WorldWideScience

Sample records for subaqueous basaltic glasses

  1. Investigating the explosivity of shallow sub-aqueous basaltic eruptions

    Science.gov (United States)

    Murtagh, R.; White, J. D. L.

    2009-04-01

    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The

  2. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  3. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  4. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  5. Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia — Evidence of advanced rifting in the Tethyan domain

    Science.gov (United States)

    Palinkaš, Ladislav A.; Bermanec, Vladimir; Borojević Šoštarić, Sibila; Kolar-Jurkovšek, Tea; Palinkaš, Sabina Strmić; Molnar, Ferenc; Kniewald, Goran

    2008-12-01

    The Hru\\vskovec quarry of basaltoid rocks is situated on the northwestern slopes of Mt. Kalnik, within the Zagorje-Mid-Transdanubian zone, a part of the North-western Dinarides. The basaltoids are inter-bedded with radiolarites of the Middle and Upper Triassic age (Langobardian, Carnian-Norian). Spilites, altered diabases and meta-basalts form part of Triassic volcanic-sedimentary sequence, made of sandstones, shales, micritic limestone, altered vitric tuffs and radiolarian cherts, incorporated tectonically into the Jurassic-Cretaceous mélange. The architecture of the 2 km long and 100 m high pile of the extrusive basaltoid rocks is interpreted as a subaqueous basaltic lava flow. The presented research deals with a variety of volcanic facies of the subaqueous basaltic lava flow, which consists of several facial units: 1. Coherent pillow lavas, with massive core; the bending rims around the massive core, 30-50 cm thick, are dissected by polygonal columnar joints radiating from the pillow centres; 2. Closely packed pillows; densely packed and contorted pillows due to emplacement accommodation, clearly younging upward; 3. Pillow fragment breccia; clast supported, matrix poor, monomict breccia, formed proximal to the axis of the extrusion; 4. Isolated pillow breccia; matrix supported, clast poor breccia, made of lava pipes and tubes, within a matrix of fine-grained sideromelan granules and shards; 5. Pyjama-style pillows; spherical, decimetre to meter size pillow lava balls, grown and chilled in isostatic state (i.e. in a state of diminished density contrast) within water-soaked sediments, named after peculiar alternating basaltic shelves inside the sphere, which are encrusted with white secondary minerals; 6. Peperite and peperitic hyaloclastites; blocky and globular peperites developed at the contact of soft, wet sediment and hot intruding magma. Discovery of peperite and peperitic hyaloclastites within the Triassic radiolarian cherts, shales, and micritic

  6. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci,Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  7. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    chemical changes are the loss of Si, Mg and Ca and a gain of Na and K whilst, Fe and Ti remained immobile. It reflects that the basaltic glasses have undergone initial to intermediate stages of palagonitisation under low temperature oxidative alterations...

  8. A new basaltic glass microanalytical reference material for multiple techniques

    Science.gov (United States)

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  9. Noble gas and carbon isotopes in Mariana Trough basalt glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. [Centre de Recherches Petrographiques et Geochimiques, Centre National de la Recherche Scientifique, Rue Notre-Dame des Pauvres, BP 20, 54501 Vandoeuvre Cedex (France); Jambon, A. [Laboratoire de Magmatologie et Geochimie Inorganique et Experimentale, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05 (France); Gamo, T. [Ocean Research Institute, The University of Tokyo, Nakano-ku Tokyo 164 (Japan); Nishio, Y. [Geological Institute, The University of Tokyo, Bunkyo-ku Tokyo 113 (Japan); Sano, Y. [Department of Earth and Planetary Sciences, Hiroshima University, Kagamiyama Higashi Hiroshima 739 (Japan)

    1998-06-01

    oble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The {sup 3}He/{sup 4}He ratios of 8.22 and 8.51 R{sub atm} of samples dredged from the central Mariana Trough (similar18N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4{+-}0.3 R{sub atm}), whereas a mean ratio of 8.06{+-}0.35 R{sub atm} in samples from the northern Mariana Trough (similar20N) is slightly lower than those of MORB. One sample shows apparent excess of {sup 20}Ne and {sup 21}Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between {sup 3}He/{sup 4}He and {sup 40}Ar/{sup 36}Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess {sup 129}Xe is observed in the sample which also shows {sup 20}Ne and {sup 21}Ne excesses. Observed {delta}{sup 13}C values of similar20N samples vary from -3.76 per thousand to -2.80 per thousand, and appear higher than those of MORB, and the corresponding CO{sub 2}/{sup 3}He ratios are higher than those of MARA samples at similar18N, suggesting C contribution from the subducted slab. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Potential for microbial oxidation of ferrous iron in basaltic glass.

    Science.gov (United States)

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  11. Acidic weathering of basalt and basaltic glass: 1. Near-infrared spectra, thermal infrared spectra, and implications for Mars

    Science.gov (United States)

    Horgan, Briony H. N.; Smith, Rebecca J.; Cloutis, Edward A.; Mann, Paul; Christensen, Philip R.

    2017-01-01

    Acid-leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acidic weathering in a laboratory by repeatedly rinsing and submerging crystalline and glassy basalts in pH 1 and pH 3 acidic solutions for 213 days and compared their visible/near-infrared (0.3-2.5 µm) and thermal infrared (5-50 µm) spectral characteristics to their microscopic physical and chemical properties from scanning electron microscopy (SEM). We find that while alteration at moderately low pH ( 3) can produce mineral precipitates from solution, it has very little spectral or physical effect on the underlying parent material. In contrast, alteration at very low pH ( 1) results in clear silica spectral signatures for all crystalline samples while glasses exhibit strong blue concave-up near-infrared slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, alteration occurs only at the surface and produces a silica-enriched leached rind, while in more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. We confirm that glass is more stable than crystalline basalt under long-term acidic leaching, suggesting that glass could be enriched and common in terrains on Mars that have been exposed to acidic weathering. Leached glasses are consistent with both OMEGA and Thermal Emission Spectrometer (TES) spectra of the Martian northern lowlands and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread on Mars.

  12. Crystallization behaviors and seal application of basalt based glass-ceramics

    Science.gov (United States)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  13. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  14. Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants

    Science.gov (United States)

    Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale

    2010-05-01

    Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the

  15. A Brillouin scattering study of hydrous basaltic glasses: the effect of H2O on their elastic behavior and implications for the densities of basaltic melts

    Science.gov (United States)

    Wu, Lei; Yang, De-Bin; Liu, Jun-Xiu; Hu, Bo; Xie, Hong-Sen; Li, Fang-Fei; Yu, Yang; Xu, Wen-Liang; Gao, Chun-Xiao

    2017-06-01

    Hydrous basalt glasses with water contents of 0-6.82% were synthesized using a multi-anvil press at 1.0-2.0 GPa and 1200-1400 °C. The starting materials were natural Mesozoic basalts from the eastern North China Craton (NCC). Their sound velocities and elastic properties were measured by Brillouin scattering spectroscopy. The longitudinal ( V P) and shear ( V S) wave velocities decreased with increasing water content. Increasing the synthesis pressure resulted in the glass becoming denser, and finally led to an increase in V P. As the degree of depolymerization increased, the V P, V S, and shear and bulk moduli of the hydrous basalt glasses decreased, whereas the adiabatic compressibility increased. The partial molar volumes of water (ν) under ambient conditions were independent of composition, having values of 11.6 ± 0.8, 10.9 ± 0.6 and 11.5 ± 0.5 cm3/mol for the FX (Feixian), FW (Fuxin), and SHT (Sihetun) basalt glasses, respectively. However, the {{V}_{{{{H}}_{{2}}}{O}}} values measured at elevated temperatures and pressures are increasing with increasing temperature or decreasing pressure. The contrasting densities of these hydrous basalt melts with those previously reported for mid-ocean ridge basalt and preliminary reference Earth model data indicate that hydrous basalt melts may not maintain gravitational stability at the base of the upper mantle.

  16. Study of crystallization of a basalt glass; Estudo de cristalizacao de um vidro de basalto

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Fernando Takahiro; Hashizume, Camila Mina; Toffoli, Samuel Marcio, E-mail: toffoli@usp.b [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2009-07-01

    Basalt vitreous ceramics posses industrial importance by presenting high mechanical resistance to the abrasion. It was studied the obtention and the crystallization of a glass obtained from a basalt of Campinas, Sao Paulo, Brazil, aiming to develop a material with great abrasive resistance. Fusions were made at 1400 deg Celsius in electrical oven and in alumina crucible, of fine residues of basalt mining. The obtained glass was treated in a crystallization temperature of 880 deg Celsius, determined by DSC, by various time of treatment. The present main crystalline phases, detected by XRD, were the magnesium-ferrite (MgFe{sub 2}O{sub 4}) and the diopsid Ca(Mg,Fe,Al)(Si,Al){sub 2}O{sub 6}. Analysing the density by the Archimedes methodology and the DRX it was possible to follow the crystallization kinetic up.

  17. Different mechanisms for acid weathering of crystalline basalt vs. basaltic glass and implications for detection on Mars

    Science.gov (United States)

    Horgan, B. H. N.; Smith, R.; Christensen, P. R.; Cloutis, E.

    2016-12-01

    Silica-rich acid leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acid weathering in a laboratory by repeatedly submerging and rinsing crystalline and glassy basalts in pH 1 and 3 acidic solutions for 220 days. Visible/near-infrared (VNIR; 0.3-2.5 μm) and thermal-infrared (TIR; 5-50 μm) spectra of the samples were compared to their microscopic properties from scanning electron microscopy (SEM). While previous studies have shown that exposure to moderately low pH ( 3) solutions can produce mineral precipitates, we find that there is very little spectral or microphysical effect on the underlying parent material. In contrast, materials exposed to very low pH ( 1) solutions were visibly altered in SEM images, and contained regions enriched in amorphous silica. These samples exhibited clear silica VNIR and TIR spectral signatures that increased in intensity with their glass content. In addition, glass exposed to low pH solutions often exhibited blue and concave up VNIR slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, low pH alteration occurs only at the surface and produces a silica-enriched rind. In more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. Thus, along with the pH of the aqueous environment, the crystallinity of a rock can greatly affect the way and the degree to which it is weathered. Because alteration is restricted to the surface of glassy materials, bulk glass is more stable than crystalline basalt under long-term acidic leaching. Leached glasses are consistent with OMEGA and TES spectra of the martian northern lowlands, and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread

  18. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...... by varying the temperature of heat treatment. The change of the relative degree of crystallisation with the heat treatment temperature can be described by an empirical model established in this work. The predominant crystalline phase in the glass has been identified as the pyroxene augite. The hardness...... of the augite crystals is in the range of the hardness of a similar pyroxene, i.e., a pure diopside crystal. The hardness of diopside has been both measured and calculated. The calculation has been done by considering the strength of each individual bond and the amount of bonds per volume, i.e., by using first...

  19. Electronic environments of ferrous iron in rhyolitic and basaltic glasses at high pressure: Silicate Glasses at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Solomatova, Natalia V. [Division of Geological and Planetary Sciences, Caltech, Pasadena California USA; Jackson, Jennifer M. [Division of Geological and Planetary Sciences, Caltech, Pasadena California USA; Sturhahn, Wolfgang [Division of Geological and Planetary Sciences, Caltech, Pasadena California USA; Rossman, George R. [Division of Geological and Planetary Sciences, Caltech, Pasadena California USA; Roskosz, Mathieu [IMPMC-Muséum National d' Histoire Naturelle-CNRS, Paris France

    2017-08-01

    The physical properties of silicate melts within Earth's mantle affect the chemical and thermal evolution of its interior. Chemistry and coordination environments affect such properties. We have measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to ~120 GPa and ~100 GPa, respectively, in a neon pressure medium using time domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings. Absence of detectable ferric iron was confirmed with optical absorption spectroscopy. The sites with relatively high and intermediate quadrupole splittings are likely a result of fivefold and sixfold coordination environments of ferrous iron that transition to higher coordination with increasing pressure. The ferrous site with a relatively low quadrupole splitting and isomer shift at low pressures may be related to a fourfold or a second fivefold ferrous iron site, which transitions to higher coordination in basaltic glass, but likely remains in low coordination in rhyolitic glass. These results indicate that iron experiences changes in its coordination environment with increasing pressure without undergoing a high-spin to low-spin transition. We compare our results to the hyperfine parameters of silicate glasses of different compositions. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.

  20. Post-impact mechanical characterisation of E-glass/basalt woven fabric interply hybrid laminates

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Post-impact properties of different configurations (symmetrical and non-symmetrical of hybrid laminates including E-glass and basalt fibre composites, all with volume fraction of fibres equal to 0.38±0.02 and manufactured by RTM, have been studied. With this aim, interlaminar shear strength tests and four-point flexural tests of laminates impacted with different energies (0, 7.5, 15 and 22.5 J have been performed. Acoustic emission (AE localisation and AE evolution with applied flexural stress was studied to support impact damage characterisation, provided by SEM and transient thermography. The results indicate that a symmetrical configuration including E-glass fibre laminate as a core for basalt fibre laminate skins presents the most favourable degradation pattern, whilst intercalation of layers may bring to further improvement of the laminate properties, but also to more extended and complex damage patterns.

  1. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    Science.gov (United States)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  2. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Nolwenn eCallac

    2013-08-01

    Full Text Available Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (Autonomous In Situ Instrumented Colonization System were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution is primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences form a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions.

  3. Modification of the epoxy binder for glass and basalt rebar. Mechanical test results

    Science.gov (United States)

    Brusentseva, T. A.

    2017-10-01

    The paper presents the results of experimental studies on the modification of the epoxy binder LE-828 for the manufacture of glass and basalt rebar. The nano-size silica powder is used as a filler. The filler mass content ranged from 0% to 2%. It is shown that the nano-disperse filler introduced in the binder leads to the increasing breaking stress and tensile strength by 33% and 34%, respectively; the failure strain increased by 39% at the filler mass content of 0.6%.

  4. Estimate of long-term dissolution rate of basaltic glass. A case study on Mt. Fuji area

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naotatsu; Takino, Akitsugu [Keio Univ., Environmental Geochemistry, Tokyo (Japan)

    2002-03-01

    Bulk compositional, mineralogical and physical properties of weathered basaltic ash soil ('Andisol') derived mainly from Mt. Fuji were studied. Mineralogical studies revealed that the dominant primary material and weathering products are volcanic glass, allophane and halloysite and the sequence of weathering is volcanic glass {yields} allophane {yields} 10A halloysite {yields} 7A halloysite. X-ray fluorescence analysis indicates that the relative elemental mobilities during the weathering is Na, Ca>K>Mg>P>Si>Ti, Fe>Al>Mn. The trends of soilwater chemistry (H{sub 4}SiO{sub 4} concentration) with depth were calculated based on dissolution - precipitation kinetics - fluid flow coupling model. In order to calculate the trends, the data on present-day annual rainfall, solubility of basalt glass, porosity and specific weight of soil, deposition rate of volcanic ash and grain size of volcanic glass were used. The calculated results were compared with analytical trends of soilwater chemistry. From this comparison the dissolution rate constant of basalt glass was estimated to be 10{sup -9.4} - 10{sup -9.2} (mole Si m{sup -2} s{sup -1}). This value is consistent with previous experimental dissolution rate constant of basalt glass reported in the literature. (author)

  5. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    Science.gov (United States)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  6. Smectite Formation From Basaltic Glass in the Presence of Sulfuric Acid on Mars

    Science.gov (United States)

    Peretyazhko, T.; Niles, P. B.; Sutter, B.; Morris, R. V.; Ming, D. W.

    2016-12-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under neutral to alkaline conditions. These pH conditions and the presence of a CO2-rich atmosphere during the Noachian and early Hesperian should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. Recent orbital and landed missions have detected phyllosilicates co-existing with minerals that usually form under acidic conditions including jarosite and alunite. The occurrence of sulfates co-existing with phyllosilicates minerals on Mars and absences of large-scale carbonate in Noachian terrains indicate that phyllosilicate formation under sulfuric acid conditions was at least locally important. The pH effect and the nature of phyllosilicate minerals forming during acid-sulfate weathering of basalt remain unknown. We investigated formation of smectite minerals in the presence of sulfuric acid from Mars-analogue, glass-rich, basalt simulant. Hydrothermal (200º C) 14 d experiments were performed with addition of sulfuric acid of variable concentration at a pH range from 1.8 to 8.4. Sulfuric acid did not suppress smectite formation and gradual acid neutralization during basalt weathering led to montmorillonite formation at pH 3 followed by saponite at pH 4 and higher. Smectite formed through glass phase alteration and was accompanied by precipitation of calcium sulfate (anhydrite). Similar smectite and sulfate formation under acid sulfate conditions may have occurred in near-surface hydrothermal areas near magma bodies on Mars.

  7. The Origin of Nanoscopic Grooving on Vesicle Walls in Submarine Basaltic Glass: Implications for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jason E. French

    2009-01-01

    Full Text Available Dendritic networks of nanoscopic grooves measuring 50–75 nm wide by <50 nm deep occur on the walls of vesicles in the glassy margins of mid-ocean ridge pillow basalts worldwide. Until now, their exact origin and significance have remained unclear. Here we document examples of such grooved patterns on vesicle walls in rocks from beneath the North Atlantic Ocean, and give a fluid mechanical explanation for how they formed. According to this model, individual nanogrooves represent frozen viscous fingers of magmatic fluid that were injected into a thin spheroidal shell of hot glass surrounding each vesicle. The driving mechanism for this process is provided by previous numerical predictions of tangential tensile stress around some vesicles in glassy rocks upon cooling through the glass transition. The self-assembling nature of the dendritic nanogrooves, their small size, and overall complexity in form, are interesting from the standpoint of exploring new applications in the field of nanotechnology. Replicating such structures in the laboratory would compete with state-of-the-art nanolithography techniques, both in terms of pattern complexity and size, which would be useful in the fabrication of a variety of grooved nanodevices. Dendritic nanogrooving in SiO2 glass might be employed in the manufacturing of integrated circuits.

  8. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  9. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  10. Structural iron (II of basaltic glass as an energy source for Zetaproteobacteria in an abyssal plain environment, off the Mid Atlantic Ridge

    Directory of Open Access Journals (Sweden)

    Pauline Audrey Henri

    2016-01-01

    Full Text Available To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W. In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 µm. The relative abundance of the associated microbial community was dominated (39% of all reads by a single operational taxonomic unit (OTU that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from

  11. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars.

    Science.gov (United States)

    Hausrath, Elisabeth M; Tschauner, Oliver

    2013-11-01

    Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.

  12. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    Science.gov (United States)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  13. Sulfur and iron speciation in gas-rich impact-melt glasses from basaltic shergottites determined by microXANES

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.R.; Rao, M.N.; Nyquist, L.E. (UofC); (Johnson Space Center)

    2008-04-28

    Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1-12%). To

  14. Multiple metasomatic events recorded in Kilbourne Hole peridotite xenoliths: the relative contribution of host basalt interaction vs. silicate metasomatic glass

    Science.gov (United States)

    Hammond, S. J.; Yoshikawa, M.; Harvey, J.; Burton, K. W.

    2010-12-01

    Stark differences between bulk-rock lithophile trace element budgets and the sum of the contributions from their constituent minerals are common, if not ubiquitous in peridotite xenoliths [1]. In the absence of modal metasomatism this discrepancy is often attributed to the “catch-all”, yet often vague process of cryptic metasomatism. This study presents comprehensive Sr-Nd isotope ratios for variably metasomatized bulk-rock peridotites, host basalts, constituent peridotite mineral phases and interstitial glass from 13 spinel lherzolite and harzburgite xenoliths from the Kilbourne Hole volcanic maar, New Mexico, USA. Similar measurements were also made on hand-picked interstitial glass from one of the most highly metasomatized samples (KH03-16) in an attempt to unravel the effects of multiple metasomatic events. In all Kilbourne Hole peridotites analysed, hand-picked, optically clean clinopyroxenes preserve a more primitive Sr isotope signature than the corresponding bulk-rock; a pattern preserved in all but one sample for Nd isotope measurements. Reaction textures, avoided during hand-picking, around clinopyroxene grains are evident in the most metasomatized samples and accompanied by films of high-SiO2 interstitial glass. The margins of primary minerals appear partially resorbed and trails of glassy melt inclusions similar in appearance to those previously reported from the same locality [2], terminate in these films. Hand-picked glass from KH03-16 reveals the most enriched 87Sr/86Sr of any component recovered from these xenoliths (87Sr/86Sr = 0.708043 ± 0.00009; [Sr] = 81 ppm). Similarly, the 143Nd/144Nd of the glass is amongst the most enriched of the peridotite components (143Nd/144Nd = 0.512893 ± 0.000012; [Nd] = 10 ppm). However, the host basalt (87Sr/86Sr = 0.703953 ± 0.00012; 143Nd/144Nd = 0.512873 ± 0.000013), similar in composition to nearby contemporaneous Potrillo Volcanic Field basalts [3], contains nearly an order of magnitude more Sr and more

  15. A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence

    Science.gov (United States)

    Karner, J. M.; Sutton, S. R.; Papike, S. R.; Delaney, J. S.; Shearer, C. K.; Newville, M.; Eng, P.; Rivers, M.; Dyar, M. D.

    2004-01-01

    The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO2). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters.

  16. Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass

    OpenAIRE

    Preston, L. J.; Izawa, M. R. M.; Banerjee, N. R.

    2011-01-01

    Microorganisms have been found to etch volcanic glass within volcaniclastic deposits from the Ontong Java Plateau, creating micron-sized tunnels and pits. The fossil record of such bioalteration textures is interpreted to extend back ~3.5 billion years to include meta-volcanic glass from ophiolites and Precambrian greenstone belts. Bioalteration features within glass clasts from Leg 192 of the Ocean Drilling Program were investigated through optical microscopy and Fourier transform infrared (...

  17. Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores

    Science.gov (United States)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Huguenot, David; Fourdrin, Chloé; Verney-Carron, Aurélie; van Hullebusch, Eric D.; Guyot, François

    2016-09-01

    This study aims to evaluate the role of micro-organisms and their siderophores in the first steps of the alteration processes of basaltic glasses in aqueous media. In this regard, three different types of glasses - with or without iron, in the reduced Fe(II) or oxidized Fe(III) states - were prepared on the basis of a simplified basaltic glass composition. Control and Pseudomonas aeruginosa inoculated experiments were performed in a buffered (pH 6.5) nutrient depleted medium to stimulate the production of the pyoverdine siderophore. Results show that the presence of P. aeruginosa has an effect on the dissolution kinetics of all glasses as most of the calculated elemental release rates are increased compared to sterile conditions. Reciprocally, the composition of the glass in contact with P. aeruginosa has an impact on the bacterial growth and siderophore production. As an essential nutrient for this microbial strain, Fe notably appears to play a central role during biotic experiments. Its presence in the glass stimulates the bacterial growth and minimizes the synthesis of pyoverdine. Moreover the initial Fe2+/Fe3+ ratio in the glasses modulates this synthesis, as pyoverdine is not detected at all in the system in contact with Fe(III)-bearing glass. Finally, the dissolution rates appear to be correlated to siderophore concentrations as they increase with respect to sterile experiments in the order Fe(III)-bearing glass siderophores and Fe or Al for Fe(II)-bearing glass or Fe-free glass, respectively. The dissolution of an Fe-free glass is significantly improved in the presence of bacteria, as initial dissolution rates are increased by a factor of 3. This study attests to the essential role of siderophores in the P. aeruginosa-promoted dissolution processes of basaltic glasses as well as to the complex relationships between the nutritional potential of the glass and its dissolution rates.

  18. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46 - Evidence for magma mixing. [Deep Sea Drilling Project

    Science.gov (United States)

    Dungan, M. A.; Rhodes, J. M.

    1978-01-01

    Microprobe analyses of natural glasses in basalts recovered by Legs 45 and 46 of the Deep Sea Drilling Project are reported and interpreted in the context of other geochemical, petrographic and experimental data on the same rocks (Rhodes et al., 1978). Residual glass compositions in the moderately evolved aphyritic and abundantly phyric basalts within each site indicate that none of the units is related to any other or to a common parent by simple fractional crystallization. The compositional trends, extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions provide evidence that magma mixing had a major role in the genesis of the Leg 45 and 46 basalts. The magma parental to these basalts was most likely characterized by high Mg/(Mg + Fe/+2/), CaO/Al2O3, CaO/Na2O and low lithophile concentrations. A mixing model involving incremental enrichment of magmaphile elements by repeated episodes of mixing of relatively primitive and moderately evolved magmas, followed by a small amount of fractionation is consistent with the characteristics of the basalts studied.

  19. Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass.

    Science.gov (United States)

    Preston, L J; Izawa, M R M; Banerjee, N R

    2011-09-01

    Microorganisms have been found to etch volcanic glass within volcaniclastic deposits from the Ontong Java Plateau, creating micron-sized tunnels and pits. The fossil record of such bioalteration textures is interpreted to extend back ∼3.5 billion years to include meta-volcanic glass from ophiolites and Precambrian greenstone belts. Bioalteration features within glass clasts from Leg 192 of the Ocean Drilling Program were investigated through optical microscopy and Fourier transform infrared (FTIR) spectroscopy of petrographic thin sections. Extended depth of focus optical microscopic imaging was used to identify bioalteration tubules within the samples and later combined with FTIR spectroscopy to study the organic molecules present within tubule clusters. The tubule-rich areas are characterized by absorption bands indicative of aliphatic hydrocarbons, amides, esters, and carboxylic groups. FTIR analysis of the tubule-free areas in the cores of glass clasts indicated that they were free of organics. This study further constrains the nature of the carbon compounds preserved within the tubules and supports previous studies that suggest the tubules formed through microbial activity.

  20. SUBAQUEOUS DISPOSAL OF MILL TAILINGS

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

    1999-09-03

    A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be

  1. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  2. Sub-aqueous sulfur volcanos at Waiotapu, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, S.; Rickard, D. [University of Wales, Cardiff (United Kingdom). Dept. of Earth Sciences; Browne, P.; Simmons, S. [University of Auckland (New Zealand). Geothermal Institute and Geology Dept.; Jull, T. [University of Arizona, Tucson (United States). AMS Facility

    1999-12-01

    Exhumed, sub-aqueous sulfur mounds occur in the Waiotapu geothermal area, New Zealand. The extinct mounds are < 2 m high and composed of small (< 0.5 cm) hollow spheres, and occasional teardrop-shaped globules. They are located within a drained valley that until recently was connected to Lake Whangioterangi. They were formed a maximum of 820 {+-} 80 years BP as a result of the rapid sub-aqueous deposition of sulfur globules, formed when fumarolic gases discharged through molten sulfur pools. Similar globules are now being formed by the discharge of fumarolic gases through a sub-aqueous molten sulfur pool in Lake Whangioterangi. (author)

  3. Apollo 15 yellow-brown volcanic glass: Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, S.S.; Schmitt, R.A.; (Oregon State Univ., Corvallis (USA)); Delano, J.W. (State Univ. of New York, Albany (USA))

    1988-10-01

    Apollo 15 yellow-brown glass is one of twenty-five, high Mg, primary magmas emplaced on the lunar surface in pyroclastic eruptions. Forty spherules of this glass were individually analyzed by electron microprobe and INAA for major- and trace-elements. The abundances demonstrate that this primary magma was produced by partial melting of differentiated cumulates in the lunar mantle. Models are developed to explain the possible source-regions of several Apollo 15 and Apollo 12 low-Ti mare magmas as being products of hybridization involving three ancient differentiated components of a primordial lunar magma ocean: (a) early olivine {plus minus} orthopyroxene cumulates; (b) late-stage clinopyroxene + pigeonite + ilmenite + plagioclase cumulates; and (c) late-stage inter-cumulus liquid.

  4. Sulfur and Iron Speciation in Gas-rich Impact-melt Glasses from Basaltic Shergottites Determined by Microxanes

    Science.gov (United States)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2008-01-01

    Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Mossbauer studies on rocks at Meridian and Gusev, whereas MgSO4 is deduced from MgO - SO3 correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/ S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/ sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. To understand the implications of these observations for the formation of the Gas-rich Impact-melt (GRIM) glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques.

  5. Argon systematics of neutron irradiated submarine basalt glasses from the deep south rift zone of Loihi seamount and the {sup 40}Ar/{sup 36}Ar ratio of the Hawaiian plume source

    Energy Technology Data Exchange (ETDEWEB)

    Trieloff, M.; Falter, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jessberger, E.K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)]|[Muenster Univ. (Germany). Inst. fuer Planetologie

    1998-12-31

    Submarine basalt glasses from Loihi seamount dredged at the southern rift zone between 3 and 5 km depth were studied. These glasses contain neon with the highest {sup 20}Ne/{sup 22}Ne ratios measured so far in submarine volcanics and constrain a well defined correlation line in a Ne-3-isotope plot (Valbracht et al., 1997). Within this study that focussed on argon isotopes an increased resolution regarding temperature and crushing steps was used: High {sup 40}Ar/{sup 36}Ar ratios at intermediate temperatures and in several crushing steps were measured which are related to argon from vesicle populations containing the most pristine mantle signature. This argon is highly improbable to be related to olivine phenocrysts and a possible contamination by MORB type noble gases. Our best constraint on the argon isotopic composition of the Loihi glasses is {sup 40}Ar/{sup 36}Ar=6590{+-}840, providing a lower limit of >5750 for the Hawaiian lower mantle source, further attesting its partially degassed nature concerning primordial noble gases. The argon distribution in the investigated Loihi glasses shows characteristic features very similar to MORB glasses. The isotopic composition of vesicle argon released by crushing covers the complete range between the atmospheric and the mantle endmember. In low vesicularity glasses mantle argon shows a nearly perfect correlation with the glass dissolved, neutron induced argon isotopes in the course of stepheating, while in glasses of higher vesicularity mantle argon partitioned into the vesicles. This is independently confirmed by the comparison of the argon yield by crushing and heating. On the other hand, the stepheating release pattern of the atmospheric component does hardly correlate with glass dissolved argon, independent on vesicularity. A significant fraction of the atmospheric contaminant is related to vesicles and pyroxene microlites, and is moreover associated with microdefects or, alternatively, is inhomogeneously distributed

  6. Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions

    Science.gov (United States)

    van der Zwan, Froukje M.; Devey, Colin W.; Hansteen, Thor H.; Almeev, Renat R.; Augustin, Nico; Frische, Matthias; Haase, Karsten M.; Basaham, Ali; Snow, Jonathan E.

