the folded compact range

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K.W.

    1996-08-01

    A folded compact range configuration has been developed ant the Sandia National Laboratories` compact range antenna and radar-cross- section measurement facility as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc.). The folded compact range configuration has previously been used to perform coherent-change-detection (CCD) measurements, which allow disturbances to distributed targets on the order of fractions of a wavelength to be detected. This report describes follow-on CCD measurements of other distributed target samples, and also investigates the sensitivity of the CCD measurement process to changes in the relative spatial location of the SAR sensor between observations of the target. Additionally, this report describes the theoretical and practical aspects of performing interferometric inverse-synthetic-aperture-radar (IFISAR) measurements in the folded compact range environment. IFISAR measurements provide resolution of the relative heights of targets with accuracies on the order of a wavelength. Several examples are given of digital height maps that have been generated from measurements performed at the folded compact range facility.

  5. Improved self-reliance shearing interferometric technique for collimation testing

    Science.gov (United States)

    Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi

    1995-06-01

    Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.

  6. A CATALOG OF NEAR-IR SOURCES FOUND TO BE UNRESOLVED WITH MILLIARCSECOND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea@narit.or.th [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-12-15

    Calibration is one of the long-standing problems in optical interferometric measurements, particularly with long baselines which demand stars with angular sizes on the milliarcsecond scale and no detectable companions. While systems of calibrators have been generally established for the near-infrared in the bright source regime (K {approx}< 3 mag), modern large interferometers are sensitive to significantly fainter magnitudes. We aim to provide a list of sources found to be unresolved from direct observations with high angular resolution and dynamic range, which can be used to choose interferometric calibrators. To this purpose, we have used a large number of lunar occultations recorded with the ISAAC instrument at the Very Large Telescope to select sources found to be unresolved and without close companions. An algorithm has been used to determine the limiting angular resolution achieved for each source, taking into account a noise model built from occulted and unocculted portions of the light curves. We have obtained upper limits on the angular sizes of 556 sources, with magnitudes ranging from K{sub s} Almost-Equal-To 4 to 10, with a median of 7.2 mag. The upper limits on possible undetected companions (within Almost-Equal-To 0.''5) range from K{sub s} Almost-Equal-To 8 to 13, with a median of 11.5 mag. One-third of the sources have angular sizes {<=}1 mas, and two-thirds have sizes {<=}2 mas. This list of unresolved sources matches well the capabilities of current large interferometric facilities. We also provide available cross-identifications, magnitudes, spectral types, and other auxiliary information. A fraction of the sources are found to be potentially variable. The list covers parts of the Galactic Bulge and in particular the vicinity of the Galactic Center, where extinction is very significant and traditional lists of calibrators are often insufficient.

  7. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  8. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  9. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  10. Multi-Wavelength Interferometric Observations of YSO Disks

    Science.gov (United States)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  11. Event reconstruction using the radio-interferometric technique in the frame of AERA

    Energy Technology Data Exchange (ETDEWEB)

    Rogozin, Dmytro [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    It is a well-known fact that there is coherent radio emission induced by extensive air-showers. This fact is exploited in the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. This is a unique radio experiment due to its world-largest size of 17 km{sup 2}, and due to its precise nanosecond timing calibration. These features become crucial for detection of highly inclined air-showers with their very large foot-prints, and for the ability to apply interferometric reconstruction techniques. The standard reconstruction techniques typically treat all radio stations as separate detectors. Nevertheless there is a possibility to do an interferometric analysis. This means combining all detected signals from all antennas in a specific way. In this talk we present a beam-forming interferometric technique and its application to AERA. According to the definition of the beam-forming quantities one can expect its correlation with the shower parameters such as energy of the primary particle and distance to the shower maximum. At the first step, Monte-Carlo simulations of AERA events including the noise from measured events were used to test these dependencies. The results and the future perspectives of this method are discussed with a particular emphasis on very inclined air-showers where the aforementioned correlations are assumed to be strongest.

  12. The 2014 interferometric imaging beauty contest

    Science.gov (United States)

    Monnier, John D.; Berger, Jean-Philippe; Le Bouquin, Jean-Baptiste; Tuthill, Peter G.; Wittkowski, Markus; Grellmann, Rebekka; Müller, André; Renganswany, Sridhar; Hummel, Christian; Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd; Young, John; Buscher, David; Sanchez-Bermudez, Joel; Alberdi, Antxon; Schoedel, Rainer; Köhler, Rainer; Soulez, Ferréol; Thiébaut, Éric; Kluska, Jacques; Malbet, Fabien; Duvert, Gilles; Kraus, Stefan; Kloppenborg, Brian K.; Baron, Fabien; de Wit, Willem-Jan; Rivinius, Thomas; Merand, Antoine

    2014-07-01

    Here we present the results of the 6th biennial optical interferometry imaging beauty contest. Taking advantage of a unique opportunity, the red supergiant VY CMa and the Mira variable R Car were observed in the astronomical H-band with three 4-telescope configurations of the VLTI-AT array using the PIONIER instrument. The community was invited to participate in the subsequent image reconstruction and interpretation phases of the project. Ten groups submitted entries to the beauty contest, and we found reasonable consistency between images obtained from independent workers using quite different algorithms. We also found that significant differences existed between the submitted images, much greater than in past beauty contests that were all based on simulated data. A novel crowd-sourcing" method allowed consensus median images to be constructed, filtering likely artifacts and retaining real features." We definitively detect strong spots on the surfaces of both stars as well as distinct circumstellar shells of emission (likely water/CO) around R Car. In a close contest, Joel Sanchez (IAA-CSIC/Spain) was named the winner of the 2014 interferometric imaging beauty contest. This process has shown that new comers" can use publicly-available imaging software to interpret VLTI/PIONIER imaging data, as long as sufficient observations are taken to have complete uv coverage { a luxury that is often missing. We urge proposers to request adequate observing nights to collect sufficient data for imaging and for time allocation committees to recognise the importance of uv coverage for reliable interpretation of interferometric data. We believe that the result of the proposed broad international project will contribute to inspiring trust in the image reconstruction processes in optical interferometry.

  13. A Differential Polarized Light Interferometric System For Measuring Flatness Of Magnetic Disks

    Science.gov (United States)

    Jia, Wang; Da-Cheng, Li; Ye, Chen; Ling, Du; Mang, Cao

    1987-01-01

    A kind of differential polarizdd laser interferometric system for non-contact and dynamic measurement of the flatness characteristic of magnetic disks without the effect of the axial vibration is described in this papper.

  14. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully...... automated calibration techniques are preferable, especially for operational mapping. The author presents one such technique, called cross-calibration. Though developed for single-pass interferometry, it may be applicable to multi-pass interferometry, too. Cross-calibration requires stability during mapping...... ground control point is often needed. The paper presents the principles and mathematics of the cross-calibration technique and illustrates its successful application to EMISAR data....

  15. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2015-08-19

    We propose an interferometric least-squares migration method that can significantly reduce migration artifacts due to statics and errors in the near-surface velocity model. We first choose a reference reflector whose topography is well known from the, e.g., well logs. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. These crosscorrelograms are then migrated using interferometric least-squares migration (ILSM). In this way statics and velocity errors at the near surface are largely eliminated for the examples in our paper.

  16. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, Pablo J. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)]. E-mail: pbarriga@cyllene.uwa.edu.au; Zhao Chunnong [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Blair, David G. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)

    2005-06-06

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen.

  17. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Barriga, Pablo J.; Zhao Chunnong; Blair, David G.

    2005-01-01

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen

  18. How nonlinear optics can merge interferometry for high resolution imaging

    Science.gov (United States)

    Ceus, D.; Reynaud, F.; Tonello, A.; Delage, L.; Grossard, L.

    2017-11-01

    High resolution stellar interferometers are very powerful efficient instruments to get a better knowledge of our Universe through the spatial coherence analysis of the light. For this purpose, the optical fields collected by each telescope Ti are mixed together. From the interferometric pattern, two expected information called the contrast Cij and the phase information φij are extracted. These information lead to the Vij, called the complex visibility, with Vij=Cijexp(jφij). For each telescope doublet TiTj, it is possible to get a complex visibility Vij. The Zernike Van Cittert theorem gives a relationship between the intensity distribution of the object observed and the complex visibility. The combination of the acquired complex visibilities and a reconstruction algorithm allows imaging reconstruction. To avoid lots of technical difficulties related to infrared optics (components transmission, thermal noises, thermal cooling…), our team proposes to explore the possibility of using nonlinear optical techniques. This is a promising alternative detection technique for detecting infrared optical signals. This way, we experimentally demonstrate that frequency conversion does not result in additional bias on the interferometric data supplied by a stellar interferometer. In this presentation, we report on wavelength conversion of the light collected by each telescope from the infrared domain to the visible. The interferometric pattern is observed in the visible domain with our, so called, upconversion interferometer. Thereby, one can benefit from mature optical components mainly used in optical telecommunications (waveguide, coupler, multiplexer…) and efficient low-noise detection schemes up to the single-photon counting level.

  19. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  20. Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry

    Science.gov (United States)

    Supranowitz, Chris; Maloney, Chris; Murphy, Paul; Dumas, Paul

    2017-10-01

    Recent advances in polishing and metrology have addressed many of the challenges in the fabrication and metrology of freeform surfaces, and the manufacture of these surfaces is possible today. However, achieving the form and mid-spatial frequency (MSF) specifications that are typical of visible imaging systems remains a challenge. Interferometric metrology for freeform surfaces is thus highly desirable for such applications, but the capability is currently quite limited for freeforms. In this paper, we provide preliminary results that demonstrate accurate, high-resolution measurements of freeform surfaces using prototype software on QED's ASI™ (Aspheric Stitching Interferometer).

  1. Contrast computation methods for interferometric measurement of sensor modulation transfer function

    Science.gov (United States)

    Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio

    2018-01-01

    Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.

  2. New orbital elements of 5 interferometric double stars

    Directory of Open Access Journals (Sweden)

    Olević D.

    1999-01-01

    Full Text Available In this paper, for the first time, are presented elliptical and Thiel- Innes orbitatal elements for the following interferometric pairs: WDS 00416+2438 = WRH, WDS 03271+1845 = CHARA 10, WDS 04044+2406 = McA 13 Aa, WDS 17095+4047 = McA 45 and WDS 23019+4219 = o And Aa. For the pairs WDS 03271+1845 = CHARA 10 andWDS 04044+2406 = McA 13 Aa are calculated total masses and dynamical parallaxes which are compared with corresponding Hipparcos parallaxes.

  3. Matterwave interferometric velocimetry of cold Rb atoms

    Science.gov (United States)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  4. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  5. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  6. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  7. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  8. On the COSMO-SkyMed Exploitation for Interferometric DEM Generation

    Science.gov (United States)

    Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.

    2011-12-01

    DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments

  9. A direct localization of a fast radio burst and its host.

    Science.gov (United States)

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  10. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  11. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  12. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.

    Science.gov (United States)

    Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2011-02-09

    We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.

  13. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  14. Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations

    NARCIS (Netherlands)

    Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad

    2014-01-01

    We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the

  15. Interferometric control of the photon-number distribution

    Directory of Open Access Journals (Sweden)

    H. Esat Kondakci

    2017-07-01

    Full Text Available We demonstrate deterministic control over the photon-number distribution by interfering two coherent beams within a disordered photonic lattice. By sweeping a relative phase between two equal-amplitude coherent fields with Poissonian statistics that excite adjacent sites in a lattice endowed with disorder-immune chiral symmetry, we measure an output photon-number distribution that changes periodically between super-thermal and sub-thermal photon statistics upon ensemble averaging. Thus, the photon-bunching level is controlled interferometrically at a fixed mean photon-number by gradually activating the excitation symmetry of the chiral-mode pairs with structured coherent illumination and without modifying the disorder level of the random system itself.

  16. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  17. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  18. Interferometric Observations of the SiO High J Transition Maser associated with VY Canis Majoris with the Submillimeter Array

    Science.gov (United States)

    Shinnaga, H.; Moran, J. M.; Young, K. H.; Ho, P. T. P.

    2005-12-01

    We imaged the SiO maser emission of J=5-4 in the v=1 state associated with the peculiar red supergiant VY Canis Majoris using the partially completed Submillimeter Array. We identified seven maser components and measured the relative positions at sub-arcsecond scale in the high J transition for the first time. We have also measured the polarization of these maser components. The strongest maser feature has a linear polarization of ˜ 60%, and its direction of polarization is approximately aligned with the bipolar axis. Such a high degree of polarization suggests that radiative pumping is probably responsible for the maser inversion. Five of the other maser features have significant linear polarization.

  19. SOLARNET: a high resolution mission to complement the ILWS programme

    Science.gov (United States)

    Dame, L.; Clade, S.; Malherbe, J. M.

    SOLARNET is a medium size high resolution solar physics mission proposed to CNES for a new start in 2006 and a possible launch in 2010. Partnerships with Germany, Belgium, China and India are under discussion. At the center of the SOLARNET mission is a 3-telescopes interferometer of 1 meter baseline capable to provide 50 times the best ever spatial resolution achieved in Space with previous, current or even planned solar missions: 20 mas - 20 km on the Sun in the FUV. The interferometer is associated to an on-axis subtractive double monochromator (imaging spectrograph) capable of high spectral (0.01 nm) and high temporal resolutions (50 ms) on a field of view of 40 arcsec and over the FUV and UV spectral domains (from 117.5 to 400 nm). This will allow to access process scales of magnetic reconnection, dissipation, emerging flux and much more, from the high chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum. A whole new chapter of the physics of solar magnetic field structuring and evolution will be opened. The interferometer is complemented by several other instruments providing larger field of view and higher temperature (EUV-XUV coronal imaging) to define the context and extension of the solar phenomena. Helioseismology, a strong asset of SOHO, is also intended with both velocity and diameter measures, allowed by a non-eclipsing Sun synchronous orbit. The SOLARNET interferometer design results of an extensive laboratory demonstration program of interferometric imaging of extended objects. It started 10 years ago and culminates this year with the first interferometric observations (images) of the Sun at Meudon Observatory at the "Grand Siderostat de Foucault" with a complete 3 telescopes cophased interferometer representative of SOLARNET. We will review the scientific program of SOLARNET, describe the interferometer concept and design, present the first solar imaging results of the

  20. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  1. Imaging Stars by Performing Full-Stokes Optical Interferometric Polarimetry

    Directory of Open Access Journals (Sweden)

    Nicholas M. Elias II

    2012-03-01

    Full Text Available Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. We present: scientific justifications for “full-Stokes” optical interferometric polarimetry (OIP; updated instrument requirements; preliminary beam combiner designs; polarimeter design; end-to-end OIP data reduction; and realistic reimaged full-Stokes models of Be stars with a suitable number of telescopes plus noise sources. All of this work represents preliminary research to construct an OIP beam combiner.

  2. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2016-09-06

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  3. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal; Schuster, Gerard T.

    2016-01-01

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  4. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    Science.gov (United States)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  5. Non-Interferometric Tomography of Phase Objects Using Spatial Light Modulators

    Directory of Open Access Journals (Sweden)

    Thanh Nguyen

    2016-10-01

    Full Text Available Quantitative 3D phase retrieval techniques are based on either interferometric techniques such as holography or noninterferometric intensity-based techniques such as the transport of intensity equation (TIE. Interferometric techniques are vibration-sensitive and often use a reference beam requiring complicated optical alignment. In this work we develop a simple, fast, and noninterferometric tomographic 3D phase retrieval technique based on the TIE which does not suffer from such drawbacks. The optical setup is a modified 4f TIE system which uses an SLM to replace the slow translation of the CCD required to record several diffraction patterns in a traditional TIE system. This novel TIE setup is suitable for dynamical events such as imaging biological processes. A rotating mechanical stage is constructed to obtain tomographic phase images of the object. The tomographic reconstruction algorithm is based on the Fourier slice theorem (backprojection algorithm which applies to objects with a small refractive index span. Simulation and experimental results are shown as part of this work. A graphical user interface is developed to perform the TIE tomographic reconstruction algorithm and to synchronize the captured intensities by the CCD, the phase patterns displayed on the SLM, and the Arduino controlled rotating stage assembly.

  6. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    Science.gov (United States)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  7. Pion interferometric tests of transport models

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Gyulassy, M.; Gavin, S. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-01-08

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.).

  8. Pion interferometric tests of transport models

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.; Gavin, S.

    1990-01-01

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.)

  9. Reduction of interferometric crosstalk induced penalty using a saturated semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Poulsen, Henrik Nørskov

    2000-01-01

    We successfully demonstrated that a simple saturated SOA could be used to reduce the impact from the interferometric crosstalk at 2.5 and 10 Gb/s. It is shown that 4 dB more crosstalk power can be tolerated at 1 dB penalty by using the SOA. This will greatly reduce the crosstalk requirement...