    2017-12-01

    Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; 3 cm year-1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year-1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50-430 ppm and ca. 40-700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene

  7. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose

    2017-07-01

    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  8. Comparison of estimated and experimental subaqueous seed transport.

    Science.gov (United States)

    Scott Markwith; David Leigh

    2011-01-01

    We compare the estimates from the relative bed stability (RBS) equation that indicates incipient bed movement, and the inertial settling (‘Impact’) law and Wu and Wang (2006) settling velocity equations that indicate suspended particle movement, to flume and settling velocity observations to confirm the utility of the equations for subaqueous hydrochory analyses, and...

  9. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  10. glasses

    Indian Academy of Sciences (India)

    several applications. Some of the possible applications are optical amplifiers in telecommunication,7 phosphorescence materials and electrochemical batteries.8 Rare earth metal ions when added to borate act as network modifiers and change the properties of glasses .... where R is the universal gas constant. 3.3 Electrical ...

  11. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    Science.gov (United States)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  12. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    Indian Academy of Sciences (India)

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the ... basalt flow is represented by higher temperatures which shows high modal values of opaques and glass whereas the medium to lower temperatures of middle ...

  13. Molybdenum Valence in Basaltic Silicate Melts

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-03-01

    XANES analyses of molybdenum were performed on basaltic glass run products experiments conducted at varying P, T, and fO2. The transition from Mo6+ to Mo4+ occurs around IW, only Mo4+ remains at IW-1 and below, conditions relevant to core formation.

  14. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus

    Science.gov (United States)

    Neakrase, Lynn D. V.; Klose, Martina; Titus, Timothy N.

    2017-06-01

    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  15. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus

    Science.gov (United States)

    Neakrase, Lynn D.V.; Klose, Martina; Titus, Timothy N.

    2017-01-01

    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  16. Observations of sediment transport on the Amazon subaqueous delta

    Science.gov (United States)

    Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.

    1996-01-01

    A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.

  17. On the origin of Luna 24 basalts and soils

    Science.gov (United States)

    Ryder, G.; Marvin, U. B.

    1978-01-01

    Analyses of fine-grained very low titanium (VLT) basalt from the Luna 24 drill core suggest that a single homogeneous magma is represented by the sample. In particular, the small variation in MgO contents of the fine-grained basalt, together with the tight clustering of the compositions of brown glasses (which may be pyroclastic equivalents of the VLT basalt), provides evidence for the single-magma hypothesis. The high-Mg component in the soil samples, though not obviously explainable in petrographic terms, may be derived from material similar to olivine vitrophyre and its degraded products, or from some other high-Mg VLT basalt.

  18. Ice-Confined Basaltic Lava Flows: Review and Discussion

    Science.gov (United States)

    Skilling, I.; Edwards, B. R.

    2012-12-01

    Basaltic lavas that are interpreted as having been emplaced in subglacial or ice-confined subaerial settings are known from several localities in Iceland, British Columbia and Antarctica. At least four different types of observations have been used to date to identify emplacement of basaltic lavas in an ice-rich environment: i) gross flow morphology, ii) surface structures, iii) evidence for ice-confined water during emplacement, and iv) lava fracture patterns. Five types of ice-confined lava are identified: sheets, lobes, mounds, linear ridges and sinuous ridges. While the appearance of lavas is controlled by the same factors as in the submarine environment, such as the geometry and configuration of vents and lava tubes, flow rheology and rates, and underlying topography, the presence of ice can lead to distinct features that are specific to the ice-confined setting. Other types have very similar or identical equivalents in submarine environment, albeit with some oversteepening/ice contact surfaces. Ice-confined lavas can form as (1) subaerial or subaqueous lavas emplaced against ice open to the air, (2) subaqueous lavas emplaced into pre-existing sub-ice drainage networks, and (3) subaqueous lavas emplaced into ponded water beneath ice. Their surface structures reflect the relationship between rates of lava flow emplacement at the site of ice-water-lava contact, ice melting and water drainage. Variations in local lava flow rates could be due to lava cooling, constriction, inflation, tube development, ice melting, ice collapse, lava collapse, changes in eruption rate etc. Episodes of higher lava flow rate would favour direct ice contact and plastic compression against the ice, generating oversteepened and/or overthickened chilled margins, cavities in the lava formed by melting of enveloped ice blocks (cryolith cavities) and structures such as flattened pillows and lava clasts embedded into the glassy margins. Melting back of the confining ice generates space to

  19. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  20. Sensitivity of Depth-Integrated Satellite Lidar to Subaqueous Scattering

    Directory of Open Access Journals (Sweden)

    Michael F. Jasinski

    2011-07-01

    Full Text Available A method is presented for estimating subaqueous integrated backscatter using near-nadir viewing satellite lidar. The algorithm takes into account specular reflection of laser light, laser scattering by wind-generated foam as well as sun glint and solar scattering from foam. The formulation is insensitive to the estimate of wind speed but sensitive to the estimate of transmittance used in the atmospheric correction. As a case study, CALIOP data over Tampa Bay were compared to MODIS 645 nm remote sensing reflectance, which previously has been shown to be nearly linearly related to turbidity. The results indicate good correlation on nearly all CALIOP cloud-free dates during the period 2006 through 2007, particularly those with relatively high atmospheric transmittance. The correlation decreases when data are composited over all dates but is still statistically significant, a possible indication of variability in the biogeochemical composition in the water. Overall, the favorable results show promise for the application of satellite lidar integrated backscatter in providing information about subsurface backscatter properties, which can be extracted using appropriate models.

  1. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    Science.gov (United States)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  2. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    Science.gov (United States)

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  3. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  4. Soil microbial activity in hydromorphic-subaqueous ecosystems: processes and functional biodiveristy

    Directory of Open Access Journals (Sweden)

    Ruxandra Papp

    2015-12-01

    Full Text Available The hydromorphic and subaqueous soils have largely been overlooked on their pedogenic concepts or in soil C accounting studies considering their phisico-chemical properties. Conversely, little attention has been paid to the microbial activity playing a key role in regulating the biogeochemical cycle of elements. The aim of the study was to evaluate biological properties such as enzyme activities and the functional diversity of soil microbial population as bio- indicators, sensitive to processes affected by the water shallow. Eight soil profiles were opened along two transects: 1 a-a’ North and 2 b-b' South, in a dune ecosystem of the Adriatic coast, Ravenna (Italy. The soil chemical and biochemical properties were determined. In particular, soil enzyme activities and soil induced respiration were measured using the microplates technique in order to assess the microbial functional diversity. The soil biochemical properties such as the potential enzyme activities and microbial induced respiration, as well as microbial functional diversity were sensitive indicators to study hydromorphic and subaqueous soils. A general reduction of hydrolytic enzyme activities was observed in subaqueous soil with respect to hydromorphic one. Moreover, the endopedon of subaqueous soils showed a lower microbial functional diversity than hydromorphic one. In this study the ratio of enzyme activities involved in C to S cycles (SEIC/Aryl as well as the C:S ratio showed a marked reduction in the subaqueous with respect to hydromorphic soils. In conclusion, in a coastal area the C and S biogeochemical cycles, in the hydromorphic and subaqueous soils, may depend on freshwater and saltwater interface equilibrium.

  5. Normal incidence measurement in a subaqueous sand dune field in the South China Sea.

    Science.gov (United States)

    Chiu, Linus Y S; Chang, Andrea Y Y

    2014-11-01

    Regions with subaqueous sand dunes have been discovered on the upper continental slope of the northern South China Sea. These large subaqueous sand dunes are expected to cause errors in the measurement of normal incidence reflection. This letter presents experiment results of two normal incidence survey tracks conducted in 2013, and the errors in reflection coefficient estimation and the resulting sediment properties induced by sand dune bedforms. The results demonstrate that the reflected energy is focused and scattered by different parts of sand dune bedforms and that they produce significant variation in the estimated reflection coefficients and the inverted geoacoustic properties.

  6. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    Science.gov (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  7. Hydrogen isotope systematics of submarine basalts

    Science.gov (United States)

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  8. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is

  9. Subaqueous terminus evolution at Tasman Glacier, New Zealand, as determined by remote-controlled survey

    Science.gov (United States)

    Purdie, Heather; Bealing, Paul; Tidey, Emily; Harrison, Justin

    2016-04-01

    The presence of subaqueous ice ramps at the terminus of calving glaciers result from a combination of subaerial and subaqueous processes. These ice ramps eventually buoyantly calve, an event that can be hazardous to companies operating boat tours on proglacial lakes. However our knowledge of ice ramp forming processes, and feedbacks associated with their evolution, is sparse. We are using a remote controlled jet boat to survey bathymetry at an active calving margin. This vessel, mounted with both depth and side-scan sonar, can map subaqueous portions of the terminus right up to the active calving face at no risk to the operators. Surveys at the Tasman Glacier terminus over three consecutive years have revealed that subaqueous ice ramps are ephemeral features. In 2015 multiple ice ramps extended out into the lake from the terminus by 100-200 m, with the ramp surface being as much as 60 m below the water line at its outer perimeter. The maximum depth of the Tasman Lake at this time was 240 m. Within one month of the survey taking place, the largest of these ice ramps had calved and disintegrated. The consistent location of ice ramps between surveys indicates that other factors, like subglacial hydrology, may influence ice ramp evolution.

  10. Transition Element Abundances in MORB Basalts

    Science.gov (United States)

    Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.

    2012-12-01

    The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine

  11. Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Jakobsen, Jakob Kløve; Veksler, Ilya; Tegner, Christian

    2005-01-01

    Silicate liquid immiscibility in basalt petrogenesis is a contentious issue. Immiscible iron and silica-rich liquids were reported in melt inclusions of lunar basalt and in groundmass glasses of terrestrial volcanics. In fully crystallized plutonic rocks, however, silicate liquid immiscibility has...

  12. Deposição Subaquática Diferencial de Pólen e Esporos

    Directory of Open Access Journals (Sweden)

    Cynthia Fernandes Pinto da Luz

    2013-01-01

    Full Text Available O presente trabalho pretende apresentar a importância de realizar uma rigorosa análise espacial de taxas diferenciais de deposição de pólen e esporos em ambientes subaquáticos para uma melhor correlação com a vegetação de origem. A análise espacial da deposição de palinomorfos em sedimentos superficiais de fundo de corpos aquáticos exibe padrões diferenciados de local para local e relaciona-se com a sedimentologia. Os resultados obtidos através da análise palinológica destes sedimentos são relacionados com as principais influências ambientais na sedimentação subaquática de pólen e esporos, ou seja, a batimetria, correntes e ventos dominantes.

  13. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  14. Anaglyph: Basalt Cliffs, Patagonia, Argentina

    Science.gov (United States)

    2000-01-01

    Basalt cliffs along the northwest edge of the Meseta de Somuncura plateau near Sierra Colorada, Argentina show an unusual and striking pattern of erosion. Stereoscopic observation helps to clarify the landform changing processes active here. Many of the cliffs appear to be rock staircases that have the same color as the plateau's basaltic cap rock. Are these the edges of lower layers in the basalt or are they a train of slivers that are breaking off from, then sliding downslope and away from, the cap rock. They appear to be the latter. Close inspection shows that each stair step is too laterally irregular to be a continuous sheet of bedrock like the cap rock. Also, the steps are not flat but instead are little ridges, as one might expect from broken, tilted, and sliding slices of the cap rock. Stream erosion has cut some gullies into the cliffs and vegetation (appears bright in this infrared image) shows that water springs from and flows down some channels, but land sliding is clearly a major agent of erosion here.This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.Elevation data used in this image was

  15. Sediment consolidation settlement of Chengbei Sea area in the northern Huanghe River subaqueous delta, China

    Science.gov (United States)

    Liu, Jie; Feng, Xiuli; Liu, Xiao

    2017-05-01

    One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.

  16. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    Science.gov (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  17. The Habitability of Basaltic Hydrovolcanic Tuffs: Implications for Mars

    Science.gov (United States)

    Nikitczuk, M. P. C.; Schmidt, M. E.; Flemming, R. L.

    2014-12-01

    Reed and South Reed Rock are two hydrovolcanic tuff ring deposits in the Fort Rock Volcanic Field (FRVF), Oregon, where microbial ichnofossils (endolithic microbores) exist within basaltic glass pyroclasts. Their presence indicates that continental volcanic settings can provide a habitable environment. The secondary phase assemblage of smectite clays (nontronite), zeolites (chabazite), calcite and palagonite point to a contemporaneous to post depositional hydrothermal alteration temperature range (~25-120°C), below which microbes introduced through groundwater were able to inhabit. Electron Dispersive Spectroscopy reveals geochemical differences between fresh glass and microbore interiors (eg., Fe, Mg depletion and K and Ca enrichment). These differences are interpreted to reflect acquisition by microbes of nutrients and energy by oxidizing and dissolving fresh basaltic glass. The Black Hills, a second study area located 20 km south the Reed Rocks, consists of a series of at least 6 hydrovolcanic vents. Petrographic observations from the Black Hills also reveal microbial ichnofossil features within basaltic glass pyroclasts. Conditions necessary for a habitable environment may therefore be common throughout the FRVF. In both locations, eruptive, depositional, and hydrothermal processes led to an environment conducive to microbial activity in which glass-rich deposits possess a source of biogenic elements, energy, and water. The histories of these deposits however, may be quite different in terms of peak hydrothermal temperatures, age relationships, water content and timing. Comparison of the textural, mineralogical and geochemical properties of the Reed Rocks and Black Hills deposits is ongoing in order to gain a better understanding of the conditions of habitability in these types of deposits. These results have important astrobiological implications for Mars where basaltic pyroclastic materials are widely distributed and may represent a habitable environment.

  18. A seismic study of the Mekong subaqueous delta: Proximal versus distal sediment accumulation

    Science.gov (United States)

    Liu, J. Paul; DeMaster, David J.; Nittrouer, Charles A.; Eidam, Emily F.; Nguyen, Thanh T.

    2017-09-01

    The Mekong River Delta is one of the largest in Asia. To understand its sediment distribution, thickness, mass budget, stratigraphic sequences and sediment-transport process, extensive geophysical and geochemical surveys were conducted on the inner portions of the adjacent continental shelf. Analyses of > 80 high-resolution Chirp-sonar profiles show the Mekong River has formed a classic sigmoidal cross-shelf clinoform in the proximal areas, up to 15 m thick, with topset, foreset and bottomset facies, but constrained to water depths of sediment has extended > 250 > 300 km southwestward to the tip of the Ca Mau Peninsula, forming a distal mud depocenter up to 22 m thick, and extending into the Gulf of Thailand. A large erosional trough or channel (up to 8 m deeper than the surrounding seafloor and parallel to the shore) was found on the top of the clinoform, east of the Ca Mau Peninsula. Based on the thicknesses and distribution revealed by Chirp sonar profiles, the total estimated volume of the Mekong River subaqueous clinoform on the shelf is 120 km3, which is equivalent to 120-140 × 109 t of sediment using an average sediment dry-bulk density of 1.0-1.2 g/cm3. Assuming the subaqueous deltaic deposit has formed within 1000 yr, the calculated millennial-timescale average sediment discharge to the shelf could be 120-140 × 106 t per year. Spatially, the proximal subaqueous delta has accumulated 45 × 109 t ( 33%) of sediment; the distal part around the Ca Mau Peninsula has received 55 × 109 t ( 42%) of sediment; and the remaining 35 × 109 t ( 25%) has accumulated within the central transition area, although the coastline and shoreface in this area are presently eroding. The spatially averaged 1000-yr-scale accumulate rate is up to 2 cm/yr. Compared to other tide-dominated fluvial dispersal systems, the Mekong River system has a relatively young (≤1000 yr) subaqueous delta, a shallow rollover at 4-6 m water depth, gentle foreset gradients (0.03-0.57°), and a

  19. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  20. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  1. Chlorine in Lunar Basalts

    Science.gov (United States)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  2. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  3. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    Science.gov (United States)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  4. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    OpenAIRE

    Talebi Mazraehshahi H.; Zamani H.

    2010-01-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced ...

  5. Reference waste form, basalts, and ground water systems for waste interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables.

  6. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle

    Science.gov (United States)

    Shellnutt, J. Gregory; Bhat, Ghulam M.; Wang, Kuo-Lung; Brookfield, Michael E.; Jahn, Bor-Ming; Dostal, Jaroslav

    2014-09-01

    The Early Permian Panjal Traps of northern India represent a significant eruption of volcanic rocks which occurred during the opening of the Neotethys Ocean. Basaltic, basaltic-andesites, dacitic and rhyolitic rocks collected from Guryal Ravine and Pahalgam show evidence for subaerial and subaqueous eruptions indicating that they are contemporaneous with the formation of a shallow marine basin. The major and trace element geochemistry of the basalts is consistent with a within-plate setting and there are basalts which have high-Ti (TiO2 > 2.0 wt.%) and low-Ti (TiO2 igneous provinces (e.g. Karoo, Deccan, Parana, Emeishan). The Sr-Nd isotopic values (εNd(T) = - 5.3 to + 1.3; ISr = 0.70432 to 0.71168) of both types of basalts overlap indicating that the rocks may have originated from the same ancient subcontinental lithospheric (i.e. EMII-like) mantle source (TDM = ~ 2000 Ma). The two groups of basalts can be modeled by using a primitive mantle source and different degrees of partial melting where the high-Ti rocks are produced by ~ 1% partial melting of a spinel peridotite source whereas the low-Ti rocks are produced by ~ 8% partial melting. Trace elemental and isotope modeling indicates that some of the basalts assimilated ≤ 10% crustal material. In contrast, the basaltic-andesites are likely formed by mixing between basaltic magmas and crustal melts which produced rocks with higher SiO2 (~ 55 wt.%) content and enriched isotopic signatures (εNd(T) = - 6.1; ISr = 0.70992). The Panjal Trap volcanism was likely due to partial melting of the SCLM within a passive extensional setting related to the rifting of Cimmeria from Gondwana. Contemporaneous volcanic and plutonic granitic rocks throughout the Himalaya are probably not petrogenetically related but are likely part of the same regional tectonic regime.

  7. Variety and sustainability of volcanic lakes: Response to subaqueous thermal activity predicted by a numerical model

    Science.gov (United States)

    Terada, Akihiko; Hashimoto, Takeshi

    2017-08-01

    We use a numerical model to investigate the factors that control the presence or absence of a hot crater lake at an active volcano. We find that given a suitable pair of parameters (e.g., the enthalpy of subaqueous fumaroles and the ratio of mass flux of the fluid input at the lake bottom to lake surface area), hot crater lakes can be sustained on relatively long timescales. Neither a high rate of precipitation nor an impermeable layer beneath the lake bottom are always necessary for long-term sustainability. The two controlling parameters affect various hydrological properties of crater lakes, including temperature, chemical concentrations, and temporal variations in water levels. In the case of low-temperature crater lakes, increases in flux and enthalpy, which are a common precursor to phreatic or phreatomagmatic eruptions, result in an increase in both temperature and water level. In contrast, a decrease in water level accompanied by a rise in temperature occurs at high-temperature lakes. Furthermore, our model suggests that crater geometry is a key control on water temperature. For lakes with a conical topography, a perturbation in the water level due to trivial nonvolcanic activity, such as low levels of precipitation, can cause persistent increases in water temperature and chemical concentrations, and a decrease in the water level, even though subaqueous fumarolic activity does not change. Such changes in hot crater lakes which are not caused by changes in volcanic activity resemble the volcanic unrest that precedes eruptions.

  8. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  9. Hydrothermal Alteration on Basaltic Mauna Kea Volcano as a Template for Identification of Hydrothermal Alteration on Basaltic Mars

    Science.gov (United States)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Mertzman, S. A.; Bell, J. F., III

    2003-01-01

    Certain samples of palagonitic tephra from Mauna Kea Volcano (Hawaii) are spectral analogues for bright martian surface materials at visible and near-IR wavelengths because both are characterized by a ferric absorption edge extending from about 400 to 750 nm and relatively constant reflectivity extending from about 750 nm to beyond 2000 nm. Palagonite is a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass. For Mars-analogue palagonite, the pigment is nanometersized ferric oxide particles (np-Ox) dispersed throughout an allophane-like hydrated basaltic glass matrix. Crystalline phyllosilicates are not generally detected, and the hydration state of the is not known. The poorly crystalline nature of glass alteration products implies relatively low temperature formation pathways. We report here x-ray diffraction, major element, Mossbauer, and VNIR data for 9 basaltic tephras. Thermal emission spectra are reported in a separate abstract. Our multidisciplinary approach both tightly constrains mineralogical interpretations and maximizes overlap with datasets available for the martian surface available now and in the future.

  10. Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010

    Directory of Open Access Journals (Sweden)

    Yun-ping YANG

    2014-07-01

    Full Text Available In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the ?10 m and ?20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the subaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam’s regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.

  11. Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010

    Directory of Open Access Journals (Sweden)

    Yun-ping Yang

    2014-07-01

    Full Text Available In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the −10 m and −20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the subaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.

  12. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  13. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    Science.gov (United States)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification

  14. Temporal redox variation in basaltic tephra from Surtsey volcano (Iceland)

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves

    2017-10-01

    The oxidation state of magma controls and/or tracks myriad petrologic phenomena, and new insights into oxidation are now made possible by high-resolution measurements of Fe3+/∑Fe in volcanic glasses. We present new μ-XANES measurements of Fe3+/∑Fe in a time series of basaltic tephra from the 1963-1967 eruption of Surtsey (Iceland), to examine if the magma mixing between alkalic and tholeiitic basalts that is apparent in the major and trace elements of these glasses is also represented in their oxidation states. Raw Fe3+/∑Fe data show a temporal trend from oxidized to reduced glasses, and this is accompanied by decreasing indices of mantle enrichment (e.g., La/Yb, Zr/Y). When expressed as composition- and temperature-corrected fO2, the trend has a similar magnitude ( 0.3 log units) to the variation in fO2 due to ridge-plume interaction along the Reykjanes Ridge. These data indicate that the oxidation state of mixed magmas can be retained through fractionation and degassing processes, and that matrix glass Fe3+/∑Fe in tephras can be used to make inferences about the relative oxidation states of parental magmas during nuanced magma mixing.

  15. Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River

    Science.gov (United States)

    Thanh, Vo Quoc; Reyns, Johan; Wackerman, Chris; Eidam, Emily F.; Roelvink, Dano

    2017-09-01

    Fluvial sediment is the major source for the formation and development of the Mekong Delta. This paper aims to analyse the dynamics of suspended sediment and to investigate the roles of different processes in order to explore flux pattern changes. We applied modelling on two scales, comprising a large-scale model (the whole delta) to consider the upstream characteristics, particularly the Tonle Sap Lake's flood regulation, and a smaller-scale model (tidal rivers and shelf) to understand the sediment processes on the subaqueous delta. A comprehensive comparison to in-situ measurements and remote sensing data demonstrated that the model is capable of qualitatively simulating sediment dynamics on the subaqueous delta. It estimates that the Mekong River supplied an amount of 41.5 mil tons from April 2014 to April 2015. A substantial amount of sediment delivered by the Mekong River is deposited in front of the river mouths in the high flow season and resuspended in the low flow season. A sensitivity analysis shows that waves, baroclinic effects and bed composition strongly influence suspended sediment distribution and transport on the shelf. Waves in particular play an essential role in sediment resuspension. The development of this model is an important step towards an operational model for scientific and engineering applications, since the model is capable of predicting tidal propagation and discharge distribution through the main branches, and in predicting the seasonal SSC and erosion/deposition patterns on the shelf, while it is forced by readily available inputs: discharge at Kratie (Cambodia), GFS winds, ERA40 reanalysis waves, and TPXO 8v1 HR tidal forcing.

  16. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  17. Biologically mediated dissolution of volcanic glass in seawater

    NARCIS (Netherlands)

    Staudigel, H; Yayanos, A; Chastain, R; Davies, G.T.; Verdurmen, E.A Th; Schiffmann, P; Bourcier, R; de Baar, H.J.W.

    1998-01-01

    We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice

  18. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration

    Science.gov (United States)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.

    2004-01-01

    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  19. Paleoarchean trace fossils in altered volcanic glass.

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  20. Paleoarchean trace fossils in altered volcanic glass

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-01-01

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543

  1. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    and olivine phenocrysts, in addition to numerous filled and unfilled vesicles. These basalts are of the moderately plagioclase phyric basalts (MPPB) variety and are comparable to those of the Mid-Atlantic Ridge...

  2. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts.

    Science.gov (United States)

    Sakai, H; Des Marais, D J; Ueda, A; Moore, J G

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges, -6.2 +/- 0.2% relative to PDB and +0.2 +/- 0.6% relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (delta 13 C = around -24%) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). the delta 34S values average +0.3 +/- 0.5% with average fractionation factor between sulfate and sulfide of +7.4 +/- 1.6%. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt.

  3. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  4. Alteration textures in terrestrial volcanic glass and the associated bacterial community.

    Science.gov (United States)

    Cockell, C S; Olsson-Francis, K; Herrera, A; Meunier, A

    2009-01-01

    Alteration textures were examined in subglacial (hyaloclastite) deposits at Valafell, Southern Iceland. Pitted and 'elongate' alteration features are observed in the glass similar to granular and tubular features reported previously in deep-ocean basaltic glasses, but elongate features generally did not have a length to width ratio greater than five. Elongate features were found in only 7% of surfaces. Crystalline basalt clasts, which are incorporated into the hyaloclastite, did not display elongate structures. Pitted alteration features were poorly defined in crystalline basalt, comprising only 4% of the surface compared to 47% in the case of basaltic glass. Examination of silica-rich glass (obsidian) and rhyolite similarly showed poorly defined pitted textures that comprised less than 15% of the surface and no elongate features were observed. These data highlight the differences in alteration textures between terrestrial basaltic glass and previously studied deep-ocean and subsurface basaltic glass, and the important role of mineralogy in controlling the type and abundance of alteration features. The hyaloclastite contains a diverse and abundant bacterial population, as determined by 16S rDNA analysis, which could be involved in weathering the glass. Despite the presence of phototrophs, we show that they were not involved in the production of most alteration textures in the basaltic glass materials we examined.

  5. Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Krmíček, Lukáš; Teschner, C.; Řanda, Zdeněk; Skála, Roman; Jonášová, Šárka; Fediuk, F.; Adamovič, Jiří; Pokorný, R.

    2017-01-01

    Roč. 111, č. 5 (2017), s. 761-775 ISSN 0930-0708 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : basaltic glass * chemical composition * major genetic types * mineral composition * rift-related volcanites * Sr-Nd isotopes Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.236, year: 2016

  6. Comparing thixotropic and Herschel–Bulkley parameterizations for continuum models of avalanches and subaqueous debris flows

    Directory of Open Access Journals (Sweden)

    C.-H. Jeon

    2018-01-01

    Full Text Available Avalanches and subaqueous debris flows are two cases of a wide range of natural hazards that have been previously modeled with non-Newtonian fluid mechanics approximating the interplay of forces associated with gravity flows of granular and solid–liquid mixtures. The complex behaviors of such flows at unsteady flow initiation (i.e., destruction of structural jamming and flow stalling (restructuralization imply that the representative viscosity–stress relationships should include hysteresis: there is no reason to expect the timescale of microstructure destruction is the same as the timescale of restructuralization. The non-Newtonian Herschel–Bulkley relationship that has been previously used in such models implies complete reversibility of the stress–strain relationship and thus cannot correctly represent unsteady phases. In contrast, a thixotropic non-Newtonian model allows representation of initial structural jamming and aging effects that provide hysteresis in the stress–strain relationship. In this study, a thixotropic model and a Herschel–Bulkley model are compared to each other and to prior laboratory experiments that are representative of an avalanche and a subaqueous debris flow. A numerical solver using a multi-material level-set method is applied to track multiple interfaces simultaneously in the simulations. The numerical results are validated with analytical solutions and available experimental data using parameters selected based on the experimental setup and without post hoc calibration. The thixotropic (time-dependent fluid model shows reasonable agreement with all the experimental data. For most of the experimental conditions, the Herschel–Bulkley (time-independent model results were similar to the thixotropic model, a critical exception being conditions with a high yield stress where the Herschel–Bulkley model did not initiate flow. These results indicate that the thixotropic relationship is promising for

  7. The pristine shape of Olympus Mons on Mars and the subaqueous origin of its aureole deposits

    Science.gov (United States)

    De Blasio, Fabio Vittorio

    2018-03-01

    The tallest volcano in the solar system, Olympus Mons on Mars, is bordered by at least ten enormous sub-circular hummocky deposits forming a welded halo, termed the aureole. The aureole units (or simply aureoles), which are the deposits of landslides from Olympus Mons, have dramatically transformed the pristine size and shape of the volcanic edifice. Topographic data are used to determine the amount of collapsed material, and so reconstruct the original outline of Olympus Mons before the landslides took place, under the assumption that the edifice did not start failing until it had reached this maximum size. Due to post-aureole deposition on the eastern and southern flanks and to the uncertainty of the slippage level on the northern side, the reconstruction is sufficiently precise along the western and north-western Olympus Mons flank, it is more uncertain for the northern flank, while it is not feasible around the rest of the volcano. It appears that the radius along the western and north-western Olympus Mons before the collapse of the aureole landslides was approximately 200 km longer or more. The results show that the volume of the aureoles, even if enormous, is insufficient to fill the ideal conical edifice which would be obtained prolonging the Olympus Mons flanks with present slope angles. Thus, an overhang remains in the pre-aureole reconstructed Olympus Mons, which would also explain the onset of instability that led to the aureole collapse. Further, a drape deposit blanketing the southern Acheron Fossae ridge just at the front of the western (W) aureole landslide deposit and a fan-channel system carved on the same W aureole are investigated, and it is suggested that these morphologies have been emplaced in subaqueous setting. While the drape may indicate a landslide-thrust water splash akin to a tsunami deposit caused by the fast travelling W aureole landslide, the fan-channel system is similar to certain morphologies in the terrestrial oceans. A numerical

  8. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  9. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    Volcanism on Terrestrial Planets. Basaltic Volcanism Study Project, Pergamon Press, New York, 1286p. BAXTER, A. N. (1990) Major and trace element variation in basalts from Leg US. In: R.A. Duncan et al. (Eds.), Proceedings of the Ocean Drilling Program...-rich melt inclusions within spinel in oceanic tholeiites: Indicators of magma mixing and parental magma composition. Earth Planet Sci. Lett, v. 37, pp.81-89. DUNGAN, M. A. and RHODES, J. M. (1978) Residual glasses and melt inclusions in basalts from DSDP...

  10. Flood basalts and extinction events

    Science.gov (United States)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  11. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  12. Water-rich basalts at mid-ocean-ridge cold spots.

    Science.gov (United States)

    Ligi, Marco; Bonatti, Enrico; Cipriani, Anna; Ottolini, Luisa

    2005-03-03

    Although water is only present in trace amounts in the suboceanic upper mantle, it is thought to play a significant role in affecting mantle viscosity, melting and the generation of crust at mid-ocean ridges. The concentration of water in oceanic basalts has been observed to stay below 0.2 wt%, except for water-rich basalts sampled near hotspots and generated by 'wet' mantle plumes. Here, however, we report unusually high water content in basaltic glasses from a cold region of the mid-ocean-ridge system in the equatorial Atlantic Ocean. These basalts are sodium-rich, having been generated by low degrees of melting of the mantle, and contain unusually high ratios of light versus heavy rare-earth elements, implying the presence of garnet in the melting region. We infer that water-rich basalts from such regions of thermal minima derive from low degrees of 'wet' melting greater than 60 km deep in the mantle, with minor dilution by melts produced by shallower 'dry' melting--a view supported by numerical modelling. We therefore conclude that oceanic basalts are water-rich not only near hotspots, but also at 'cold spots'.

  13. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nerilli, Francesca [Unicusano - Università degli Studi Niccolò Cusano Telematica Roma, 00166 Rome (Italy); Vairo, Giuseppe [Università degli Studi di Roma “Tor Vergata”- (DICII), 00133 Rome (Italy)

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  14. H2S Injection and Sequestration into Basalt - The SulFix Project

    Science.gov (United States)

    Gudbrandsson, S.; Moola, P.; Stefansson, A.

    2014-12-01

    Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting

  15. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    Science.gov (United States)

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  16. Permeability Evolution in Variably Glassy Basaltic Andesites Measured Under Magmatic Conditions

    Science.gov (United States)

    Kushnir, A. R. L.; Martel, C.; Champallier, R.; Wadsworth, F. B.

    2017-10-01

    Heat from inflowing magma may act to seal permeable networks that assist passive outgassing at volcanic conduit margins and in overlying domes, reducing the efficiency of overpressure dissipation. Here we present a study of the evolution of permeability—measured under magmatic conditions—with increasing temperature in glassy and glass-poor basaltic andesites from Merapi volcano (Indonesia). Whereas the permeability of glass-poor rocks decreases little up to a temperature of 1,010°C, glassy specimens experience a pronounced decrease in permeability above the glass transition once the viscosity of the crystal suspension is low enough to relax under external stresses. Changes in temperature alone are thus not enough to significantly modify the permeability of the glass-poor rocks that commonly form Merapi's dome. However, the presence of glass-rich domains in a dome may lead to local sealing of the volcanic plumbing between eruptions, exacerbating localized overpressure development that could contribute to explosivity.

  17. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  18. Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii

    Science.gov (United States)

    Peck, D.L.; Wright, T.L.; Moore, J.G.

    1966-01-01

    The eruption of Kilauea Volcano August 21-23, 1963, left 600,000 cubic meters of basaltic lava in a lava lake as much as 15 meters deep in Alae pit crater. Field studies of the lake began August 27 and include repeated core drilling, measurements of temperature in the crust and melt, and precise level surveys of the lake surface. The last interstitial melt in the lake solidified late in September 1964; by mid August 1965 the maximum temperature was 690??C at a depth of 11.5 meters. Pumice air-quenched from about 1140??C contains only 5 percent crystals - clinopyroxene, cuhedral olivine (Fo 80), and a trace of plagioclase, (An 70). Drill cores taken from the zone of crystallization in the lake show that olivine continued crystallizing to about 1070??C; below that it reacts with the melt, becoming corroded and mantled by pyroxene and plagioclase. Below 1070??C, pyroxene and plagioclase crystallized at a constant ratio. Ilmenite first appeared at about 1070??C and was joined by magnetite at about 1050??C; both increased rapidly in abundance to 1000??C. Apatite first appeared as minute needles in interstitial glass at 1000??C. Both the abundance and index of refraction of glass quenched from melt decreased nearly linearly with falling temperature. At 1070??C the quenched lava contains about 65 percent dark-brown glass with an index of 1.61; at 980??C it contains about 8 percent colorless glass with an index of 1.49. Below 980??C, the percentage of glass remained constant. Progressive crystallization forced exsolution of gases from the melt fraction; these formed vesicles and angular pores, causing expansion of the crystallizing lava and lifting the surface of the central part of the lake an average of 19.5 cm. The solidified basalt underwent pneumatolitic alteration, including deposition of cristobalite at 800??C, reddish alteration of olivine at 700??C, tarnishing of ilmenite at 550??C, deposition of anhydrite at 250??C, and deposition of native sulfur at 100??C

  19. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    Science.gov (United States)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  20. Use of Subaqueous Slope Failures to Study the Paleoseismicity of Eastern North America

    Science.gov (United States)

    Baxter, C. D.; Soltau, B.; King, J. W.; Lewis, C.; Coakley, J. P.

    2004-05-01

    The identification, dating, and back analysis of subaqueous slope failures can provide useful information about the history and reoccurrence intervals of large, intraplate earthquakes. Such a failure was discovered in the Rochester Basin of Lake Ontario using HUNTEC seismic reflection data and an analysis of piston cores. Historic variations in the earth's magnetic field were measured in the cores within the failures' debris flow and in adjacent unfailed areas, and these variations were compared to a paleomagnetic reference curve developed for the region from three lakes in New York and Pennsylvania. The age of the failure was estimated to be 7,900 yrbp based on the paleomagnetic dating techniques. Using infinite slope stability analyses, measured values of the undrained shear strength, and slope geometry from a GIS elevation model and the HUNTEC records, the minimum ground acceleration needed to fail the slope ranged from 0.01 to 0.03 g. Based on published attenuation relationships for intraplate earthquakes, an earthquake of Magnitude 5 or greater located 150-200 km from the site could have generated such a ground acceleration, and caused the failure. The Niagara-Attica, 1000 Islands, and western Lake Ontario seismic zones are all within this distance. There is currently no known earthquake of this magnitude in the seismic record that occurred 7,900 years ago. This analysis does not prove conclusively that a seismic trigger is responsible for the failure, but rather identifies a starting point for further research. Other possible failure mechanisms that need to be investigated include rapid changes in lake levels that affect the gas phase in the sediments and bedrock "pop-ups" caused by large horizontal stresses beneath Lake Ontario. However, the results of this study do show the promise of this approach for studying paleoseismic events and earthquake hazards in Eastern North America. The next step in this research is to search for similar features in other lakes

  1. A subaqueous welded tuff from the Ordovician of County Waterford, Ireland

    Science.gov (United States)

    Fritz, William J.; Stillman, Chris J.

    1996-01-01

    The Metal Man Tuff (MMT) from the Ordovician of County Waterford, Ireland was emplaced and welded in water depths greater than the thickness of the pyroclastic flow. The MMT is the basal member of the Middle Tramore Volcanic Formation (MTVF) of the 5-km-thick Tramore Group. The MMT consists of a 10-m-thick basal graded zone that represents a pyroclastic flow consisting of angular clasts of black mudstone, pumice, gray flow banded rhyolite, and pink massive rhyolite set in a matrix of non-deformed ash shards and pumice. Maximum grain size grades from large cobbles and small boulders to pebbles. The basal 10-30 cm is depleted with respect to the largest boulders resulting in an inversely graded basal layer. The basal graded zone passes upward into a transition zone with a strong eutaxitic foliation defined by elongated fiamme of mudstone and flattened pumice. Overlying this is an upper welded zone with a pronounced eutaxitic foliation, columnar jointing, flattened ash shards and shards deformed around phenocrysts and spheroids. The presence of these features indicate that the deposit is welded, was hot, and was in motion as the shards deformed. The MMT represents a pyroclastic flow that was a hot primary product of an eruption rather than re-mobilized cold pyroclastic debris. The MMT is bounded by suspension deposited fine-grained tuff, tuffaceous mudstone and terrigenous mudstone deposited below storm wave base. Many of the mudstone horizons contain brachipod faunas from shelf-depth water. Nowhere in the 5-km-thick Tramore Group is there terrigenous sandstone, evidence of unidirectional flowing water, nor any indication of shoreline, alluvial environments, or subaerial exposure. It thus seems reasonable to conclude that the MMT was emplaced and welded subaqueously. The geochemistry of the MMT is typical of other high-silica (70-78 wt.% SiO 2) rhyolite from the Ordovician of Ireland. The chemistry of the MMT is consistent from top to bottom allowing it to be

  2. Basalt: structural insight as a construction material

    Indian Academy of Sciences (India)

    ... needed research. An insight on inconsistency reported in the literature with respect to the behaviour of basalt-fibre-reinforced composites is also expressed in this paper. The overall idea is to gain information and identify and prioritize research areas of the possible applications of basalt towards sustainable construction.

  3. The Effect of Shock on the Amorphous Component in Altered Basalt

    Science.gov (United States)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary

  4. SILICATE GLASSES

    African Journals Online (AJOL)

    AH -- ICp(glass).dt (1) with Cp(glass) being calculated as a linear combination of the C,-functions of the different oxides composing the glass. For validity of this relation, ideal behaviour of the glass components is assumed and the partial heat capacities of the oxides are considered independent of composition in the studied ...

  5. Ferroic glasses

    Science.gov (United States)

    Ji, Yuanchao; Wang, Dong; Wang, Yu; Zhou, Yumei; Xue, Dezhen; Otsuka, Kazuhiro; Wang, Yunzhi; Ren, Xiaobing

    2017-10-01

    Ferroic glasses (strain glass, relaxor and cluster spin glass) refer to frozen disordered states in ferroic systems; they are conjugate states to the long-range ordered ferroic states—the ferroic crystals. Ferroic glasses exhibit unusual properties that are absent in ferroic crystals, such as slim hysteresis and gradual property changes over a wide temperature range. In addition to ferroic glasses and ferroic crystals, a third ferroic state, a glass-ferroic (i.e., a composite of ferroic glass and ferroic crystal), can be produced by the crystallization transition of ferroic glasses. It can have a superior property not possessed by its two components. These three classes of ferroic materials (ferroic crystal, ferroic glass and glass-ferroic) correspond to three transitions (ferroic phase transition, ferroic glass transition and crystallization transition of ferroic glass, respectively), as demonstrated in a generic temperature vs. defect-concentration phase diagram. Moreover, through constructing a phase field model, the microstructure evolution of three transitions and the phase diagram can be reproduced, which reveals the important role of point defects in the formation of ferroic glass and glass-ferroic. The phase diagram can be used to design various ferroic glasses and glass-ferroics that may exhibit unusual properties.

  6. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  7. Low temperature basalt alteration by sea water: an experimental study at 70°C and 150°C

    Science.gov (United States)

    Seyfried, W.E.; Bischoff, J.L.

    1979-01-01

    Basaltic glass and diabase were reacted with seawater at 70°C at 1 bar and 150°C at 500 bars to determine fluid composition and alteration mineralogy. All experiments were performed at a water/ rock mass ratio of 10.

  8. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon

    Science.gov (United States)

    Keith, Terry E.C.; Staplese, Lloyd W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chahazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-sfilbite, stilbite-heulandite-chabazite, stilbite-apophyllie-chabazite, and natrolite-mesolite-laumontite.Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60 ~ 70°C submarine hydrothermal event, or by reactions of cold (~ 10°C meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in dosed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

  9. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    Science.gov (United States)

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  10. Contributions of vitreous natural analogs to the investigation of long-term nuclear glass behavior; Apports des analogues naturels vitreux a la validation des codes de prediction du comportement a long terme des verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Techer, I

    1999-07-01

    This study assesses the extend of the analogy between the alteration behavior in water and in a moist clay environment of aluminosilicate volcanic glass and alumino-borosilicate nuclear containment glass. Basaltic glass alteration in water initially occurs by hydrolysis processes with an activation energy on the order of 73 kJ.mol{sup -1}. As the reaction progresses, the alteration rate drops by over four orders of magnitude from the initial rate r{sub 0}, The alteration kinetics are not governed by the alteration solution chemistry alone, the glass alteration film appears to have a major role as a diffusion barrier limiting the transfer of reaction species and products. All these aspects highlight the behavioral analogy between basaltic glass and nuclear borosilicate glass in aqueous media. Conversely, the alteration reaction of obsidian-type volcanic glass involves other mechanisms than those governing the dissolution of borosilicate glass. Basaltic glass alteration is also examined in the presence of a clay environmental material, in a study of the natural basaltic glass and argillaceous pelites system of the Salagou basin in southern France, in an approach combining mineralogical, chemical and isotopic data to assess the interactions between a basaltic glass and the argillaceous pelites. Laboratory leach test results with basaltic glass and measured data for the Salagou glass in its natural environment are modeled using a code implementing a kinetic law coupling diffusive transfer of dissolved silica with a reaction affinity law. (author)

  11. Coupled penetrometer, MBES and ADCP assessments of tidal variations of the surface sediment layer along active subaqueous dunes, Danish Wadden Sea

    DEFF Research Database (Denmark)

    Stark, Nina; Hanff, Henrik; Svenson, Christian

    2011-01-01

    In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the DanishWadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting ...

  12. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    OpenAIRE

    Van Pham, Thi H; Aagaard, Per; Hellevang, Helge

    2012-01-01

    Abstract Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonat...

  13. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  14. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 4. Giant Plagioclase Basalts, eruption rate versus time: Response to Sheth's comments and some additional thoughts. Gautam Sen. Volume 111 Issue 4 December 2002 pp 487-488 ...

  15. Making Glass

    OpenAIRE

    Parker, K.; Moore, S.

    2012-01-01

    Journal article comproses: critical reflection, 'Making Glass', HD film with monologue, followed by 'Glass', HD film, stop-motion microscopic and macro photographs In this practice-led exploration of modalities of écriture féminine, I map the shifting subjectivities generated by Glass, a stop-motion animation that performs femininity through close examination and play with glass fragments found among the briny debris of an urban beach. University of Winchester

  16. Basaltic Asteroids in the Solar System

    Science.gov (United States)

    Duffard, René

    2009-09-01

    Basaltic asteroids are small bodies connected to the processes of heating and melting that may have led to the mineralogical differentiation in the interiors of the largest asteroids. Therefore, a precise knowledge of the inventory of basaltic asteroids may help to estimate how many differentiated bodies actually formed in the asteroid Main Belt and this in turn may provide important constraints to the primordial conditions of the solar nebula. The identification of basaltic asteroids in the asteroid Main Belt and the description of their surface mineralogy are necessary to understand the diversity in the collection of basaltic meteorites. In this work the current work of our team is presented: (i) The mineralogical characterization of the Vesta family members; (ii) The search of new basaltic asteroids in the Main Belt. In the first case, the objective is to characterize the material excavated from the craterization event/s in the crust of Vesta. This work is related to the possible findings of DAWN mission when it arrives to Vesta in 2011. In the second case, the objective is to find the link between the diversity of basaltic material in the meteorite collection and the asteroids.

  17. Amorphous material from the rapid evaporation of basalt weathering solutions: Implications for Amazonian alteration

    Science.gov (United States)

    Smith, R.; Horgan, B. H. N.; Christensen, P. R.

    2016-12-01

    Amorphous silicates of ambiguous origin are detected on the Martian surface through orbiter and rover measurements. Secondary amorphous silicates might precipitate from rapidly evaporating weathering solutions under Amazonian ( 3 BYA - present) surface conditions. Yet, such phases are poorly understood and are underrepresented in infrared spectral libraries. Amazonian weathering was simulated by dissolving two basaltic tephra compositions in DI water under two different atmospheres (1: oxidizing and 2: simulated Martian). The resulting weathering solutions were rapidly evaporated into sample cups. Precipitate mineralogy was studied using visible and near-infrared (VNIR) and thermal-infrared (TIR) spectroscopy and x-ray diffraction (XRD). Solution compositions were analyzed using Ion Chromatography (IC) and Inductively Coupled Plasma Mass-Spectroscopy (ICP-MS). All experiments formed hydrated amorphous silicates and nanophase iron-oxides, but precipitates from solutions formed under a simulated Martian atmosphere also contain crystalline carbonate and sulfate minerals. The oxidizing atmosphere precipitates are also S-bearing, based on solution chemistry, but no crystalline sulfates were unambiguously detected. The TIR spectra of all samples exhibit a spectral feature at 460 cm-1 that was previously only known to be present in the spectra of basaltic glass and some terrestrial palagonitized basalt samples, indicating that the precipitates are new to spectral libraries. Ongoing characterization will help determine the composition and structure of the amorphous phases. TIR spectral and XRD instruments on the Spirit and Mars Science Laboratory (MSL) rovers both indicate high abundances of basaltic glass in rock and soil samples, despite chemical evidence for aqueous alteration. Our results suggest that these measurements are consistent with secondary amorphous silicates formed through the rapid evaporation of basalt weathering solutions. Thus, transient water

  18. The eruption characteristics of the Tarim flood basalt

    OpenAIRE

    Shangguan, ShiMai; Tian, Wei; Xu, YiGang; Guan, Ping; Pan, Lu

    2012-01-01

    Integration of field investigation, regional stratigraphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age; Kupukuziman flood basalt (KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt (KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. Thes...

  19. Rates of mineral dissolution and carbonation in peridotite and basalt

    Science.gov (United States)

    Kelemen, P. B.; Matter, J. M.

    2009-12-01

    We study natural rates and processes of mineral carbonation in peridotite (olivine-rich rock) in mantle rocks exposed to weathering in northern Oman to learn effective mechanisms from natural processes, and seek ways to accelerate them to achieve significant CO2 capture and storage via mineral carbonation at the lowest possible cost. In our first paper (1), we fit data on mantle olivine carbonation from the DOE Albany Research Center (2,3, ARC). These data, and data from Arizona State University (4, ASU) suggest that a peridotite rock volume heated to 185°C and infused with H2O+CO2 at PCO2 > 75 bars could consume ~ 1 ton CO2 per cubic meter of rock per year. Because it is more abundant than peridotite, other workers focus on carbonation of the most common type of lava on Earth, basalt, whose main mineral constituent is generally labradorite, part of the plagioclase feldspar solid solution series. Our intuition is that labradorite carbonation is much slower than mantle olivine carbonation. To quantify this, we compiled data on dissolution of mantle olivine, labradorite, crystalline basalt, and basaltic glass in aqueous fluids, as well as data on mantle olivine carbonation. The dissolution data are calibrated as a function of surface area (i.e., grain size and shape) and pH, as well as temperature, whereas most of the ARC and ASU experiments were done at a single pH and grain size. Thus, for comparison, we calculated dissolution rates for 70 micron spheres at pH 8, close to the ARC and ASU experimental conditions. At these conditions, olivine carbonation observed by ARC and ASU is 100 to 1000 times faster than labradorite and crystalline basalt, and faster than conventionally measured olivine dissolution rates. The ARC and ASU experiments were different from conventional dissolution experiments in several ways that could lead to an enhancement in olivine reaction rates: (a) they may have lower a(Mg) in fluid due to solid MgCO3 (magnesite) precipitation, (b) they

  20. Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Abdel-Aal M. Abdel-Karim

    2013-01-01

    Full Text Available Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5% of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5% and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.

  1. Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts

    Science.gov (United States)

    Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.

    2010-01-01

    Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future

  2. Studies of Magmatic Inclusions in the Basaltic Martian Meteorites Shergotty, Zagami, EETA 79001 and QUE 94201

    Science.gov (United States)

    Harvey, Ralph P.; McKay, Gordon A.

    1997-01-01

    Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt

  3. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  4. Recycle Glass in Foam Glass Production

    OpenAIRE

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2014-01-01

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses in foam glass industry and the supply sources and capacity of recycle glass.

  5. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne.......The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  6. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    various method of estimation of ascent rate of mantle fragments in kimberlite and alkali basalt; one based on fluid dynamics of transportation of entrapped fragments by giving the maximum size and viscosity of magma as a minimum estimate (Spera, 1980) and the other by coupling depth of fragment residence before the entrapment in a magma and time scale of heating by the magma. The depth of entrapment, however, is the least known parameter for spinel lherzolite. Because of nearly adiabatic ascent of magmas loaded with solid fragments, all the fragments underwent the same heating and decompression history with difference in entrapment depth and thus heating duration, from which the depth of their residence just before the extraction may be estimated if ascent rate is known. Therefore, extent of chemical and textural modification induced by heating and decompression may provide independent test for pressure estimation. We have used several reactions for this purpose: (1) Mg-Fe exchange reaction between spinel and olivine (Ozawa, 1983; 1984), (2) Ca zoning in olivine (Takahashi, 1980), (3) partial dissolution of clinopyroxene, (4) partial dissolution of spinel, and (5) formation of melt frozen as glass, which is related to (3) and (4). The depth of melt generation is constrained to be deeper than 70km by modeling the trace element compositions of the host magmas using the methods of McKenzie and O'Nions (1991) and data from El Azzouzi et al. (2010). The host magmas can be produced by melting the convecting upper mantle without requirement of any input from the continental lithosphere. This is consistent with the positive gravity anomalies in the NW Africa showing shallow upwelling in this region allowing decompressional melting owing to the thinner lithosphere in the Middle Atlas.

  7. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  8. Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis

    Science.gov (United States)

    Perfit, M. R.; Fornari, D. J.; Ridley, W. I.; Kirk, P. D.; Casey, J.; Kastens, K. A.; Reynolds, J. R.; Edwards, M.; Desonie, D.; Shuster, R.; Paradis, S.

    1996-06-01

    Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo 91.5-Fo 89.5) and complexly zoned CrAl spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo 90.5-Fo 89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al 2O 3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

  9. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    KAUST Repository

    Avşar, Özgür

    2017-08-07

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2–3m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth\\'s crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  10. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  11. The biological consequences of flood basalt volcanism

    Science.gov (United States)

    Clapham, M.

    2012-12-01

    Flood basalt eruptions are among the largest environmental perturbations of the Phanerozoic. The rapid release of CO2 from a large igneous province would have triggered a chain of events that can include climate warming, ocean acidification, reduced seawater carbonate saturation, and expanded oceanic anoxia. Those stressors have widely negative impacts on marine organisms, especially on calcified taxa, by affecting their respiratory physiology and reducing energy available for growth and reproduction. Many Phanerozoic extinctions, most notably the end-Permian and end-Triassic mass extinctions, coincided with flood basalt eruptions and shared distinctive patterns of taxonomic and ecological selectivity. In these extinctions, highly active organisms were more likely to survive because they possess physiological adaptations for maintaining internal pH during activity, which also proves useful when buffering pH against ocean acidification. In contrast, species that did not move and had low metabolic rates, such as brachiopods and sponges, suffered considerable losses during these extinctions. Heavily-calcified organisms, especially corals, were particularly vulnerable; as a result, ocean acidification and saturation state changes from flood basalt eruptions often triggered crises in reef ecosystems. This characteristic pattern of selectivity during "physiological" extinctions that closely coincided with flood basalts provides a template for assessing the causes of other extinction events. Because these crises also provide deep time analogues for the ongoing anthropogenic crisis of warming, ocean acidification, and expanded anoxia, the selectivity patterns can also help constrain "winners" and "losers" over upcoming decades.

  12. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  13. Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends

    Science.gov (United States)

    Ulrych, Jaromír; Krmíček, Lukáš; Teschner, Claudia; Řanda, Zdeněk; Skála, Roman; Jonášová, Šárka; Fediuk, Ferry; Adamovič, Jiří; Pokorný, Richard

    2017-10-01

    Tachylytes from rift-related volcanic rocks were recognized as: (i) irregular veinlets in host alkaline lava flows of the Kozákov volcano, Czech Republic, (ii) (sub)angular xenoliths in alkaline lava of the feeding channel of the Bukovec volcano, Czech Republic, and (iii) paleosurface of a tholeiitic lava flow from Hafrafell, Iceland. The tachylyte from Kozákov is phonotephrite to tephriphonolite in composition while that from Bukovec corresponds to trachyandesite to tephriphonolite. Both glass and host rock from Hafrafell are of tholeiitic basalt composition. The tachylyte from Kozákov, compared with the host rock, revealed a substantial enrichment in major elements such as Si, Al and alkalis along with Rb, Sr, Ba, Nb, Zr, REE, Th and U. The tachylyte from Bukovec displays contrasting trends in the incompatible element contents. The similarity in composition of the Hafrafell tachylyte paleosurface layer and parental tholeiitic basalt is characteristic for lavas. The host/parent rocks and tachylytes have similar initial Sr-Nd characteristics testifying for their co-magmatic sources. The initial ɛNd values of host/parent rocks and tachylytes from the Bohemian Massif (+3.4 to +3.9) and those from Iceland (+6.3) are interpreted as primary magma values. Only the tachylyte from Bukovec shows a different ɛNd value of -2.1, corresponding to a xenolith of primarily sedimentary/metamorphic origin. The tachylyte from Kozákov is a product of an additional late magmatic portion of fluids penetrating through an irregular fissure system of basaltic lava. The Bukovec tachylyte is represented by xenoliths originated during the interaction of ascending basaltic melt with granitoids or orthogneisses, whereas the Hafrafell tachylyte is a product of a rapid cooling on the surface of a basalt flow.

  14. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.

    2018-01-01

    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  15. Comment on 'Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications' by M. Chaussidon and A. Jambon

    Science.gov (United States)

    You, Chen-Feng

    1994-12-01

    Chaussidon and Jambon presented results of their ion microprobe study of boron concentrations and isotopic compositions in oceanic basaltic glasses. Although this study has extended the information on the geochemistry of B and delta B-11 in mid-ocean ridge basalts (E-MORB and N-MORB), back-arc basin basalts (BABB) and ocean island basalts (OIB), their calculation of the maximum amount of B recycled in subduction zones warrants special caution. They concluded that less than 2% of the B in subducted oceanic crust was added to the mantle source in order to explain the low delta B-11 values in the oceanic basalts (-7.4 - 0.6 per mil). Two comments regarding the calculation of Chaussidon and Jambon will be presented in this paper. First, sediments constitute one of the most important B reservoirs in subduction zones and should be considered in any budget calculation. Second, there is an important fractionation effect of both B and delta B-11 in the slab during subduction and this effect should be assessed.

  16. Microbial Diversity in the Columbia River Basalt Group and the Context for Life in Subsurface Basalts

    Science.gov (United States)

    Lavalleur, H. J.; Smith, A.; Fisk, M. R.; Colwell, F. S.

    2012-12-01

    Large igneous provinces constitute a sizable volume of porous and fractured materials in the Earth's crust and many of these environments exist within the boundaries of survival for subsurface life. The results of microbiological studies of basalts and other igneous materials in subsurface settings hint at the types of microbes that dwell in these environments. We investigated the microbes in aquifers in the Columbia River Basalt Group (CRBG) and also considered the microbial communities in subsurface basalts more broadly to determine if there are recurrent themes in the types of microbes and the nature of diversity present in these geological systems. Bacteria and Archaea collected from five intervals in the CRBG were examined using high-throughput DNA sequencing directed at the 16S rRNA genes. The highest bacterial biomass and the highest bacterial diversity were observed in the deepest samples (>1018 meters below land surface) whereas the highest archaeal diversity was detected in the shallowest samples (Crenarchaeota. Based on 16S rRNA sequence similarities to known microbes, both basaltic regions have taxa with representative physiologies likely to include hydrogen oxidation, iron and sulfur metabolism, acetogenesis, and hydrocarbon metabolism. Research on the microbiology of basalt rich provinces on the planet has informed our understanding of biogeochemical cycling where igneous rocks dominate. The knowledge gained in these investigations also promotes our ability to verify the remediation of contaminants and the sequestration of carbon in basalts.

  17. Devitrification Dating: A Pilot Study with Basalts from the Eastern Snake River Plain, Idaho.

    Science.gov (United States)

    Sears, D. W. G.; Hughes, S. S.