  10. A new interferometric study of four exoplanet host stars: θ Cygni, 14 Andromedae, υ Andromedae and 42 Draconis

    Science.gov (United States)

    Ligi, R.; Mourard, D.; Lagrange, A. M.; Perraut, K.; Boyajian, T.; Bério, Ph.; Nardetto, N.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-09-01

    Context. Since the discovery of the first exoplanet in 1995 around a solar-type star, the interest in exoplanetary systems has kept increasing. Studying exoplanet host stars is of the utmost importance to establish the link between the presence of exoplanets around various types of stars and to understand the respective evolution of stars and exoplanets. Aims: Using the limb-darkened diameter (LDD) obtained from interferometric data, we determine the fundamental parameters of four exoplanet host stars. We are particularly interested in the F4 main-sequence star, θ Cyg, for which Kepler has recently revealed solar-like oscillations that are unexpected for this type of star. Furthermore, recent photometric and spectroscopic measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic radial velocity of ~150 days. Models of this periodic change in radial velocity predict either a complex planetary system orbiting the star, or a new and unidentified stellar pulsation mode. Methods: We performed interferometric observations of θ Cyg, 14 Andromedae, υ Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount Wilson, California) in several three-telescope configurations. We measured accurate limb darkened diameters and derived their radius, mass and temperature using empirical laws. Results: We obtain new accurate fundamental parameters for stars 14 And, υ And and 42 Dra. We also obtained limb darkened diameters with a minimum precision of ~1.3%, leading to minimum planet masses of Msini = 5.33 ± 0.57, 0.62 ± 0.09 and 3.79 ± 0.29 MJup for 14 And b, υ And b and 42 Dra b, respectively. The interferometric measurements of θ Cyg show a significant diameter variability that remains unexplained up to now. We propose that the presence of these discrepancies in the interferometric data is caused either by an intrinsic variation of the star or an unknown close companion orbiting around it. Based on interferometric observations with the VEGA

  11. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  12. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal; Schuster, Gerard T.

    2015-01-01

    the, e.g., well logs. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. These crosscorrelograms are then migrated using interferometric least

  13. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun

    2014-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  14. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  15. Improving waveform inversion using modified interferometric imaging condition

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  16. Dynamic spectro-polarimeter based on a modified Michelson interferometric scheme.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Baek, Byung-Joon; Kim, Daesuk

    2016-06-27

    A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter. The proposed dynamic spectro-polarimeter enables us to extract highly accurate spectral Stokes vector of any transmissive anisotropic object with a frame rate of more than 20Hz.

  17. Evidence of a metal-rich surface for the Asteroid (16) Psyche from interferometric observations in the thermal infrared

    Science.gov (United States)

    Matter, Alexis; Delbo, Marco; Carry, Benoit; Ligori, Sebastiano

    2013-09-01

    We describe the first determination of thermal properties and size of the M-type Asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We used a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (Kaasalainen, M., Torppa, J., Piironen, J. [2002]. Icarus 159, 369-395), we derived a volume-equivalent diameter for (16) Psyche of 247 ± 25 km or 238 ± 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J m-2 s-0.5 K-1, with a total uncertainty estimated at 40 J m-2 s-0.5 K-1. They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the Asteroid (16) Psyche.

  18. Distortion compensation in interferometric testing of mirrors

    International Nuclear Information System (INIS)

    Robinson, Brian M.; Reardon, Patrick J.

    2009-01-01

    We present a method to compensate for the imaging distortion encountered in interferometric testing of mirrors, which is introduced by interferometer optics as well as from geometric projection errors. Our method involves placing a mask, imprinted with a regular square grid, over the mirror and finding a transformation that relates the grid coordinates to coordinates in the base plane of the parent surface. This method can be used on finished mirrors since no fiducials have to be applied to the surfaces. A critical step in the process requires that the grid coordinates be projected onto the mirror base plane before the regression is performed. We apply the method successfully during a center-of-curvature null test of an F/2 off-axis paraboloid

  19. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-08-17

    One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.

  20. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    Science.gov (United States)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  1. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  2. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)

  3. Reconstruction of source location in a network of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Cavalier, Fabien; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Clapson, Andre-Claude; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Leroy, Nicolas; Varvella, Monica

    2006-01-01

    This paper deals with the reconstruction of the direction of a gravitational wave source using the detection made by a network of interferometric detectors, mainly the LIGO and Virgo detectors. We suppose that an event has been seen in coincidence using a filter applied on the three detector data streams. Using the arrival time (and its associated error) of the gravitational signal in each detector, the direction of the source in the sky is computed using a χ 2 minimization technique. For reasonably large signals (SNR>4.5 in all detectors), the mean angular error between the real location and the reconstructed one is about 1 deg. . We also investigate the effect of the network geometry assuming the same angular response for all interferometric detectors. It appears that the reconstruction quality is not uniform over the sky and is degraded when the source approaches the plane defined by the three detectors. Adding at least one other detector to the LIGO-Virgo network reduces the blind regions and in the case of 6 detectors, a precision less than 1 deg. on the source direction can be reached for 99% of the sky

  4. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    Science.gov (United States)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  5. Fusion of Multi-Temporal Interferometric Coherence and Optical Image Data for the 2016 Kumamoto Earthquake Damage Assessment

    Directory of Open Access Journals (Sweden)

    Nopphawan Tamkuan

    2017-06-01

    Full Text Available Earthquakes are one of the most devastating types of natural disasters, and happen with little to no warning. This study combined Landsat-8 and interferometric ALOS-2 coherence data without training area techniques by classifying the remote sensing ratios of specific features for damage assessment. Waterbodies and highly vegetated areas were extracted by the modified normalized difference water index (MNDWI and normalized difference vegetation index (NDVI, respectively, from after-earthquake images in order to improve the accuracy of damage maps. Urban areas were classified from pre-event interferometric coherence data. The affected areas from the earthquake were detected with the normalized difference (ND between the pre- and co-event interferometric coherence. The results presented three damage types; namely, damage to buildings caused by ground motion, liquefaction, and landslides. The overall accuracy (94% of the confusion matrix was excellent. Results for urban areas were divided into three damage levels (e.g., none–slight, slight–heavy, heavy–destructive at a high (90% overall accuracy level. Moreover, data on buildings damaged by liquefaction and landslides were in good agreement with field survey information. Overall, this study illustrates an effective damage assessment mapping approach that can support post-earthquake management activities for future events, especially in areas where geographical data are sparse.

  6. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  7. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber.

    Science.gov (United States)

    Muri, Harald Ian; Bano, Andon; Hjelme, Dag Roar

    2018-01-11

    We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR) signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI), which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label-free biosensing. These

  8. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber

    Directory of Open Access Journals (Sweden)

    Harald Ian Muri

    2018-01-01

    Full Text Available We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI, which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label

  9. Interferometric data modelling: issues in realistic data generation

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2004-01-01

    This study describes algorithms developed for modelling interferometric noise in a realistic manner, i.e. incorporating non-stationarity that can be seen in the data from the present generation of interferometers. The noise model is based on individual component models (ICM) with the application of auto regressive moving average (ARMA) models. The data obtained from the model are vindicated by standard statistical tests, e.g. the KS test and Akaike minimum criterion. The results indicate a very good fit. The advantage of using ARMA for ICMs is that the model parameters can be controlled and hence injection and efficiency studies can be conducted in a more controlled environment. This realistic non-stationary noise generator is intended to be integrated within the data monitoring tool framework

  10. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  11. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  12. Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lee, B.H.; Ju, L.; Blair, D.G.

    2005-01-01

    We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions

  13. Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)]. E-mail: bhl@physics.uwa.edu.au; Ju, L. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia); Blair, D.G. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2005-05-23

    We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions.

  14. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  15. Interferometric diameters of five evolved intermediate-mass planet-hosting stars measured with PAVO at the CHARA Array

    Science.gov (United States)

    White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.

    2018-04-01

    Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.

  16. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    Science.gov (United States)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  17. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction

    DEFF Research Database (Denmark)

    Rieke, G. H.; Wright, G. S.; Böker, T.

    2015-01-01

    MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope [JWST]) operates from 5 to 28: 5 μm and combines over this range: (1) unprecedented sensitivity levels; (2) subarcsecond angular resolution; (3) freedom from atmospheric interference; (4) the inherent stability of observing...... in space; and (5) a suite of versatile capabilities including imaging, low- and medium-resolution spectroscopy (with an integral field unit), and coronagraphy. We illustrate the potential uses of this unique combination of capabilities with various science examples: (1) imaging exoplanets; (2) transit...

  18. Time-delay interferometric ranging for space-borne gravitational-wave detectors

    International Nuclear Information System (INIS)

    Tinto, Massimo; Vallisneri, Michele; Armstrong, J.W.

    2005-01-01

    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser-phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays, and we study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as time-delay interferometric ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∼10 4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated interspacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the Synthetic LISA software package

  19. Three-dimensional Reconstruction Method Study Based on Interferometric Circular SAR

    Directory of Open Access Journals (Sweden)

    Hou Liying

    2016-10-01

    Full Text Available Circular Synthetic Aperture Radar (CSAR can acquire targets’ scattering information in all directions by a 360° observation, but a single-track CSAR cannot efficiently obtain height scattering information for a strong directive scatter. In this study, we examine the typical target of the three-dimensional circular SAR interferometry theoryand validate the theory in a darkroom experiment. We present a 3D reconstruction of the actual tank metal model of interferometric CSAR for the first time, verify the validity of the method, and demonstrate the important potential applications of combining 3D reconstruction with omnidirectional observation.

  20. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  1. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    Science.gov (United States)

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  2. THE RRAT TRAP: INTERFEROMETRIC LOCALIZATION OF RADIO PULSES FROM J0628+0909

    International Nuclear Information System (INIS)

    Law, Casey J.; Bower, Geoffrey C.; Pokorny, Martin; Rupen, Michael P.; Sowinski, Ken

    2012-01-01

    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array to produce correlated data products (i.e., visibilities and images) on a timescale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.''6. With a priori knowledge of the RRAT location, a traditional beam-forming search of the same data found two lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L i ' 31 erg s –1 and disfavoring source models with luminous neutron stars.

  3. THE RRAT TRAP: INTERFEROMETRIC LOCALIZATION OF RADIO PULSES FROM J0628+0909

    Energy Technology Data Exchange (ETDEWEB)

    Law, Casey J.; Bower, Geoffrey C. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA (United States); Pokorny, Martin; Rupen, Michael P.; Sowinski, Ken [National Radio Astronomy Observatory, Socorro, NM (United States)

    2012-12-01

    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array to produce correlated data products (i.e., visibilities and images) on a timescale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.''6. With a priori knowledge of the RRAT location, a traditional beam-forming search of the same data found two lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L{sub i{sup '}}<1.1 Multiplication-Sign 10{sup 31} erg s{sup -1} and disfavoring source models with luminous neutron stars.

  4. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  5. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  6. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.

  7. Interferometric method to determine the Kerr constant of perspex and ZnSe

    CSIR Research Space (South Africa)

    Govender, P

    2010-09-01

    Full Text Available , (1999). [2] T. K. Ishii and A. Griffis, “Measurement of electro-optic effects in acrylic plastic”, Microwave and Optical Technology Letters, 4, 387-389(1991). [3] W. Kucharczyk, M. J. Gunning, R. E. Raab and C. Graham, “Interferometric investigation... to Determine the Kerr Constant of Perspex Patricia Govender1, 2, Dr. V.W. Couling1 1 UKZN Pietermaritzburg, King Edward Avenue, Scottsville, Pietermaritzburg 2 CSIR, DPSS, 3Meiring Naude Avenue Patricia Govender e-mail address: pgovender...

  8. Experimental Verification of a New Model Describing the Influence of Incomplete Signal Extinction Ratio on the Sensitivity Degradation due to Multiple Interferometric Crosstalk

    DEFF Research Database (Denmark)

    Liu, Fenghai; Rasmussen, Christian Jørgen; Pedersen, Rune Johan Skullerud

    1999-01-01

    Larger optical penalties than predicted by a Gaussian crosstalk model are found both in our experiments and in the literature when investigating signals including multiple interferometric crosstalk contributions. We attribute this to an imperfect signal extinction ratio. In this letter, simple...... analytical relations for crosstalk induced power penalties are derived taking the signal extinction ratio into account and excellent agreement with 10-Gb/s experiments is obtained. Both theory and experiment show the importance of the signal extinction ratio in connection with interferometric crosstalk....

  9. Redundant interferometric calibration as a complex optimization problem

    Science.gov (United States)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  10. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  11. Advanced Virgo: a second-generation interferometric gravitational wave detector

    International Nuclear Information System (INIS)

    Acernese, F; Barone, F; Agathos, M; Agatsuma, K; Bauer, Th S; Beker, M G; Aisa, D; Allemandou, N; Allocca, A; Amarni, J; Baronick, J-P; Barsuglia, M; Astone, P; Basti, F; Balestri, G; Ballardin, G; Bavigadda, V; Basti, A; Bejger, M; Belczynski, C

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network, alongside the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detection of gravitational waves and to opening a new window of observation on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction. (paper)

  12. Enhancing Raman signals with an interferometrically controlled AFM tip

    International Nuclear Information System (INIS)

    Oron-Carl, Matti; Krupke, Ralph

    2013-01-01

    We demonstrate the upgrade of a commercial confocal Raman microscope into a tip-enhanced Raman microscope/spectroscopy system (TERS) by integrating an interferometrically controlled atomic force microscope into the base of an existing upright microscope to provide near-field detection and thus signal enhancement. The feasibility of the system is demonstrated by measuring the Raman near-field enhancement on thin PEDOT:PSS films and on carbon nanotubes within a device geometry. An enhancement factor of 2–3 and of 5–6 is observed, respectively. Moreover, on a nanotube device we show local conductivity measurement and its correlation to Raman and topography recordings. Upgrading an existing upright confocal Raman microscope in the demonstrated way is significantly cheaper than purchasing a complete commercial TERS system. (paper)

  13. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  14. An airborne interferometric SAR system for high-performance 3D mapping

    Science.gov (United States)

    Lange, Martin; Gill, Paul

    2009-05-01

    With a vertical accuracy better than 1 m and collection rates up to 7000 km2/h, airborne interferometric synthetic aperture radars (InSAR) bridge the gap between space borne radar sensors and airborne optical LIDARs. This paper presents the latest generation of X-band InSAR sensors, developed by Intermap TechnologiesTM, which are operated on our four aircrafts. The sensors collect data for the NEXTMap(R) program - a digital elevation model (DEM) with 1 m vertical accuracy for the contiguous U.S., Hawaii, and most of Western Europe. For a successful operation, challenges like reduction of multipath reflections, very high interferometric phase stability, and a precise system calibration had to be mastered. Recent advances in sensor design, comprehensive system automation and diagnostics have increased the sensor reliability to a level where no radar operator is required onboard. Advanced flight planning significantly improved aircraft utilization and acquisition throughput, while reducing operational costs. Highly efficient data acquisition with straight flight lines up to 1200 km is daily routine meanwhile. The collected data pass though our automated processing cluster and finally are edited to our terrain model products. Extensive and rigorous quality control at every step of the workflow are key to maintain stable vertical accuracies of 1 m and horizontal accuracies of 2 m for our 3D maps. The combination of technical and operational advances presented in this paper enabled Intermap to survey two continents, producing 11 million km2 of uniform and accurate 3D terrain data.

  15. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  16. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D. [Russian Academy of Sciences, Astro Space Center, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.

  17. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    International Nuclear Information System (INIS)

    Shatskiy, A. A.; Kovalev, Yu. Yu.; Novikov, I. D.

    2015-01-01

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations

  18. ROTATION AND OUTFLOW MOTIONS IN THE VERY LOW-MASS CLASS 0 PROTOSTELLAR SYSTEM HH 211 AT SUBARCSECOND RESOLUTION

    International Nuclear Information System (INIS)

    Lee, C.-F.; Hirano, Naomi; Ho, Paul T. P.; Shang, Hsien; Palau, Aina; Bourke, Tyler L.; Zhang Qizhou

    2009-01-01

    HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J = 8 - 7), and HCO + (J = 4 - 3) emission at up to ∼0.''2 resolution with the Submillimeter Array (SMA). The continuum source is now resolved into two sources, SMM1 and SMM2, with a separation of ∼ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO + around SMM1 with a radius of ∼ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ∼50 ± 15 M Jup (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (∼200 AU) low-speed (∼2 km s -1 ) outflow is seen in HCO + around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ∼100 AU from SMM1. It is seen with a 'C-shaped' bending. It has a transverse width of ∼ -1 . A possible velocity gradient is seen consistently across its innermost pair of knots, ∼0.5 km s -1 at ∼10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of ∼ -1 and thus must be launched from the very inner edge of the disk near the corotation radius.

  19. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  20. An Embeddable Strain Sensor with 30 Nano-Strain Resolution Based on Optical Interferometry

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2018-04-01

    Full Text Available A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry–Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε and a sensitivity of 10.01 µε/µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring.

  1. Lower frequency companions for the Advanced LIGO gravitational wave interferometric detectors: an observational opportunity?

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2004-01-01

    Recent x-ray and optical observations provide evidence for a population of intermediate mass black holes with masses of tens to thousands of solar masses. Dynamical braking in high stellar density regions may 'catalyze' the inspiral of heavy mass objects down to the million-year time scale. Black-hole binaries, with the masses implied by the observations, will plunge below 100 Hz. It may be technologically possible to build ground-based low frequency gravitational wave interferometric detectors optimized to detect these events and install them next to Advanced LIGO (AdL), within the existing LIGO facilities. This additional interferometer, operated coherently with AdL and Virgo, would greatly enhance the effectiveness of the existing interferometers by generating a wealth of triggers for potentially frequent but otherwise undetectable heavy mass inspirals. AdL would study, at higher frequency, the triggered, ultra-relativistic phases (merging and ringdown) of these inspirals. Comparisons are made between the expected detection performances of AdL in its proposed wide band tuning, as well as AdL in its best low frequency tuning, with a low frequency gravitational wave interferometric detector that is mechanically and optically optimized for operation at the lowest possible frequency. Finally, the synergies of tandem operation of AdL and the proposed low frequency interferometer have been considered

  2. Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd2O3 doped sodium zincborate glass.