    2015-12-01

    The devitrification of glass in geological systems is of interest for many reasons. One means of quantitatively tracking the process is to measure the thermoluminescence (TL) sensitivity of the samples, i.e. the light produced by a sample as it is heated in the laboratory after exposure to a standard radiation dose, the natural TL signal having been previously removed. As crystallization occurs, the TL signal increases as luminescent crystals form in the glass. Kinetic studies of the devitrification of glass in basalts suggest that it the process takes many millions of years suggesting that TL sensitivity might be able to date lavas over this time-range. We collected five samples of basalt flows at the Craters of the Moon, Idaho, and surrounding areas as part of the FINESSE team, a member of SSERVI. Radiocarbon and Ar-Ar ages are 6500, 6600, 57,000, 116,000, and 120,000 years. After grinding to ~200 mm grains, 4 mg aliquots were placed in a TL rig and heated to 500oC to remove their natural TL signal. They were then irradiated with a 150 mCi 90Sr beta source for 3 minutes and the TL induced was measured. The TL counts obtained for these samples, in order of increasing age, are 150±25, 88.3±10, 153±53, 616±160, 533±76, the uncertainty being based on triplicate measurements. These data yield a relationship between TL sensitivity and age of Age = 232 x TL sensitivity - 1.638 x 104 with an R2 = 0.97. Many factors that influence the rate of devitrification need to be addressed before a quantitative method of dating, independent of isotopic methods, can be claimed. The composition of the glass, the amount of water in the basalt, and storage temperature, are all important factors. However, this small pilot study is encouraging and will be extended by further measurements of basalts from Idaho and Hawai'i before deciding whether it is worth investigating the complicating factors.

  18. Basalts of the Khodzhirbulak Suite and Assessment their Feasibility for Basalt Fiber (Surkhantau Mountains, Southwestern Shoots of the Hissar Ridge

    Directory of Open Access Journals (Sweden)

    N. M. Khakberdyev

    2017-06-01

    Full Text Available The results of preliminary assessment of basalt of the Khodzhirbulakskoy Suite of Surkhantau Mountains for the basalt fiber production are presented. According to petrographic study, the rocks are described as basalts of amygdaloidal structure. On the base of content of the amount of glassy form and nodular calcite, three groups of basalts were identified. The inverse relationship between the bulk content of the volcanic rock and the content of calcite: the greater volume of volcanic rocks, the less content of calcite, and vice versa. The basalt material demonstrates average pH module of 3.52.

  19. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  20. Biogenic Mn-Oxides in Subseafloor Basalts.

    Science.gov (United States)

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments.

  1. Possible solar noble-gas component in Hawaiian basalts

    Science.gov (United States)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  2. Entre o uso social e o abuso comercial: as percepções do patrimônio cultural subaquático no Brasil

    Directory of Open Access Journals (Sweden)

    Gilson Rambelli

    2008-01-01

    Full Text Available O objetivo deste artigo é apresentar algumas reflexões sobre patrimônio cultural subaquático e sobre a Arqueologia Subaquática, buscando analisar o quanto as distorções conceituais presentes nessa temática submersa, resultantes de um histórico milenar aventureiro, contribuíram e ainda contribuem para a destruição de diferentes sítios arqueológicos submersos. O artigo pretende também, aproximar as pessoas desse universo molhado do patrimônio cultural e da pertinência da pesquisa arqueológica subaquática sistemática, chamando atenção, em especial ao problema brasileiro, porque o Brasil ainda permite a exploração comercial, e, conseqüentemente, a destruição desse patrimônio cultural, por meio de uma legislação pouco séria, inspirada nas fantasias milenares de tesouros e fortunas submersas.The aim of this paper is to present some reflections about cultural and archaeological underwater heritage, to arrive at an analysis as to what degree distortions of concepts exist in this "submersed" theme, result from a millenary history of adventures, and how they have contributed and continue to contribute to the destruction of different archaeological submersed sites. The article also aims at contributing to a wider understanding of underwater heritage, and the necessity of systematic, underwater, archaeological research. It draws attention especially to the Brazilian problem, because Brazil still permits the commercial exploitation, and consequently, the destruction of this cultural heritage. This has been made possible through inadequate legislation inspired on the millenary fantasies of underwater treasure and fortune.

  3. Constructing the volcanic architecture of Kalkarindji, an ancient flood basalt province, using a multidisciplinary approach

    Science.gov (United States)

    Marshall, P.; Widdowson, M.; Kelley, S. P.; Mac Niocaill, C.; Murphy, D. T.

    2014-12-01

    The Kalkarindji Continental Flood Basalt Province (CFBP) is the oldest igneous province in the Phanerozoic. Erupted in the mid-Cambrian (505-510 Ma) [1], it is estimated volumes of lava up to 1.5 x 105 km3could have been erupted, making this similar in size to the better known Columbia River Basalts, USA. Relatively little is known about the province, due in part to its remote location, though large swathes remain well preserved (c. 50,000 km2). This study, based on rigorous field investigations, utilises 4 different analytical techniques to construct a volcanic architecture for the Kalkarindji basalts, drawing together these complimentary datasets to generate a series of detailed stratigraphies from around the province. Mineralogy and petrography form the basis while geochemical data aides in defining lava flow stratigraphies and distinguishing individual flow packages in disparate locations around the province. 40Ar/39Ar dating of key stratigraphic marker horizons support stratigraphical correlation across the province whilst the use of palaeomagnetism and magnetostratigraphy has allowed for correlation on a broader scale. Indications from this study point towards an unusual eruption among CFBPs in the Phanerozoic; a lack of tumescence, immediate subsidence of the lava pile following cessation of eruption; and, in the main sub-province, we map a simple volcanic structure thinning to the east from a single source. 1. L. M. Glass, D. Phillips, (2006). Geology. 34, 461-464.

  4. Aplicação de técnicas de vídeo subaquático na caracterização de biocenoses marinhas

    OpenAIRE

    Carvalho, Joana Fernandez de

    2008-01-01

    Dissertação mest., Biologia Marinha - Ecologia e Conservação Marinha, Universidade do Algarve, 2008 Desenvolveu-se um trenó de vídeo subaquático para a caracterização das biocenoses marinhas da costa algarvia. Esta técnica foi usada pela primeira vez na região, pretendendo-se assim avaliar a sua aplicabilidade como técnica de amostragem. Filmaram-se um total de 19612m2, entre Junho e Novembro de 2005, no intervalo de profundidade dos 0 aos 30m. Dos vídeos, retirou-se tanto i...

  5. Volatiles in High-K Lunar Basalts

    Science.gov (United States)

    Barnes, Jessica J.; McCubbin, Francis M.; Messenger, Scott R.; Nguyen, Ann; Boyce, Jeremy

    2017-01-01

    Chlorine is an unusual isotopic system, being essentially unfractionated ((delta)Cl-37 approximately 0 per mille ) between bulk terrestrial samples and chondritic meteorites and yet showing large variations in lunar (approximately -4 to +81 per mille), martian, and vestan (HED) samples. Among lunar samples, the volatile-bearing mineral apatite (Ca5(PO4)3[F,Cl,OH]) has been studied for volatiles in K-, REE-, and P (KREEP), very high potassium (VHK), low-Ti and high-Ti basalts, as well as samples from the lunar highlands. These studies revealed a positive correlation between in-situ (delta)Cl-37 measurements and bulk incompatible trace elements (ITEs) and ratios. Such trends were interpreted to originate from Cl isotopic fractionation during the degassing of metal chlorides during or shortly after the differentiation of the Moon via a magma ocean. In this study, we investigate the volatile inventories of a group of samples for which new-era volatile data have yet to be reported - the high-K (greater than 2000 ppm bulk K2O), high-Ti, trace element-rich mare basalts. We used isotope imaging on the Cameca NanoSIMS 50L at JSC to obtain the Cl isotopic composition [((Cl-37/(35)Clsample/C-37l/(35)Clstandard)-1)×1000, to get a value in per thousand (per mille)] which ranges from approximately -2.7 +/- 2 per mille to +16.1 +/- 2 per mille (2sigma), as well as volatile abundances (F & Cl) of apatite in samples 10017, 10024 & 10049. Simply following prior models, as lunar rocks with high bulk-rock abundances of ITEs we might expect the high-K, high-Ti basalts to contain apatite characterized by heavily fractionated (delta)Cl-37 values, i.e., Cl obtained from mixing between unfractionated mantle Cl (approximately 0 per mille) and the urKREEP reservoir (possibly fractionated to greater than +25 per mille.). However, the data obtained for the studied samples do not conform to either the early degassing or mixing models. Existing petrogentic models for the origin of the high

  6. CO2 Geological Storage in Olivine Rich Basaltic Aquifers: New Insights From Flow-Through Experiments

    Science.gov (United States)

    Peuble, S.; Godard, M.; Luquot, L.; Gouze, P.

    2011-12-01

    Injection of CO2-rich fluids into basaltic aquifers is one of the methods envisaged for mitigation of increasing atmospheric CO2. Basalts are rich in Mg, Fe and Ca and have a high potential to trap CO2 as carbonate minerals. However, the role of reaction-transport processes has yet to be investigated in order to predict the capacity and sustainability for CO2 storage of these highly reactive systems. We present the results of three flow-through experiments performed at 180°C and total pressure 12 MPa. NaHCO3 rich water (0.5 mol/L) mixed with CO2 (PCO2 = 10 MPa) was injected through sintered analogues of olivine-accumulation zones in basaltic flows (~ 95% olivine Fo87, MORB glass, minor chromite). The injection rate was 1 mL/h for exp. 1 and 2, and 0.1 mL/h for exp. 3. The initial porosity and permeability of samples ranges from 3 to 7% and 250.10-18 to 2500.10-18 m2 respectively. All experiments show a strong permeability decrease (down to 10-18 m2) after 90 hours for exp. 1 and 2, earlier for exp 3. Yet dissolution occurs: high concentrations of Zr and Al and of Co in the outlet fluids indicate dissolution of basaltic glass and olivine respectively. Si concentration changes reveal a more complex system with olivine dissolution and the precipitation of Si rich phases: we observed the growth of relatively large (up to 5 microns) Mg-Fe rich phyllosilicates mostly perpendicular to olivine surface. This reaction is typically associated to hydration of (ultra-)mafic rocks and may explain the decrease in permeability during experiments. Finally, the low Ca and Mg fluid concentrations suggest trapping by Ca-Mg rich phases. Ankerite and dolomite were identified by Raman spectrometry in the reacted samples after exp. 1 and 2, while exp. 3 was characterized by precipitation of well-developed and abundant magnesite (Mg0.88 Fe0.11 Ca0.01 CO3) replacing dissolved olivine. Carbonation appears to be an efficient process: ~ 0.015g of CO2 per gram of sample is stored as carbonates

  7. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  8. Pore water chemistry reveals gradients in mineral transformation across a model basaltic hillslope

    Science.gov (United States)

    Pohlmann, Michael; Dontsova, Katerina; Root, Robert; Ruiz, Joaquin; Troch, Peter; Chorover, Jon

    2016-06-01

    The extent of weathering incongruency during soil formation from rock controls local carbon and nutrient cycling in ecosystems, as well as the evolution of hydrologic flow paths. Prior studies of basalt weathering, including those that have quantified the dynamics of well-mixed, bench-scale laboratory reactors or characterized the structure and integrated response of field systems, indicate a strong influence of system scale on weathering rate and trajectory. For example, integrated catchment response tends to produce lower weathering rates than do well mixed reactors, but the mechanisms underlying these disparities remain unclear. Here we present pore water geochemistry and physical sensor data gathered during two controlled rainfall-runoff events on a large-scale convergent model hillslope mantled with 1 m uniform depth of granular basaltic porous media. The dense sampler and sensor array (1488 samplers and sensors embedded in 330 m3 of basalt) showed that rainfall-induced dissolution of basaltic glass produced supersaturation of pore waters with respect to multiple secondary solids including allophane, gibbsite, ferrihydrite, birnessite and calcite. The spatial distribution of saturation state was heterogeneous, suggesting an accumulation of solutes leading to precipitation of secondary solids along hydrologic flow paths. Rapid dissolution of primary silicates was widespread throughout the entire hillslope, irrespective of up-gradient flowpath length. However, coherent spatial variations in solution chemistry and saturation indices were observed in depth profiles and between distinct topographic regions of the hillslope. Colloids (110-2000 nm) enriched in iron (Fe), aluminum (Al), and phosphorus (P) were mobile in soil pore waters.

  9. Volatile Release and Eruption Dynamics of a Basaltic Plinian Eruption From Masaya Caldera, Nicaragua

    Science.gov (United States)

    Wehrmann, H.; Freundt, A.; Kutterolf, S.; Schmincke, H.; Strauch, W.

    2003-12-01

    Our project is part of SFB 574 "Volatiles and Fluids in subduction zones", and focusses on degassing dynamics of highly-explosive arc volcanoes. Masaya Caldera in west-central Nicaragua is part of the Central American volcanic arc at the convergent boundary of the Cocos and Carribean plates. A basaltic plinian eruption of VEI 6 occurred at Masaya Caldera in the Late-Pleistocene, depositing a widespread fan of scoria lapilli, named Fontana Tephra. We have constrained parameters of the Fontana eruption by extensive isopach and isopleth mapping. Total erupted tephra volume is >0.83 km3 (about 1012 kg DRE). The eruption columns reached 30 to 35 km height at an average discharge rate of 1.3*108 kg/s. This violent eruption was not continuous but proceeded in distinct pulses evident by the well-bedded deposit. An initial sequence of numerous highly explosive but short pulses formed a well-bedded layer of very highly vesicular, hawaiian-type lapilli, possibly representing a gas-enriched top zone of the magma reservoir. The following series of longer-duration plinian events, interupted by weak phases of ash emission, formed beds of highly vesicular scoria lapilli. The eruption ceased with abundant short-lived pulses of lower-energy subplinian activity. We estimate volatile emissions during the eruption from the differences in volatile concentration between matrix glass and glass inclusions in minerals, considered to represent degassed and undegassed melt, respectively. Concentrations of fluorine of about 7000 ppm are about equal in matrix glass and glass inclusions, indicating little degassing of fluorine during eruption. Chlorine contents amount to 1200 ppm in the inclusions, and to about 1000 ppm in matrix glass. The concentration difference, multiplied by erupted magma mass, suggests a total chlorine emission of 16 Mt. Apparently only little chlorine exsolved in the initial eruption phase, but degassing strongly increased during the plinian phase. Sulphur concentrations

  10. Glass, gold, and gold-glasses

    National Research Council Canada - National Science Library

    Whitehouse, David

    1996-01-01

      Gold-glasses, objects with gold foil ornament sandwiched between two fused layers of glass, were the first category of Roman glass to attract the attention of collectors and antiquarians in the 17th century...

  11. Incompatible Trace Elements in Olivine: Using Sc, Y and V as Temperature and Redox Monitors in Basaltic Magmas

    Science.gov (United States)

    Mallmann, G.; O'Neill, H. S.

    2012-12-01

    Olivine is the dominant constituent phase of the Earth's upper mantle and the first silicate mineral to crystallize from primitive basaltic melts on cooling following decompression. The physical and chemical properties of olivine have, therefore, been of great interest to geochemists and geophysicists. Yet, olivine is so poor in incompatible trace elements (phosphorus being the exception) that it features in much geochemical modeling merely as an inert dilutant. Consequently, our understanding of incompatible trace-element partitioning between olivine and silicate melt has lagged behind that of phases such as pyroxenes or garnet, which control bulk crystal/melt partitioning behavior during mantle melting. Advances in trace-element microanalysis, particularly LA-ICP-MS, have now placed the determination of incompatible elements in natural olivines within reach, and recent studies have shown that mantle and magmatic olivines can preserve complex intracrystalline distributions of these elements. The combined major and trace element compositions of phenocrystal olivines could, therefore, provide unique and detailed insights into magmatic evolution. The course of evolution of basaltic magmas depends substantially on their redox state, hence oxygen fugacity, but there is increasing evidence that this intensive thermodynamic variable may be less well understood in basalts than commonly supposed. The redox state of terrestrial basalts has to a large extent been inferred from the Fe3+/Fe2+ ratios of their quenched glasses. However, this quantity appears to be significantly affected during late and post-eruptive processes in magmatic systems (e.g. by degassing, charge-transfer reactions of redox-variable species, and alteration), so that the degree to which the Fe3+/Fe2+ ratios preserved in basaltic glasses reflect the oxidation state of the magma at high temperature is unclear. The equilibrium partitioning relations preserved in olivine phenocrysts in basalts are, in

  12. Metallic glasses

    NARCIS (Netherlands)

    Schaafsma, Arjen Sybren

    1981-01-01

    It is shown in section 7.1. that the influence of topological disorder on the range of magnetic interactions in ferromagnetic transition metal-metalloid (TM-M) glasses, is much less than often assumed. This is demonstrated via a study of the temperature dependence of the average iron hyperfine field

  13. Colloidal glasses

    Indian Academy of Sciences (India)

    ... state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the concentration of the jamming entity above random loose packing threshold leading to a disordered state. Common examples: toothpaste, hair gel, shaving foam, concentrated suspensions, emulsions, etc.

  14. Pinhole Glasses

    Science.gov (United States)

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  15. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    Science.gov (United States)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (magnetite (Mt) with minor glass and rare xenocrystic quartz. Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples. Observed mineralogy and major element chemistry suggest fractionation in a shallow magma chamber

  16. 182W in Modern Ocean Island Basalts

    Science.gov (United States)

    Mundl, A.; Touboul, M.; Walker, R. J.; Jackson, M. G.; Kurz, M. D.; Day, J. M.; Horan, M. F.; Helz, R. L.

    2016-12-01

    The short lived Hf-W isotopic system (182Hf → 182W, t½ = 8.9 Ma) can be used as an important tracer for very early geochemical processes in the Earth's mantle, as well as for possible detection of core-mantle interactions. To date, most high precision 182W/184W data have been obtained for ancient rocks, with most of these characterized by having positive 182W anomalies. Here we report data for modern ocean island basalts (OIB). Although most OIB examined to date show no 182W anomalies, some basalts from Hawaii and Samoa are characterized by well-resolved negative anomalies with µ182W values ranging to -16 (µ182W is the ppm deviation in 182W/184W of a sample relative to a terrestrial reference standard). Further, for both OIB systems the W isotopic data are negatively correlated with 3He/4He, whereby the samples with the lowest µ182W values are characterized by the highest 3He/4He. Thus, both OIB systems sample one or more primordial reservoirs. A primordial mantle domain characterized by negative 182W anomalies could have been created as a result of silicate crystal-liquid fractionation, such as by a magma ocean process, within the first 50 Ma of Solar System history. Tungsten is similarly incompatible to U and Th (from which 4He is generated), so it is difficult to envision a single-stage, early Earth process that would lead to the low Hf/W and high He/(U+Th) implied by the observed correlation. A second option is that the mantle sources of the 182W-depleted, 3He/4He-enriched basalts contain a core component. This is difficult to reconcile with the normal abundances of highly siderophile elements in the rocks. Positive 182W anomalies have been reported for high-3He/4He samples from the 60 Ma Baffin Bay picrites, so isotopically anomalous W is accessed by modern OIB and flood basalt systems from at least two high 3He/4He domains.

  17. Characterization of basaltic material in the outer Solar System

    Science.gov (United States)

    Ieva, S.; Dotto, E.; Lazzaro, D.; Fulvio, D.; Perna, D.; Mazzotta Epifani, E.; Fulchignoni, M.

    2017-09-01

    The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily linked to Vesta and could be fragments of another differentiated asteroid. A recent statistical analysis performed by our group pointed out that, while basaltic objects in the inner main belt can be compatible with a Vesta origin, this seems not the case for basaltic asteroids beyond 2.5 a.u. We present a spectroscopic survey for 25 basaltic candidates in the middle and outer main belt obtained between 2015 and 2016 at TNG and ESO-NTT.

  18. Geochemistry of Apollo 15 basalt 15555 and soil 15531.

    Science.gov (United States)

    Schnetzler, C. C.; Philpotts, J. A.; Nava, D. F.; Schuhmann, S.; Thomas, H. H.

    1972-01-01

    Data are presented on major and trace element concentrations determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area, as well as on trace element concentrations determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Most of the chemical differences between basalt 15555 and soil 15531 could be accounted for if the soil were a mixture of 88% basalt, 6% KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus), and 6% plagioclase.

  19. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976

    Science.gov (United States)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  20. Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Maxime [Laboratoire Pierre Sue, CNRS-CEA, CE-Saclay, 91191 Gif sur Yvette (France); Departement des Sciences de la Terre, Interactions et Dynamique des Environnements de Surface, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Di Muro, Andrea [Laboratoire de Geologie des Systemes Volcaniques, IPGP, UMR 7154, 4 Place Jussieu, 75005 Paris (France); Metrich, Nicole; Belhadj, Olfa [Laboratoire Pierre Sue, CNRS-CEA, CE-Saclay, 91191 Gif sur Yvette (France); Giordano, Daniele [Institut de Ciencies de la Terra Jaume Almera CSIC, c/Luis Sole Sabaris s/n, 08028 Barcelona (Spain); Mandeville, Charles W. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (US)

    2010-07-01

    Micro-Raman spectroscopy, even though a very promising technique, is not still routinely applied to analyse H{sub 2}O in silicate glasses. The accuracy of Raman water determinations critically depends on the capability to predict and take into account both the matrix effects (bulk glass composition) and the analytical conditions on band intensities. On the other hand, micro-Fourier transform infrared spectroscopy is commonly used to measure the hydrous absorbing species (e.g., hydroxyl OH and molecular H{sub 2}O) in natural glasses, but requires critical assumptions for the study of crystal-hosted glasses. Here, we quantify for the first time the matrix effect of Raman external calibration procedures for the quantification of the total H{sub 2}O content (H{sub 2}O(T) = OH{sup -} + H{sub 2}O{sub m}) in natural silicate glasses. The procedures are based on the calibration of either the absolute (external calibration) or scaled (parameterization) intensity of the 3550 cm{sup -1} band. A total of 67 mafic (basanite, basalt) and intermediate (andesite) glasses hosted in olivines, having between 0.2 and 4.8 wt% of H{sub 2}O, was analysed. Our new dataset demonstrates, for given water content, the height (intensity) of Raman H{sub 2}OT band depends on glass density, reflectance and water environment. Hence this matrix effect must be considered in the quantification of H{sub 2}O by Raman spectroscopy irrespective of the procedure, whereas the parameterization mainly helps to predict and verify the self-consistency of the Raman results. In addition, to validate the capability of the micro-Raman to accurately determine the H{sub 2}O content of multicomponent aluminosilicate glasses, a subset of 23 glasses was analysed by both micro-Raman and micro-FTIR spectroscopy using the band at 3550 cm{sup -1}. We provide new FTIR absorptivity coefficients {epsilon}{sub 3550}) for basalt (62.80 {+-} 0.8 L mol{sup -1} cm{sup -1}) and basanite (43.96 {+-} 0.6 L mol{sup -1} cm{sup -1

  1. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group

    Science.gov (United States)

    Mahood, Gail A.; Benson, Thomas R.

    2017-02-01

    To establish causality between flood basalt eruptions and extinction events and global environmental effects recorded by isotopic excursions in marine sediments, highly accurate and precise ages for the flood basalts are required. But flood basalts are intrinsically difficult to date. We illustrate how 40Ar/39Ar feldspar ages for silicic tuffs intercalated with and overlying sections of Steens Basalt, the earliest lavas of the Middle Miocene Columbia River Basalt Group in the northwestern United States, provide high-precision ages that, for the first time, make it possible to resolve age differences with stratigraphic position within a section of these flood lavas. The stratigraphically lowest rhyolitic tuff, a fall deposit, yielded an age of 16.592 ± ± 0.028 Ma (FCs = 28.02 Ma), and the uppermost, the alkali rhyolite ignimbrite Tuff of Oregon Canyon, is 16.468 ± ± 0.014 Ma. The argon and stratigraphic data indicate that Steens Basalt eruptions occurred from ∼16.64 to 16.43 Ma in the southern end of its distribution. We estimate that the Steens Mountain geomagnetic reversal occurred at 16.496 ± ± 0.028 Ma (±0.18 Ma total error). Our estimates of the timing for initiation of volcanism and volumetric eruptive rates do not seem to support volcanic forcing by the initial stages of Columbia River Basalt Group eruptions as an explanation for the abrupt warming and carbonate dissolution at the beginning of the Miocene Climatic Optimum.

  2. Petrogenesis of Apollo 12 mare basalts. Part 2: An open system model to explain the pigeonite basalt compositions

    Science.gov (United States)

    Neal, Clive R.; Taylor, Lawrence A.

    1993-01-01

    Original petrogenetic models suggested that the pigeonite basalts were the evolved equivalents of the olivine basalts. Rhodes et al. concluded that the olivine and pigeonite basalts were co-magmatic, but Neal et al. have demonstrated that these two basaltic groups are distinct and unrelated. The pigeonite suite is comprised of porphyritic basalts with a fine-grained ground mass and range continuously to coarse-grained microgabbros with ophitic to graphic textures. Although it was generally recognized that the pigeonite basalts were derived from the olivine basalts by olivine + minor Cr-spinel fractionation, the compositional gap between these groups is difficult to reconcile with such a model. Indeed, Baldridge et al. concluded that these two basaltic groups could not have been co-magmatic. In this paper, we suggest an open system AFC model for pigeonite basalt petrogenesis. The assimilant is lunar anorthositic crust and the r value used is 0.6. While the choice of assimilant composition is difficult to constrain, the modeling demonstrates the feasibility of this model.

  3. Mechanical Properties of Man-Made Mineral glass fibres

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    of man made mineral wool fibres, and an improvement of the mechanical performances of man made mineral wool fibres are an evitable task for us. To do so, it is important to look into the fracture behaviour and its connection to the mechanical strength. In order to improve the understanding......; man-made mineral glass fibres. The basaltic melt is prevented from crystallizing due to the high cooling rate, forming the mineral glass wool fibres. Basaltic mineral wool fibres are of high interest in industry due to their good chemical durability and excellent heat and sound insulation properties...... and hence they are used for insulation products. In spite of those advantages, man made mineral wool fibres still show a certain degree of brittleness, which limits the further improvement of man made mineral wool fibres for both transportation and application. Therefore, a reduction in the brittleness...

  4. Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the 'target' Deccan basalts at Lonar crater, India

    Science.gov (United States)

    Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda

    2017-10-01

    The ∼1.88 km diameter Lonar impact crater formed ∼570 ka ago and is an almost circular depression hosted entirely in the Poladpur suite of the ∼65 Ma old basalts of the Deccan Traps. To understand the effects of impact cratering on basaltic targets, commonly found on the surfaces of inner Solar System planetary bodies, major and trace element concentrations as well as Nd and Sr isotopic compositions were determined on a suite of selected samples composed of: basalts, a red bole sample, which is a product of basalt alteration, impact breccia, and impact glasses, either in the form of spherules (glasses (>1 mm and 43.0). The Group 1 spherules are further subdivided into Groups 1a and 1b, with Group 1a spherules showing higher Ni and mostly higher Cr compared to the Group 1b spherules. Iridium and Cr concentrations of the spherules are consistent with the admixture of 1-8 wt% of a chondritic impactor to the basaltic target rocks. The impactor contribution is most prominent in the Group 1a and Group 2 spherules, which show higher Ni/Co, Ni/Cr and Cr/Co ratios compared to the target basalts. In contrast, the Group 1b spherules show major and trace element compositions that overlap with those of the impact breccia and are characterized by high EFTh (Enrichment Factor for Th defined as the Nb-normalized concentration of Th relative to that of the average basalt) as well as fractionated La/Sm(N), and higher large ion lithophile element (LILE) concentrations compared to the basalts. The relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the impact breccia and non-spherical impact glasses compared to the target basalts are consistent with melting and mixing of the Precambrian basement beneath the Deccan basalt with up to 15 wt% contribution of the basement to these samples. Variations in the moderately siderophile element (MSE) concentration ratios of the impact breccia as well as all the spherules are best explained by contributions from

  5. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  6. Basalt Weathering and the Volatile Budget of Early Mars

    Science.gov (United States)

    Baker, L. L.

    2017-10-01

    Basalt weathering on Earth consumes CO2 and water and may have affected terrestrial climate. I apply a mass balance derived from terrestrial data to examine the effect surficial basalt weathering may have had on the CO2 budget of early Mars.

  7. Rapid solubility and mineral storage of CO2 in basalt

    DEFF Research Database (Denmark)

    Gislason, Sigurdur R.; Broecker, W.S.; Gunnlaugsson, E.

    2014-01-01

    rich in divalent metal cations such as basalts and ultra-mafic rocks. We have demonstrated the dissolution of CO2 into water during its injection into basalt leading to its geologic solubility storage in less than five minutes and potential geologic mineral storage within few years after injection [1...

  8. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  9. Sulfur, Chlorine and Fluorine Degassing and Atmospheric Loading by the Roza eruption, Columbia River Basalt Group, Washington

    Science.gov (United States)

    Thordarson, Th.; Self, S

    1996-01-01

    In this study we attempt to quantify the amount of S, Cl and F released by the 1300 cu km Roza member (approximately 14.7 Ma) of the Columbia River Basalt Group, which was produced by a moderate-size flood basalt eruption in the mid-Miocene. Our results are the first indication of the potential atmospheric SO2 yield from a flood basalt eruption, and indicate the mechanism by which flood basalt eruptions may have seriously affected the environment. Glass inclusions in phenocrysts and quenched glass in products from various stages of the eruption were analyzed for concentrations of S, Cl and F and major elements. Glass inclusions contain 1965 +/- 110 ppm S, 295 +/- 65 ppm Cl and 1310 +/- 110 ppm F. Groundmass glass of Roza dike selvages contains considerably lower concentrations: 1110 +/- 90 ppm S, 245 +/- 30 ppm Cl and 1020 +/- 25 ppm F. Scoria clasts from near vent deposits contain 665 +/- 75 ppm S, 175 +/- 5 ppm Cl and 950 +/- 20 ppm F, and the groundmass glass of lava selvages contains 520 +/- 30 ppm S, 190 +/- 30 ppm Cl and 890 +/- 55 ppm F. In crystalline lava, the concentrations are 195 ppm S, 100 ppm Cl and 830 ppm F. Volatile element concentrations in these samples represent the progress of degassing through the eruption and can be used to estimate the potential amount of the volatiles S, Cl and F released by the magma into the atmosphere, as well as to evaluate the amount liberated by various phases of the eruption. The total amount of volatiles released by the Roza eruption is estimated to have been approximately 12,420 MtSO2, approximately 710 MtHCI and approximately 1780 MtHF. The Roza magma liberated approximately 9620 MtSO, (77% of the total volatile mass released), approximately 400 MtHCI (56%) and approximately 1450 MtHF (81%) at the vents and lofted by the eruption columns to altitudes of 7-13 km. Degassing of the lava is estimated to have released an additional approximately 2810 MtSO2, approximately 310 MtHCI and approximately 330 MtHF. The Roza

  10. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  11. Carbon in MOR basalts, mantle and global C cycling

    Science.gov (United States)

    Holloway, J. R.

    2003-04-01

    The carbon content of mid-ocean ridge (MOR) erupted magmas is well known from analysis of glassy rims on pillow basalts (1), is dissolved exclusively in the form of carbonate ion, and provides a measure of the minimum CO_2 content of pre-eruption MORB magmas. The solubility of CO_2 in MORB liquids is also well known (2) and shows that most MORB magmas were oversaturated in CO_2 at seafloor pressures (3) so the CO_2 content of MORB magma could be much greater than observed in MORB glasses. Possible hosts for C in MORB magma source regions are dolomite/magnesite or graphite/diamond depending on oxygen fugacity (4). Oxygen fugacities measured from MORB glasses (5) and mantle nodules (6) require that graphite/diamond is the C source (4). Assuming graphite as the source I constructed a model to calculate the CO_2 content of primary MORB magma and arrived at a probable value of 1800 ppm (7). That model predicts that le80 ppm of graphite/diamond in the MORB source mantle is consumed. That is a surprisingly low value; however simple mass balance shows that if the integrated melt fraction is 15 wt.% the amount of graphite required to generate 1800 ppm CO_2 in primary MORB magma is 74 ppm. A new equation of state (8) yields CO_2 fugacities up to 50% greater than used in (7) but this results in only minor differences with the previous model calculations, e.g. a 0.2 log unit increase in calculated oxygen fugacity. The 1800 ppm value for the CO_2 content of primary MORB magma erupted at present-day rates for the last 3.3 AE equals estimates of the Earth's global crustal, oceanic and atmospheric carbon content (7,9). (1) e.g. Dixon et al. 1988; (2) Pan, et al. (1991), Jendrzejewski, et al. 1997; (3) Dixon et al. 1995, Jendrzejewski, et al. 1997; (4) Eggler & Baker, 1982; (5) Christi, et al., 1986; (6) Wood et al., 1990; (7) Holloway, 1998; (8) Frost &Wood, 1997; Holloway &O'Day, 2000.

  12. Low temperature CO2 mineralization into basalt: solution chemistry and secondary mineral assemblages

    Science.gov (United States)

    Gysi, A.; Stefánsson, A.

    2009-12-01

    CO2 represents one of the most abundant acid supplies in nature and has an important impact on element fluxes and water chemistry on the Earth surface. CO2 emissions due to increased industrialization are causing an important imbalance in this surface system and affect the global climate. Therefore, different methods to trap CO2 are developed and studied in response to the CO2 increase. CO2 sequestration into secondary minerals is considered as one possible way of reducing those CO2 levels. The Carbfix project is a pilot study in SW Iceland aiming to inject CO2-loaded waters from the Hellisheidi geothermal powerplant into basaltic rock formations. The goal is to mineralize CO2 by reacting Ca+2, Mg+2 and Fe+2 ions released by the basalt into carbonates. We investigated the geochemical aspects of CO2-water-basalt interaction at pCO2 between 0-20 bar and temperatures of 25-40°C by combining experiments and numerical modelling. The aim of our studies are to gain a better understanding of the key reactions, mass fluxes and porosity changes associated to CO2-water-basalt interaction. Modelling results show that at low reaction progress (pH 8) the main stable minerals precipitating from solution are (Ca)-Mg-Fe clays, Ca-Mg carbonates and zeolites (Gysi and Stéfansson 2008). Laboratory experiments were performed by reacting basaltic glass with aqueous solutions initially saturated at pCO2 ranging between 0-10 bar at 40°C for 120 days. Results from solution chemistry show that there are three different element mobility behaviors: i) Si+4 and Al+3 dissolve non-stochiometrically and/or precipitate into secondary minerals independent of the intial pCO2 and the water/rock ratios used in the experiments, b) Ca+2 and Mg+2 dissolve stochiometrically independent of the initial pCO2, but precipitate into secondary minerals at high water/rock ratios and low initial pCO2 after about 100 days, c) elements like Fe show a mixed behavior from mobile to immobile depending on the

  13. Rheological evolution of planetary basalts during cooling and crystallization

    Science.gov (United States)

    Sehlke, Alexander

    Basaltic lavas cover large portions of the surface of the Earth and other planets and moons. Planetary basalts are compositionally different from terrestrial basalts, and show a variety of unique large-scale lava flow morphologies unobserved on Earth. They are usually assumed to be much more fluid than basalts on Earth, such as Hawaiian basalt, but their rheology is largely unknown. I synthesized several synthetic silicate melts representing igneous rock compositions of Mars, Mercury, the Moon, Io and Vesta. I measured their viscosity, as well as several terrestrial lavas including Hawaiian basalt, by concentric cylinder and parallel plate viscometry. Planetary melts cover a wide range of viscosity at their liquidus, overlapping with terrestrial basaltic melts. I derived a new viscosity model that is based on the Adam-Gibbs theory of structural relaxation, predicting these viscosities much more accurately than previously published viscosity models. During crystallization, the rheological behavior changes from Newtonian to pseudoplastic. Combining rheology experiments with field observations, the rheological conditions of the pahoehoe to `a`a morphological transition for Hawaiian basalt were determined in strain rate-viscosity space. This transition occurs at temperatures around 1185+/-15°C. For Mercurian lavas, this transition is predicted to occur at higher temperatures around 1250+/-30°C. We find that the rheology of these lavas is broadly similar to terrestrial ones, suggesting that the large smooth volcanic plains observed on Mercury's northern hemisphere are due to flood basalt volcanism rather than unusually fluid lavas. We also show that KREEP lavas, a type of basalt associated with sinuous rilles on the lunar surface, is more likely to form rilles through levee construction, as the high and rapidly increasing viscosity prohibits sufficient thermo-mechanical erosion.

  14. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    projections ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of 6 different basaltic eruptions were analyzed and 20,000 shape measurements of 26 shape parameters for each were obtained within ∼45 min using the Particle InsightTM dynamic shape analyzer (PIdsa). The RI modeling...... of paroxysmal peaks at 25± 6 km. A new quantitative method producing grain shape data of bulk samples of volcanic ash was developed to correlate the bulk average grain shape with magma fragmentation mechanisms. The new shape index: the regularity index (RI) was developed from a manually classified reference...... morphology dataset using principal component analysis. The systematic change in RI between wet and dry eruptions supports that the RI can be used to assess the relative roles of magmatic versus phreatomagmatic fragmentation. Surtseyan ash has an RI of 0.207-0.191 ± 0.002 (2σ), whereas Hawaiian ash has an RI...

  15. PHILIP GLASS

    OpenAIRE

    Doerschuk, Bob

    2004-01-01

    Constantemente, sin cesar, hay movimiento en la música de Philip Glass. Inclusive cuando se construye a lo largo de armonías y resoluciones simples, refleja el bullicio de una comunidad de abejas, cuyas inquietas danzas circulares se intersectan y unifican creando un solo movimiento, el movimiento de la colmena. Sin embargo, desde la lejanía, la colmena parece estar quieta, gran cantidad de sonido emanando de ella se fusiona en un solo murmullo. Este mismo principio, movimiento y quietud, muc...

  16. Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formation. [Abstract only

    Science.gov (United States)

    Fogel, R. A.

    1994-01-01

    Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.

  17. Deep degassing and the eruptibility of flood basalt magmas

    Science.gov (United States)

    Black, B. A.; Manga, M.

    2015-12-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas demands correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. Because the overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, buoyancy overpressure has been proposed as a trigger for flood basalt eruptions. To test this hypothesis, we develop a new one-dimensional model for buoyancy overpressure-driven eruptions that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape through the surrounding country rocks. Degassing during emplacement of flood basalt provinces may have major environmental repercussions. We investigate the temporal evolution of permeable degassing through the crust and degassing during eruptive episodes. We find that assimilation of volatile-rich country rocks strongly enhances flood basalt eruptibility, implying that the eruptive dynamics of flood basalts may be intertwined with their climatic consequences.

  18. Sardinian basalt. An ancient georesource still en vougue

    Science.gov (United States)

    Careddu, Nicola; Grillo, Silvana Maria

    2017-04-01

    Commercially quarried Sardinian basalt was the result of extensive volcanic activity during the Pliocene and Pleistocene ages, following the opening of the Campidano plain and Tyrrhenian sea rift. Extensive areas of Sardinia have been modelled by large volumes of basalt and andesite rock. An example is provided by the 'Giare' tablelands and other large plateaus located in central Sardinia. Other basalt-rich areas exist in the Island. Sardinia is featured by a vast array of basalt monuments, dating back to the II-I millennium BC, bearing witness to the great workability, durability and resistance to weathering of the rock. The complex of circular defensive towers, known as "Su Nuraxi di Barumini" was included in the World Heritage List by Unesco in 1997. Basalt is currently produced locally to be used for architectural and ornamental purposes. It is obtained by quarrying stone deposits or mining huge boulders which are moved and sawn by means of mechanical machinery. Stone-working is carried out in plants located in various sites of the Island. The paper begins with an historical introduction and then focusses on the current state of the art of Sardinian basalt quarrying, processing and using. An analysis of the basalt market has been carried out.

  19. Records of upper mantle oxygen fugacity gleaned from high-density sampling of basalts and peridotites at ultraslow ridges

    Science.gov (United States)

    Birner, S.; Cottrell, E.; Warren, J. M.; Kelley, K. A.; Davis, F. A.

    2016-12-01

    Mantle oxygen fugacity (fO2) controls volatile speciation, phase stability, and the depth of the peridotite solidus, and is thus critical to our understanding of melt production at mid-ocean ridges. Both basalts [1] and peridotites [2] have been used as proxies for calculating upper mantle fO2 beneath ridges. Though the global peridotite dataset for fO2 is limited and does not overlap geographically with samples from the more comprehensive global basalt dataset, the average fO2 recorded by peridotites is lower than that recorded by basalts. Ultraslow spreading ridges such as the Southwest Indian Ridge (SWIR) and Gakkel Ridge have limited magma production due to thick conductive cooling lids at the ridge axis, and thus offer a unique opportunity to compare geographically overlapping suites of basalt and peridotite. In this study, we determined the oxygen fugacity of 41 peridotite samples from the Oblique Segment of SWIR and 10 peridotite samples from Gakkel - more than doubling the number of fO2 estimates for ridge peridotites globally. Our results for SWIR show that peridotite fO2 is highly variable on the dredge to sub-segment scale, ranging from 1.7 log units below the quartz-fayalite-magnetite buffer (QFM) to 1 log unit above QFM, with an average of QFM+0.2 (±0.6). We also calculated fO2 for 25 basalt glasses from the Oblique Segment, which have an average fO2 of QFM+0.3 (±0.1). Importantly, on average, we find no offset between mantle fO2 as recorded by basalts versus peridotites. However, fO2 recorded by basalts is significantly more homogenous than by peridotites, consistent with the idea of aggregate melts recording homogenization of a heterogeneous mantle. The most reduced peridotites at both ridges are generally highly refractory samples at high spinel Cr# (Cr# = Cr/(Cr+Al)) and low modal cpx. This suggests that the process of melt extraction may leave behind a reduced residue. Alternatively, if these highly refractory lithologies are residues from

  20. Thicknesses of Mare Basalts from Gravity and Topograhy

    Science.gov (United States)

    GONG, S.; Wieczorek, M.; Nimmo, F.; Kiefer, W.; Head, J.; Smith, D.; Zuber, M.

    2015-10-01

    Mare basalts are derived from partial melting of the lunar interior and are mostly located on the near side of the Moon [1, 2]. Their iron-rich composition gives rise to their dark color, but also causes their density to be substantially higher than normal crustal rocks. The total volume of mare basalts can provide crucial information about the Moon's thermal evolution and volcanic activity. Unfortunately, the thicknesses of the mare are only poorly constrained. Here we use gravity data from NASA's GRAIL mission to investigate the thickness of mare basalts.

  1. Stereo Pair: Basalt Cliffs, Patagonia, Argentina

    Science.gov (United States)

    2000-01-01

    Basalt cliffs along the northwest edge of the Meseta de Somuncura plateau near Sierra Colorada, Argentina show an unusual and striking pattern of erosion. Stereoscopic observation helps to clarify the landform changing processes active here. Many of the cliffs appear to be rock staircases that have the same color as the plateau's basaltic cap rock. Are these the edges of lower layers in the basalt or are they a train of slivers that are breaking off from, then sliding downslope and away from, the cap rock. They appear to be the latter. Close inspection shows that each stair step is too laterally irregular to be a continuous sheet of bedrock like the cap rock. Also, the steps are not flat but instead are little ridges, as one might expect from broken, tilted, and sliding slices of the cap rock. Stream erosion has cut some gullies into the cliffs and green vegetation shows that water springs from and flows down some channels, but landsliding is clearly a major agent of erosion here.This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota

  2. Phase equilibria in subducting basaltic crust: implications for H 2O release from the slab

    Science.gov (United States)

    Forneris, Juliette F.; Holloway, John R.

    2003-09-01

    Fluids released from subducting slabs induce partial melting of the mantle wedge above the slab, which in turn is responsible for arc volcanism at the Earth's surface. The partially hydrated basaltic layer of the slab is a potential source of these fluids and a major reservoir for H 2O at depth. Constraining the stability domains of hydrous phases and the position of the dehydration reactions in this system in pressure-temperature ( P- T) space is essential to describe and quantify the fluid release from subducting oceanic crust into the overlying mantle wedge. Experiments were conducted in the ranges of 2.2-3.4 GPa and 625-750°C to determine phase equilibria in an H 2O-saturated natural basalt at conditions relevant to subduction zones. The experimental duration was typically 1 month, although some experiments were replicated with a shorter run duration (1-2 weeks) in order to identify potentially metastable phases. A mixture of a natural mid-ocean ridge basalt (MORB) glass and mineral seeds was used as the starting material. Oxygen fugacity was buffered within ±1.3 log units of nickel-bunsenite (NiNiO). The results obtained show that a calcic amphibole (barroisite) is stable from 2.2 to about 2.4 GPa. At 2.6 GPa, it is replaced by a sodic amphibole (near end-member glaucophane), which is stable up to 3 GPa at 625°C. This high-pressure assemblage constitutes a true analog of a natural amphibole-bearing eclogite and the first synthesis of glaucophane from a rock of basaltic composition. As opposed to the results of previous studies on basaltic compositions [A.R. Pawley, J.R. Holloway, Science 260 (1993) 664-667; S. Poli, Am. J. Sci. 293 (1993) 1061-1107; S. Poli, M.W. Schmidt, J. Geophys. Res. 100 (1995) 22299-22314; M.W. Schmidt, S. Poli, Earth Planet. Sci. Lett. 163 (1998) 361-379], chloritoid is present only as a metastable phase in the pressure-temperature range investigated here. Metastability of chloritoid in earlier experiments, due to short run duration

  3. Hydrothermal transport of heavy metals by seawater: The role of seawater/basalt ratio

    Science.gov (United States)

    Seyfried, W.; Bischoff, J.L.

    1977-01-01

    Seawater reacted with basaltic glass at 260??C and 500 bars under water-dominated conditions (50 : 1 water/rock ratio) efficiently leached and maintained heavy metals in solution. Cu, Zn, and Ba are transferred in significant proportions to the aqueous phase, while Fe and Mn attain concentrations of 45 and 20 ppm respectively as the basalt is completely made over to magnesian smectite. High metal solubility is a function of acidity maintained by large excess of dissolved Mg and equilibria with the alteration phase. Metal concentrations and relative proportions are consistent within limits required for metal-rich fluid which produced East Pacific Rise metalliferous sediments. Experiments mixing metal-bearing altered seawater and normal seawater were carried out as a qualitative indicator of sea-floor precipitation processes. Bulk composition of the precipitates are strongly influenced by mixing ratio. Precipitates range from silica-magnesium rich under low dilution by seawater to essentially pure ferric hydroxide under conditions of high dilution. ?? 1977.

  4. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  5. Solubility of water in lunar basalt at low pH2O

    Science.gov (United States)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is critical vapor volume fraction thought to be required for magma fragmentation (∼65-75 vol.%) at a total pressure of ∼5 bar (corresponding to a depth beneath the lunar surface of ∼120 m). At a fragmentation pressure of ∼5 bar, the calculated vapor composition is dominated by H2, supporting the hypothesis that H2, rather than CO, was the primary propellant of the lunar fire fountain eruptions. The results of our batch degassing model suggest that initial melt compositions with >∼200 ppm C would be required for the vapor composition to be dominated by CO rather than H2 at 65-75% vesicularity.

  6. Hafnium isotope variations in oceanic basalts

    Science.gov (United States)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  7. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  8. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Rocks dredged in the vicinity of the 79 degrees E fracture zone, in the Central Indian Basin, are sub-alkaline basalts, which are regarded as precursors to spilites. The minerals identified are mainly albitic plagioclase, augite, olivine, and less...

  9. Notice of release of NBR-1 Germplasm basalt milkvetch

    Science.gov (United States)

    Douglas A. Johnson; Thomas A. Jones; Kevin J. Connors; Kishor Bhattarai; B. Shaun Bushman; Kevin B. Jensen

    2008-01-01

    A selected-class pre-variety germplasm of basalt milkvetch (Astragalus filipes Torr. ex A. Gray [Fabaceae]) has been released for reclamation, rehabilitation, and restoration of semiarid rangelands in the northern Great Basin Region of the western US.

  10. Integrating Diverse Datasets to Assess Approaches for Characterizing Mare Basalts

    Science.gov (United States)

    Deitrick, S. R.; Lawrence, S. J.

    2017-10-01

    This research utilizes new LROC data to re-evaluate the composition of the mare basalt flows in the Marius Hills Volcanic Complex to provide new insights about the relative ages of the low shields and surrounding flows.

  11. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  12. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    Science.gov (United States)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  13. Geochemistry of the Potassic Basalts from the Bufumbira Volcanic ...

    African Journals Online (AJOL)

    The various basalts are low in SiO2 wt %, Al2O3 wt % and Na2O wt % but high in MgO wt %, TiO2 wt %, CaO wt %, K2O wt % with K2O/Na2O = 1.08 to 2.07. These are potassic belonging to the kamafugite series. Plots discriminate two geochemical trends corresponding to the picritic and clinopyroxene rich basalts.

  14. Basalt: Biologic Analog Science Associated with Lava Terrains

    Science.gov (United States)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  15. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  16. Plate tectonics and continental basaltic geochemistry throughout Earth history

    Science.gov (United States)

    Keller, Brenhin; Schoene, Blair

    2018-01-01

    Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.

  17. Geochemical characterization of oceanic basalts using Artificial Neural Network.

    Science.gov (United States)

    Das, Pranab; Iyer, Sridhar D

    2009-12-23

    The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). We have applied Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB) basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  18. Geochemical characterization of oceanic basalts using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Iyer Sridhar D

    2009-12-01

    Full Text Available Abstract The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB under one class i.e., as mid-oceanic ridge basalts (MORB. Hence, a method is specifically needed to identify the OFB as normal (N-MORB, enriched (E-MORB and ocean island basalts (OIB. We have applied Artificial Neural Network (ANN technique as a supervised Learning Vector Quantisation (LVQ to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  19. Insulation from basaltic stamp sand. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, F. D.

    1981-04-01

    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  20. Improving iron-enriched basalt with additions of ZrO{sub 2} and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.; Kong, P.C.

    1993-06-01

    The iron-enriched basalt (IEB) waste form, developed at the Idaho National Engineering Laboratory a decade ago, was modified to IEB4 by adding sufficient ZrO{sub 2} and TiO{sub 2} to develop crystals of zirconolite upon cooling, in addition to the crystals that normally form in a cooling basalt. Zirconolite (CaZrTi{sub 2}O{sub 7}) is an extremely leach-resistant mineral with a strong affinity for actinides. Zirconolite crystals containing uranium and thorium have been found that have endured more than 2 billion years of natural processes. On this basis, zirconolite was considered to be an ideal host crystal for the actinides contained in transuranic (TRU)-contaminated wastes. Crystals of zirconolite were developed in laboratory melts of IEB4 that contained 5% each of ZrO{sub 2} and TiO{sub 2} and that were slow-cooled in the 1200--1000{degrees}C range. When actinide surrogates were added to IEB4, these oxides were incorporated into the crystals of zirconolite rather than precipitating in the residual glass phase. Zirconolite crystals developed in IEB4 should stabilize and immobilize the dilute TRUs in heterogeneous, buried low-level wastes as effectively as this same phase does in the various formulations of Synroc used for the more concentrated TRUs encountered in high-level wastes. Synroc requires hot-pressing equipment, while IEB4 precipitates zirconolite from a cooling basaltic melt.

  1. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  2. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data

    Science.gov (United States)

    Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-12-01

    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related

  3. Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains

    Science.gov (United States)

    Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Porcelli, Don; James, Rachael H.; van Calsteren, Peter; Gislason, Sigurður R.

    2011-01-01

    This study presents uranium and thorium concentrations and activity ratios for all riverine phases (bedload, suspended load, dissolved load and colloids) from basaltic terrains in Iceland and the Azores. Small basaltic islands, such as these, are thought to account for ~ 25% of CO2 consumed by global silicate weathering, and for ~ 45% of the flux of suspended material to the oceans. These data indicate that [U] and [Th] in the dissolved and colloidal fractions are strongly controlled by pH, and to a much lesser extent by levels of dissolved organic carbon (which are low in these environments). At high pH, basalt glass dissolution is enhanced, and secondary mineral formation (e.g. Fe-oxyhydroxides and allophane) is suppressed, resulting in high dissolved [U], and low colloidal [U] and [Th], indicating a direct chemical weathering control on elemental abundances. When the dissolved (234U/238U) activity ratio is >~1.3 (i.e. when physical weathering, groundwater contribution or soil formation are high), there is little isotope exchange between dissolved and colloidal fractions. At lower activity ratios, the dissolved load and colloids have indistinguishable activity ratios, suggesting that when chemical weathering rates are high, secondary clay formation is also high, and colloids rapidly adsorb dissolved U. Many of the suspended sediment samples have (234U/238U) activity ratios of > 1, which suggests that uptake of U onto the suspended load is important. Identical (230Th/232Th) in suspended, dissolved and colloidal samples suggests that Th, like U, is exchanged or sorbed rapidly between all riverine phases. This particle-reactivity, combined with poorly constrained contributions from groundwater and hydrothermal water, and short-term variations in input to soils (volcanic and glacial), suggests that U-series nuclides in riverine material from such basaltic terrains are unlikely to reflect steady state erosion processes.

  4. Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on the ocean island basalt petrogenesis

    Science.gov (United States)

    Borisova, Anastassia Y.; Faure, François; Deloule, Etienne; Grégoire, Michel; Béjina, Frédéric; de Parseval, Philippe; Devidal, Jean-Luc

    2014-06-01

    The nature of magmatic sources reflected by isotopic composition of the ocean island basalt (OIB) remains an on-going question in igneous geochemistry. To constrain the magmatic sources for OIB related to the Kerguelen plume activity, we performed detailed microanalytical investigation of the 21.4 Ma picritic basalt (MD109-D6-87) dredged during the “Marion Dufresne” cruise on a seamount between Kerguelen Archipelago and Heard Island. Lead isotope compositions of olivine-hosted melt inclusions and matrix glasses were measured by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) and Secondary Ion Mass Spectrometry (SIMS). We also performed major and trace element microanalyses and mapping of the inclusions and the host olivine phenocrysts by electron microprobe (wavelength-dispersive X-ray spectroscopy, WDS). The observed significant major element (K2O/P2O5, Al2O3/TiO2) and Pb isotope (207Pb/206Pb and 208Pb/206Pb) heterogeneities of parental melts (MgO = 7-10 wt.%) during early high pressure crystallisation stage (200-300 MPa, Fo82-86 mol%), and relative homogeneity at later lower-pressure crystallisation stage (Assimilant” melts during magma residence and transport. Lead isotope composition of the parental basaltic melts was inherited from both heterogeneous mantle and the Kerguelen Plateau crust. High K2O/P2O5 (> 4), Al2O3/TiO2 (> 4) ratios are attributed to assimilation of the plateau basaltic crust (≥ 50 wt.%) by the melts in the magma chamber at palaeodepths from 6 to 9 km. The crustal assimilation may have happened through plagioclase dissolution. The large chemical and isotopic heterogeneity of the parental OIB melts found by in situ microanalyses in this study suggests that the bulk rock chemistry alone cannot provide enough information to constrain the nature of the magmatic sources.

  5. Palagonitic (Not Andesitic) Mars: Evidence from Thermal Emission and VNIR Spectra of Palgonitic Alteration Rinds on Basaltic Rock

    Science.gov (United States)

    Morris, R. V.; Graff, T. G.; Mertzman, S. A.; Lane, M. D.; Christensen, P. R.

    2003-01-01

    Visible and near-IR (VNIR) spectra of both Martian bright and dark regions are characterized by a ferric absorption edge extending from approx. 400 to 750 nm, with bright regions having about twice the reflectivity at 750 nm as dark regions. Between 750 nm to beyond 2000 nm, bright and dark regions have nearly constant and slightly negative spectral slopes, respectively. Depending on location, bright regions have shallow reflectivity minima in the range 850-910 nm that are attributed to ferric oxides. Similarly, dark regions have shallow reflectivity minima near approx. 950 and 1700-2000 nm that are attributed to ferrous silicate minerals (pyroxene). Among terrestrial geologic materials, the best spectral analogues for Martian bright regions are certain palagonitic tephras from Mauna Kea Volcano (Hawaii). By definition, palagonite is a "yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass". The ferric pigment in palagonite is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates.

  6. The entry heating and abundances of basaltic micrometeorites

    Science.gov (United States)

    Genge, Matthew J.

    2017-05-01

    Basaltic micrometeorites (MMs) derived from HED-like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s-1) and is more compatible with higher velocities which may suggest a near-Earth asteroid source dominates the current dust production of basaltic MMs.

  7. Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand.

    Science.gov (United States)

    Schauroth, Jenny; Wadsworth, Fabian B; Kennedy, Ben; von Aulock, Felix W; Lavallée, Yan; Damby, David E; Vasseur, Jérémie; Scheu, Bettina; Dingwell, Donald B

    During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions.

  8. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam

    Science.gov (United States)

    An, A.-Rim; Choi, Sung Hi; Yu, Yongjae; Lee, Der-Chuen

    2017-02-01

    Major and trace element concentrations, and Sr-Nd-Hf-Pb isotopic compositions of Late Cenozoic (4.1 to 13.8 Ma) basaltic rocks from southern Vietnam have been determined to understand the nature of their mantle source. The volcanic rocks are composed of tholeiite basalt, alkaline basanite, trachybasalt, basaltic trachyandesite, and trachyandesite. The alkaline rocks show light rare earth element (LREE) enrichment, with (La/Yb)N = 10.3-29.8. The tholeiite basalts are distinguished by much lower values (8.8-9.5) of (La/Yb)N. On a primitive mantle-normalized trace element distribution diagram, they show oceanic island basalt (OIB)-like large-ion lithophile element enrichment without high field strength element depletion. However, some samples exhibit positive anomalies in K and Pb and negative anomalies in Sm, suggesting K-rich residual amphibole in the source. The samples contain Sr (87Sr/86Sr = 0.703794-0.704672), Nd (ɛNd = + 1.7-5.7), Hf (ɛHf = + 4.0-10.9), and Pb (206Pb/204Pb = 18.23-18.75; 207Pb/204Pb = 15.53-15.59; 208Pb/204Pb = 38.32-38.88) isotopes, plotting among OIBs, with depleted mid-ocean ridge basalt mantle-enriched mantle type 2 (DMM-EM2) characteristics. There are no discernible isotopic differences between tholeiite and the alkaline series, reflecting the same source. The Nd and Hf isotopic compositions are coupled, and plot along the mantle-crust array, ruling out the possibility of lithospheric mantle in the source. Plots of NiO against the Fo numbers of olivines from the basaltic rocks are within the range of Hainan and Hawaiian basalt olivines, implying that hybrid pyroxenite is present in the source. Also note that the estimated primary melt compositions fall within the experimental field defined by partial melting of silica-poor eclogite and peridotite. The effective melting pressure (Pf) and melting temperature (T) of the primary melts are Pf = 29.6-32.8 kbar and T = 1470-1480 °C. We suggest that Vietnamese basaltic rocks may be produced by

  9. Volatiles and the tempo of flood basalt magmatism

    Science.gov (United States)

    Black, Benjamin A.; Manga, Michael

    2017-01-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas implies correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. The overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, and as a large magma body heats the surrounding rocks thermally activated creep will relax isotropic overpressure more rapidly. Here, we examine the viability of buoyancy overpressure as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas using the Siberian Traps flood basalts as a test case. We suggest that the volatile inventory set during mantle melting and redistributed via bubble motion controls ascent of magma into and through the crust, thereby regulating the tempo of flood basalt magmatism. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant and erupt to the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho or in the lower crust. These large magma bodies may remain buoyant and poised to erupt-triggered by volatile-rich recharge or external stresses-for ∼106 yr. If and when such chambers fail, enormous volumes of magma can ascend into the upper crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruption. Our model further predicts that the Siberian Traps may have released 1019-1020 g of CO2

  10. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  11. Similar microbial communities found on two distant seafloor basalts

    Directory of Open Access Journals (Sweden)

    Esther eSinger

    2015-12-01

    Full Text Available The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR (9˚N. Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  12. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    Science.gov (United States)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  13. Electromagnetic Mapping of Electrical Conductivity Beneath the Columbia Basalts

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H. Frank; Shoham, Yoram; Hoversten, G. Michael; Torres-Verdin, Carlos

    1992-01-02

    Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east-west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project. [References: 18

  14. Electromagnetic mapping of electrical conductivity beneath the Columbia basalts

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.F.; Hoversten, G.M [Lawrence Berkeley Lab., CA (United States); Shoham, Y. [Shell Development Corp., Houston, TX (United States); Torres-Verdin, C. [Schlumberger-Doll Research, Ridgefield, CT (United States)

    1996-11-01

    Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east-west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project.