    Science.gov (United States)

    Astrath, N G C; Steimacher, A; Rohling, J H; Medina, A N; Bento, A C; Baesso, M L; Jacinto, C; Catunda, T; Lima, S M; Karthikeyan, B

    2008-12-22

    In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required.

  3. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  4. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  5. A high resolution interferometric method to measure local swelling due to CO2 exposure in coal and shale

    NARCIS (Netherlands)

    Pluymakers, A.; Liu, J.; Kohler, F.; Renard, F.; Dysthe, D.

    2018-01-01

    We present an experimental method to study time-dependent, CO2-induced, local topography changes in mm-sized composite samples, plus results showing heterogeneous swelling of coal and shale on the nano- to micrometer scale. These results were obtained using high resolution interferometry

  6. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    Science.gov (United States)

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  7. Interferometric investigation methods of plasma spatial characteristics on stellarators and tokamaks in submillimeter region

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.; Kononenko, V.I.; Epishin, V.A.; Topkov, A.N.

    1992-01-01

    The review of interferometric methods of plasma investigation in the wave submillimeter range is given. The diagnostic schemes in stellarators and tokamaks designed for experienced thermonuclear reactors and also the perspective ones, which are still out of practice, are shown. The methods of these diagnostics, their physical principles, the main possibilities and restrictions at changes of electron density, magnetic fields (currents) and their spatial distributions are described. 105 refs.; 9 figs.; 2 tables. (author)

  8. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Sancho-Parramon, J. [Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb 10002 (Croatia); Jover, E.; Bertran, E. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Canillas, A., E-mail: acanillas@ub.ed [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain)

    2011-02-28

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 {mu}m and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  9. An interferometric complementarity experiment in a bulk nuclear magnetic resonance ensemble

    International Nuclear Information System (INIS)

    Peng Xinhua; Zhu Xiwen; Fang Ximing; Feng Mang; Liu Maili; Gao Kelin

    2003-01-01

    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability D quantifying the amount of which-way (WW) information to the fringe visibility V characterizing the wave feature of a quantum entity, in a bulk ensemble by nuclear magnetic resonance (NMR) techniques. We are primarily concerned about the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of D by an alternative geometric strategy and investigate the relation between D and entanglement. By measuring D and V independently, it turns out that the duality relation D 2 + V 2 = 1 holds for pure quantum states of the markers

  10. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    International Nuclear Information System (INIS)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O.; Sancho-Parramon, J.; Jover, E.; Bertran, E.; Canillas, A.

    2011-01-01

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 μm and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  11. Spectral and interferometric observation of four emission nebulas

    International Nuclear Information System (INIS)

    Lozinskaya, T.A.; Klement'eva, A.Yu.; Zhukov, G.V.; Shenavrin, V.I.

    1975-01-01

    Results of spectrophotometric and interferometric observations of four emission nebulae are presented; electron temperature Te and electron density Ne are estimated; mean beam velocities and parameters of the internal motion in the nebylae are determined. The following objects have been investigated: 1) a bright compact nebulae of unknown nature 2.5 in size which is identified with the non-thermal radiosource G6.4-0.5 in the region W28; 2) nebulae RCW171 5' in size which is identified with the radiosource G23.1+0.6; 3) the nebulae Simeiz 34/Sharpless 261/d 1950 =6sup(h)05sup(m), sigma 1950 =+15 deg 49'; its diameter is approximately 30 an extensive complex of bright emission fibres in the nebulae Swan, which are partially projected into a possible remainder of the outburst of a supernova W63; L 1950 =20sup(h)17sup(m); S 1950 =45 deg 30' its diameter is approximately 1 deg 5

  12. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  13. Interferometric system with tracking refractometry capability in the measuring axis

    International Nuclear Information System (INIS)

    Lazar, J; Holá, M; Číp, O; Hrabina, J; Oulehla, J

    2013-01-01

    We present a combined interferometric arrangement designed for measurement of one-axis displacement over a specified measuring range with mechanical referencing. This concept allows simultaneous measurement of the carriage position from both sides together with monitoring of the overall range. This can be used in configuration with in-line monitoring of the fluctuations of the refractive index-–tracking refractometry. Similarly, the wavelength of the laser source can be stabilized over the measuring range, effectively compensating for the refractive index changes. Otherwise, monitoring of length of the measuring range can give information about the thermal dilatation effects of frame of the whole measuring setup. This technique can find its way into high-precision positioning systems in nanometrology. (technical design note)

  14. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  15. Multi-path interferometric Josephson directional amplifier for qubit readout

    Science.gov (United States)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  16. Characterization of the structure of the coating of multilayers using AFM and Interferometric Microscopy

    International Nuclear Information System (INIS)

    Jerez A, Martha I; Lara O, Laura; Morantes M, Luz D; Plata G, Arturo; Torres, Yezid; Tsygankov, Petr

    2011-01-01

    Ti / TiN films were deposited on H13 steel and silicon substrates with different deposition voltage, by means of the cathodic arc evaporation (CAE) technique, this process was carried out by nanolayers deposition, requiring a detailed survey on growth films, for the properties characterization such as grain size, thickness and roughness of the film was used the atomic force microscopy (AFM) techniques and Interferometric Microscopy. Obtaining a the films growth when varying the deposition voltage.

  17. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Blair, D G; Coward, D; Davidson, J; Dumas, J-C; Howell, E; Ju, L; Wen, L; Zhao, C [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); McClelland, D E; Scott, S M; Slagmolen, B J J; Inta, R [Department of Physics, Faculty of Science, Australian National University, Canberra, ACT 0200 (Australia); Munch, J; Ottaway, D J; Veitch, P; Hosken, D [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Melatos, A; Chung, C; Sammut, L, E-mail: pbarriga@cyllene.uwa.edu.a [School of Physics University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-04-21

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  18. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    OpenAIRE

    Barriga, P.; Blair, D.; Coward, D.; Davidson, J.; Dumas, J.; Howell, E.; Ju, L.; Wen, L.; Zhao, C.; McClelland, D.; Scott, S.; Slagmolen, B.; Inta, R.; Munch, J.; Ottaway, D.

    2010-01-01

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  19. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  20. Subarcsecond resolution observations of warm water towards three deeply embedded low-mass protostars

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm; Jørgensen, Jes Kristian; van Dishoeck, Ewine F.

    2012-01-01

    in the IRAS4A binary; in addition CH3OCH3, C2H5CN, and SO2 are detected. Extended water emission is seen towards IRAS2A, possibly associated with the outflow. The detections in all systems suggests that the presence of water on 96 %) is frozen out on dust grains at these scales. The derived abundances of CH3...

  1. Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy

    Directory of Open Access Journals (Sweden)

    F. Fidecaro

    2008-06-01

    Full Text Available The site of the European Gravitational Observatory (EGO located in the countryside near Pisa (Tuscany, Italy was investigated by a microgravity vertical gradient (MVG survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.

  2. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    International Nuclear Information System (INIS)

    Gan, Ma; Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp

    2006-01-01

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated

  3. INTERFEROMETRIC EVIDENCE FOR RESOLVED WARM DUST IN THE DQ TAU SYSTEM

    International Nuclear Information System (INIS)

    Boden, Andrew F.; Sargent, Anneila I.; Carpenter, John M.; Akeson, Rachel L.; Ciardi, David R.; Bary, Jeffrey S.; Skrutskie, Michael F.

    2009-01-01

    We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit and analysis of Mathieu et al. Further, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an 'excess' source. Remarkably, the excess source is resolved in our data, similar in scale to the binary itself (∼0.2 AU at apastron), rather than the larger circumbinary disk (∼0.4 AU radius). Our observations support the Mathieu et al. and Carr et al. inference of significant warm material near the DQ Tau binary.

  4. Distributed fiber optic interferometric geophone system based on draw tower gratings

    Science.gov (United States)

    Xu, Ruquan; Guo, Huiyong; Liang, Lei

    2017-09-01

    A distributed fiber optic interferometric geophone array based on draw tower grating (DTG) array is proposed. The DTG geophone array is made by the DTG array fabricated based on a near-contact exposure through a phase mask during the fiber drawing process. A distributed sensing system with 96 identical DTGs in an equal separation of 20 m and an unbalanced Michelson interferometer for vibration measurement has been experimentally validated compared with a moving-coil geophone. The experimental results indicate that the sensing system can linearly demodulate the phase shift. Compared with the moving coil geophone, the fiber optic sensing system based on DTG has higher signal-to-noise ratio at low frequency.

  5. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    Science.gov (United States)

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  6. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: overview and air-side system description

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron

    2016-07-01

    This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  7. An ultra-high frequency boundary layer Doppler/interferometric profiler

    International Nuclear Information System (INIS)

    Van Baelen, J.S.

    1994-01-01

    The planetary boundary layer (PBL) is that portion of the earth's atmosphere that is directly influenced by the earth's surface. The PBL can be vigorously turbulent and range in depth from a few hundred meters to a few kilometers. Solar energy is primarily absorbed at the earth's surface and transmitted to the free atmosphere through boundary-layer processes. An accurate portrayal of these transfers within the PBL is crucial to understand and predict many atmospheric processes from pollutant dispersion to numerical weather prediction and numerical simulations of climate change. This paper describes and discusses wind profiling techniques, focusing on the newly developed radio acoustic sounding system (RASS), and reviews past efforts to measure flux within the PBL. A new UHF wind profiling radar, the UHF Doppler/Interferometric Boundary Layer Radar, for accurately measuring both mean and flux quantities, as well as wind divergence and acoustic wave propagation, is outlined

  8. Interferometric detectors of gravitational waves on Earth: the next generations

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G [INFN Firenze - Via G.Sansone 1, 50019 - Sesto F., Firenze (Italy)], E-mail: losurdo@fi.infn.it

    2008-05-15

    First generation long-baseline interferometric detectors of gravitational waves are now taking data. A first detection might be possible with these instruments, but more sensitive detectors will be needed to start the field of gravitational wave astronomy. Second generation interferometers will improve the sensitivity by a factor ten, allowing to explore a universe volume 1000 times larger. The technology is almost ready and the construction will start at the beginning of the next decade. The community of the physicists involved in the field has also started to make plans for third generation detectors, for which a long term technology development program will be required. The plans for the upgrades of the existing detectors and the scenario for the evolution of the field will be reviewed in this paper.

  9. A Comparison of Acoustic Field Measurement by a Microphone and by an Optical Interferometric Probe

    Directory of Open Access Journals (Sweden)

    R. Bálek

    2002-01-01

    Full Text Available The objective of this work is to show that our optical method for measuring acoustic pressure is in some way superior to measurement using a microphone. Measurement of the integral acoustic pressure in the air by a laser interferometric probe is compared with measurement using a microphone. We determined the particular harmonic components in the acoustic field in the case of relatively high acoustic power in the ultrasonic frequency range.

  10. The 2016 interferometric imaging beauty contest

    Science.gov (United States)

    Sanchez-Bermudez, J.; Thiébaut, E.; Hofmann, K.-H.; Heininger, M.; Schertl, D.; Weigelt, G.; Millour, F.; Schutz, A.; Ferrari, A.; Vannier, M.; Mary, D.; Young, J.

    2016-08-01

    Image reconstruction in optical interferometry has gained considerable importance for astrophysical studies during the last decade. This has been mainly due to improvements in the imaging capabilities of existing interferometers and the expectation of new facilities in the coming years. However, despite the advances made so far, image synthesis in optical interferometry is still an open field of research. Since 2004, the community has organized a biennial contest to formally test the different methods and algorithms for image reconstruction. In 2016, we celebrated the 7th edition of the "Interferometric Imaging Beauty Contest". This initiative represented an open call to participate in the reconstruction of a selected set of simulated targets with a wavelength-dependent morphology as they could be observed by the 2nd generation of VLTI instruments. This contest represents a unique opportunity to benchmark, in a systematic way, the current advances and limitations in the field, as well as to discuss possible future approaches. In this contribution, we summarize: (a) the rules of the 2016 contest; (b) the different data sets used and the selection procedure; (c) the methods and results obtained by each one of the participants; and (d) the metric used to select the best reconstructed images. Finally, we named Karl-Heinz Hofmann and the group of the Max-Planck-Institut fur Radioastronomie as winners of this edition of the contest.

  11. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  12. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  13. Modeling and design of a spiral-shaped Mach-Zehnder interferometric sensor for refractive index sensing of watery solutions

    NARCIS (Netherlands)

    Hoekman, M.; Dijkstra, Marcel; Dijkstra, Mindert; Hoekstra, Hugo

    2006-01-01

    The modeling and design of a spiral-shaped Mach-Zehnder Interferometric sensor (sMZI sensor) for refractive index sensing of watery solutions is presented. The goal of the running project is to realise a multi-sensing array by placing multiple sMZIs in series to form a sensing branch, and to place

  14. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    Science.gov (United States)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  15. BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Timbie, Peter T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bunn, Emory F. [Physics Department, University of Richmond, Richmond, VA 23173 (United States); Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Sutter, P. M. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Wandelt, Benjamin D., E-mail: lzhang263@wisc.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, IL 61801 (United States)

    2016-01-15

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation–Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

  16. Investigation of land subsidence in the Houston-Galveston region of Texas by using the Global Positioning System and interferometric synthetic aperture radar, 1993-2000

    Science.gov (United States)

    Bawden, Gerald W.; Johnson, Michaela R.; Kasmarek, Mark C.; Brandt, Justin; Middleton, Clifton S.

    2012-01-01

    Since the early 1900s, groundwater has been the primary source of municipal, industrial, and agricultural water supplies for the Houston-Galveston region, Texas. The region's combination of hydrogeology and nearly century-long use of groundwater has resulted in one of the largest areas of subsidence in the United States; by 1979, as much as 3 meters (m) of subsidence had occurred, and approximately 8,300 square kilometers of land had subsided more than 0.3 m. The U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, used interferometric synthetic aperture radar (InSAR) data obtained for four overlapping scenes from European remote sensing satellites ERS-1 and ERS-2 to analyze land subsidence in the Houston-Galveston region of Texas. The InSAR data were processed into 27 interferograms that delineate and quantify land-subsidence patterns and magnitudes. Contemporaneous data from the Global Positioning System (GPS) were reprocessed by the National Geodetic Survey and analyzed to support, verify, and provide temporal resolution to the InSAR investigation.

  17. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  18. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  19. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible "3He/10 T cryostat

    International Nuclear Information System (INIS)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped "3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  20. HERO: a space based low frequency interferometric observatory for heliophysicsenabled by novel vector sensor technology

    Science.gov (United States)

    2017-04-07

    baseline of HeRO-S or HeRO-G will detect type II and III solar bursts over several decades of intensity and frequency. Shown for comparison are an...and disturbances in a key region of the helio-11 sphere, from two to tens of solar radii, using interferometric observations of solar12 radio bursts at...fronts14 will be traced via type II burst emissions, and heliospheric magnetic field geometries15 will be probed by measuring precise trajectories of type

  1. Interferometric capability for the Magellan Project

    Science.gov (United States)

    Carleton, Nathaniel P.; Traub, Wesley A.; Angel, J. Roger P.

    1998-07-01

    The Magellan Project is building two 6.5-m telescopes, 60 m apart, at the Las Campanas Observatory in Chile. There are on-going plans to combine the beams of the two main telescopes, and of smaller auxiliary telescopes, for interferometric measurements. In this paper we consider the array of auxiliary telescopes as a stand-alone instrument, recognizing that it will operate as such for some large fraction of the time. Our interest is sharpened by the availability of six 1.8-m optical systems, retired from the Smithsonian-Arizona Multiple-Mirror Telescope in preparation for the installation of a single-mirror 6.5-m system. We have completed a design for a 1.8-m telescope, in which the MMT components are supported on a proven tripod mount. The optics-support uses steel for stiffness, and low-thermal- expansion rods for passive stability. This array will be a powerful tool for the investigation of stellar limb darkening, surface features, and changes of diameter in pulsations, as well as dust disks, shells, and binary companions. The 1.8-m telescopes on good sites such as Magellan's should be able to operate at full aperture for interferometry at 2.2 micrometers . They should therefore be able to reach to magnitude K equals 10 or so, and thus to cover substantial samples of both main-sequence and pre-main- sequence stars, and of fully evolved stars as well.

  2. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A., E-mail: aschwarz@physnet.uni-hamburg.de; Wiesendanger, R. [Department of Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany)

    2016-07-15

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  3. The 2001 U.S. Naval Observatory Double Star CD-Rom. III. The Third Catalog of Interferometric Measurements of Binary Stars

    Science.gov (United States)

    2001-12-01

    CHARA southern speckle program from 1989 to 1996 (cf. Hartkopf et al. 1996), and by the more recent speckle e†orts of Horch and colleagues (cf. Horch ...Mason, B. D. 2001, Third Catalog of Interferometric Measurements of Binary Stars (CHARA Contrib. No. 4) (Atlanta : Georgia State Univ.) Horch , E

  4. Laser interferometric method for determining the carrier diffusion length in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  5. A three-dimensional sorting reliability algorithm for coastline deformation monitoring, using interferometric data

    International Nuclear Information System (INIS)

    Genderen, J v; Marghany, M

    2014-01-01

    The paper focusses on three-dimensional (3-D) coastline deformation using interferometric synthetic aperture radar data(InSAR). Conventional InSAR procedures were implemented on three repeat passes of ENVISAT ASAR data. Furthermore, the three-dimensional sorting reliabilities algorithm (3D-SRA) were implemented with the phase unwrapping technique. Subsequently, the 3D-SRA was used to eliminate the phase decorrelation impact from the interferograms. The study showed that the performance of the InSAR method using the 3D-SRA algorithm, is better than the conventional InSAR procedure. In conclusion, the integration of the 3D-SRA, together with phase unwrapping, can produce accurate 3-D coastline deformation information

  6. A new spectroscopic and interferometric study of the young stellar object V645 Cygni

    Science.gov (United States)

    Miroshnichenko, A. S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Kraus, S.; Manset, N.; Albert, L.; Balega, Y. Y.; Klochkova, V. G.; Rudy, R. J.; Lynch, D. K.; Mazuk, S.; Venturini, C. C.; Russell, R. W.; Grankin, K. N.; Puetter, R. C.; Perry, R. B.