  15. Bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Rawlings, R D

    1993-01-01

    Bioactive materials are designed to induce a specific biological activity; in most cases the desired biological activity is one that will give strong bonding to bone. A range of materials has been assessed as being capable of bonding to bone, but this paper is solely concerned with bioactive glasses and glass-ceramics. Firstly, the structure and processing of glasses and glass-ceramics are described, as a basic knowledge is essential for the understanding of the development and properties of the bioactive materials. The effect of composition and structure on the bioactivity is then discussed, and it will be shown that bioactivity is associated with the formation of an apatite layer on the surface of the implant. A survey of mechanical performance demonstrates that the structure and mechanical properties of glass-ceramics depend upon whether the processing involves casting or sintering and that the strength and toughness of glass-ceramics are superior to those of glasses. Attempts to further improve the mechanical performance by the use of non-monolithic components, i.e. bioactive coatings on metal substrates and glass and glass-ceramic matrix composites, are also reviewed and are shown to have varying degrees of success. Finally, some miscellaneous applications, namely bioactive bone cements and bone fillers, are briefly covered.

  16. Retention of aqueous {sup 226}Ra fluxes from a sub-aqueous mill tailings disposal at the Bois Noirs site (Loire, France)

    Energy Technology Data Exchange (ETDEWEB)

    Courbet, Christelle; Simonucci, Caroline; Dauzeres, Alexandre; Matray, Jean-Michel [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LETIS, B.P. 17, 92262 Fontenay-Aux-Roses (France); Bassot, Sylvain [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LAME, B.P. 17, 92262 Fontenay-Aux-Roses (France); Mangeret, Arnaud [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SEDRAN/BRN, B.P. 17, 92262 Fontenay-Aux-Roses (France)

    2013-07-01

    This study focuses on a sub-aqueous mill tailings disposal site located in France (Bois Noirs) where 1.3 million tons of uranium mill sludge (fine tailings fraction < 50 μm) have been disposed since the 60's in a man-made pond below 4 meters of water maintained artificially by a rock-fill dam. A significant attenuation of aqueous {sup 226}Ra activity is observed in ground waters. This paper presents the preliminary modeling work performed for evaluating the role of water-rock interactions on aqueous {sup 226}Ra attenuation through the dam. This modeling attempt, assuming thermodynamic equilibrium, aims at checking the hydrochemical conceptual model developed in a previous study, in which Ra retention through the dam was assumed to most likely result from sorption onto metallic oxide-hydroxides. A 2D coupled reactive transport model was conceived to test this hypothesis over time and identify the measurements required to verify its consistency over the long term. (authors)

  17. Subaqueous eruption-fed mass-flow deposits: Records of the Ordovician arc volcanism in the northern Famatina Belt; Northwestern Argentina

    Science.gov (United States)

    Cisterna, Clara Eugenia; Coira, Beatriz

    2014-01-01

    This study is focused on the analyses of a Chaschuil section (27° 49‧ S-68° 04‧ W), north of the Argentina Famatina Belt, where Ordovician explosive-effusive arc volcanism took place under subaerial to subaqueous marine conditions. In analyzing the profile, we have recognized an Arenigian succession composed by dominant volcaniclastic lithofacies represented by volcaniclastic debris flow, turbidity current and minor resedimented syn-eruptive pyroclastic depositsand lavas. The upper portions of succession are represented by volcanogenic sedimentary lithofacies with fossiliferous levels. Great volumes of the volcaniclastic deposits are strongly controlled in their transport by mass flow processes. These representative deposits provide significant data in relation to the coeval volcanic events for recognizing a continuous explosive volcanism together a minor effusive activity and the degradation of volcanic edifices. Likewise mass flow deposits give indications of the high rate of sedimentation, strong slope control and instability episodes in the basin, typical of those volcanic environments. That substantial information was the key to understand the features and evolution of the Arenigian basin in the north of the Famatina System.

  18. Glass and mineral chemistry of northern central Indian ridge basalts: Compositional diversity and petrogenetic significance

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Banerjee, R.; Iyer, S.D.; Basavalingu, B.; Mukhopadhyay, S.

    ) 6 Y (10 ) 6 Mg# Ba Rb Th U NbLa Ce Sr Nd Sm Zr Hf Eu Ti Dy YYb LuTb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu 1 10 100 (a) (b) 1 10 100 Rock/chondrite PMN/ormalised Di Ol Opx Qz 20 kbar 15 kbar 10 kbar 1 bar ol ol opx au ol opx ol opx au au opx ...

  19. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  20. Apollo 14 glasses and the origin of lunar soils

    Science.gov (United States)

    Wentworth, S. J.; Mckay, D. S.

    1991-01-01

    Electron microprobe for comparison with soil glass data were used to analyze homogeneous and heterogeneous glass clasts in four Apollo 14 regolith breccias (14042, 14301, 14313, and 14315). Glass types in the Apollo 14 samples were found to be dominated by highland compositions, which include KREEP, LKFM and highland basalt varieties. Only 14042 has a highland glass population similar to those of local Apollo 14 soils. Breccia 14301 stands out in that it is enriched in KREEP glasses with high K2O content, which are similar in composition to Apollo 12 ropy glasses. Only 14042 could be made from local present-day soils. Some of the ancient soils did not undergo breccia formation and closure, and they evolved by meteorite impact processing, by mixing together in various proportions, and by changes made by the addition of lithic fragments and other components. It is suggested that the Apollo 14 soils are made from mixtures of comminuted regolith breccias. A likely age sequence is presented.

  1. Chemical dispersion among Apollo 15 olivine-normative mare basalts

    Science.gov (United States)

    Ryder, Graham; Steele, Alison

    1988-01-01

    Analysis of Apollo 15 olivine-normative mare basalts for major and minor elements suggests that the hypothesis that the coarser-grained varieties (olivine microgabbros) consist of two chemical groups is incorrect. Instead, it is found that there is a single group including vesicular, coarse-grained, and fine-grained basalts. For the entire suite, the dispersion of compositions along the olivine trend is too great to be explained by short-range unmixing of an unfractionated flow. It is suggested that the general trend for the suite is olivine separation, probably through crystal settling. The textures, mineralogical characteristics, and chemical variation of the olivine-normative basalts are shown to be consistent with a sequence of thin fractionating flows, all from a common parent.

  2. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    Science.gov (United States)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  3. Mineral CO2 Sequestration into Basalt: The Carbfix Project

    Science.gov (United States)

    Gislason, S. R.; Broecker, W. S.; Oelkers, E. H.; Gunnlaugsson, E.; Stefansson, A.; Wolff-Boenisch, D.; Matter, J.; Björnsson, G.

    2008-12-01

    The reduction of industrial CO2 emissions is considered one of the main challenges of this century. Among commonly proposed CO2 storage techniques, the injection of anthropogenic CO2 into deep geological formations is quite promising due their large potential storage capacity and geographic ubiquity. Finding a storage solution that is long lasting, thermodynamically stable and environmentally benign would be ideal. Storage of CO2, as solid calcium magnesium iron carbonate, in basaltic rocks may provide such a long lasting, thermodynamically stable and environmentally benign solution. In nature, the carbonization of basaltic rocks occurs in a variety of well-documented settings, such as the hydrothermal alteration in geothermal systems and in deep ocean vent systems. The goal of this research project is to optimize industrial methods for storing CO2 in basaltic rocks through a combined program consisting of, field scale injection of CO2 charged waters into basaltic rocks, laboratory based experiments, study of natural CO2 waters as natural analogue and state of the art geochemical modelling. A second and equally important goal of this research project is to generate the human capital and expertise to apply the advances made in this project in the future. Towards this goal the bulk of the research is to be performed by graduate student and post-doctoral trainees. At the Hellisheidi Iceland site, the hot gases released from geothermal energy production will be processed to separate the CO2. It will then be dissolved in water at about 25 bar pressure and pumped into the porous basalt at 400 to 700 m depth, at the rate of 30 000 tonnes per year. Model simulations, natural analogues and experimental work suggest that the CO2 charged waters will reacts with the basalt and form carbonate minerals such as FeCO3 - MgCO3 solid solutions and CaCO3. By this method the fixed CO2 will remain trapped as mineral for millions of years.

  4. One atmosphere melting experiments on ilmenite basalt 12008

    Science.gov (United States)

    Rhodes, J. M.; Lofgren, G. E.; Smith, D. P.

    1979-01-01

    An evaluation of a crystal-fractionation model for Apollo 12 ilmenite basalts with melting experiments under controlled oxygen fugacities is reported. The crystallization sequence including olivine, chromium spinel, and pigeonite phases was determined, showing that the changes in melt composition are dominated by olivine crystallization and the decrease in MgO with a corresponding increase in CaO, Al2O3, and TiO2. It is concluded that the bulk composition of the ilmenite basalts was established by crystallization of olivine and minor spinel prior to the onset of pyroxene and plagioclase.

  5. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  6. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  7. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    Science.gov (United States)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  8. Natural glass from Deccan volcanic province: an analogue for radioactive waste form

    Science.gov (United States)

    Rani, Nishi; Shrivastava, J. P.; Bajpai, R. K.

    2015-11-01

    Deccan basaltic glass is associated with the differentiation centres of the vast basaltic magmas erupted in a short time span. Its suitability as a radioactive waste containment chiefly depends on alteration behaviour; however, detailed work is needed on this glass. Therefore, the basaltic glass was treated under hydrothermal-like conditions and then studied to understand its alteration. Moreover, comparison of these results with the naturally altered glass is also documented in this paper. Solutions as well as residue obtained after glass alteration experiments were analysed. Treated glass specimens show partial to complete release of all the ions during alteration; however, abundant release of Si and Na ions is noticed in case of almost all the specimens and the ionic release is of the order of Na > Si > K > Ca > Al = Mg > Fe > Mn > Ti. Scanning electron images of the altered residue show morphologies of smectite, montmorillonite and illite inside as well as outside of the secondary layers, and represent paragenesis of alteration minerals. It has been noticed that the octahedral cation occupancies of smectite are consistent with the dioctahedral smectite. The secondary layer composition indicates retention for Si, Al, and Mg ions, indicating their fixation in the alteration products, but remarkably high retention of Ti, Mn and Fe ions suggests release of very small amount of these elements into the solution. By evolution of the secondary layer and retention of less soluble ions, the obstructive effect of the secondary layer increases and the initial constant release rate begins slowly to diminish with the proceeding time. It has been found that devitrification of glass along the cracks, formation of spherulite-like structures and formation of yellowish brown palagonite, chlorite, calcite, zeolite and finally white coloured clays yielded after experiments that largely correspond to altered obsidian that existed in the natural environment since inception ~66 Ma ago.

  9. Valence State Partitioning of Vanadium Between Olivine-Melt in Olivine-Phyric Martian Basalts. Defining the fO2 of the Martian Mantle.

    Science.gov (United States)

    Shearer, C.; McKay, G.; Papike, J.; Karner, J.; Sutton, S.

    2005-12-01

    Several recent studies have demonstrated that the fO2 in martian basalts varies by 2 to 3 log units and is correlated with geochemical parameters such as LREE/HREE, initial 87Sr/86Sr, and initial d. These correlations have been interpreted to indicate the presence of reduced, incompatible element-depleted and oxidized, incompatible element-enriched reservoirs that were produced during early stages of martian differentiation. Olivine-phyric basalts represent the closest approximation of primary martian basalts in the meteorite collection. Therefore, gaining a better understanding of the fO2 and incompatible element characteristics of the earliest phase (olivine) in these basalts may provide a clearer view into the martian mantle. Using the bulk composition of Yamato 980459 (an olivine-phyric basaltic melt composition), we conducted a series of near-liquidus experiments to determine the partitioning of V between olivine-melt at fO2 conditions between QFM and IW-1. XANES analyses of the glass indicate that the V4+/V3+ varies systematically with redox conditions of the experiments. SIMS analyses of V in glass and olivine indicated a systematic increase in DVol/melt from approximately 0.055 at QFM to approximately 0.5 at IW-1. This is consistent with the observed variation in V4+/V3+ measured in the glass by XANES and the crystal chemical preference of the olivine octahedral site for V3+ rather than V4+. Applying this oxybarometer calibration to well-defined lunar (IW-1) and terrestrial basaltic systems (QFM+0.2, Makaopuhi lava lake, Hawaii) indicate that it is vary robust over a wide range of planetary fO2 conditions. The determination of DVol/melt and incompatible element abundance using SIMS from martian olivine-phyric basalts indicate that they crystallized over a rather broad range in fO2 (IW+0.2 to IW+2) and from basaltic magmas with a range of incompatible element enrichments. These data indicate that correlations among these geochemical parameters are

  10. Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily

    Science.gov (United States)

    Mahood, Gail A.; Baker, Don R.

    1986-06-01

    Pantelleria, Italy, is a continental rift volcano consisting of alkalic basalt, trachyte, and pantellerite. At 1 atm along the FMQ buffer, the least-evolved basalt (Mg #= 58.5% norm ne) yields olivine on the liquidus at ˜1,180° C, followed by plagioclase, then by clinopyroxene, and by titanomagnetite and ilmenite at ˜ 1,075°. After ˜70% crystallization, the residual liquid at ˜1,025° is still basaltic and also contains apatite and possibly kaersutite. A less alkalic basalt shows the same order of phase appearance. Glass compositions define an Fe-enrichment trend and a density maximum for anhydrous liquids that coincides with a minimum in Mg#. During the initial stages of crystallization at 1 atm, liquids remain near the critical plane of silica-undersaturation until, at lower temperatures, Fe-Ti oxide precipitation drives the composition toward silica saturation. Thus the qtz-normative trachytes and pantellerites typically associated with mildly ne-normative basalts in continental rifts could be produced by low-pressure fractional crystallization or by shallow-level partial melting of alkali gabbro. At 8 kbar, clinopyroxene is the liquidus phase at ˜1,170° C, followed by both olivine and plagioclase at ˜1,135°. Because clinopyroxene dominates the crystallizing assemblage and plagioclase is more albitic than at 1 atm, liquids at 8 kbar are driven toward increasingly ne-normative compositions, suggesting that higher-pressure fractionation favors production of phonolitic derivatives. Natural basaltic samples at Pantelleria are aphyric or contain 1 10% phenocrysts of plag≥ ol≥cpx or ol>cpx, with groundmass Fe-Ti oxides and apatite. The lack of phenocrystic plagioclase in two of the lavas suggests that crystallization at slightly higher PH2O may have destabilized plagioclase relative to the 1-atm results, but there is no preserved evidence for significant fractionation at mantle depths as clinopyroxene is the least abundant phenocryst phase in all samples

  11. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks

    Science.gov (United States)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike

    2017-04-01

    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.

  12. Characterization of fibers as rockwool for insulation obtained from canary islands basalts

    Directory of Open Access Journals (Sweden)

    Cáceres, J. M.

    1996-06-01

    Full Text Available Glass fibers in the shape of wool were obtained at laboratory scale from three samples of basaltic rocks from the Tenerife Island. The rockwool is widely used as thermal and acoustical insulation. The ability of these rocks to be fiberized was studied by means of the viscosity curves and can be quite improved by adding calcium and magnesium. The experimental fibers obtained from the rocks directly or mixed with either CaCO3 or CaMg(CO32 ye characterized in terms of chemical composition, microstructure and thermal and mechanical properties. These properties were compared with the ones determined for four commercial samples of rockcwool, founding that they are very close. This gives good prospects to these fibers from Canarian basalts as insulation material.

    Se ha obtenido fibra de vidrio en forma de lana, a escala de laboratorio, a partir de tres muestras de rocas basálticas de la Isla de Tenerife. La lana de roca se emplea extensamente como aislamiento térmico y acústico. La aptitud de estas rocas para su fibrado, estudiada mediante las curvas de viscosidad, mejora considerablemente con la adición de calcio y magnesio. Las fibras experimentales, obtenidas tanto a partir de las rocas directamente, como mezcladas en diferentes proporciones con CaCO3 o CaMg(CO32, se han caracterizado en lo referente a la composición química, la microestructura y propiedades térmicas y mecánicas. Así mismo, se han comparado estas propiedades con las determinadas para cuatro muestras comerciales de lana de roca, permitiendo comprobar que son bastante semejantes, lo que hace prever unas buenas cualidades para estas fibras de basaltos canarios en aplicaciones de aislamiento térmico y acústico.

  13. Petrology of offshore basalts of Bombay harbour area, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    Recent marine geological and geophysical surveys indicate that the Deccan Traps extend to the offshore area of Bombay. Cores from bore holes in Deccan Traps collected from Bombay Harbour have been classified as basalts, olivine basalts, spilitic...

  14. Discerning Primary and Secondary Processes in the Volatile Geochemistry of Submarine Basalts

    Science.gov (United States)

    Hauri, E. H.

    2012-12-01

    Defining the primary volatile composition of submarine basalts from mid-ocean ridges, back-arc basins and arc-front volcanoes is key to understanding volatile cycling and the influence of volatiles on melting in the upper mantle. The volatile and halogen geochemistry of submarine volcanic glasses and melt inclusions has been the subject of an increasing number of studies that have made progress in distinguishing between secondary seawater contamination of magmas, and true melting and mantle-source variations, thus enabling observed magma compositions to be used to study the time-integrated cycling of volatiles through the upper mantle. But fewer studies have examined in detail the local-and segment-scale variations of volatiles together with trace elements and radiogenic isotopes, so that it can be understood how and where in the oceanic crust submarine magmas are contaminated by seawater-derived components. Mid-ocean ridge basalts (MORB) are significantly affected by secondary seawater assimilation processes due to their low volatile contents. From combined CO2-H2O-Cl systematics, it is apparent that addition of seawater-derived components is enhanced in magmas that ascend more slowly through the crust, and/or erupt away from the ridge axis. Highly depleted magmas that erupt in extensional zones within transform faults (e.g. Siqueiros) show little evidence for seawater addition, due to the near absence of thick crust and hydrothermal systems in such environments. At the same time, there also exists a second tier of more subtle seawater addition that is evident as a function of the extent of differentiation in MORB, pointing to combined assimilation and fractional crystallization as an important process operating in MORB petrogeneis. In detail the geochemistry of the assimilants can vary substantially from simple seawater compositions. Discerning seawater contamination in arc and back-arc magmas is more difficult, not only because of higher volatile concentrations

  15. Extreme incompatibility of helium during mantle melting: Evidence from undegassed mid-ocean ridge basalts

    Science.gov (United States)

    Graham, David W.; Michael, Peter J.; Shea, Thomas

    2016-11-01

    We report total helium concentrations (vesicles + glass) for a suite of thirteen ultradepleted mid-ocean ridge basalts (UD-MORBs) that were previously studied for volatile contents (CO2, H2O) plus major and trace elements. The selected basalts are undersaturated in CO2 + H2O at their depths of eruption and represent rare cases of undegassed MORBs. Sample localities from the Atlantic (2), Indian (1) and Pacific (7) Oceans collectively show excellent linear correlations (r2 = 0.75- 0.92) between the concentrations of helium and the highly incompatible elements C, K, Rb, Ba, Nb, Th and U. Three basalts from Gakkel Ridge in the Arctic were also studied but show anomalous behavior marked by excess lithophile trace element abundances. In the Atlantic-Pacific-Indian suite, incompatible element concentrations vary by factors of 3-4.3, while helium concentration varies by a factor of 13. The strong correlations between the concentrations of helium and incompatible elements are explained by helium behavior as the most incompatible element during mantle melting. Partial melting of an ultradepleted mantle source, formed as a residue of earlier melt extraction, accounts for the observed concentrations. The earlier melting event involved removal of a small degree melt (∼1%) at low but non-zero porosity (0.01-0.5%), leading to a small amount of melt retention that strongly leveraged the incompatible element budget of the ultradepleted mantle source. Equilibrium melting models that produce the range of trace element and helium concentrations from this source require a bulk solid/melt distribution coefficient for helium that is lower than that for other incompatible elements by about a factor of ten. Alternatively, the bulk solid/melt distribution coefficient for helium could be similar to or even larger than that for other incompatible elements, but the much larger diffusivity of helium in peridotite leads to its more effective incompatibility and efficient extraction from a

  16. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  17. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  18. Fertilization of the Neoproterozoic ocean by phosphorus from flood basalts

    Science.gov (United States)

    Horton, F.

    2016-12-01

    The weathering of voluminous large igneous provinces (LIPs) fertilized the Neoproterozoic ocean with the biolimiting nutrient phosphorus (P). The consequent increase in primary productivity contributed to profound climatic and biologic developments, including ocean-atmosphere oxygenation, global glaciations, and rapid biologic diversification. Flood basalt volcanism began at 850 Ma as the supercontinent Rodinia began to break apart and culminated with the massive Franklin LIP at 720 Ma. Prior to eruption, LIP magmas became variably enriched in P during liquid-crystal fractionation and by entraining metasomatized parts of the lithosphere. The mafic dike swarms through which the magmas erupted cover 3.7 × 106 km2, or 4% of the Neoproterozoic land surface. The flood basalts (now largely eroded) may have covered twice that area. Assuming chemical weathering liberated much of the P contained in these basalts, a bioavailable LIP-derived P flux of 1-5 × 109 mol/yr may have been sustained for millions of years, increasing the global flux of dissolved P to the ocean by a factor of two or more. This fertilization would have increased the burial of organic carbon and therefore the rate of O2 production in the ocean. Meanwhile, the removal of CO2 from the ocean-atmosphere system by basalt weathering and photosynthesis may have triggered the Sturtian glaciation. These tectonically driven events set the stage for the development of complex multicellular life.

  19. Vesicularity and CO2 in mid-ocean ridge basalt

    Science.gov (United States)

    Moore, J.G.

    1979-01-01

    Vesicles and included CO2are enriched in deep-sea basalts that are also enriched in light rare earth and incompatible elements. This enrichment probably results from a unique deep mantle origin of such melts but may have been modified by CO2 bubbles rising in shallow magma chambers. ?? 1979 Nature Publishing Group.

  20. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels

    2008-01-01

    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  1. geochemistry of the potassic basalts from the bufumbira volcanic

    African Journals Online (AJOL)

    Mgina

    ABSTRACT. Bufumbira volcanic field is the southernmost of the four Ugandan small Pleistocene to Recent volcanic fields within the western branch of the East African rift system. The rocks consist of silica undersaturated and vesicular basalts with numerous primary structures. The rocks consist of basanites, leucitites ...

  2. Basalt Waste Isolation Project. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This project is aimed at examining the feasibility and providing the technology to design and construct a radwaste repository in basalt formations beneath and within the Hanford Site. The project is divided into seven areas: systems integration, geosciences, hydrologic studies, engineered barriers, near-surface test facility, engineering testing, and repository engineering. This annual report summarizes key investigations in these seven areas. (DLC)

  3. Petrography and chemistry of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    interior through a variolitic zone. The silica-alkalies relation show these basalts to be of sub-alkaline nature. Variable normative compositions and Mg number, increase in alkali index, differences in Al2O3/CaO and FeO/MgO ratios, variable trace element...

  4. Flame-resistant pure and hybrid woven fabrics from basalt

    Science.gov (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  5. Geochemistry of ultramafic xenoliths in Cenozoic alkali basalts from ...

    Indian Academy of Sciences (India)

    Twelve ultramafic xenoliths in Cenozoic alkali basalts from Jiangsu province, eastern China have been analyzed for major, trace, Sr–Nd isotopic composition and mineral chemical compositions and the origin of these ultramafic xenoliths is discussed based on the geochemical constraints. Based on classification norms, the ...

  6. Alkali norite, troctolites, and VHK mare basalts from breccia 14304

    Science.gov (United States)

    Goodrich, C. A.; Taylor, G. J.; Keil, K.; Kallemeyn, G. W.; Warren, P. H.

    1986-01-01

    Six pristine rocks, two mare basalts, and four nonpristine highlands rocks were separated from breccia 14304 for consortium study. The pristine highlands rocks include representatives of the Mg troctolite-anorthosite and alkali suites of the Apollo 14 site. Two troctolite clasts have olivine and plagioclase compositions similar to one group of Apollo 14 troctolites and one also contains spinel. Incompatible element abundances in one are similar to those of 14305 troctolites, although the heavy rare earth elements pattern is distinct among Apollo 14 troctolites. Alkali lithologies include an alkali anorthosite and an alkali norite, the latter having a pristine igneous texture and resembling alkali gabbronites from Apollo 14 and 67975 in mineralogy and mineral compositions. It is suggested that Apollo 14 alkali lithologies and PO4-bearing Mg anorthosites formed from Mg-rich magmas that assimilated various amounts of material rich in P and REE. Another pristine clast from 14304 is an Mg-gabbronorite. The two mare basalt clasts are very high potassium basalts, whose parent magmas could have formed from a typical low-Ti, high-Al basaltic magmas by assimilation of K-rich material. Nonpristine 14304 clasts include melt-textured anorthosites and an augite-rich poikilitic melt rock.

  7. Heat resistance study of basalt fiber material via mechanical tests

    Science.gov (United States)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  8. Late Devonian and Triassic basalts from the southern continental ...

    Indian Academy of Sciences (India)

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced ...

  9. Nature and composition of interbedded marine basaltic pumice in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  10. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel

    2016-12-01

    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  11. Petrology of rift-related basalts at Bombay High waters, Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    .39% and FeO super(t) 11.79 to 15.5%. The iron enrichment and the low Mg numbers suggest derivation of these basalts from extensive fractional crystallisation. These basalts are compositionally similar to rift related basaltic rocks associated with the opening...

  12. High-Ti type N-MORB parentage of basalts from the south Andaman ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    and CaO/TiO2 ratios classify these basalts as high-Ti type basalt. On the basis of these ratios and many discriminant functions and diagrams, it is suggested that the studied basalts, associated with Andaman ophiolite suite, were derived from magma similar to N-MORB and emplaced in the mid-oceanic ridge tectonic setting.

  13. Depleted basaltic lavas from the proto-Iceland plume, Central East Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Baker, Joel A.

    2012-01-01

    New geochemical and isotopic data are presented for volumetrically minor, depleted low-Ti basalts that occur in the Plateau Basalt succession of central East Greenland (CEG), formed during the initial stages of opening of the North Atlantic at 55 Ma. The basalts have MORB-like geochemistry (e.g. ...

  14. Influence of microorganisms on the alteration of glasses; Influence des microorganismes sur l'alteration des verres

    Energy Technology Data Exchange (ETDEWEB)

    Besnainou, B.; Libert, M.F. [CEA Cadarache, 13 - Saint Paul lez Durance (France). Dept. d' Entreposage et de Stockage des Dechets

    1997-07-01

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  15. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    Science.gov (United States)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    glasses, mare basalts, to young lunar meteorites vary from 2600 to 4800 ppm for basalt equilibration with a pure FeS melt and from 1400 to 2600 ppm for basalt equilibration with a Fe-rich sulfide melt containing 30 wt.% Ni. The measured S contents in these proposed near-primary lunar magmas are lower than the predicted SCSS at the conditions of their last equilibration with the lunar mantle, indicating no sulfide retention in the lunar mantle source during partial melting. Sulfide exhaustion during partial melting in the lunar mantle also supports the notion that the bulk silicate moon is depleted in highly siderophile elements. Based on the measured S contents and the estimated degree of melting, the estimated S contents for the mantle source of A15 green glass and A15 mare basalts is 10-23 ppm; for A17 orange glass is 25-62 ppm, for A12 mare basalts is 27-92 ppm, and for A11 basalt is 35-120 ppm. Consideration of SCSS decrease due to the presence of Ni in the sulfide melt does not change these mantle S abundance estimates for <30 wt.% Ni in the sulfide. The inferred S contents suggest that the lunar mantle is heterogeneous in terms of S. Although variable among different groups, the inferred S abundance of up to 120 ppm in the lunar mantle falls near the lower end of the S content of the depleted terrestrial mantle such as the MORB source.