    2009-04-01

    Aims: We present the results of high-resolution optical spectroscopy, low-resolution near-IR spectroscopy and near-infrared speckle interferometry of the massive young stellar object candidate V645 Cyg, acquired to refine its fundamental parameters and the properties of its circumstellar envelope. Methods: Speckle interferometry in the H- and K-bands and an optical spectrum in the range 5200-6680 Å with a spectral resolving power of R = 60 000 were obtained at the 6 m telescope of the Russian Academy of Sciences. Another optical spectrum in the range 4300-10 500 Å with R = 79 000 was obtained at the 3.6 m CFHT. Low-resolution spectra in the ranges 0.46-1.4 μm and 1.4-2.5 μm with R ~ 800 and ~700, respectively, were obtained at the 3 m Shane telescope of the Lick Observatory. Results: Using a novel kinematical method based on the non-linear modeling of the neutral hydrogen density profile in the direction toward the object, we propose a distance of D = 4.2 ± 0.2 kpc. We also suggest a revised estimate of the star's effective temperature, T_eff ~ 25 000 K. We resolved the object in both H- and K-bands. Using a two-component ring fit, we derived a compact component size of 14 mas and 12 mas in the H- and K-band, respectively, which correspond to 29 and 26 AU at the revised distance. Analysis of our own and previously published data indicates a ~2 mag decrease in the near-infrared brightness of V645 Cyg at the beginning of the 1980's. At the same time, the cometary nebular condensation N1 appears to fade in this wavelength range with respect to the N0 object, representing the star with a nearly pole-on optically-thick disk and an optically-thin envelope. Conclusions: We conclude that V645 Cyg is a young, massive, main-sequence star, which recently emerged from its cocoon and has already experienced its protostellar accretion stage. The presence of accretion is not necessary to account for the high observed luminosity of (2-6) × 104 M⊙ yr-1. The receding part of

  7. Interferometric imaging of the 2011-2013 Campi Flegrei unrest

    Science.gov (United States)

    De Siena, Luca; Nakahara, Hisashi; Zaccarelli, Lucia; Sammarco, Carmelo; La Rocca, Mario; Bianco, Francesca

    2017-04-01

    After its 1983-84 seismic and deformation crisis, seismologists have recorded very low and clustered seismicity at Campi Flegrei caldera (Italy). Hence, noise interferometry imaging has become the only option to image the present volcano logical state of the volcano. Three-component noise data recorded before, during, and after Campi Flegrei last deformation and geochemical unrest (2011-2013) have thus been processed with up-to-date interferometric imaging workflow based on MSNoise. Noise anisotropy, which strongly affects measurements throughout the caldera at all frequencies, has been accounted for by self-correlation measurements and smoothed by phase weighted stacking and phase-match filtering. The final group-velocity maps show strong low-velocity anomalies at the location of the last Campi Flegrei eruption (1538 A.D.). The main low-velocity anomalies contour Solfatara volcano and follow geomorphological cross-faulting. The comparison with geophysical imaging results obtained during the last seismic unrest at the caldera suggest strong changes in the physical properties of the volcano, particularly in the area of major hydrogeological hazard.

  8. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Acernese, F [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Barone, F [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, M de [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, R De [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Eleuteri, A [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Milano, L [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Tagliaferri, R [Dipartimento di Matematica ed Informatica, Universita di Salerno, via S Allende, I-84081 Baronissi (Salerno) (Italy)

    2002-06-21

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.

  9. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    International Nuclear Information System (INIS)

    Acernese, F; Barone, F; Rosa, M de; Rosa, R De; Eleuteri, A; Milano, L; Tagliaferri, R

    2002-01-01

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis

  10. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    CERN Document Server

    Acernese, F; Rosa, M D; Rosa, R D; Eleuteri, A; Milano, L; Tagliaferri, R

    2002-01-01

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.

  11. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Ma [State Optical Institute, Birzhevaya linia, 12 St. Petersburg (Russian Federation); Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp [Institute of Solar-Terrestrial Physics Siberian Branch of Russian Academy of Sciences, 126 Lermontova Str., PO 4026, 664033, Irkutsk (Russian Federation)

    2006-10-15

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated.

  12. Early Chandra X-ray Observations of Eta Carinae

    OpenAIRE

    Seward, F. D.; Butt, Y. M.; Karovska, M.; Schlegel, A. Prestwich. E. M.; Corcoran, M.

    2001-01-01

    Sub-arcsecond resolution Chandra observations of Eta Carinae reveal a 40 arcsec X 70 arcsec ring or partial shell of X-ray emission surrounding an unresolved, bright, central source. The spectrum of the central source is strongly absorbed and can be fit with a high-temperature thermal continuum and emission lines. The surrounding shell is well outside the optical/IR bipolar nebula and is coincident with the Outer Shell of Eta Carinae. The X-ray spectrum of the Shell is much softer than that o...

  13. The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

    Directory of Open Access Journals (Sweden)

    Weiqiang Li

    2016-12-01

    Full Text Available The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected in previous studies on iGNSS-R, in both modelling and instrumentation. This letter takes the GPS L1 signal as an example to analyse the impact of the IM component on iGNSS-R ocean altimetry, including signal-to-noise ratio, the altimetric sensitivity and the final altimetric precision. Analytical results show that previous estimates of the final altimetric precision were underestimated by a factor of 1 . 5 ∼ 1 . 7 due to the negligence of the IM component, which should be taken into account in proper design of the future spaceborne iGNSS-R altimetry missions.

  14. A NEW HIGH-RESOLUTION ELEVATION MODEL OF GREENLAND DERIVED FROM TANDEM-X

    Directory of Open Access Journals (Sweden)

    B. Wessel

    2016-06-01

    Full Text Available In this paper we present for the first time the new digital elevation model (DEM for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite elevations as ground control points (GCPs are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  15. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  16. Change Detection by Interferometric Coherence in Nasca Lines, Peru (1997-2004)

    Science.gov (United States)

    Ruescas, Ana B.; Delgado, J. Manuel; Costantini, Fabiano; Sarti, Francesco

    2010-03-01

    Two interferometric pairs of Synthetic Aperture Radar (SAR) images are used to generate coherence images of the Nasca Lines Pampa area. The first coherence image is based on a pair of ERS-2 SAR data from 1997 and 1999; the second one is computed from two ENVISAT-ASAR (Advanced SAR) images from 2003 and 2004. The main objective is to study the changes in the coherence values in different parts of the area. Several different decorrelation factors contributing to a loss of coherency in a radar pair can be distinguished, and these include the temporal change in the ground properties and nature between the two satellite passes. In order to do this discrimination and interpretation, some ancillary data can be used, such as optical data from the Advanced Land Observing Satellite (ALOS), and meteorological data from the Global Precipitation Climatology Center (GPCC).

  17. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  18. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  19. The High Angular Resolution Multiplicity of Massive Stars

    Science.gov (United States)

    2009-02-01

    binaries: visual – stars: early-type – stars: individual ( iota Ori, delta Ori, delta Sco) – techniques: interferometric Online-only material...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  20. DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C

    International Nuclear Information System (INIS)

    Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan; Walsh, Robert W.; De Pontieu, Bart; Title, Alan; Hansteen, Viggo; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; DeForest, Craig; Kuzin, Sergey

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 Å channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool (∼10 5 K), dense (∼10 10 cm –3 ) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.

  1. 3D surface flow kinematics derived from airborne UAVSAR interferometric synthetic aperture radar to constrain the physical mechanisms controlling landslide motion

    Science.gov (United States)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Schulz, W. H.

    2013-12-01

    This project focuses on improving our understanding of the physical mechanisms controlling landslide motion by studying the landslide-wide kinematics of the Slumgullion landslide in southwestern Colorado using interferometric synthetic aperture radar (InSAR) and GPS. The NASA/JPL UAVSAR airborne repeat-pass SAR interferometry system imaged the Slumgullion landslide from 4 look directions on eight flights in 2011 and 2012. Combining the four look directions allows us to extract the full 3-D velocity field of the surface. Observing the full 3-dimensional flow field allows us to extract the full strain tensor (assuming free surface boundary conditions and incompressible flow) since we have both the spatial resolution to take spatial derivates and full deformation information. COSMO-SkyMed(CSK) high-resolution Spotlight data was also acquired during time intervals overlapping with the UAVSAR one-week pairs, with intervals as short as one day. These observations allow for the quantitative testing of the deformation magnitude and estimated formal errors in the UAVSAR derived deformation field. We also test the agreement of the deformation at 20 GPS monitoring sites concurrently acquired by the USGS. We also utilize the temporal resolution of real-time GPS acquired by the UC Berkeley Active Tectonics Group during a temporary deployment from July 22nd - August 2nd. By combining this data with the kinematic data we hope to elucidate the response of the landslide to environmental changes such as rainfall, snowmelt, and atmospheric pressure, and consequently the mechanisms controlling the dynamics of the landslide system. To constrain the longer temporal dynamics, interferograms made from pairs of CSK images acquired in 2010, 2011, 2012 and 2013 reveal the slide deformation on a longer timescale by allowing us to measure meters of motion and see the average rates over year long intervals using pixel offset tracking of the high-resolution SAR amplitude images. The results of

  2. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces.

    Science.gov (United States)

    Liu, Zhaocheng; Chen, Shuqi; Li, Jianxiong; Cheng, Hua; Li, Zhancheng; Liu, Wenwei; Yu, Ping; Xia, Ji; Tian, Jianguo

    2014-12-01

    We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell's law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

  3. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.

    1976-01-01

    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  4. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  5. DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Walsh, Robert W. [University of Central Lancashire, Preston, Lancashire PR1 2HE (United Kingdom); De Pontieu, Bart; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover St., Org. A0215, Bldg. 252, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Golub, Leon; Korreck, Kelly; Weber, Mark [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr, Huntsville, AL 35805 (United States); DeForest, Craig [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Kuzin, Sergey, E-mail: amy.r.winebarger@nasa.gov [P.N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt 53 119991, Moscow (Russian Federation)

    2013-07-01

    The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.

  6. Interferometric determination of electron density in a high pressure hydrogen arc. 1. Calculation of refraction index

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R; Guenther, K; Ulbricht, R [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1980-01-14

    The refraction index of a hydrogen plasma in LTE was calculated as a function of the wavelength of observation, temperature and pressure, taking into account bound-bound and bound-free transitions of the neutral atom. According to the present calculation, the influence of excited states at higher temperatures is smaller than indicated by Baum et al (Plasma Phys.; 17: 79 (1975)) for argon. Using the calculations presented here, the interferometric investigation of a high pressure hydrogen arc should allow the determination of the electron density with an accuracy of the order of 1%.

  7. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    Science.gov (United States)

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  8. Quantum Discord Determines the Interferometric Power of Quantum States

    Science.gov (United States)

    Girolami, Davide; Souza, Alexandre M.; Giovannetti, Vittorio; Tufarelli, Tommaso; Filgueiras, Jefferson G.; Sarthour, Roberto S.; Soares-Pinto, Diogo O.; Oliveira, Ivan S.; Adesso, Gerardo

    2014-05-01

    Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.

  9. Monitoring Bare Soil Freeze–Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

    Directory of Open Access Journals (Sweden)

    Xuerui Wu

    2017-12-01

    Full Text Available Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR to monitor and investigate the bare soil freeze–thaw process as a new remote sensing tool. The mixed-texture permittivity models are employed to calculate the frozen and thawed soil permittivities. When the soil freeze/thaw process occurs, there is an abrupt change in the soil permittivity, which will result in soil scattering variations. The corresponding theoretical simulation results from the forward GPS multipath simulator show variations of GPS multipath observables. As for the in-situ measurements, virtual bistatic radar is employed to simplify the analysis. Within the GPS-IR spatial resolution, one SNOTEL site (ID 958 and one corresponding PBO (plate boundary observatory GPS site (AB33 are used for analysis. In 2011, two representative days (frozen soil on Doy of Year (DOY 318 and thawed soil on DOY 322 show the SNR changes of phase and amplitude. The GPS site and the corresponding SNOTEL site in four different years are analyzed for comparisons. When the soil freeze/thaw process occurred and no confounding snow depth and soil moisture effects existed, it exhibited a good absolute correlation (|R| = 0.72 in 2009, |R| = 0.902 in 2012, |R| = 0.646 in 2013, and |R| = 0.7017 in 2014 with the average detrended SNR data. Our theoretical simulation and experimental results demonstrate that GPS-IR has potential for monitoring the bare soil temperature during the soil freeze–thaw process, while more test works should be done in the future. GNSS-R polarimetry is also discussed as an option for detection. More retrieval work about elevation and polarization combinations are the focus of future development.

  10. CubiCal - Fast radio interferometric calibration suite exploiting complex optimisation

    Science.gov (United States)

    Kenyon, J. S.; Smirnov, O. M.; Grobler, T. L.; Perkins, S. J.

    2018-05-01

    It has recently been shown that radio interferometric gain calibration can be expressed succinctly in the language of complex optimisation. In addition to providing an elegant framework for further development, it exposes properties of the calibration problem which can be exploited to accelerate traditional non-linear least squares solvers such as Gauss-Newton and Levenberg-Marquardt. We extend existing derivations to chains of Jones terms: products of several gains which model different aberrant effects. In doing so, we find that the useful properties found in the single term case still hold. We also develop several specialised solvers which deal with complex gains parameterised by real values. The newly developed solvers have been implemented in a Python package called CubiCal, which uses a combination of Cython, multiprocessing and shared memory to leverage the power of modern hardware. We apply CubiCal to both simulated and real data, and perform both direction-independent and direction-dependent self-calibration. Finally, we present the results of some rudimentary profiling to show that CubiCal is competitive with respect to existing calibration tools such as MeqTrees.

  11. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  12. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  14. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    Science.gov (United States)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  15. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  16. Quadrature Errors and DC Offsets Calibration of Analog Complex Cross-Correlator for Interferometric Passive Millimeter-Wave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2018-02-01

    Full Text Available The design and calibration of the cross-correlator are crucial issues for interferometric imaging systems. In this paper, an analog complex cross-correlator with output DC offsets and amplitudes calibration capability is proposed for interferometric passive millimeter-wave security sensing applications. By employing digital potentiometers in the low frequency amplification circuits of the correlator, the outputs characteristics of the correlator could be digitally controlled. A measurement system and a corresponding calibration scheme were developed in order to eliminate the output DC offsets and the quadrature amplitude error between the in-phase and the quadrature correlating subunits of the complex correlator. By using vector modulators to provide phase controllable correlated noise signals, the measurement system was capable of obtaining the output correlation circle of the correlator. When injected with −18 dBm correlated noise signals, the calibrated quadrature amplitude error was 0.041 dB and the calibrated DC offsets were under 26 mV, which was only 7.1% of the uncalibrated value. Furthermore, we also described a quadrature errors calibration algorithm in order to estimate the quadrature phase error and in order to improve the output phase accuracy of the correlator. After applying this calibration, we were able to reduce the output phase error of the correlator to 0.3°.

  17. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  18. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  19. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    Directory of Open Access Journals (Sweden)

    B. Barret

    2005-01-01

    Full Text Available This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM and are characterized in terms of vertical sensitivity and error budget. It is found that most of the IMG measurements contain between 1.5 and 2.2 independent pieces of information about the vertical distribution of CO from the lower troposphere to the upper troposphere-lower stratosphere (UTLS. The retrievals are validated against coincident NOAA/CMDL in situ surface measurements and NDSC/FTIR total columns measurements. The retrieved global distributions of CO are also found to be in good agreement with the distributions modeled by the GEOS-CHEM 3D CTM, highlighting the ability of IMG to capture the horizontal as well as the vertical structure of the CO distributions.

  20. Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)]. E-mail: bhl@physics.uwa.edu.au; Ju, L. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia); Blair, D.G. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-02-13

    In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB.

  1. Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lee, B.H.; Ju, L.; Blair, D.G.

    2006-01-01

    In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB

  2. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  3. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    Science.gov (United States)

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  4. The Large Deployable Reflector (LDR) report of the Science Coordination Group

    Science.gov (United States)

    1986-01-01

    The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.

  5. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    Science.gov (United States)

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  6. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  7. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  8. Status and plans for future generations of ground-based interferometric gravitational wave antennas

    International Nuclear Information System (INIS)

    Kawamura, Seiji

    2003-01-01

    Several medium- to large-scale ground-based interferometric gravitational-wave antennas have been constructed around the world. Although these antennas of the first generation could detect gravitational waves within a few years, it is necessary to improve the sensitivity of the detectors significantly with advanced technologies to ensure more frequent detection of gravitational waves. Stronger seismic isolation and reduction of thermal noise, especially using cryogenic mirrors, are among the most important technologies that can lead us to the realization of advanced detectors. Some of the advanced technologies are already implemented in some of the existing detectors and others are currently being investigated for the future-generation detectors such as advanced LIGO, LCGT, upgrade of GEO600, AIGO, and EURO. We expect that such advanced detectors will eventually open a new window to the universe and establish a new field, 'gravitational wave astronomy'

  9. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  10. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  11. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K. [Institute for Cosmic Ray Research (ICRR), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Kimura, N.; Suzuki, T.; Koike, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  12. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  13. An interferometric study of the post-AGB binary 89 Herculis. I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    Science.gov (United States)

    Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.

    2013-11-01

    Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the

  14. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  15. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  16. A Laser Interferometric Miniature Seismometer

    Science.gov (United States)

    2008-09-01

    zero bias, convert the photodiode currents to voltages with transimpedance amplifiers based on operational amplifiers (op amps) and produce a...light is collected at the photodiodes and transimpedance amplifiers convert the photocurrent to a voltage, and the seismic signal is the difference... transimpedance amplifiers . CONCLUSIONS AND RECOMMENDATIONS Achieving LNM resolution in a seismic sensor is a very strong challenge. While we have built

  17. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali

    2012-02-26

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green\\'s functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  18. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali; Alshuhail, Abdulrahman Abdullatif Abdulrahman; Hanafy, Sherif

    2012-01-01

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green's functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  19. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  20. Manipulations of Wavefront Propagation: Useful Methods and Applications for Interferometric Measurements and Scanning

    Directory of Open Access Journals (Sweden)

    Avi Karsenty

    2017-01-01

    Full Text Available Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram’s modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article.

  1. Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation

    International Nuclear Information System (INIS)

    Laude, Vincent

    2002-01-01

    The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the white-light source at the frequency considered and to the temporal acquisition window. Position noise, which arises from the finite accuracy of the measurement of the scanning mirror's position, can severely damage the estimation of the group delay. Such is shown to be the case for fast Fourier transform-based estimation algorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond accuracy is obtained without any postprocessing

  2. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  3. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    OpenAIRE

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power,...

  4. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2013-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  5. Theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric fiber optic sensors

    Science.gov (United States)

    Han, Ming

    In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either

  6. Mid-Infrared Interferometric Monitoring of Evolved Stars: The Dust Shell Around the Mira Variable RR Aquilae at 13 Epochs

    Science.gov (United States)

    2011-01-01

    photometric and interferometric data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...λ = 2.2 μm, Δλ = 0.4 μm) angular size with the Infrared Optical Telescope Array ( IOTA ). The uniform disk diameter (UD) of θUD = 10.73 ± 0.66 mas at...with IOTA in the H-band, and classified RR Aql as a target with no detectable asymmetries. The IRAS flux at 12 μm is 332 Jy. The light curve in the V

  7. AN ASSESSMENT OF SPACEBORNE NEAR-NADIR INTERFEROMETRIC SAR PERFORMANCE OVER INLAND WATERS WITH REAL

    Directory of Open Access Journals (Sweden)

    H. Tan

    2018-04-01

    Full Text Available Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA, which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  8. An Assessment of Spaceborne Near-Nadir Interferometric SAR Performance Over Inland Waters with Real

    Science.gov (United States)

    Tan, H.; Li, S. Y.; Liu, Z. W.

    2018-04-01

    Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA), which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  9. Comparison in electron density distribution of tokamak plasma between ruby-laser scattering and milli-meter wave interferometric measurements

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa; Itagaki, Tokiyoshi; Takahashi, Koki; Kumagai, Katsuaki

    1976-08-01

    The electron density in JFT-2 tokamak has been measured by two methods, i.e. Thomson scattering of ruby-laser light and interferometry of millimeter wave. Two-dimensional distribution of the scattered light intensities were obtained by scattering measurement; absolute calibration was made by normalizing the scattered intensities with the averaged density determined from interferometric measurement. The horizontal density distributions in laser scattering were compared with those in from the averaged densities measured with a 4-mm interferometer through inverse-transformation. Agreement is good between the two measurements, except where they give erroneous data because of irreproducibility of the discharge. (auth.)

  10. Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope

    International Nuclear Information System (INIS)

    Wang, Fei; Clément, Nicolas; Ducatteau, Damien; Troadec, David; Legrand, Bernard; Dambrine, Gilles; Théron, Didier; Tanbakuchi, Hassan

    2014-01-01

    We present a method to characterize sub-10 nm capacitors and tunnel junctions by interferometric scanning microwave microscopy (iSMM) at 7.8 GHz. At such device scaling, the small water meniscus surrounding the iSMM tip should be reduced by proper tip tuning. Quantitative impedance characterization of attofarad range capacitors is achieved using an ‘on-chip’ calibration kit facing thousands of nanodevices. Nanoscale capacitors and tunnel barriers were detected through variations in the amplitude and phase of the reflected microwave signal, respectively. This study promises quantitative impedance characterization of a wide range of emerging functional nanoscale devices. (paper)

  11. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  12. Advanced radiometric and interferometric milimeter-wave scene simulations

    Science.gov (United States)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  13. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    Science.gov (United States)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  14. A deployable telescope for sub-meter resolutions from microsatellite platforms

    Science.gov (United States)

    Dolkens, D.; Kuiper, J. M.

    2017-11-01

    Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable

  15. Analysis of two dimensional signals via curvelet transform

    Science.gov (United States)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

    2007-04-01

    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  16. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  17. Technology Requirements For a Square-Meter, Arcsecond-Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.

  18. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  19. Detection in coincidence of gravitational wave bursts with a network of interferometric detectors: Geometric acceptance and timing

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Canitrot, Philippe; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Pradier, Thierry

    2002-01-01

    Detecting gravitational wave bursts (characterized by short durations and poorly modeled waveforms) requires coincidences between several interferometric detectors in order to reject nonstationary noise events. As the wave amplitude seen in a detector depends on its location with respect to the source direction and as the signal to noise ratio of these bursts is expected to be low, coincidences between antennas may not be very likely. This paper investigates this question from a statistical point of view by using a simple model of a network of detectors; it also estimates the timing precision of a detection in an interferometer, which is an important issue for the reconstruction of the source location based on time delays

  20. New formulation for interferometric synthetic aperture radar for terrain mapping

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  1. Evidence for on-going inflation of the Socorro Magma Body, New Mexico, from interferometric synthetic aperture radar imaging

    Science.gov (United States)

    Fialko, Yuri; Simons, Mark

    Interferometric synthetic aperture radar (InSAR) imaging of the central Rio Grande rift (New Mexico, USA) during 1992-1999 reveals a crustal uplift of several centimeters that spatially coincides with the seismologically determined outline of the Socorro magma body, one of the largest currently active magma intrusions in the Earth’s continental crust. Modeling of interferograms shows that the observed deformation may be due to elastic opening of a sill-like intrusion at a rate of a few millimeters per year. Despite an apparent constancy of the geodetically determined uplift rate, thermodynamic arguments suggest that it is unlikely that the Socorro magma body has formed via steady state elastic inflation.

  2. San Francisco Bay Interferometric Bathymetry: Area B

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High resolution sonar data were collected over ultra-shallow areas of the San Francisco Bay estuary system. Bathymetric and acoustic backscatter data were collected...

  3. Interferometric direction finding with a metamaterial detector

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Suresh; Schurig, David, E-mail: david.schurig@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Shrekenhamer, David; Padilla, Willie [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Xu, Wangren; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)

    2013-12-16

    We present measurements and analysis demonstrating useful direction finding of sources in the S band (2–4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.

  4. Comparison of filters for detecting gravitational wave bursts in interferometric detectors

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.; Pradier, Thierry

    2003-01-01

    Filters developed in order to detect short bursts of gravitational waves in interferometric detector outputs are compared according to three main points. Conventional receiver operating characteristics (ROC) are first built for all the considered filters and for three typical burst signals. Optimized ROC are shown for a simple pulse signal in order to estimate the best detection efficiency of the filters in the ideal case, while realistic ones obtained with filters working with several 'templates' show how detection efficiencies can be degraded in a practical implementation. Second, estimations of biases and statistical errors on the reconstruction of the time of arrival of pulse-like signals are then given for each filter. Such results are crucial for future coincidence studies between gravitational wave detectors but also with neutrino or optical detectors. As most of the filters require a pre-whitening of the detector noise, the sensitivity to a nonperfect noise whitening procedure is finally analyzed. For this purpose lines of various frequencies and amplitudes are added to a Gaussian white noise and the outputs of the filters are studied in order to monitor the excess of false alarms induced by the lines. The comparison of the performances of the different filters finally show that they are complementary rather than competitive

  5. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    Science.gov (United States)

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  6. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  7. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  8. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    Science.gov (United States)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  9. AN INTERFEROMETRIC AND SPECTROSCOPIC ANALYSIS OF THE MULTIPLE STAR SYSTEM HD 193322

    International Nuclear Information System (INIS)

    Ten Brummelaar, Theo A.; Farrington, Christopher D.; Schaefer, Gail H.

    2011-01-01

    The star HD 193322 is a remarkable multiple system of massive stars that lies at the heart of the cluster Collinder 419. Here we report on new spectroscopic observations and radial velocities of the narrow-lined component Ab1 which we use to determine its orbital motion around a close companion Ab2 (P = 312 days) and around a distant third star Aa (P = 35 years). We have also obtained long baseline interferometry of the target in the K' band with the CHARA Array which we use in two ways. First, we combine published speckle interferometric measurements with CHARA separated fringe packet measurements to improve the visual orbit for the wide Aa,Ab binary. Second, we use measurements of the fringe packet from Aa to calibrate the visibility of the fringes of the Ab1,Ab2 binary, and we analyze these fringe visibilities to determine the visual orbit of the close system. The two most massive stars, Aa and Ab1, have masses of approximately 21 and 23 M sun , respectively, and their spectral line broadening indicates that they represent extremes of fast and slow projected rotational velocity, respectively.

  10. Alaska Orthorectified Radar Intensity Image - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are orthorectified radar intensity images (ORI) derived from interferometric synthetic aperture radar (ifsar) data. An ORI is a high-resolution image...

  11. Five elements interferometrs

    Science.gov (United States)

    Sawant, H.

    The Brazilian Decimetric Array (BDA) is being developed at National Institute for Space Research (INPE) as an international collaborative program. Initially, the BDA will operate in a tuneable frequency range of 1.2 - 1.7 GHz and finally its range will be extended to 2.7 and 5.0 GHz. The initial planned baseline for BDA is 256 × 144 m and that will be extended to 2.2 × 1.1 km in the form of "T". In this paper, we present the results of developments concerning the prototype of BDA (PBDA). The PBDA will initially operate in the frequency range of 1.2 - 1.7 GHz only with a five-antenna array. The antennas employ 4-meter parabolic dishes with altitude and azimuth mountings with complete tracking capability. The spatial resolution for solar images with the PBDA will be about 3.5 arc-minutes leading to a sensitivity of ~2 × 104 mJy/beam for integration time of 1 sec. The array will be installed at -22o 41' 19" latitude and 45o 00' 22" W longitude and it is under operation between 9 and 21 UT for continuous solar flux monitoring. Details of the PBDA system and initial solar observations will be reported.

  12. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    Science.gov (United States)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  13. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats

    Science.gov (United States)

    Jung, H.; Alsdorf, D.

    2006-12-01

    Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values

  14. Advanced SAR Interferometric Analysis to Support Geomorphological Interpretation of Slow-Moving Coastal Landslides (Malta, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Matteo Mantovani

    2016-05-01

    Full Text Available An advanced SAR interferometric analysis has been combined with a methodology for the automatic classification of radar reflectors phase histories to interpret slope-failure kinematics and trend of displacements of slow-moving landslides. To accomplish this goal, the large dataset of radar images, acquired in more than 20 years by the two European Space Agency (ESA missions ERS-1/2 and ENVISAT, was exploited. The analysis was performed over the northern sector of Island of Malta (central Mediterranean Sea, where extensive landslides occur. The study was assisted by field surveys and with the analysis of existing thematic maps and landslide inventories. The outcomes allowed definition of a model capable of describing the geomorphological evolution of slow-moving landslides, providing a key for interpreting such phenomena that, due to their slowness, are usually scarcely investigated.

  15. The Frequency of Circumnuclear Starbursts in Seyfert Galaxies --- Testing the Starburst-AGN Connection

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T. M.

    We obtained sub-arcsecond medium resolution near-infrared spectra of a sample of nearby bright Seyfert galaxies (8 Seyfert 1s, 11 Seyfert 2s) using the KeckII telescope. The stellar absorption lines present in the spectra were used in conjunction with population synthesis models to determine the age of the circumnuclear stellar population. Initial analysis of a sub-sample of the Seyfert galaxies has provided no evidence for a connection between the age of the circumnuclear stellar population and the Seyfert type. The derived ages for the circumnuclear stellar population are in the range of 10 Myr to < 0.5 Gyr assuming an instantaneous starburst (using the STARBURST99 models).

  16. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  17. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    Science.gov (United States)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  18. Advances in detecting localized road damage due to sinkholes induced by engineering works using high resolution RASARSAT-2 data

    Science.gov (United States)

    Chen, J.; Zebker, H. A.; Lakshmi, V.

    2016-12-01

    Sinkholes often occur in karst terrains such as found in central and eastern Pennsylvania. Voids produced by dissolution of carbonate rocks can result in soil transport leading to localized, gradual or rapid, sinking of the land surface. A cluster of sinkholes developed in 2000 around a small rural community beside Bushkill creek near a limestone quarry, and severely destroyed road bridges and railway tracks. At a cost of $6 million, the Pennsylvania DoT replaced the bridge, which was damaged again in 2004 by newly developed sinkholes likely associated with quarry's pumping activity. Here we present high-resolution spaceborne interferometric radar images of sinkhole development on this community. We show that this technique may be used to monitor regions with high sinkhole damage risk and assist future infrastructure route planning, especially in rural areas where hydrogeologic information is limited. Specifically, we processed 66 RADARSAT-2 interferograms to extract deformation occurred over Bushkill creek between Jun. 2015 and Mar. 2016 with a temporal resolution of 24 days. We advanced recent persistent scatterer techniques to preserve meter-level spatial resolution in the interferograms while minimizing temporal decorrelation and phase unwrapping error. We observe periodic deformation due to pumping activity at the quarry and localized subsidence along Bushkill creek that is co-located with recent reported sinkholes. We plan to use the automatic processing techniques developed for this study to study road damage in another region in Pennsylvania, along Lewiston Narrows, and also to monitor urban infrastructure improvements in Seattle, both again with RASARSAT-2 data. Our results demonstrate that recent advances in satellite geodesy can be transferred to benefit society beyond the science community.

  19. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    Science.gov (United States)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF

  20. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    Science.gov (United States)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  1. Comparison of broad band time series recorded parallel by FGI type interferometric water level and Lippmann type pendulum tilt meters at Conrad observatory, Austria

    Science.gov (United States)

    Ruotsalainen, Hannu; Papp, Gabor; Leonhardt, Roman; Ban, Dora; Szücs, Eszter; Benedek, Judith

    2016-04-01

    The Finnish Geodetic Institute (FGI) the progenitor of Finnish Geospatial Research Institute of NLS designed and built a 5.5m long prototype of interferometric water level tiltmeter (iWT) in early 2014. Geodetic and Geophysical Institute (GGI), Sopron, Hungary bought the instrument and started tilt measurement in August 2014 at the Conrad observatory (COBS), Austria to monitor geodynamical phenomena like microseisms, free oscillations of the Earth, earth tides, mass loading effects and crustal deformations in cooperation with Austrian Central Institute for Meteorology and Geodynamics (ZAMG) and the FGI. On the July 16 2015 a Lippmann-type 2D tilt sensor (LTS) was also installed by GGI on the 6 m long pier where iWT was set up previously. This situation opens a possibility to do broad band (from secular to seismic variations up to 15 Hz) geophysical signal analysis comparing the responses of long (several meters) and short (a few decimeters) base instruments implementing different physical principles (relative height change of a level surface and inclination change of the plumb line). The characteristics of the sensors are studied by the evaluation of the spectra of recorded signals dominated by microseisms. The iWT has internal interferometric calibration and it can be compared to Lippmanns tilt meter one. Both instruments show good long term ( > 1 day) stability when earth tides and ocean and air mass loading tilts are modelled.

  2. Effect of Nonlinearity by the Amplitude Variation in coherent transmission in Laser Heterodyne Interferometric

    International Nuclear Information System (INIS)

    Chen, H F; Ding, X M; Zhong, Z; Xie, Z L; Yue, H

    2006-01-01

    To reduce the nonlinearity of nanometer measurement in laser heterodyne interferometric, the influence mechanics of the amplitude variation in coherent transmission upon nonlinearity must be confirmed. Based on the mechanics of nonlinearity, the models about how first-harmonic and second-harmonic nonlinearity caused by the amplitude variation in coherent transmission are proposed. The emulation result shows that different amplitude between measurement arm and reference arm increases the first-harmonic nonlinearity when laser beams nonorthogonality errors exist, but it doesn't change the relationship between nonlinearity and half wavelength. When the rotation angle error β of polarizing beam splitter (PBS) exists, amplitude variation only affects the first-harmonic nonlinearity. With a constant rotation angle of PBS β = 4 0 , when the amplitude factor of measurement arm reduces from 1 to 0.6, the nonlinearity increases from 0.25 nm to 3.81 nm, and the nonlinearity is simple superposition of first-harmonic and second-harmonic. Theoretic analysis and emulation show that the reduction of amplitude variation in coherent transmission can reduce influence on nonlinearity

  3. Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon.