  16. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Steefel, C.; Brantley, S.L.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

  17. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  18. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction

    Science.gov (United States)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; Lü, Linsu; Han, Liu; Liu, Wei

    2017-02-01

    We report the finding of a ∼20 m thick sequence of massive pyroxene-plagioclase-phyric basalt lava flows in the Yanghe area of the northeastern Sichuan Basin, within the Yangtze craton of SW China, which were previously considered to be located outside the Emeishan flood basalt province. This basaltic sequence above the middle Permian Maokou Formation (Fm.) is overlain by the late Permian Longtan Fm. Thus, the Yanghe basalts should be stratigraphically correlated with the Emeishan flood basalts. The Yanghe basalts show typical oceanic island basalt (OIB) affinity, and geochemically resemble Emeishan basalts, especially in the case of high-Ti (HT) basalts from the eastern domain of the Emeishan flood basalt province. The rocks have low age-corrected (87Sr/86Sr)t (t = 260 Ma) ratios (0.704158-0.704929) and Pb isotopic ratios [206Pb/204Pb(t) (18.264-18.524), 207Pb/204Pb(t) (15.543-15.58), and 208Pb/204Pb(t) (38.147-38.519)], and positive εNd(t) values (+3.15 to +3.61), suggesting that the lavas have not undergone any significant crustal contamination. The crystallization temperature of clinopyroxene is estimated to be 1368-1420 °C, suggesting anomalously thermal inputs from a mantle source and a possible plume-head origin. The fractionation of middle rare earth elements (MREE) to heavy REE (HREE) suggests that these rocks were produced by small degrees of partial melting of mantle peridotite within the garnet-spinel transition region. The stratigraphic relationships and similar geochemical signatures with the Emeishan flood basalts suggest that the Yanghe basalts are part of the Emeishan flood basalt province and can be considered as the northeastern limit of the Emeishan flood basalt province. Our finding extends the diameter of the Emeishan flood basalt province to ∼1200-1400 km, covering an area of up to ∼7 × 105 km2, two times more than previously estimated. The larger areal extent and giant eruption volume, incorporating the Sichuan Basin, lend support

  19. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    Science.gov (United States)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  20. Continental Flood Basalt Chemistry, Age and Volcanic Volumes

    Science.gov (United States)

    Humler, E.; Doubre, C.; Doubre, C.

    2001-12-01

    We have compiled a large collection of published chemical analyses of the 11 known continental flood basalts of the last 250 millions years. Only basaltic lavas and some related basic intrusive rocks are considered to be representative of the major episodes. Differentiation trends exhibit varying amounts of scatter, the trends for SiO2, FeO, and TiO2 are quite well defined, have slopes of the same sign, and can be represented adaquately by straigth lines. In contrast, the trends of CaO, Al2O3 and Na2O are often poorly defined. There are clear differences in major element abundances between volcanic suites, particularly for elements with well defined slopes. The results of our regressions are generally consistent with those of Turner and Hawkesworth (1995), Peng et al (1994) and Lassister and DePaolo (1997), although some differences exist. Examination of the global data base shows that there are systematic global variations in continental flood basalt chemistry that correlate with age. Old CFB, such as the Central Atlantic and Karoo-Ferrar, show the following characteristics: low Na2O, TiO2 and FeO, high SiO2. In contrast, basalts associated with recent breakups such as Afar-Yemen and Ethiopia, show the opposite chemical trends. Between these old and young continental breakup, a continuum of compositions is observed. The observed chemical systematics suggest that basalts associated with old breakups are derived by larger extent of melting at shallower mean pressures of melt segregation. Estimating the original volumes of lava in flood basalt provinces is rendered difficult due to subsequent erosion, partial destruction during continental collisions or burial beneath passive margin sedimentation wedges. Many CFBs were erupted in geologically brief intervals (0.5 to 2 Ma) although some, notably the Siberian Traps and Brito-Arctic Province, were emplaced in two or more distinct phases separeted by quiescent intervals. Our calculated emplacement rate show correlation

  1. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  2. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  3. Lévi glass

    Science.gov (United States)

    Wiersma, D. S.

    2015-06-01

    Lévy glass is a new material which is obtained by assembly of scattering elements. The result is a bulk material which has different degrees of elasticity (from rigid as window glass to flexible as certain plastics) and which can be shaped into any desired form. In particular, Lévy glasses have special optical properties not present in other materials. The name Lévy glass is based on the fact that under certain conditions light waves perform a Lévy walk inside these materials and the resulting optical transport is superdiffusive. From a structural point of view a Lévy glass is a random fractal. We will review the optical and structural properties of Lévy glasses, their design criteria, as well as their experimental realization. Also we will go into various fundamental aspects of Lévy-type light transport, discussing both superdiffusion as well as interference effects like weak and strong localization.

  4. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: wooawt@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  5. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  6. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  7. Continental flood basalts derived from the hydrous mantle transition zone.

    Science.gov (United States)

    Wang, Xuan-Ce; Wilde, Simon A; Li, Qiu-Li; Yang, Ya-Nan

    2015-07-14

    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts.

  8. The solubility of olivine in basaltic liquids - An ionic model

    Science.gov (United States)

    Herzberg, C. T.

    1979-01-01

    A model is presented which enables the temperature at which olivine is in equilibrium with any alkali-depleted basaltic compound to be calculated to within + or - 30 C. It is noted that the error increases substantially when applied to terrestrial basalts which contain several weight percent alkalis. In addition the model predicts and quantifies the reduced activity of SiO4(4-) monomers due to increasing SiO2 concentrations in the melt. It is shown that the coordination of alumina in melts which precipitate olivine only appears to be dominantly octahedral, while titanium acts as a polmerizing agent by interconnecting previously isolated SiO4(4-) monomers. It is concluded that the model is sufficiently sensitive to show that there are small repulsive forces between Mg(2+) and calcium ions which are in association with normative diopside in the melt.

  9. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  10. Dissolved amino acids in oceanic basaltic basement fluids

    Science.gov (United States)

    Lin, Huei-Ting; Amend, Jan P.; LaRowe, Douglas E.; Bingham, Jon-Paul; Cowen, James P.

    2015-09-01

    The oceanic basaltic basement contains the largest aquifer on Earth and potentially plays an important role in the global carbon cycle as a net sink for dissolved organic carbon (DOC). However, few details of the organic matter cycling in the subsurface are known because great water depths and thick sediments typically hinder direct access to this environment. In an effort to examine the role of water-rock-microorganism interaction on organic matter cycling in the oceanic basaltic crust, basement fluid samples collected from three borehole observatories installed on the eastern flank of the Juan de Fuca Ridge were analyzed for dissolved amino acids. Our data show that dissolved free amino acids (1-13 nM) and dissolved hydrolyzable amino acids (43-89 nM) are present in the basement. The amino acid concentrations in the ridge-flank basement fluids are at the low end of all submarine hydrothermal fluids reported in the literature and are similar to those in deep seawater. Amino acids in recharging deep seawater, in situ amino acid production, and diffusional input from overlying sediments are potential sources of amino acids in the basement fluids. Thermodynamic modeling shows that amino acid synthesis in the basement can be sustained by energy supplied from inorganic substrates via chemolithotrophic metabolisms. Furthermore, an analysis of amino acid concentrations and compositions in basement fluids support the notion that heterotrophic activity is ongoing. Similarly, the enrichment of acidic amino acids and depletion of hydrophobic ones relative to sedimentary particulate organic matter suggests that surface sorption and desorption also alters amino acids in the basaltic basement. In summary, although the oceanic basement aquifer is a net sink for deep seawater DOC, similar amino acid concentrations in basement aquifer and deep seawater suggest that DOC is preferentially removed in the basement over dissolved amino acids. Our data also suggest that organic carbon

  11. The flexural stiffness and tension state of basalt filter

    Directory of Open Access Journals (Sweden)

    Khalmuradovich Sattarov Laziz

    2017-03-01

    Full Text Available In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.

  12. Investigation of Basalt Woven Fabrics for Military Applications

    Science.gov (United States)

    2011-11-01

    Fibres Fire Blocking Textiles , Basaltex R&D Department, Masureel Group, Wevelgem, Belgium, TUT N 49–3rd Quarter 2003. 3. Swink, M. Continuous Filament...Along with the 2 obvious uses as toughening and insulation material, it is claimed that the fibers are naturally resistant to ultraviolet (UV) and...always increase production cost. Since natural basalt already contains these ingredients, these steps are eliminated from the manufacturing process

  13. Oxidation state of iron in plagioclase from lunar basalts.

    Science.gov (United States)

    Hafner, S. S.; Virgo, D.; Warburton, D.

    1971-01-01

    Determination of the oxidation state of iron in the plagioclase from the coarse-grained basalts 10044 and 12021, using Mossbauer spectroscopy. The location of iron in the crystal structure was also investigated. The spectra show that iron is in the high-spin ferrous state, and they located at least two distinct positions with different coordination numbers. Some excess resonant absorption is probably due to Fe(3+), although the Fe(3+) doublet could not be positively resolved.

  14. The flexural stiffness and tension state of basalt filter

    Science.gov (United States)

    Khalmuradovich, Sattarov Laziz; Ahmedovich, Kurbanov Abdirahim

    2017-03-01

    In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration) from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.

  15. The Columbia River flood basalt province: Current status

    Science.gov (United States)

    Hooper, Peter R.

    The Columbia River flood basalt province is smaller by an order of magnitude than the Deccan, Karoo, Paraná, and Siberian continental flood basalt provinces. Its smaller size, relative youth (17-6 Ma), excellent exposure, and easy accessibility have allowed development of a flow-by-flow stratigraphy in which many flows can be traced across the Columbia Plateau, often linked directly to their strongly oriented feeder dikes in the southeast quadrant. The detailed stratigraphy provides a precise record of the changes in magma composition and volume with time and demonstrates more clearly here than in other provinces that single fissure eruptions had volumes in excess of 2,000 km3 and flowed across the plateau for distances up to 600 km with negligible changes in chemical or mineralogical composition. Current evidence suggests that the Columbia River flood basalts resulted from impingement of a small mantle plume, the Yellowstone hotspot, on the base of the lithosphere near the Nevada-Oregon-Idaho border at 16.5 Ma and that the main focus of eruption then moved rapidly north to the Washington-Oregon-Idaho border from where the main eruptions occurred. The rapid northerly translation of the main eruptive activity may have been controlled by weakened or thinned zones in the lithosphere. The few earliest flows have typical mantle plume compositions and the last, small-volume flows are contaminated by continental crust. In between, the great majority of flows carry a strong lithospheric signature, the source of which remains controversial—either an enriched continental lithospheric mantle or assimilated continental crust. The physical nature and rate of magma eruption are also controversial. Recent work suggests flows grew by internal injection rather than by turbulent surface flow and this has been used to imply significantly lower eruption rates than previously envisaged. However, the chemical and mineralogical homogeneity of single Columbia River basalt flows across

  16. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States); Lal, Vivek; Darlington, Ramona [Battelle, 505 King Ave., Columbus, OH 43201 (United States)

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  17. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    Science.gov (United States)

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  18. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

  19. The consanguinity of the oldest Apollo 11 mare basalts

    Science.gov (United States)

    Gamble, R. P.; Coish, R. A.; Taylor, L. A.

    1978-01-01

    The textural, mineralogical, and chemical relationships between three of the oldest dates lunar mare basalt samples returned by Apollo 11 (10003, 10029 and 10062) were investigated. Very strong resemblances were noted between the modal minerologies of 10003 and 10029. Significantly more modal olivine and cristobalite was observed in 10062 than in the other basalt samples. A detailed examination of mineral-chemical relationships among the samples revealed similarities between 10003 and 10062 and differences between these two rocks and 10029, the most significant of which is the presence of akaganeite in 10029, implying that lawrencite was present in the pristine sample of 10029 but not in 10003 and 10062. Results of a Wright-Doherty mixing program used to test various fractional crystallization schemes show that 10062 can be derived from a liquid with the composition of either 10003 or 10029 by removing 2-5% ilmenite and 5% olivine. By removing about 6% plagioclase, 10003 can be derived from a liquid with the bulk composition of 10062. It is concluded that 10003 and 10029 may have come from different basaltic flows, whereas it is possible that 10003 and 10062 were derived from the same parental magma by near-surface fractionation of olivine plus ilmenite or of plagioclase plus or minus olivine.

  20. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  1. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    Science.gov (United States)

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  2. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  3. Dramatic Stained Glass.

    Science.gov (United States)

    Prater, Michael

    2002-01-01

    Describes an art project that is appropriate for students in fifth through twelfth grade in which they create Gothic-style stained-glass windows. Discusses how college students majoring in elementary education created stained-glass windows. Addresses how to adapt this lesson for younger students. (CMK)

  4. Assessing eruption column height in ancient flood basalt eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  5. On the potential for CO2 mineral storage in continental flood basalts - PHREEQC batch- and 1D diffusion-reaction simulations.

    Science.gov (United States)

    Van Pham, Thi Hai; Aagaard, Per; Hellevang, Helge

    2012-06-14

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar.Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 - 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.

  6. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Directory of Open Access Journals (Sweden)

    Van Pham Thi

    2012-06-01

    Full Text Available Abstract Continental flood basalts (CFB are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass and the local equilibrium assumption for secondary phases (weathering products. The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C, magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present

  7. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Science.gov (United States)

    2012-01-01

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt

  8. Extrinsic controls on inter-basaltic plant ecosystems in the Columbia River Flood Basalt Province, Washington State, USA

    Science.gov (United States)

    Ebinghaus, Alena; Jolley, David W.; Hartley, Adrian J.

    2015-04-01

    The impact Large Igneous Province (LIP) volcanism may have had on paleoclimate, fauna and flora is still controversy. Inter-lava field plant ecosystems have the potential to record in detail the effects LIPs had on the environment in the immediate vicinity of volcanic activity. The Miocene Columbia River Flood Basalt Province (CRBP), Washington State, USA, provides excellent exposure of an entire LIP stratigraphy and offers a detailed record of inter-basaltic plant ecosystems throughout LIP evolution. The CRBP lava field comprise numerous basaltic lava flows that are intercalated with fluvial and lacustrine sediments which formed during phases of volcanic quiescence. The LIP volcanic evolution is characterised by an initial phase of high eruption volumes and eruptions rates, which is followed by waning volcanism associated with longer interbed intervals. Inter-lava field plant ecosystems are expected to correlate with phases of volcanic evolution: short interbed intervals should be dominated by early seral succession, while longer intervals should record more mature seral successions. The palynological record of the sedimentary interbeds however indicates a decline in successional status within the long interbed intervals of CRBP stratigraphy. An integrated analysis of sedimentary facies and geochemistry suggests intense volcanic ash fall derived from the adjacent Yellowstone hot spot as a major trigger for repetitive successional re-setting. This implies that inter-lava field ecosystem maturity was controlled by extrinsic forcing, and argues against environmental changes solely driven by LIPs of similar scale and magnitude to that of the CRBP.

  9. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  10. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  11. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  12. Geochemical characteristics of the Jos-Plateau Basalts, North ...

    African Journals Online (AJOL)

    phenocrysts of both olivine, plagioclase (bytwonite-labradorite) and rarely pyroxene (diopside-augite) set in a groundmass of labradorite laths, magnetite, ilmenite, biotite, minor k-feldpars, nepheline and volcanic glass. Geochemical data show ...

  13. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  14. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between...

  15. Oxynitride glasses: a review

    Directory of Open Access Journals (Sweden)

    Àngel R. Garcia

    2016-11-01

    Full Text Available Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume.

  16. Oxynitride glasses: a review

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.R.; Clausell, C.; Barba, A.

    2016-07-01

    Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume. (Author)

  17. A Picture behind Glass

    Directory of Open Access Journals (Sweden)

    Poprzęcka, Maria

    2010-04-01

    Full Text Available The paper considers the singular situation of reception occasioned by a painting shielded with a reflective pane of glass. The reflections in the glass dramatically break the cohesion of the painting and bring about distracting – although sometimes intriguing – surprises. The glass is an iconoclastic intrusion, an infection of the artistic order by an invading disorder and transient immediacy, which however can be very attractive visually. The accidental obliterates the significant. "The truth of art" is confronted here with a delusive phantom. Not only two entirely different visual effects are mixed here, but also different ontological and axiological spheres.

  18. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  19. Apollo 17 high-Ti mare basalts - New bulk compositional data, magma types, and petrogenesis

    Science.gov (United States)

    Warner, R. D.; Taylor, G. J.; Conrad, G. H.; Northrop, H. R.; Barker, S.; Keil, K.; Ma, M.-S.; Schmitt, R.

    1979-01-01

    Bulk compositional and mineral chemical data for 28 previously unanalyzed samples support the classification of Apollo-17 high-Ti mare basalts into three-types (A, B, and C), defined on the basis of analyses of fine-grained basalts. The most MgO- and TiO2-rich fine-grained basalts of these types appear to be the best choices for representing the compositions of the parent magmas.

  20. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  1. Basalt weathering in an Arctic Mars-analog site

    Science.gov (United States)

    Yesavage, Tiffany; Thompson, Aaron; Hausrath, Elisabeth M.; Brantley, Susan L.

    2015-07-01

    The martian surface has undergone chemical and physical weathering in the past, and these processes may continue intermittently today. To explore whether martian rocks are likely to retain features indicative of weathering, we investigated how basaltic material weathers on Earth. Specifically, we investigated weathering of a Quaternary-aged basaltic flow at the Sverrefjell volcano in Svalbard, above the Arctic Circle. This flow weathered since deglaciation under cold, dry (allophane as the predominant secondary phase. Selective chemical extractions targeting SRO phases indicated lower Al/Si ratios than those observed in volcanic soils reported in warmer localities, which we attribute to Si-rich allophane and/or abundant Si-rich rock coatings. The oxic circumneutral-pH colloidal dispersion experiments mobilized Al, Fe and Ti primarily as 260-415 nm particles and Ca, Mg and Na as solutes. Si was lost both in the colloidal and dissolved forms. Dispersed colloids likely contain allophane and ferrihydrite. Under anoxic conditions, dissolution of Fe oxide cements also released fines. The experiments help to explain elemental loss from the clay-sized regolith fraction at Svalbard: observed depletions in Ca, K, Mg and Na were likely due to solute loss, while particle-reactive Al, Fe, Si and Ti were mostly retained. Wetting/drying was observed to be as effective as freeze/thaw in driving material loss. It is thus possible that cyclic adsorption of water onto basaltic rocks in this dry climate may result in high physical spalling rates that in turn promote chemical leaching. Many observations at Sverrefjell are similar to inferences from Mars: the presence of SRO phases, Si-rich coatings, and/or Si-rich allophane, as well as the persistence of olivine. Given these similarities, it is inferred that Sverrefjell volcano is a good analog for martian weathering and that other processes operating at Sverrefjell may also have occurred on Mars, including Na leaching, surface

  2. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  3. Genetic aspects of basalts from the Carlsberg Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    . Table 1. Average composition of basalts of this study and prev i ous analyses from CR and CIR Wt% A B C SiO 2 50.8 49.14 48.17 TiO 2 1.29 1.65 1.63 Al 2 O 3 15.30 16.22 16.22 Fe 2... and Matthew 2 on the origin of seafloor magnetic anomalies. The CR was so named by Farquar h son 3 whose cruise was sponsored by the famous Carlsberg beer co m- pany. During the Swedish expedition, petrological studies on CR rocks were carried out 4...

  4. Geology of the Sabie River Basalt Formation in the Southern Kruger National Park

    Directory of Open Access Journals (Sweden)

    R.J. Sweeney

    1986-12-01

    Full Text Available The Sabie River Basalt Formation (SRBF in the central Lebombo is a virtually continuous sequence of basaltic lavas some 2 500 m thick that was erupted 200 - 179 Ma ago. Flows are dominantly pahoehoe in character and vary from 2 m to 20 m in thickness. Dolerite dykes cross-cutting the basalt sequence probably represent feeders to this considerable volcanic event. Volcanological features observed within the SRBF are described. Two chemically distinct basaltic magma types are recognised, the simultaneous eruption of which presents an intriguing geochemical problem as to their origins.

  5. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    Science.gov (United States)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  6. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr [University of Tartu, Institute of Physics (Estonia); Biland, Alex [HHK Technologies, Houston (United States); Tkaczyk, Alan Henry, E-mail: alan@ut.ee [University of Tartu, Institute of Physics (Estonia)

    2015-04-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications.

  7. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    Science.gov (United States)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  8. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bennecke, William M. [Boise State Univ., ID (United States)

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  9. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  10. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  11. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  12. Thermal Kinetics of Glass Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, Louis R.; Du, Jincheng

    2005-08-01

    Different glass quenching algorithms are used to create simulated silica glass and their effect on the final glass structure is determined. The most distinct changes are seen to occur in the medium-range structure, specifically in the population of the different ring sizes. Some differences in the number of defects formed are also observed. The implications are that modified glass forming algorithms create glasses that are at least as good as traditional simulated glass forming methods. The objective of using modified glass forming algorithms are to understand quenching rates of simulations in comparison to quenching rates of macroscopic real systems.

  13. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  14. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  15. Basalts dredged from the Amirante ridge, western Indian ocean

    Science.gov (United States)

    Fisher, R.L.; Engel, C.G.; Hilde, T.W.C.

    1968-01-01

    Oceanic tholeiitic basalts were dredged from 2500 to 3000 m depth on each flank of the Amirante Ridge, 1200 km southeast of Somalia in the western Indian Ocean, by R.V. Argo in 1964. One sample, probably shed from a flow or dike in basement beneath the coralline cap, gave a wholerock KAr age of 82??16??106 years. The age is similar to those reported by others for agglomerate from Providence Reef, nearer Madagascar, and for gabbro from Chain Ridge, the southwest member of Owen Fracture Zone, nearer the Somali coast. The Amirante Cretaceous-Early Tertiary occurrence lies between the "continental" 650 ?? 106 years granites of Seychelles Archipelago and the large Precambrian "continental" block of Madagascar. Trends of major structures and distribution of the related topographic and magnetic-anomaly lineations in 7-8 ?? 106 km2of the surrounding Indian Ocean suggest that in addition to spreading of the seafloor from the seismically-active Mid-Indian Ocean Ridge-Carlsberg Ridge complex there has been, since mid-Mesozoic time, distributed left-lateral shear along 52??-54??E that has moved Madagascar at least 700 km south relative to Seychelles Bank. Measurements by other indicate the absolute movement of Madagascar has been southward as well. The emplacement of oceanic tholeiitic basalts at shallow depth, the development of volcanic topography between the sedimented Somali and Mascarene basins, and the existence of the faulted Amirante Trench and Ridge are consequences of the displacement. ?? 1968.

  16. Flow mechanism and viscosity in basaltic magma chambers

    Science.gov (United States)

    Nicolas, A.; Ildefonse, B.

    Magmatic flow in the dense suspension of crystallizing gabbros below the free surface of basaltic magma chambers is considered from the point of view of flow mechanisms and rheology. Hyperdense suspensions (˜20% melt fraction) may arise if flat plagioclase crystals develop a strong preferred orientation induced by magmatic flow. With the help of Nomarski differential interference contrast and back scattered electron figures, we show that suspension flow is possible even for smaller melt fractions if impingements between moving crystals are reduced by chemical dissolution at their contact points. This dissolution process is rate controlling. With strain rates near 10-9 s-1 and viscosities near 1014-16 Pa.s, such crystalline mushes should be closer to plastically deforming solids than to the overlying basaltic suspension. If we characterize magma chambers by suspension flow, no matter how small the melt fraction, magma chambers below oceanic fast spreading centers should not be restricted to a perched melt lens, but should extend to the Moho and comprise the entire volume of observed strong seismic attenuation.

  17. Fungal colonies in open fractures of subseafloor basalt

    Science.gov (United States)

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Belivanova, Veneta; Marone, Federica

    2013-08-01

    The deep subseafloor crust is one of the few great frontiers of unknown biology on Earth and, still today, the notion of the deep biosphere is commonly based on the fossil record. Interpretation of palaeobiological information is thus central in the exploration of this hidden biosphere and, for each new discovery, criteria used to establish biogenicity are challenged and need careful consideration. In this paper networks of fossilized filamentous structures are for the first time described in open fractures of subseafloor basalts collected at the Emperor Seamounts, Pacific Ocean. These structures have been investigated with optical microscopy, environmental scanning electron microscope, energy dispersive spectrometer, X-ray powder diffraction as well as synchrotron-radiation X-ray tomographic microscopy, and interpreted as fossilized fungal mycelia. Morphological features such as hyphae, yeast-like growth and sclerotia were observed. The fossilized fungi are mineralized by montmorillonite, a process that probably began while the fungi were alive. It seems plausible that the fungi produced mucilaginous polysaccharides and/or extracellular polymeric substances that attracted minerals or clay particles, resulting in complete fossilization by montmorillonite. The findings are in agreement with previous observations of fossilized fungi in subseafloor basalts and establish fungi as regular inhabitants of such settings. They further show that fossilized microorganisms are not restricted to pore spaces filled by secondary mineralizations but can be found in open pore spaces as well. This challenges standard protocols for establishing biogenicity and calls for extra care in data interpretation.

  18. Basaltic Magmatism: The Dominant Factor in the Petrologic and Tectonic Evolution of the Earth

    Science.gov (United States)

    Lowman, Paul D., Jr.

    2003-01-01

    Silicate bodies such as the Moon, Mars, probably Mercury, and possibly Venus, appear to have evolved in three main stages: a first (felsic) differentiation, a late heavy bombardment, and a second (basaltic) differentiation. It has been proposed that the Earth underwent a similar sequence. This paper argues that the second differentiation, basaltic magmatism, has dominated the petrologic and tectonic evolution of the Earth for four billion years. A global andesitic crust, formed during and after accretion of the planet, was disrupted by major impacts that triggered mantle upwelling and sea-floor spreading about 4 billion years ago. The oceanic crust collectively has since been formed by basaltic volcanism, from spreading centers and mantle plumes. However, the continental crust has also been greatly affected. Basaltic underplating has promoted anatexis and diapiric intrusion of granitoids in granite-greenstone terrains, as well as providing heat for regional metamorphism. Basaltic intrusions, such as the Nipissing diabase of the Sudbury area, have added to the thickness of continental crust. Satellite magnetic surveys suggest that there are more such basaltic intrusions than previously realized; examples include the Bangui anomaly of central Africa and the Kentucky anomaly. Basaltic overplating from mafic dike swarms has repeatedly flooded continents; had it not been for erosion, they would be covered with basalt as Venus is today. The tectonic effects of basaltic volcanism on continents have only recently been realized. The World Stress Map project has discovered that continents are under horizontal compressive stress, caused by push from mid-ocean ridges, i.e., by basaltic volcanism. The stress fields are generally uniform over large intraplate areas, and could contribute to intraplate tectonism. Seafloor spreading has demonstrably been effective for at least 200 million years, and ridge push thus a contributor to tectonic activity for that long. Collectively, the

  19. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  20. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  1. Discovery of Naturally Etched Fission Tracks and Alpha-Recoil Tracks in Submarine Glasses: Reevaluation of a Putative Biosignature for Earth and Mars

    Directory of Open Access Journals (Sweden)

    Jason E. French

    2016-01-01

    Full Text Available Over the last two decades, conspicuously “biogenic-looking” corrosion microtextures have been found to occur globally within volcanic glass of the in situ oceanic crust, ophiolites, and greenstone belts dating back to ~3.5 Ga. These so-called “tubular” and “granular” microtextures are widely interpreted to represent bona fide microbial trace fossils; however, possible nonbiological origins for these complex alteration microtextures have yet to be explored. Here, we reevaluate the origin of these enigmatic microtextures from a strictly nonbiological standpoint, using a case study on submarine glasses from the western North Atlantic Ocean (DSDP 418A. By combining petrographic and SEM observations of corrosion microtextures at the glass-palagonite interface, considerations of the tectonic setting, measurement of U and Th concentrations of fresh basaltic glass by ICP-MS, and theoretical modelling of the present-day distribution of radiation damage in basaltic glass caused by radioactive decay of U and Th, we reinterpret these enigmatic microtextures as the end product of the preferential corrosion/dissolution of radiation damage (alpha-recoil tracks and fission tracks in the glass by seawater, possibly combined with pressure solution etch-tunnelling. Our findings have important implications for geomicrobiology, astrobiological exploration of Mars, and understanding of the long-term breakdown of nuclear waste glass.

  2. Reaction microtextures in entrapped xenoliths in alkali basalts from the Deccan large igneous province, India: Implications to the origin and evolution

    Science.gov (United States)

    Chattopadhaya, Soumi; Ghosh, Biswajit; Morishita, Tomoaki; Nandy, Sandip; Tamura, Akihiro; Bandyopadhyay, Debaditya

    2017-05-01

    The onset of the end-Mesozoic continental rift magmatism in the Deccan volcanic province (DVP), India is marked by alkali magmatism. Lithospheric fragments occurring as xenoliths/xenocrysts entrapped in alkaline basalts from the Kutch area of the DVP preserve reaction microtextures giving an insight into the processes linked to their origin. We interpret the flower texture, an aggregate of systematically arranged tiny diopside crystals, as a product of interactions between ghost quartz xenocrysts with alkaline silica-undersaturated melt. The mantle xenoliths, mostly represented by spinel lherzolites and wehrlites have been infiltrated by melt. The orthopyroxenes present at the margin of the xenoliths or in contact with infiltrated melt exhibit a coronal texture composed of olivine, clinopyroxene and glass around them. The compositions of cores of primary olivines at places retain mantle signatures, whereas, the margins are reequilibrated. Secondary olivines and clinopyroxenes at reaction coronas have a wide range of compositions. Primary clinopyroxenes and spinels in close vicinity to the orthopyroxene corona display a sieve texture defined by clear inclusion-free cores and a compositionally different spongy altered rim with worm-shaped or bubbly inclusions dominantly filled with glass. The rims are marked with higher Ca, Mg-lower Na, Al for clinopyroxenes and higher Ti, Cr-lower Mg, Al for spinels in comparison to their cores. The coronal texture around orthopyroxenes and spongy texture in clinopyroxenes and spinels in these xenoliths are interpreted to be genetically linked. The silicate glasses in the xenoliths show large compositional variations and they are much more siliceous and alkali-rich in comparison to the host basalts. The petrography and mineral chemistry suggest host magma-peridotite interaction during or after the entrainment of the xenoliths, corroborating well with the experimental findings.

  3. Rock magnetic effects induced in terrestrial basalt and diabase by >20 GPa experimental spherical shock waves

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S. M.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.; Khakhalova, E.; Strauss, B. E.; Lindquist, A. K.