    Science.gov (United States)

    Peinado, Alba; Turpin, Alex; Iemmi, Claudio; Márquez, Andrés; Kalkandjiev, Todor K; Mompart, Jordi; Campos, Juan

    2015-07-13

    The interest on the conical refraction (CR) phenomenon in biaxial crystals has revived in the last years due to its prospective for generating structured polarized light beams, i.e. vector beams. While the intensity and the polarization structure of the CR beams are well known, an accurate experimental study of their phase structure has not been yet carried out. We investigate the phase structure of the CR rings by means of a Mach-Zehnder interferometer while applying the phase-shifting interferometric technique to measure the phase at the focal plane. In general the two beams interfering correspond to different states of polarization (SOP) which locally vary. To distinguish if there is an additional phase added to the geometrical one we have derived the appropriate theoretical expressions using the Jones matrix formalism. We demonstrate that the phase of the CR rings is equivalent to that one introduced by an azimuthally segmented polarizer with CR-like polarization distribution. Additionally, we obtain direct evidence that the Poggendorff dark ring is an annular singularity, with a π phase change between the inner and outer bright rings.

  4. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  5. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  6. Four Eyes Are Better

    Science.gov (United States)

    2002-09-01

    VLT Interferometer Passes Another Technical Hurdle Summary During the nights of September 15/16 and 16/17, 2002, preliminary tests were successfully carried out during which the light beams from all four VLT 8.2-m Unit Telescopes (UTs) at the ESO Paranal Observatory were successively combined, two by two, to produce interferometric fringes . This marks a next important step towards the full implementation of the VLT Interferometer (VLTI) that will ultimately provide European astronomers with unequalled opportunities for exciting front-line research projects. It is no simple matter to ensure that the quartet of ANTU, KUEYEN, MELIPAL and YEPUN , each a massive giant with a suite of computer-controlled active mirrors, can work together by sending beams of light towards a common focal point via a complex system of compensating optics. Yet, in the span of only two nights, the four VLT telescopes were successfully "paired" to do exactly this, yielding a first tantalizing glimpse of the future possibilities with this new science machine. While there is still a long way ahead to the routine production of extremely sharp, interferometric images, the present test observations have allowed to demonstrate directly the 2D-resolution capacity of the VLTI by means of multiple measurements of a distant star. Much valuable experience was gained during those two nights and the ESO engineers and scientists are optimistic that the extensive test observations with the numerous components of the VLTI will continue to progress rapidly. Five intense, technical test periods are scheduled during the next six months; some of these with the Mid-Infrared interferometric instrument for the VLTI (MIDI) which will soon be installed at Paranal. Later in 2003, the first of the four moveable VLTI 1.8-m Auxiliary Telescopes (ATs) will be put in place on the top of the mountain; together they will permit regular interferometric observations, also without having to use the large UTs. PR Photo 22a/02

  7. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes

    International Nuclear Information System (INIS)

    Yang, Yi; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2013-01-01

    A multidimensional signal processing method for a single interferometric fiber-optic gyroscope (IFOG) is proposed, to the best of our knowledge, for the first time. The proposed method, based on a novel IFOG structure with quadrature demodulation, combines a multidimensional gray model (GM) and a wavelet compression technique for noise suppression and sensitivity enhancement. In the IFOG, two series of measured rotation rates are obtained simultaneously: an in-phase component and a quadrature component. Together with the traditionally measured rate, the three measured rates are processed by the combined gray-wavelet method. Simulations show that the intensity noise and non-reciprocal phase fluctuations are effectively suppressed by this method. Experimental comparisons with a one-dimensional GM(1, 1) model show that the proposed three-dimensional method achieves much better denoising performance. This advantage is validated by the Allan variance analysis: in a low-SNR (signal-to-noise ratio) experiment, our method reduces the angle random walk (ARW) and the bias instability (BI) from 1 × 10 −2  deg h −1/2 and 3 × 10 −2  deg h −1 to 1 × 10 −3  deg h −1/2 and 3 × 10 −3  deg h −1 , respectively; in a high-SNR experiment, our method reduces the ARW and the BI from 9 × 10 −4  deg h −1/2 and 5 × 10 −3  deg h −1 to 4 × 10 −4  deg h −1/2 and 3 × 10 −3  deg h −1 , respectively. Further, our method increases the dimension of the state-of-the-art IFOG technique from one to three, thus obtaining higher IFOG sensitivity and stability by exploiting the increase in available information. (paper)

  8. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes

    Science.gov (United States)

    Yang, Yi; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2013-11-01

    A multidimensional signal processing method for a single interferometric fiber-optic gyroscope (IFOG) is proposed, to the best of our knowledge, for the first time. The proposed method, based on a novel IFOG structure with quadrature demodulation, combines a multidimensional gray model (GM) and a wavelet compression technique for noise suppression and sensitivity enhancement. In the IFOG, two series of measured rotation rates are obtained simultaneously: an in-phase component and a quadrature component. Together with the traditionally measured rate, the three measured rates are processed by the combined gray-wavelet method. Simulations show that the intensity noise and non-reciprocal phase fluctuations are effectively suppressed by this method. Experimental comparisons with a one-dimensional GM(1, 1) model show that the proposed three-dimensional method achieves much better denoising performance. This advantage is validated by the Allan variance analysis: in a low-SNR (signal-to-noise ratio) experiment, our method reduces the angle random walk (ARW) and the bias instability (BI) from 1 × 10-2 deg h-1/2 and 3 × 10-2 deg h-1 to 1 × 10-3 deg h-1/2 and 3 × 10-3 deg h-1, respectively; in a high-SNR experiment, our method reduces the ARW and the BI from 9 × 10-4 deg h-1/2 and 5 × 10-3 deg h-1 to 4 × 10-4 deg h-1/2 and 3 × 10-3 deg h-1, respectively. Further, our method increases the dimension of the state-of-the-art IFOG technique from one to three, thus obtaining higher IFOG sensitivity and stability by exploiting the increase in available information.

  9. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    Science.gov (United States)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  10. Integration of multi remotely sensed data and geodatabases for forestry management in Indonesia

    NARCIS (Netherlands)

    Nugroho, M.

    2006-01-01

    Keywords: optical, synthetic aperture radar,interferometric, multi-temporal, multi-resolution, multi-sensor, object-segmentation, geographic information system, tropical forest.

  11. Laser interference lithography with highly accurate interferometric alignment

    NARCIS (Netherlands)

    van Soest, Frank J.; van Wolferen, Hendricus A.G.M.; Hoekstra, Hugo; de Ridder, R.M.; Worhoff, Kerstin; Lambeck, Paul

    It is shown experimentally that in laser interference lithography, by using a reference grating, respective grating layers can be positioned with high relative accuracy. A 0.001 degree angular and a few nanometers lateral resolution have been demonstrated.

  12. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    Science.gov (United States)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  13. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Kraus, Stefan; Acreman, David [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-10-10

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  14. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    International Nuclear Information System (INIS)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao; Harries, Tim J.; Kraus, Stefan; Acreman, David

    2017-01-01

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  15. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph

    2004-04-01

    An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO{sub 2}-laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid.

  16. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling

    International Nuclear Information System (INIS)

    Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph

    2004-01-01

    An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO 2 -laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid

  17. Simultaneous refractive index and thickness measurement with the transmission interferometric adsorption sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi; Voeroes, Janos [Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich (Switzerland); Balmer, Tobias E [Materials Research Center, ETH Zurich, 8093, Zurich (Switzerland); Heuberger, Manfred, E-mail: sannomiya@biomed.ee.ethz.c, E-mail: tobias.balmer@mat.ethz.c, E-mail: manfred.heuberger@empa.c, E-mail: janos.voros@biomed.ee.ethz.c [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093, Zurich (Switzerland)

    2010-10-13

    Refractive index and thickness of the adlayer are determined simultaneously using the transmission interferometric adsorption sensor (TInAS). Optical biosensors, where both refractive index and thickness of a homogeneous adlayer (thus the adsorbed mass) are determined simultaneously, so-called model-free biosensors, are important tools to investigate the adsorbed mass of biomolecules with unknown conformation. Our proposed calculation method enables model-free biosensing from a single spectrum acquired by a simple TInAS setup, namely using information of peak/dip positions as well as peak/dip intensities. The feasibility of this method was experimentally tested by adsorbing polyelectrolyte multilayer as well as biomolecules. To validate the new method also for the more intricate heterogeneous adlayer, the apparent refractive index and thickness were assessed theoretically by simulating a selection of different adsorbate configurations with the multiple multipole program (MMP). We found that a lateral inhomogeneity of the adsorbate (e.g. islands or adsorbed colloids) results in correct thickness and in reduced refractive index averaged in proportion to their density while vertically inhomogeneous density caused more complex responses. However, the apparent mass was always correct. Measurement errors can lead to significant errors in the apparent refractive index, particularly when the adlayer is very thin (<5 nm). This model-free TInAS technique would be useful not only for the measurement of adsorbed mass but also for the conformational analysis of the adsorbed molecules.

  18. Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato

    2003-04-01

    We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.

  19. Mitigation Atmospheric Effects in Interferogram with Using Integrated Meris/modis Data and a Case Study Over Southern California

    Science.gov (United States)

    Wang, X.; Zhang, P.; Sun, Z.

    2018-04-01

    Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.

  20. Design and laboratory validation of a structural element instrumented with multiplexed interferometric fiber optic sensors

    Science.gov (United States)

    Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele

    2008-03-01

    This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.

  1. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  2. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data.

    Science.gov (United States)

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-06-11

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .

  3. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  4. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  5. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  6. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  7. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

    DEFF Research Database (Denmark)

    Cardellach, Estel; Wickert, Jens; Baggen, Rens

    2018-01-01

    . Over polar areas, the G-TERN will measure sea ice surface elevation (polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability...

  8. VLA and CARMA observations of protostars in the Cepheus clouds: Sub-arcsecond proto-binaries formed via disk fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Looney, Leslie W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Chandler, Claire J. [National Radio Astronomy Observatory, Socorro, NM (United States); Wilner, David J.; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Loinard, Laurent; D' Alessio, Paola [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Chiang, Hsin-Fang [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Kwon, Woojin, E-mail: jtobin@nrao.edu [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands)

    2013-12-20

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ∼0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ∼0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ∼3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ∼0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ∼20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  9. Remote access to an interferometric fringes stabilization active system via RENATA

    Science.gov (United States)

    Espitia-Gómez, Javier; Ángel-Toro, Luciano

    2013-11-01

    The Advanced Technology National Network (RENATA, for its acronym in Spanish) is a Colombian, collaborative work tool, linked to other networks worldwide, in which take participation researchers, teachers and students, by sharing laboratory resources located in different universities, institutes and research centers throughout the country. In the Universidad EAFIT (Medellín, Colombia) it has been designed an interferometric fringes stabilization active system, which can be accessed remotely via the RENATA network. A Mach-Zehnder interferometer was implemented, with independent piezoelectric actuators in each arm, with which the lengths of optical path of light that goes over in each of them can be modified. Using these actuators, one can simultaneously perturb the system and compensate the phase differences caused by that perturbation. This allows us to experiment with different disturbs, and analyze the system response to each one of them. This can be made from any location worldwide, and especially from those regions in which optical and optoelectronic components required for the implementation of the interferometer or for the stabilization system are not available. The device can also be used as a platform in order to conduct diverse experiments, involving optical and controlling aspects, constituting with this in a pedagogic tool. For the future, it can be predicted that remote access to available applications would be possible, as well as modifications of the implemented code in labVIEW™, so that researchers and teachers can adapt and improve their functionalities or develop new applications, based on the collaborative work.

  10. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  11. a Method for the Extraction of Long-Term Deformation Characteristics of Long-Span High-Speed Railway Bridges Using High-Resolution SAR Images

    Science.gov (United States)

    Jia, H. G.; Liu, L. Y.

    2016-06-01

    Natural causes and high-speed train load will result in the structural deformation of long-span bridges, which greatly influence the safety operation of high-speed railway. Hence it is necessary to conduct the deformation monitoring and regular status assessment for long-span bridges. However for some traditional surveying technique, e.g. control-point-based surveying techniques, a lot of human and material resources are needed to perform the long-term monitoring for the whole bridge. In this study we detected the long-term bridge deformation time-series by persistent scatterer interferometric synthetic aperture radar (PSInSAR) technique using the high-resolution SAR images and external digital elevation model. A test area in Nanjing city in China is chosen and TerraSAR-X images and Tandem-X for this area have been used. There is the Dashengguan bridge in high speed railway in this area as study object to evaluate this method. Experiment results indicate that the proposed method can effectively extract the long-term deformation of long-span high-speed railway bridge with higher accuracy.

  12. A METHOD FOR THE EXTRACTION OF LONG-TERM DEFORMATION CHARACTERISTICS OF LONG-SPAN HIGH-SPEED RAILWAY BRIDGES USING HIGH-RESOLUTION SAR IMAGES

    Directory of Open Access Journals (Sweden)

    H. G. Jia

    2016-06-01

    Full Text Available Natural causes and high-speed train load will result in the structural deformation of long-span bridges, which greatly influence the safety operation of high-speed railway. Hence it is necessary to conduct the deformation monitoring and regular status assessment for long-span bridges. However for some traditional surveying technique, e.g. control-point-based surveying techniques, a lot of human and material resources are needed to perform the long-term monitoring for the whole bridge. In this study we detected the long-term bridge deformation time-series by persistent scatterer interferometric synthetic aperture radar (PSInSAR technique using the high-resolution SAR images and external digital elevation model. A test area in Nanjing city in China is chosen and TerraSAR-X images and Tandem-X for this area have been used. There is the Dashengguan bridge in high speed railway in this area as study object to evaluate this method. Experiment results indicate that the proposed method can effectively extract the long-term deformation of long-span high-speed railway bridge with higher accuracy.

  13. A NEW APPROACH TO MITIGATION OF RADIO FREQUENCY INTERFERENCE IN INTERFEROMETRIC DATA

    International Nuclear Information System (INIS)

    Athreya, Ramana

    2009-01-01

    Radio frequency interference (RFI) is the principal factor limiting the sensitivities of radio telescopes, particularly at frequencies below 1 GHz. I present a conceptually new approach to mitigation of RFI in interferometric data. This has been used to develop a software tool (RfiX) to remove RFI from observations using the Giant Metrewave Radio Telescope, India. However, the concept can be used to excise RFI in any interferometer. Briefly, the fringe-stopped correlator output of an interferometer baseline oscillates with the fringe-stop period in the presence of RFI. RfiX works by identifying such a pattern and subtracting it from the data. It is perhaps the only purely software technique which can salvage the true visibility value from RFI-corrupted data. It neither requires high-speed hardware nor real-time processing and works best on normal correlator output integrated for 1-10 s. It complements other mitigation schemes with its different approach and the regime it addresses. Its ability to work with data integrated over many seconds gives it an advantage while excising weak, persistent RFI unlike most other techniques which use high-speed sampling to localize RFI in time-frequency plane. RfiX is also different in that it does not require RFI-free data to identify corrupted sections. Some results from the application of RfiX are presented including an image at 240 MHz with a peak/noise ratio of 43,000, the highest till date at wavelengths greater than 1 m.

  14. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  15. Schlieren techniques and interferometric methods using TEA-CO2 lasers for the investigation of transient phenomena by means of thermal liquid crystal image converters

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    In order to investigate plasmas with electron densities in the 10 15 to 10 18 cm -3 range, schlieren techniques and interferometric methods are used with a TEA-CO 2 laser. The thermooptical conversion is achieved by means of cholesteric liquid crystal layers. The possible uses of this technique are examined in view of recording dynamic transient phenomena, attention being paid to response time, resolving power, and quantitative information obtained. Examples are given for records taken from the formation and expansion of electric spark discharges. The experimental results are in good agreement with the computed numerical data [fr

  16. Miniaturized diffraction based interferometric distance measurement sensor

    Science.gov (United States)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  17. 40 CFR 22.18 - Quick resolution; settlement; alternative dispute resolution.

    Science.gov (United States)

    2010-07-01

    ...; alternative dispute resolution. 22.18 Section 22.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...; alternative dispute resolution. (a) Quick resolution. (1) A respondent may resolve the proceeding at any time... complaint. (d) Alternative means of dispute resolution. (1) The parties may engage in any process within the...

  18. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  19. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    International Nuclear Information System (INIS)

    Unkuri, J; Rantanen, A; Manninen, J; Esala, V-P; Lassila, A

    2012-01-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm. (paper)

  20. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    Science.gov (United States)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  1. Ground-based gravitational wave interferometric detectors of the first and second generation: an overview

    International Nuclear Information System (INIS)

    Losurdo, Giovanni

    2012-01-01

    The era of first-generation gravitational wave interferometric detectors is ending. No signals have been detected so far. However, remarkable results have been achieved: the design sensitivity has been approached (and in some cases even exceeded) together with the achievement of robustness and reliability; a world-wide network of detectors has been established; the data collected so far has allowed upper limits to be put on several types of sources; some second-generation technologies have been tested on these detectors. The scenario for the next few years is very exciting. The projects to upgrade LIGO and Virgo to second-generation interferometers, capable of increasing the detection rate by a factor of ∼1000, have been funded. The construction of Advanced LIGO and Advanced Virgo has started. GEO600 has started the upgrade to GEO HF, introducing light squeezing for the first time on a large detector. LCGT has been partly funded and the construction of the vacuum system is underway. There is a possibility that the third Advanced LIGO interferometer will be constructed in India. So, a powerful worldwide network could be in operation by the end of the decade. In this paper, we review the results achieved so far and the perspectives for the advanced detectors. (paper)

  2. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  3. ROTI monitoring with reference to the International LOFAR Telescope

    Science.gov (United States)

    Kotulak, Kacper; Froń, Adam; Krankowski, Andrzej

    2017-04-01

    Interferometric networks operating on relatively long baselines, such as LOFAR (approx. baseline of 1500km) are one of the important scientific users of ionosphere monitoring products. Simultaneous observations of the radiosource from the different interferometric stations with such distance between can be distracted by the ionospheric medium in different ways, as signal would cross ionospheric regions with different ionization level. The main objective of presented work is to introduce ionospheric fluctuation product (ROT and ROTI maps), which will complement the main ILT dedicated product - high spatial and temporal resolution ionospheric maps (ILTG). Presented ROT/ROTI product is prepared basing on the real-time EUREF Permanent Network GNSS observations and generated with similar assumptions as ILTG products - one degree by one degree in spatial and one hour in temporal resolution. Presented product will be a part of the ILT ionospheric service planned for the nearest future. The presentation briefly presents the ROT and ROTI obtaining methodology as well as first results.

  4. Disentangling stellar activity from exoplanetary signals with interferometry

    Directory of Open Access Journals (Sweden)

    Ligi Roxanne

    2015-01-01

    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  5. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    OpenAIRE

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-01-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inne...

  6. Subwavelength optical lithography via classical light: A possible implementation

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Hemmer, P. R.; Zubairy, M. Suhail

    2018-04-01

    The resolution of an interferometric optical lithography system is about the half wavelength of the illumination light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys. Rev. Lett. 96, 163603 (2006), 10.1103/PhysRevLett.96.163603]. Here, we analyze a possible experimental demonstration of this method in the negatively charged silicon-vacancy (SiV-) system by considering realistic experimental parameters. Our results show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature without using perturbation theory.

  7. Mass loss of evolved massive stars: the circumstellar environment at high angular resolution

    International Nuclear Information System (INIS)

    Montarges, Miguel

    2014-01-01

    Mass loss of evolved stars is still largely mysterious, despite its importance as the main evolution engine for the chemical composition of the interstellar medium. For red supergiants (RSG), the triggering of the outflow and the mechanism of dust condensation remain unknown. Concerning red giant stars, we still do not know how their mass loss is able to form a bipolar planetary nebula. During my PhD thesis, I observed evolved stars with high angular resolution techniques. They allowed us to study the surface and the close environment of these stars, from where mass loss originates. With near-infrared interferometric observations, I characterized the water vapor and carbon monoxide envelope of the nearby RSG Betelgeuse. I also monitored a hot spot on its surface and analyzed the structure of its convection, as well as that of Antares (another very nearby supergiant) thanks to radiative hydrodynamical simulations. Diffraction-limited imaging techniques (near-infrared adaptive optics, ultraviolet space telescope) allowed me to observe the evolution of inhomogeneities in the circumstellar envelope of Betelgeuse and to discover a circumstellar disk around L2 Puppis, an asymptotic giant branch star. These multi-scale and multi-wavelength observations obtained at several epochs allowed us to monitor the evolution of the structures and to derive information on the dynamics of the stellar environment. With a wider stellar sample expected in the next few years, this observing program will allow a better understanding of the mass loss of evolved stars. (author)

  8. Lunar UV-visible-IR mapping interferometric spectrometer

    Science.gov (United States)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  9. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    International Nuclear Information System (INIS)

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF 2 coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340 0 A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs

  10. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  11. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  12. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. Interferometric measurements of dry mass content in nuclei and cytoplasm in the life cycle of antheridial filaments cells of Chara vulgaris L. in their successive developmental stages

    Directory of Open Access Journals (Sweden)

    Hanna Kuran

    2015-01-01

    Full Text Available Interferometric measurements of the nucleus and cytoplasm dry mass during interphase in the successive stages of development of antheridial filaments of Chara vulgaris demonstrated that the dry mass and surface area of cell nuclei double in size in each of the successive generations of the filaments, whereas neither the surface nor the dry mass of the cytoplasm increase in such proportion in the same period. In the successive stages of development of the antheridial filaments the dry mass and surface area of the nuclei and cytoplasm gradually diminish.

  14. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    Science.gov (United States)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  15. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most...... destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power, the number of contributions carrying this power and the signal extinction ratio. We consider both PIN...... and optically preamplified receivers. The authors know of no other published formulas which include the number of crosstalk contributions. The crosstalk penalty formulas are empirical, and they are based on a numerical model. This model is described briefly along with its experimental verification before...

  16. Modulator noise suppression in the LISA time-delay interferometric combinations

    International Nuclear Information System (INIS)

    Tinto, Massimo; Armstrong, J W; Estabrook, Frank B

    2008-01-01

    Laser Interferometer Space Antenna (LISA) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases of six modulated laser beams exchanged between three remote spacecraft. We previously showed how the measurements of some 18 time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passing gravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use the recently measured noise spectrum of an individual modulator (Klipstein et al 2006 Proc. 6th Int. LISA Symp. (Greenbelt, MA) (AIP Conf. Proc. vol 873) ed S M Merkowitz and J C Livas pp 19-23) to quantify the contribution of modulator noise to the first and second-generation time-delay interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than ∼682 MHz in the case of the unequal-arm Michelson TDI combination X 1 , ∼ 1.08 GHz for the Sagnac TDI combination α 1 , and ∼706 MHz for the symmetrical Sagnac TDI combination ζ 1 . These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem. The measurements in Klipstein et al were performed in a laboratory experiment for a range of modulation frequencies, but we emphasize that, for the reference oscillator noise calibration algorithm to work, the modulation frequencies must be equal to the

  17. Optimal detection of burst events in gravitational wave interferometric observatories

    International Nuclear Information System (INIS)

    Vicere, Andrea

    2002-01-01

    We consider the problem of detecting a burst signal of unknown shape in the data from gravitational wave interferometric detectors. We introduce a statistic which generalizes the excess power statistic proposed first by Flanagan and Hughes, and then extended by Anderson et al. to the multiple detector case. The statistic that we propose is shown to be optimal for an arbitrary noise spectral characteristic, under the two hypotheses that the noise is Gaussian, albeit colored, and that the prior for the signal is uniform. The statistic derivation is based on the assumption that a signal affects only N parallel samples in the data stream, but that no other information is a priori available, and that the value of the signal at each sample can be arbitrary. This is the main difference from previous works, where different assumptions were made, such as a signal distribution uniform with respect to the metric induced by the (inverse) noise correlation matrix. The two choices are equivalent if the noise is white, and in that limit the two statistics do indeed coincide. In the general case, we believe that the statistic we propose may be more appropriate, because it does not reflect the characteristics of the noise affecting the detector on the supposed distribution of the gravitational wave signal. Moreover, we show that the proposed statistic can be easily implemented in its exact form, combining standard time-series analysis tools which can be efficiently implemented. We generalize this version of an excess power statistic to the multiple detector case, considering first a noise uncorrelated among the different instruments, and then including the effect of correlated noise. We discuss exact and approximate forms of the statistic; the choice depends on the characteristics of the noise and on the assumed length of the burst event. As an example, we show the sensitivity of the network of interferometers to a δ-function burst

  18. High-speed interferometry of expanding and collapsing laser produced plasma

    International Nuclear Information System (INIS)

    Basov, N.G.; Boiko, V.A.; Gribkov, V.A.; Zakharov, S.M.; Krokhin, O.N.; Nikulin, V.Ya.; Sklizkov, G.V.

    An installation with a good time and space resolution for the interferometric investigation of dense non-stationary plasma is described. The installation consists of a Mach-Zender interferometer, an electro-optical image converter camera and a ruby laser with an impulse of variable duration of 1nsec to 150nsec

  19. Herschel-ATLAS: A Binary HyLIRG Pinpointing a Cluster of Starbursting Protoellipticals

    Science.gov (United States)

    Ivison, R.J.; Swinbank, A.M.; Smail, Ian; Harris, A. I.; Bussmann, R. S.; Cooray, A.; Cox, P.; Fu, H.; Kovacs, A.; Krips, M.; hide

    2013-01-01

    Panchromatic observations of the best candidate hyperluminous infrared galaxies from the widest Herschel extragalactic imaging survey have led to the discovery of at least four intrinsically luminous z = 2.41 galaxies across an ˜100 kpc region-a cluster of starbursting protoellipticals. Via subarcsecond interferometric imaging we have measured accurate gas and star formation surface densities. The two brightest galaxies span 3 kpc FWHM in submillimeter/radio continuum and CO J = 4-3, and double that in CO J = 1-0. The broad CO line is due partly to the multitude of constituent galaxies and partly to large rotational velocities in two counter-rotating gas disks-a scenario predicted to lead to the most intense starbursts, which will therefore come in pairs. The disks have Mdyn of several ×10(sup 11) solar Mass, and gas fractions of 40%. Velocity dispersions are modest so the disks are unstable, potentially on scales commensurate with their radii: these galaxies are undergoing extreme bursts of star formation, not confined to their nuclei, at close to the Eddington limit. Their specific star formation rates place them greater than or approx. equal to 5 × above the main sequence, which supposedly comprises large gas disks like these. Their high star formation efficiencies are difficult to reconcile with a simple volumetric star formation law. N-body and dark matter simulations suggest that this system is the progenitor of a B(inary)-type ˜10(sup 14.6) -solar mass cluster.

  20. The influence on the interferometry due to the instability of ground-based synthetic aperture radar work platform

    Science.gov (United States)

    Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming

    2018-03-01

    There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.

  1. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Directory of Open Access Journals (Sweden)

    Ondřej Číp

    2013-02-01

    Full Text Available In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  2. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fischer, P. J. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California Santa Cruz, Santa Cruz, California 94056 (United States); Conley, R. [Advance Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); McKinney, W. R. [Diablo Valley College, 321 Golf Club Road, Pleasant Hill, California 94523 (United States); Artemiev, N. A. [KLA-Tencor Corp., 1 Technology Drive, Milpitas, California 95035 (United States); Bouet, N. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Calafiore, G.; Peroz, C.; Babin, S. [aBeam Technologies, Inc., Hayward, California 94541 (United States)

    2015-12-15

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  3. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    International Nuclear Information System (INIS)

    Yashchuk, V. V.; Chan, E. R.; Lacey, I.; Fischer, P. J.; Conley, R.; McKinney, W. R.; Artemiev, N. A.; Bouet, N.; Cabrini, S.; Calafiore, G.; Peroz, C.; Babin, S.

    2015-01-01

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters

  4. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  5. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

    Science.gov (United States)

    Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2013-03-29

    We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

  6. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  7. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  8. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  9. The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution

    Science.gov (United States)

    Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.

    2017-11-01

    Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.

  10. Comparison of super-resolution benefits for downsampled iages and real low-resolution data

    NARCIS (Netherlands)

    Peng, Y.; Spreeuwers, Lieuwe Jan; Gökberk, B.; Veldhuis, Raymond N.J.

    2013-01-01

    Recently, more and more researchers are exploring the benefits of super-resolution methods on low-resolution face recognition. However, often results presented are obtained on downsampled high-resolution face images. Because downsampled images are different from real images taken at low resolution,

  11. Interferometric windows characterization up to 450 K for shock wave experiments: Hugoniot curves and refractive index

    Directory of Open Access Journals (Sweden)

    Godefroit J.-L.

    2012-08-01

    Full Text Available Conventional shock wave experiments need interferometric windows in order to determine the equation of state of a large variety of metals. Lithium fluoride (LiF and sapphire are extensively used for that purpose because their optical transparencies enable the optical diagnostics at interfaces under a given range of shock pressure. In order to simulate and analyse the experiments it is necessary to gather a correct knowledge of the optical and mechanical properties of these windows. Therefore, our window supplies are systematically characterized and an experimental campaign under shock loading is conducted. Our preliminary work on LiF windows at 532 nm is in good agreement with literature data at room temperature and the new characterization at 450 K enables a better interpretation of our preheated target experiments. It confirms the predominant effect of density on optical properties under pressure and temperature. The present work demonstrates that the initial density determination is a key point and that the uncertainties need to be improved. For that purpose, complementary experiments are conducted on LiF windows with simplified target designs and enriched diagnostics, coupling VISAR (532 nm and PdV (1550 nm diagnostics. Furthermore, a similar campaign is conducted on sapphire windows with symmetric impact configuration.

  12. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    International Nuclear Information System (INIS)

    Rosfjord, Kristine Marie

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium

  13. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Kristine Marie [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  14. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  15. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures

    Science.gov (United States)

    Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele

    2017-04-01

    memory. Moreover, in some processing steps very heavy from the computational point of view, the Graphical Processing Units (GPU) are exploited for the processing of blocks working on a pixel-by-pixel basis, requiring strong modifications on some key parts of the sequential full resolution SBAS-DInSAR processing chain. GPU processing is implemented by efficiently exploiting parallel processing architectures (as CUDA) for increasing the computing performances, in terms of optimization of the available GPU memory, as well as reduction of the Input/Output operations on the GPU and of the whole processing time for specific blocks w.r.t. the corresponding sequential implementation, particularly critical in presence of huge DInSAR datasets. Moreover, to efficiently handle the massive amount of DInSAR measurements provided by the new generation SAR constellations (CSK and Sentinel-1), we perform a proper re-design strategy aimed at the robust assimilation of the full resolution SBAS-DInSAR results into the web-based Geonode platform of the Spatial Data Infrastructure, thus allowing the efficient management, analysis and integration of the interferometric results with different data sources.

  16. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  17. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  18. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration with a reference datum

    KAUST Repository

    Sinha, Mrinal

    2016-05-23

    Imaging seismic data with an erroneous migration velocity can lead to defocused migration images. To mitigate this problem, we first choose a reference reflector whose topography is well-known from the well logs, for example. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. Interferometric least-squares migration (ILSM) is then used to get the migration image that maximizes the crosscorrelation between the observed and the predicted crosscorrelograms. Deeper reference reflectors are used to image deeper parts of the subsurface with a greater accuracy. Results on synthetic and field data show that defocusing caused by velocity errors is largely suppressed by ILSM. We have also determined that ILSM can be used for 4D surveys in which environmental conditions and acquisition parameters are significantly different from one survey to the next. The limitations of ILSM are that it requires prior knowledge of a reference reflector in the subsurface and the velocity model below the reference reflector should be accurate.

  19. Resolution on the program energy-climate; Resolution sur le paquet energie-climat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  20. First Sub-arcsecond Collimation of Monochromatic Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G; Abbas, Sohrab; Treimer, Wolfgang, E-mail: nintsspd@barc.gov.in

    2010-11-01

    We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {l_brace}111{r_brace} Bragg prism has collimated 5.26A neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q {approx} 10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 {mu}m in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. An analysis of this pattern yielded the beam transverse coherence length of 175 {mu}m (FWHM), the greatest achieved to date for A wavelength neutrons.

  1. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm

    International Nuclear Information System (INIS)

    Zhao, X; Rosen, D W

    2017-01-01

    As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM and M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM and M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM and M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM and M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process. (paper)

  2. High resolution polarimetry of the Sun at 3. 7 and 11. 1 cm wavelengths. [Stokes parameters, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K R [Tufts Univ., Medford, Mass. (USA). Dept. of Physics

    1977-04-01

    The four Stokes parameters are presented for interferometric observations of the Sun at wavelengths of lambda=3.7 cm and lambda=11 cm with angular resolutions between 2.7 and 36.7 seconds of arc. An H..cap alpha.. solar flare of importance SN and type C has a radio wavelength (lambda=3.7 cm) size of 5 seconds of arc, a flux density of 0.3 x 10/sup -22/Wm/sup -2/Hz/sup -1/, and a brightness temperature on the order of 10/sup 7/K. The radio flare is 30% left circularly polarized at lambda=3.7 cm, 70% left circularly polarized at lambda=11 cm, and no detectable linear polarization was observed at either wavelength. During a forty hour observation of sunspot region McMath No 13926 no substantial variations in circular polarization were observed, whereas one hour prior to the eruption of a solar flare dramatic changes in circular polarization were observed. Small scale features whose angular sizes are on the order of five seconds of arc exhibit changes of circular polarization of up to 80%. At times other than those immediately preceding flare emission, the degree of circular polarization was the same as the two wavelengths but the sign was reversed. This situation can be explained if magnetic fields of intensity H<=1000 G and electron densities of Nsub(e)>=10/sup 7/cm/sup -3/ are present.

  3. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids

    International Nuclear Information System (INIS)

    Hoogenboom, B W; Frederix, P L T M; Engel, A; Fotiadis, D; Hug, H J

    2008-01-01

    We have developed an optical cantilever deflection detector with a spot size -1/2 sensitivity over a>10 MHz bandwidth. In this work, we demonstrate its potential for detecting small-amplitude oscillations of various flexural and torsional oscillation modes of cantilevers. The high deflection sensitivity of the interferometer is particularly useful for detecting cantilever oscillations in aqueous solutions, enabling us to reach the thermal noise limit in scanning or atomic force microscopy experiments with stiff cantilevers. This has resulted in atomic-resolution images of solid-liquid interfaces and submolecular-resolution images of native membranes

  4. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  5. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  6. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  7. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  8. Understanding conflict-resolution taskload: Implementing advisory conflict-detection and resolution algorithms in an airspace

    Science.gov (United States)

    Vela, Adan Ernesto

    2011-12-01

    From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal

  9. Resolution propositions

    International Nuclear Information System (INIS)

    2003-05-01

    To put a resolution to the meeting in relation with the use of weapons made of depleted uranium is the purpose of this text. The situation of the use of depleted uranium by France during the Gulf war and other recent conflicts will be established. This resolution will give the most strict recommendations face to the eventual sanitary and environmental risks in the use of these kind of weapons. (N.C.)

  10. Phase calibration of the EISCAT Svalbard Radar interferometer using optical satellite signatures

    Directory of Open Access Journals (Sweden)

    J. M. Sullivan

    2006-09-01

    Full Text Available The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.

  11. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  12. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    Science.gov (United States)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  13. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  14. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B W [London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Frederix, P L T M; Engel, A [M E Mueller Institute, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland); Fotiadis, D [Institute of Biochemistry and Molecular Medicine, University of Berne, Buehlstrasse 28, 3012 Berne (Switzerland); Hug, H J [Swiss Federal Laboratories for Materials Testing and Research, EMPA, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)], E-mail: b.hoogenboom@ucl.ac.uk

    2008-09-24

    We have developed an optical cantilever deflection detector with a spot size <3 {mu}m and fm Hz{sup -1/2} sensitivity over a>10 MHz bandwidth. In this work, we demonstrate its potential for detecting small-amplitude oscillations of various flexural and torsional oscillation modes of cantilevers. The high deflection sensitivity of the interferometer is particularly useful for detecting cantilever oscillations in aqueous solutions, enabling us to reach the thermal noise limit in scanning or atomic force microscopy experiments with stiff cantilevers. This has resulted in atomic-resolution images of solid-liquid interfaces and submolecular-resolution images of native membranes.

  15. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    Science.gov (United States)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  17. High Resolution 3D Earth Observation Data Analysis for Safeguards Activities

    International Nuclear Information System (INIS)

    D'Angelo, P.; Eineder, M.; Rossi, C.

    2015-01-01

    This paper provides an overview of the investigations performed in the last three years at DLR and highlights the application of SAR and optical data for 3D analysis in the context of Safeguards. The Research Center Juelich and the adjacent open cut mines were used as main test site, and a comprehensive stack of ascending and descending TerraSAR data was acquired over two years. TerraSAR data acquisition was performed, and various ways to visualize stacks of radar images were evaluated. Building height estimation was performed using a combination of ascending-descending radar images, as well as height-form-shadow, height-from-layover. A tutorial on building signatures from SAR images highlighted the sensor specific imaging characteristics. These topics were particularly relevant in safeguards activity with a ''small-budget'' as only a single image - or a couple - were employed. Interferometric coherence map interpretation allows the detection of used dirt roads. Digital surface models (DSM) were generated from TanDEM-X interferometric data and from optical VHR data. Sub-meterWorldview-2 and GeoEye-1 data was processed into highly detailed DSM with a grid spacing of 1 m, showing building structures. 3D change and volume detection was performed with both optical and radar DSMs. The TanDEM-X DSMs proved useful for volume change detection and computation in mining areas, and down to building level with optical data. Virtual fly-through were found to be a good tool to provide an intuitive understanding of site structure and might be useful for inspector briefing. Tools for most of the above mentioned tasks have been developed for the ENVI environment and can be used by IAEA internally. (author)

  18. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  19. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  20. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    Science.gov (United States)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  1. Resolution 1540 (2004) overview

    International Nuclear Information System (INIS)

    Kasprzyk, N.

    2013-01-01

    This series of slides presents the Resolution 1540, its features and its status of implementation. Resolution 1540 is a response to the risk that non-State actors may acquire, develop, traffic in weapons of mass destruction and their means of delivery. Resolution 1540 was adopted on 28 April 2004 by the U.N. Security Council at the unanimity of its members. Resolution 1540 deals with the 3 kinds of weapons of mass destruction (nuclear, chemical and biological weapons) as well as 'related materials'. This resolution implies 3 sets of obligations: first no support of non-state actors concerning weapons of mass destruction, secondly to set national laws that prohibit any non-state actors to deal with weapons of mass destruction and thirdly to enforce domestic control to prevent the proliferation of nuclear, chemical or biological weapons and their means of delivery. Four working groups operated by the 1540 Committee have been settled: - Implementation (coordinator: Germany); - Assistance (coordinator: France); - International cooperation (interim coordinator: South Africa); and - Transparency and media outreach (coordinator: USA). The status of implementation of the resolution continues to improve since 2004, much work remains to be done and the gravity of the threat remains considerable. (A.C.)

  2. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  3. Holographic tracking of quantized intra-film segments during interferometric laser processing of SiOx thin films(Conference Presentation)

    Science.gov (United States)

    Ho, Stephen; Domke, Matthias; Huber, Heinz P.; Herman, Peter P.

    2017-03-01

    Interferometric femtosecond laser processing of thin dielectric films has recently opened the novel approach for quantized nanostructuring from inside the film, driven by the rapid formation of periodic thin nanoscale plasma disks of 20 to 45 nm width, separated on half-wavelength, λ/2nfilm, spacing (refractive index, nfilm). The nano-disk explosions enable intra-film cleaving of subwavelength cavities at single or multiple periodic depths, enabling the formation of intra-film blisters with nanocavities and the digital ejection at fractional film depths with quantized-depth thickness defined by the laser wavelength. For this paper, the physical mechanisms and ablation dynamics underlying the intra-film cleavage of SiOx thin films were investigated by laser pump-probe microscopy with high temporal dynamic range recorded in a wide time-frame between 100 fs and 10 μs. The long time scales revealed a new observation method as Newton's Rings (observed 50 ns) of the laser-ablated film fragments. For the first time to our knowledge, the holographic tracking reveals the clustering of large mechanically ejected nano-film planes into distinct speed groups according to the multiple of λ/2nfilm in the film. The observation verifies a new `quantized' form of photo-mechanical laser "lift-off".

  4. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  5. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  6. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  7. Interferometric density measurements in the divertor and edge plasma regions for the additionally heated JT-60 plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshida, H.; Nagashima, A.; Ishida, S.; Kikuchi, M.; Yokomizo, H.

    1989-01-01

    The first divertor plasma density measurement and the interferometric edge plasma density measurement with boundary condition preserving millimeter waveguides were demonstrated to elucidate the mutual correlation among the divertor plasma, scrape-off layer plasma and the bulk plasma properties in the additionally heated JT-60 plasmas. The electron density in the divertor region exhibited a nonlinear dependence on the bulk plasma density for the joule-heated plasmas. When neutral beam heating is applied on the plasmas with the electron density above 2x10 19 /m 3 , however, the bulk plasma density is scraped off from the outer region to lead to density clamping, and the electron density in the divertor region rapidly increases over 1x10 20 /m 3 , from which we can deduce that the particle flow along the magnetic field is dominant, resulting in the apparent degradation of the particle confinement time. As for the case when neutral beam injection is applied to low-density plasmas, the bulk plasma electron density profile becomes flattened to yield a smaller density increase in the divertor region and no density clamping of the bulk plasma was observed. Simulation analysis which correlates the transport of the divertor plasma and the scrape-off layer plasma was also carried out to find the consistency with the experimental results. (orig.)

  8. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  9. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  10. Interferometric characterization of tear film dynamics

    Science.gov (United States)

    Primeau, Brian Christopher

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. When a contact lens is on worn, the tear film covers the contact lens as it would a bare cornea, and is affected by the contact lens material properties. Tear film irregularity can cause both discomfort and vision quality degradation. Under normal conditions, the tear film is less than 10 microns thick and the thickness and topography change in the time between blinks. In order to both better understand the tear film, and to characterize how contact lenses affect tear film behavior, two interferometers were designed and built to separately measure tear film behavior in vitro and in vivo. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The in vivo interferometer is a similar system, with additional modules included to provide capability for human testing. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or videokeratometry and provides better sensitivity and resolution than shearing interferometry methods.

  11. Coherent response of a semiconductor microcavity in the strong coupling regime

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Ferreira, R.; Delalande, C.; Roussignol, Ph; Bogani, F.

    2000-05-01

    We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.

  12. Camera-based micro interferometer for distance sensing

    Science.gov (United States)

    Will, Matthias; Schädel, Martin; Ortlepp, Thomas

    2017-12-01

    Interference of light provides a high precision, non-contact and fast method for measurement method for distances. Therefore this technology dominates in high precision systems. However, in the field of compact sensors capacitive, resistive or inductive methods dominates. The reason is, that the interferometric system has to be precise adjusted and needs a high mechanical stability. As a result, we have usual high-priced complex systems not suitable in the field of compact sensors. To overcome these we developed a new concept for a very small interferometric sensing setup. We combine a miniaturized laser unit, a low cost pixel detector and machine vision routines to realize a demonstrator for a Michelson type micro interferometer. We demonstrate a low cost sensor smaller 1cm3 including all electronics and demonstrate distance sensing up to 30 cm and resolution in nm range.

  13. Fotometría infrarroja del Reloj de Arena en M8

    Science.gov (United States)

    Arias, J.; Barbá, R.; Morrell, N.; Rubio, M.

    We present sub-arcsecond resolution JHKs imaging of the Hourglass Nebula in Messier 8, obtained with the 2.5-m du Pont telescope at Las Campanas Observatory (LCO), Chile. Near-infrared colors have been measured for numerous infrared sources around the O-type star Herschel 36 (O7 V), the brightest source in the field and main responsible for the nebula ionization. Several of those IR sources are identified as Hα emission stars from narrow-band Hubble Space Telescope images, and some of them display a knotty shape, characteristic of proplyd-like objects. Based on the NIR color-color and color-magnitude diagrams, we also identified dozens of NIR excess sources which %we selected as are prime candidates to be intermediate and low-mass pre-main-sequence stars. Additionally, we present preliminary results of the spectroscopic confirmation of some T Tauri stars among these objects, based on spectra recently obtained with the 6.5-m Magellan telescope at LCO.

  14. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  15. Peculiar morphology of the high-redshift radio galaxies 3C 13 and 3C 256 in subarcsecond seeing

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Nottale, L.; Mazure, A.; Christian, C.

    1988-01-01

    High-spatial-resolution imaging is presented for two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0.6-arcsec FWHM for 3C 13 and 0.7-arcsec FWHM for 3C 256 in the R band, over long integration times, made it possible to resolve these distant galaxies into complex structures. As suggested by Le Fevre et al. (1987) for another source (the gravitational lens candidate 3C 324) an interpretation in terms of gravitational amplification by foreground galaxies or clusters of galaxies is proposed. 3C 13 appears to be the most serious candidate, since a foreground galaxy, with an absolute luminosity M(R) = 23.3 and a redshift z = 0.477, is only 3.9 in from the extended radio galaxy. 18 references

  16. Resolution and termination

    Directory of Open Access Journals (Sweden)

    Adina FOLTIŞ

    2012-01-01

    Full Text Available The resolution, the termination and the reduction of labour conscription are regulated by articles 1549-1554 in the new Civil Code, which represents the common law in this matter. We appreciate that the new regulation does not conclusively clarify the issue related to whether the existence of liability in order to call upon the resolution is necessary or not, because the existence of this condition has been inferred under the previous regulation from the fact that the absence of liability shifts the inexecution issue on the domain of fortuitous impossibility of execution, situation in which the resolution of the contract is not in question, but that of the risk it implies.

  17. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales

    NARCIS (Netherlands)

    Marcote, B.; Paragi, Z.; Hessels, J.W.T.; Keimpema, A.; van Langevelde, H.J.; Huang, Y.; Bassa, C.G.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.J.; Campbell, R.M.; Chatterjee, S.; Cordes, J.M.; Demorest, P.; Garrett, M.A.; Ghosh, T.; Kaspi, V.M.; Law, C.J.; Lazio, T.J.W.; McLaughlin, M.A.; Ransom, S.M.; Salter, C.J.; Scholz, P.; Seymour, A.; Siemion, A.; Spitler, L.G.; Tendulkar, S.P.; Wharton, R.S.

    2017-01-01

    The millisecond-duration radio flashes known as fast radio bursts (FRBs) represent an enigmatic astrophysical phenomenon. Recently, the sub-arcsecond localization (∼100 mas precision) of FRB 121102 using the Very Large Array has led to its unambiguous association with persistent radio and optical

  18. Resolution enhancement techniques in microscopy

    Science.gov (United States)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  19. Medición simultánea en dos dimensiones por interferometría holográfica digital utilizando dos láseres y una cámara 3CCD

    Directory of Open Access Journals (Sweden)

    Tonatiuh Saucedo Anaya

    2013-01-01

    Full Text Available Se presenta un arreglo en Interferometría Holográfica Digital (IHD para medir simultáneamente en 2D micro deformaciones en la superficie de objetos ópticamente rugosos. En el arreglo se usa una cámara 3CCD color y dos fuentes de luz láser de 458nm y 633nm que permite grabar simultáneamente dos hologramas digitales. El arreglo se prueba en una placa metálica la cual es microscópicamente deformada al ser calentada ligeramente por un cautín. Los resultados experimentales muestran el potencial metrológico del sistema para caracterizar cantidades mecánicas en la estructura del objeto.

  20. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  1. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  2. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  3. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, S R; Ellis, J D

    2015-01-01

    Heterodyne interferometry is a widely accepted methodology with high resolution in many metrology applications. As a functionality enhancement, differential wavefront sensing (DWS) enables simultaneous measurement of displacement, pitch, and yaw using a displacement interferometry system and a single beam incident on a plane mirror target. The angular change is measured using a weighted phase average between symmetrically adjacent quadrant photodiode pairs. In this paper, we present an analytical model to predict the scaling of differential phase signals based on fundamental Gaussian beams. Several numerical models are presented to discuss the effects of physical beam parameters, detector size, system alignment errors, and beam wavefront aberrations on the DWS technique. The results of our modeling predict rotational scaling factors and a usable linear range. Furthermore, experimental results show the analytically predicted scaling factor is in good agreement with empirical calibration. Our three degree-of-freedom interferometer can achieve a resolution of 0.4 nm in displacement and 0.2 μrad in pitch and yaw simultaneously. (paper)

  4. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  5. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  6. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  7. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  8. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  9. Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello

    1997-04-01

    We show that an interferometric correlation measurement with fs time resolution provides an unambiguous discrimination between coherent and incoherent emission after resonant femtosecond excitation. The experiment directly probes the most important difference between the two emissions, that is, the phase correlation with the excitation pulse. The comparison with cw frequency resolved measurements demonstrates that the relationship between coherent and incoherent emission is similar under femtosecond and steady-state excitation.

  10. Topics in LIGO-related physics: Interferometric speed meters and tidal work

    Science.gov (United States)

    Purdue, Patricia Marie

    In the quest to develop viable designs for third-generation interferometric gravitational-wave detectors (such as the Laser Interferometer Gravitational-Wave Observatory, LIGO), one strategy is monitoring the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is analyzed in Chapter 2. It is shown that in principle this design can beat the standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies. However, in practice, this specific speed meter requires exorbitantly high input light power. Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires modest input power and appears to be a fully practical candidate for third-generation detectors. It can beat the SQL over a broad range of frequencies (˜10 to 100 Hz in practice) by a factor h/hSQL ˜ WSQLcirc/Wc irc . Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz. If squeezed vacuum (with a power-squeeze factor e-2 R) is injected into the interferometer's output port, the SQL can be beat with less laser power: h/h SQL ˜ WSQLcirc/Wc irce2R . For realistic parameters (e2 R ≃ 10 and Wcirc ≃ 800 kW), the SQL can be beat by a factor ˜3 from 10 to 100 Hz. By performing frequency-dependent homodyne detection on the output (using two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz. Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves. Specifically, it presents an analysis of the tidal work done on a self-gravitating body in an external tidal field. By examining the change in the mass-energy of the body as a result of the tidal field, it is shown that the work done is gauge invariant, while the body

  11. The LOFAR long baseline snapshot calibrator survey

    NARCIS (Netherlands)

    Moldón, J.; et al., [Unknown; Carbone, D.; Markoff, S.; Wise, M.W.

    2015-01-01

    Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to

  12. The LOFAR ling baseline snapshot calibrator survey

    NARCIS (Netherlands)

    Moldon, J.; Deller, A.T.; Wucknitz, O.; Jackson, N.; Drabent, A.; Carozzi, T.; Conway, J.; Bentum, Marinus Jan; Bernardi, G.; Best, P.; Gunst, A.W.

    Aims: An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods We used the multi-beaming capability of LOFAR to

  13. The LOFAR long baseline snapshot calibrator survey

    NARCIS (Netherlands)

    Moldón, J.; Deller, A. T.; Wucknitz, O.; Jackson, N.; Drabent, A.; Carozzi, T.; Conway, J.; Kapińska, A. D.; McKean, J. P.; Morabito, L.; Varenius, E.; Zarka, P.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bîrzan, L.; Bregman, J.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Gasperin, F.; de Geus, E.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hoeft, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Morganti, R.; Munk, H.; Norden, M. J.; Offringa, A. R.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A. M. M.; Schwarz, D.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; White, S.; Wise, M. W.; Yatawatta, S.; Zensus, A.

    Aims: An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods: We used the multi-beaming capability of LOFAR to

  14. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).

  15. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  16. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  17. Automating the conflict resolution process

    Science.gov (United States)

    Wike, Jeffrey S.

    1991-01-01

    The purpose is to initiate a discussion of how the conflict resolution process at the Network Control Center can be made more efficient. Described here are how resource conflicts are currently resolved as well as the impacts of automating conflict resolution in the ATDRSS era. A variety of conflict resolution strategies are presented.

  18. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    Science.gov (United States)

    Bochner, Brett

    1998-12-01

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling

  19. Interferometry in the era of time-domain astronomy

    Science.gov (United States)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean

    2018-04-01

    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  20. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.