    2015-12-01

    Understanding how shock waves generated during hypervelocity impacts affect the magnetic properties of rocks is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Following ref. [1], we conducted spherical shock experiments at the RFNC-VNIIFT (Snezhinsk, Russia) on (titano)magnetite-bearing basaltic lava flow and diabase dike samples from the Osler Volcanic Group of the 1.1 Ga North American Midcontinent Rift [2]. The experimental setup allows for rock magnetic and petrographic changes to be assessed for a range of shock pressures 20 GPa and above. Consistent with prior spherical shock experiments on the Saratov ordinary chondrite [1], both shocked samples exhibited concentric zonation: a central void space was surrounded by an inner layer of impact melt (Zone I, most shocked), a middle partially melted layer (Zone II), and an outer layer of unmelted rock with solid-state shock features (Zones III and IV, least shocked). These zones are petrographically different. Like Zone IV, Zone III is characterized by an intact texture, but the plagioclase grains have been transformed into diaplectic glass. Zones I-III acquired thermoremanent magnetization from shock heating. Zone IV may have undergone shock demagnetization of the pre-shock magnetization without substantial remagnetization. Shocked samples had higher coercivities than unshocked samples of the same rocks. Magnetic force and electron microscopy reveal fracturing of the Fe-Ti oxides, which likely contributes to the observed increase in coercivity in the shocked samples. Our spherical shock experiments build on prior work to show that shock at pressures greater than 20 GPa results in coercivity increase, shock demagnetization and thermal remagnetization. This work can guide future interpretations of the remanent magnetization and bulk magnetic properties of highly shocked materials from planetary surfaces. References: [1] Bezaeva N.S. et al. 2010. MAPS 45

  4. Basalt Waste Isolation Project. Quarterly report, July 1, 1980-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1980-11-01

    This report presents the technical progress for the Basalt Waste Isolation Project for the fourth quarter of fiscal year 1980. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration; geosciences; hydrology; engineered barriers; near-surface test facility; engineering testing; and repository studies. Summaries of major accomplishments for each of these areas are reported.

  5. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.; Zhou, Jizhong; Fisk, Martin R.; Giovannoni, Stephen J.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.

  6. Strength and Fractography of Glass Wool Fibres

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    strength. In spite of those advantages, GWFs show a certain degree of brittleness, which limits the mechanical performance of GWFs during both transportation and application. Therefore, a reduction in the brittleness of GWFs is an inevitable task for us. To do so, it is important to look into the fracture...... behaviour and its connection to the mechanical strength. Here we report a detailed study of fracture behaviour of GWFs by means of uniaxial tensile strength and SEM micrographs of fractured surfaces. The tensile strength data of GWFs are evaluated by Weibull statistics. The Weibull model does not take...... between fracture strength (sf) and mirror radius (r), i.e., sf = A*r, is confirmed for all the GWFs studied. The materials constant, A, (mirror constant) is found to be 2.4 ~ 2.7 MPam½ for basaltic wool and 2.0 MPam½ for E-glass wool, which is similar to the value reported in the literature for different...

  7. Microbial community diversity in seafloor basalt from the Arctic spreading ridges.

    Science.gov (United States)

    Lysnes, Kristine; Thorseth, Ingunn H; Steinsbu, Bjørn Olav; Øvreås, Lise; Torsvik, Terje; Pedersen, Rolf B

    2004-11-01

    Microbial communities inhabiting recent (Actinobacteria. The archaeal sequences were restricted to the marine Group 1: Crenarchaeota. Our results indicate that the basalt harbors a distinctive microbial community, as the majority of the sequences differed from those retrieved from the surrounding seawater as well as from sequences previously reported from seawater and deep-sea sediments. Most of the sequences did not match precisely any sequences in the database, indicating that the indigenous Arctic ridge basalt microbial community is yet uncharacterized. Results from enrichment cultures showed that autolithotrophic methanogens and iron reducing bacteria were present in the seafloor basalts. We suggest that microbial catalyzed cycling of iron may be important in low-temperature alteration of ocean crust basalt. The phylogenetic and physiological diversity of the seafloor basalt microorganisms differed from those previously reported from deep-sea hydrothermal systems.

  8. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Amuthakkannan Pandian

    2014-01-01

    Full Text Available The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.

  9. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  10. Geochemistry of the 1989-1990 eruption of redoubt volcano: Part II. Evidence from mineral and glass chemistry

    Science.gov (United States)

    Swanson, S.E.; Nye, C.J.; Miller, T.P.; Avery, V.F.

    1994-01-01

    Early stages (December 1989) of the 1989-1990 eruption of Redoubt Volcano produced two distinct lavas. Both lavas are high-silica andesites with a narrow range of bulk composition (58-64 wt.%) and similar mineralogies (phenocrysts of plagioclase, hornblende, augite, hypersthene and FeTi oxides in a groundmass of the same phases plus glass). The two lavas are distinguished by groundmass glass compositions, one is dacitic and the other rhyolitic. Sharp boundaries between the two glasses in compositionally banded pumices, lack of extensive coronas on hornblende phenocrysts, and seismic data suggest that a magma-mixing event immediately preceeded the eruption in December 1989. Textural disequilibrium in the phenocrysts suggests both magmas (dacitic and rhyolitic glasses) had a mixing history prior to their interaction and eruption in 1989. Sievey plagioclase and overgrowths of magnetite on ilmenite are textures that are at least consistent with magma mixing. The presence of two hornblende compositions (one a high-Al pargasitic hornblende and one a low-Al magnesiohornblende) in both the dacitic and rhyolitic groundmasses indicates a mixing event to yield these two amphibole populations prior to the magma mixing in December 1989. The pargasitic hornblende and the presence of Ca-rich overgrowths in the sievey zones of the plagioclase together indicate at least one component of this earlier mixing event was a mafic magma, either a basalt or a basaltic andesite. Eruptions in 1990 produced only andesite with a rhyolitic groundmass glass. Glass compositions in the 1990 andesite are identical to the rhyolitic glass in the 1989 andesite. Cognate xenoliths from the magma chamber (or conduit) are also found in the 1990 lavas. Magma mixing probably triggered the eruption in 1989. The eruption ended when this rather viscous (rhyolitic groundmass glass, magma capable of entraining sidewall xenoliths) magma stabalized within the conduit. ?? 1994.

  11. Glass strengthening and patterning methods

    Science.gov (United States)

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  12. New High Index Optical Glasses

    Science.gov (United States)

    Blair, Gerald E.; Greco, Edgar J.; DeJager, Donald; Wylot, James M.

    1982-02-01

    The pioneering work of Charles W. Frederick and George W. Morey on the design by Frederick of an "ideal photographic lens" using hypothetical glasses, and the subsequent discovery and development of rare-element borate glasses by Morey, has been resumed at Eastman Kodak. New ultra-high index, low dispersion crown glasses and companion flint glasses have been developed, based on the needs dictated by lens design studies for novel fast cine' and still camera lenses. These new glasses reduce the number of elements required in a lens while maintaining or improving lens performance. Composition studies leading to these new glasses will be discussed.

  13. Bio-Glasses An Introduction

    CERN Document Server

    Jones, Julian

    2012-01-01

    This new work is dedicated to glasses and their variants which can be used as biomaterials to repair diseased and damaged tissues. Bio-glasses are superior to other biomaterials in many applications, such as healing bone by signaling stem cells to become bone cells.   Key features:  First book on biomaterials to focus on bio-glassesEdited by a leading authority on bio-glasses trained by one of its inventors, Dr Larry HenchSupported by the International Commission on Glass (ICG)Authored by members of the ICG Biomedical Glass Committee, with the goal of creating a seamless textb

  14. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  15. Geoscience parameter data base handbook: granites and basalts

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous United States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.

  16. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...... the frictional load transfer behavior of the grip. To carry out the study, a custom-built test rig was used to examine the relation between pullout force and clamping force. The anchoring method was found to be successful. The paper presents details on the custom-built test rig, along with the use of digital...... image correlation for displacement monitoring. Pullout results and validation tests are presented. In the discussion, the results and the importance of the grips surface finish with regard to pullout force are discussed. The discussion was backed by investigations on wear patterns using SEM....

  17. The effect of deformation on the crystallization kinetics of basalts

    Science.gov (United States)

    Tripoli, B. A.; Manga, M.; Fauria, K.; Mayeux, J.; Barnard, H.; MacDowell, A. A.

    2016-12-01

    Crystals and bubbles nucleate and grow in a magma that experiences a range of temperatures, pressures and strain-rates. We have a good conceptual and sometimes quantitative understanding of how crystallization and bubble nucleation are controlled by decompression and cooling. However, the effect of strain rate on the crystallization kinetics of magmas is at present poorly constrained. In order to understand the interaction between deformation and crystallization, samples of basalt were deformed during their crystallization. We made measurements between 1080 and 1175°C and deformed samples in compression and in tension at strain rates varying from 3·10-5 to 2·10-2 s-1. We simultaneously imaged the samples using X-Ray micro-tomography at the Advanced Light Source, Lawrence Berkeley National Lab. We find that in general crystallization rates, both growth and nucleation rate, increase with increasing deformation rate.

  18. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  19. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...... on a linear increase of the volume of melted epoxy and the outflow of moisture from the concrete matrix. It was concluded that the use of a BFRP mesh to reinforce HPC exposed to fire reduces the mechanical strength despite a beneficial effect related to spalling....... and samples displaying a full sandwich structure. Final results confirmed the bond loss between concrete and BFRP mesh with temperature. The available void where the epoxy burnt away allowed the concrete matrix to release pressure and limit pore stresses, delaying spalling. It also reduced the mechanical...

  20. Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia

    Science.gov (United States)

    Shao, Fengli; Niu, Yaoling; Regelous, Marcel; Zhu, Di-Cheng

    2015-02-01

    We report petrological and geochemical data on coeval trachybasalts, syenites with enclaves, trachytes, peralkaline rhyolites and peraluminous rhyolites from the Glass House Mountains-Maleny-Noosa area, southeast Queensland, Australia. This rock association and the unique characteristics of the peralkaline rhyolites offer convincing lines of evidence that the petrogenesis of the peralkaline rhyolites is a straightforward consequence of protracted fractional crystallization from basaltic melts of alkali-rich composition. Compared to the common peraluminous rhyolites elsewhere, the peralkaline rhyolites here are characterized by elevated abundances of most incompatible elements, especially the very high Nb (vs. Th) and Ta (vs. U), the very low Ba, Sr and Eu and the extremely high 87Sr/86Sr ratio. The high Nb and Ta are inherited from the parental alkali basaltic melts. The low Ba, Sr and Eu result from removal of plagioclase during the protracted fractional crystallization. These rocks altogether define a Rb-Sr isochron of ~ 28 Ma, which is similar to Ar-Ar age data on these rocks in the literature. The extremely high 87Sr/86Sr ratio of the peralkaline rhyolites (up to 1.88) is actually characteristic of peralkaline rhyolites because of extreme Sr (also Eu and Ba) depletion and thus the very high Rb/Sr ratio. That is, the Sr in these rocks is essentially radiogenic 87Sr accumulated from the 87Rb decay since the volcanism. We suggest that the petrogenesis of the peralkaline rhyolites from the Glass House Mountain area may be of general significance globally. The coeval peraluminous rhyolites apparently result from crustal anatexis in response to the basaltic magma underplating. The small "Daly Gap" exhibited in this rock association is anticipated during the protracted fractional crystallization from basaltic parent to the more evolved felsic varieties.

  1. Helium and argon from an Atlantic MORB glass: Concentration, distribution and isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, A. (Orleans Univ., 45 (France). Lab. de Mineralogie); Weber, H.W.; Begemann, F. (Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany, F.R.))

    1985-05-01

    Data are reported for detailed He and Ar measurements on a single MORB glass from the Atlantic (CH 98-DR 11; 30/sup 0/41'N, 41/sup 0/49'W; depth approx.= 3500 m). Grain-size fractions prepared under ambient conditions are strongly affected by diffusive loss of He from grains and by adsorption of atmospheric argon on grain surfaces. Both effects could be controlled by crushing gram-sized chunks of glass under vaccum and analyzing the powder without any further handling, in particular without its exposure to the atmosphere. Gases from vesicles, released upon crushing, are characterized by a /sup 4/He//sup 40/Ar ratio of 6 +- 1 and a /sup 40/Ar//sup 36/Ar ratio of up to 22,600. In dissolved gases the /sup 4/He//sup 40/Ar ratio was found to be (7.2 +- 1.6) times higher and the /sup 40/Ar//sup 36/Ar ratio to be about ten times lower than in vesicles. The difference of the elemental ratio He/Ar is as anticipated from the ratio of the solubilities (ca. nine) in the investigated basalt of He and Ar. Thus, while elemental abundance ratios are compatible with equilibrium between vesicles and basalt the grossly different isotopic ratios are not. It is proposed that two basalts, chemically very similar but with different /sup 40/Ar//sup 36/Ar ratios, were mixed shortly before eruption. The overall /sup 4/He//sup 40/Ar ratio in the vesiculated basalt is 12 +- 2 so that, for the ratio in the primary magma, we find 6 <= /sup 4/He//sup 40/Ar <= 12 which is considerably higher than the radiogenic production ratio in all conceivable sources of MORB. Preferential removal from a melt of argon via vesicles is suggested to be the most likely explanation, whereas any metasomatic transfer seems unrealistic.

  2. Sulfur Isotopes in Gas-rich Impact-Melt Glasses in Shergottites

    Science.gov (United States)

    Rao, M. N.; Hoppe, P.; Sutton, S. R.; Nyquist, Laurence E.; Huth, J.

    2010-01-01

    Large impact melt glasses in some shergottites contain huge amounts of Martian atmospheric gases and they are known as gas-rich impact-melt (GRIM) glasses. By studying the neutron-induced isotopic deficits and excesses in Sm-149 and Sm-150 isotopes resulting from Sm-149 (n,gamma) 150Sm reaction and 80Kr excesses produced by Br-79 (n,gamma) Kr-80 reaction in the GRIM glasses using mass-spectrometric techniques, it was shown that these glasses in shergottites EET79001 and Shergotty contain regolith materials irradiated by a thermal neutron fluence of approx.10(exp 15) n/sq cm near Martian surface. Also, it was shown that these glasses contain varying amounts of sulfates and sulfides based on the release patterns of SO2 (sulfate) and H2S (sulfide) using stepwise-heating mass-spectrometric techniques. Furthermore, EMPA and FE-SEM studies in basaltic-shergottite GRIM glasses EET79001, LithB (,507& ,69), Shergotty (DBS I &II), Zagami (,992 & ,994) showed positive correlation between FeO and "SO3" (sulfide + sulfate), whereas those belonging to olivine-phyric shergottites EET79001, LithA (,506, & ,77) showed positive correlation between CaO/Al2O3 and "SO3".

  3. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    Science.gov (United States)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  4. Shallow Subsurface transport and eruption of basaltic foam

    Science.gov (United States)

    Parcheta, C. E.; Mitchell, K. L.

    2016-12-01

    Volcanic fissure vents are difficult to quantify, and details of eruptive behavior are elusive even though it is the most common eruption mechanism on Earth and across the solar system. A fissure's surface expression is typically concealed, but when a fissure remains exposed, its subsurface conduit can be mapped post-eruptively with VolcanoBot. The robot uses a NIR structured light sensor that reproduces a 3D surface model to cm-scale accuracy, documenting the shallow conduit. VolcanoBot3 has probed >1000m3 of volcanic fissure vents at the Mauna Ulu fissure system on Kilauea. Here we present the new 3D model of a flared vent on the Mauna Ulu fissure system. We see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are typically 1 m across, protrude 30 cm horizontally into the drained fissure, and have a vertical spacing of 2-3 m. However, irregularity size is variable and distinct with depth, potentially reflecting stratigraphy in the wall rock. Where piercing points are present, we infer the dike broke the wall rock in order to propagate upwards; where they are not, we infer that syn-eruptive mechanical erosion has taken place. One mechanism for mechanical erosion is supersonic shocks, which may occur in Hawaiian fountains. We are calculating the speed of sound in 64% basaltic foam, which appears to be the same velocity (or slightly slower) than inferred eruption velocities. Irregularities are larger than the maximum 10% wall roughness used in engineering fluid dynamic studies, indicating that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. We are currently using the mapped conduit geometries and derived speed of sound for basaltic foam in fluid dynamical modeling of fissure-fed lava fountains.

  5. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups

    Science.gov (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2014-12-01

    Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated with lava

  6. Conversion of radioactive ferrocyanide compounds to immobile glasses

    Science.gov (United States)

    Schulz, W.W.; Dressen, A.L.

    1975-11-21

    A method is described for converting complex radioactive ferrocyanide compounds of /sup 134/Cs and /sup 137/Cs to immobile glass that is resistant to leaching by water. The /sup 134/Cs and /sup 137/Cs are separated from nuclear waste solutions by precipitation from alkaline solutions by the addition of a soluble Ni/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, UO/sub 2//sup 2 +/, or Mn/sup 2 +/ and K/sub 4/Fe(CN)/sub 6/. The dried, finely ground precipitate is mixed with Na/sub 2/CO/sub 3/ and a mixture of (a) basalt and B/sub 2/O/sub 3/ or (b) SiO/sub 2/ and CaO, melted, and allowed to solidify. (BLM)

  7. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  8. Probability encoding of hydrologic parameters for basalt. Elicitation of expert opinions from a panel of three basalt waste isolation project staff hydrologists

    Energy Technology Data Exchange (ETDEWEB)

    Runchal, A.K.; Merkhofer, M.W.; Olmsted, E.; Davis, J.D.

    1984-11-01

    The present study implemented a probability encoding method to estimate the probability distributions of selected hydrologic variables for the Cohassett basalt flow top and flow interior, and the anisotropy ratio of the interior of the Cohassett basalt flow beneath the Hanford Site. Site-speciic data for these hydrologic parameters are currently inadequate for the purpose of preliminary assessment of candidate repository performance. However, this information is required to complete preliminary performance assessment studies. Rockwell chose a probability encoding method developed by SRI International to generate credible and auditable estimates of the probability distributions of effective porosity and hydraulic conductivity anisotropy. The results indicate significant differences of opinion among the experts. This was especially true of the values of the effective porosity of the Cohassett basalt flow interior for which estimates differ by more than five orders of magnitude. The experts are in greater agreement about the values of effective porosity of the Cohassett basalt flow top; their estimates for this variable are generally within one to two orders of magnitiude of each other. For anisotropy ratio, the expert estimates are generally within two or three orders of magnitude of each other. Based on this study, the Rockwell hydrologists estimate the effective porosity of the Cohassett basalt flow top to be generally higher than do the independent experts. For the effective porosity of the Cohassett basalt flow top, the estimates of the Rockwell hydrologists indicate a smaller uncertainty than do the estimates of the independent experts. On the other hand, for the effective porosity and anisotropy ratio of the Cohassett basalt flow interior, the estimates of the Rockwell hydrologists indicate a larger uncertainty than do the estimates of the independent experts.

  9. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  10. Glasses and Contact Lenses

    Science.gov (United States)

    ... really fun part of new glasses or contact lenses is how well you can see. They can make your whole world look better! Reviewed by: Jonathan H. Salvin, ... Abrasions Why Do Eyes Water? What It's Like to Be Color Blind Contact ...

  11. Shimmering Stained Glass.

    Science.gov (United States)

    Simon, Gail Murray

    1998-01-01

    Presents an art lesson for fifth- and sixth-graders where they create a translucent design of colored cellophane on black paper inspired by the stained-glass windows of the Middle Ages and the artwork of Lewis Comfort Tiffany. Enables the students to become crafts people rather than just observers of the past. (CMK)

  12. Microchips on glass

    NARCIS (Netherlands)

    Nanver, L.; De Vreede, L.; Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  13. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  14. Glass Working, Use and Discard

    OpenAIRE

    Nicholson, Paul

    2011-01-01

    Glass in ancient Egypt appeared in the New Kingdom. It was a novel and highly prized material, which quickly found favor with the elite. The first known glass sculpture in the round depicted the Egyptian ruler Amenhotep II. The purposes for which glass was used overlap with those traditionally known for objects made in faience, and both materials can be regarded as artificial versions of semiprecious stones, notably turquoise, lapis lazuli, and green feldspar. The techniques by which glass wa...

  15. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  16. Barstow heliostat mirror glass characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  17. Yesterday's Trash Makes Tomorrow's "Glass"

    Science.gov (United States)

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  18. Red glass for the Pharaoh

    OpenAIRE

    Rehren, Thilo

    2005-01-01

    Glass in ancient Egypt appears to have been used as a substitute for precious stones that were not available in the country. Here the process of glass manufacture is traced through the examination of the fragmentary remains of ceramic reaction vessels and crucibles used in the production of small glass ingots.

  19. Red glass for the Pharaoh

    Directory of Open Access Journals (Sweden)

    Thilo Rehren

    2005-08-01

    Full Text Available Glass in ancient Egypt appears to have been used as a substitute for precious stones that were not available in the country. Here the process of glass manufacture is traced through the examination of the fragmentary remains of ceramic reaction vessels and crucibles used in the production of small glass ingots.

  20. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250-1600/sup 0/C. Geochemical implications

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, A.; Weber, H.; Braun, O.

    1986-03-01

    The solubility constant of Henry's law has been experimentally determined in a tholeiitic basalt melt. Equilibrium with air, a noble gas mix, and various mixtures of the two permitted us to assess the validity of Henry's law under 1 bar ambient pressure in the temperature range 1250-1600/sup 0/C. Mass spectrometric analyses of quenched products yield solubilities decreasing with increasing atomic size as: 56(11.), 25(3.), 5.9(0.9), 3.0(0.7) and 1.7(0.4) in units of 10/sup -5/ cm/sup 3/ STP/g-bar (with standard deviation) for He, Ne, Ar, Kr and Xe, respectively (1400/sup 0/C). Partial pressures were varied by factors between 100 and 2 x 10/sup 4/. The data permit calculation of the distribution of noble gases between melt and coexisting vesicles. Comparison with data obtained on MORB glasses shows that He, Ne, and Ar display an equilibrium distribution while Kr and Xe in the vesicle-free glass are probably below analytical detection. The strong fractionation effects implied by the very different solubilities can explain most of the variations observed in MORB-glasses for He/Ne and He/Ar ratios.

  1. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements

    Science.gov (United States)

    Hofmann, A. W.

    2003-12-01

    Early History of Mantle GeochemistryUntil the arrival of the theories of plate tectonics and seafloor spreading in the 1960s, the Earth's mantle was generally believed to consist of peridotites of uniform composition. This view was shared by geophysicists, petrologists, and geochemists alike, and it served to characterize the compositions and physical properties of mantle and crust as "Sial" (silica-alumina) of low density and "Sima" (silica-magnesia) of greater density. Thus, Hurley and his collaborators were able to distinguish crustal magma sources from those located in the mantle on the basis of their initial strontium-isotopic compositions (Hurley et al., 1962; and Hurley's lectures and popular articles not recorded in the formal scientific literature). In a general way, as of early 2000s, this view is still considered valid, but literally thousands of papers have since been published on the isotopic and trace-elemental composition of oceanic basalts because they come from the mantle and they are rich sources of information about the composition of the mantle, its differentiation history and its internal structure. Through the study of oceanic basalts, it was found that the mantle is compositionally just as heterogeneous as the crust. Thus, geochemistry became a major tool to decipher the geology of the mantle, a term that seems more appropriate than the more popular "chemical geodynamics."The pioneers of this effort were Gast, Tilton, Hedge, Tatsumoto, and Hart (Hedge and Walthall, 1963; Gast et al., 1964; Tatsumoto, et al., 1965; Hart, 1971). They discovered from isotope analyses of strontium and lead in young (effectively zero age) ocean island basalts (OIBs) and mid-ocean ridge basalts (MORBs) that these basalts are isotopically not uniform. The isotope ratios 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb increase as a function of time and the respective radioactive-parent/nonradiogenic daughter ratios, 87Rb/86Sr, 238U/204Pb, 235U/204Pb, and 232Th

  2. CO2 and H2O Contents of Melt Inclusions from the 1891 Basaltic Balloon Eruption of Foerstner Submarine Volcano, Italy

    Science.gov (United States)

    Balcanoff, J. R.; Carey, S.; Kelley, K. A.; Boesenberg, J. S.

    2016-12-01

    Eruptions that produce basaltic balloon products are an uncommon eruption style only observed in five cases during historical times. Basaltic balloon products form in gas rich shallow submarine eruptions, which produce large hollow clasts with sufficient buoyancy to float on seawater. Foerstner submarine volcano, off the coast of Pantelleria (Italy), erupted with this style in 1891 and is the only eruption where the vent site (250 m water depth) has been studied and sampled in detail with remotely operated vehicles (ROVs). Here, we report Fournier Transform Infrared Spectroscopy (FTIR) and electron microprobe (EMP) analyses of major elements and dissolved volatiles in melt inclusions from olivine and plagioclase phenocrysts picked from highly vesicular clasts recovered from the seafloor. The trachybasaltic melt is enriched in alkalis with notably high phosphorus (1.82-2.38 wt%), and melt inclusions show elevated H2O concentrations of 0.17 to 1.2 wt.% and highly elevated CO2 concentrations of 928 to 1864 ppm. Coexisting matrix glass is completely degassed with respect to carbon dioxide but has variable water contents up to 0.19 %. The maximum carbon dioxide value implies saturation at 1.5 kb, or 4.5 km below the volcano. Trends in the CO2 and H2O data are most compatible with calculated open system degassing behavior. This is consistent with a proposed balloon formation mechanism involving a hybrid strombolian eruption style with the potential accumulation of gas-rich pockets below the vent as gas bubbles moved upwards independent of the low viscosity basaltic melt. Discharge of the gas-rich pockets led to the discharge of meter-sized slugs of magma with large internal vesicles (several tens of centimeters). A subset of these clasts had bulk densities that were lower than seawater, allowing them to rise to the sea surface where they either exploded or became water saturated and sank back to the seafloor.

  3. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    Science.gov (United States)

    Greeley, R.; Bunch, T. E.

    1976-01-01

    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  4. Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts

    DEFF Research Database (Denmark)

    Peate, David; Stecher, Ole

    2003-01-01

    We present new Pb isotope data on 21 samples of break-up-related flood basalts (56–54 Ma) from the Blosseville Kyst region of East Greenland. These samples show a considerable range in isotopic composition (206Pb/204Pb 17.6 to 19.3) that broadly correlates with compositional type. The ‘low-Ti’ type...... in the selected samples. Uncontaminated Palaeogene East Greenland flood basalts appear to have sampled the same broad range in mantle compositions seen in Recent Iceland basalts. In contrast to the peripheral lava suites from the British Isles and Southeast Greenland, where the inferred uncontaminated magmas have...

  5. Evolution of the basalts from three back-arc basins of southwest Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.; Paropkari, A.L.

    are discussed in detail in the following sections. Dobu Seamount, Western Woodlark Basin The basaltic rock of this basin, collected from the Dobu Seamount, is very fresh and highly vesicular (about 25}30% in volume) with vesicles ranging in size from 3 to 6 mm... but small circular vesicles are scattered throughout the basalt indicating a comparatively low concentration of volatiles. These two samples from this basin have similar chem- ical composition. On the Mg d vs. CaO/Al 2 O 3 graph (Fig. 3a) these basalts show...

  6. Mantle Metasomatism in Mars: Evidence from Bulk Chemical Compositions of Martian Basalts

    Science.gov (United States)

    Treiman, A. H.

    2003-01-01

    Bulk compositions of martian meteorite basalts suggest that they formed from a highly depleted mantle that was variably metasomatised and enriched in incompatible elements. These results are consistent with radio-isotope results. Bulk chemical compositions of basaltic rocks retain clues and tracers to their origins and histories. Interpretations of bulk compositions are not so straight-forward as once envisioned, because real-world magmatic processes can be far from theoretical simple models like one-stage partial melting or closed-system fractional crystallization. Yet, bulk chemistry can shed a broad (if dim) light on Martian basalt petrogenesis that complements the sharply focussed illumination of radio-isotope systematics.

  7. Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe

    Science.gov (United States)

    Sak, P.B.; Navarre-Sitchler, A. K.; Miller, C.E.; Daniel, C.C.; Gaillardet, J.; Buss, H.L.; Lebedeva, M.I.; Brantley, S.L.

    2010-01-01

    A clast of low porosity basaltic andesite collected from the B horizon of a soil developed on a late Quaternary volcaniclastic debris flow in the Bras David watershed on Basse-Terre Island, Guadeloupe, exhibits weathering like that observed in many weathered clasts of similar composition in other tropical locations. Specifically, elemental profiles measured across the core-rind interface document that primary minerals and glass weather to Fe oxyhydroxides, gibbsite and minor kaolinite in the rind. The earliest reaction identified in the core is oxidation of Fe in pyroxene but the earliest reaction that creates significant porosity is plagioclase dissolution. Elemental loss varies in the order Ca???Na>K???Mg>Si>Al>Fe???P??Ti, consistent with the relative reactivity of phases in the clast from plagioclase???pyroxene???glass>apatite>ilmenite. The rind surrounds a core of unaltered material that is more spherical than the original clast. The distance from the core-rind boundary to a visually prominent rind layer, L, was measured as a proxy for the rind thickness at 36 locations on a slab cut vertically through the nominal center of the clast. This distance averaged 24.4??3.1mm. Maximum and minimum values for L, 35.8 and 20.6mm, were observed where curvature of the core-rind boundary is greatest (0.12mm-1) and smallest (0.018mm-1) respectively. Extrapolating from other rinds in other locations, the rate of rind formation is estimated to vary by a factor of about 2 (from ~4 to 7??10-14ms-1) from low to high curvature. The observation of a higher rate of rind formation for a higher curvature interface is consistent with a diffusion-limited model for weathering rind formation. The diffusion-limited model predicts that, like rind thickness, values of the thickness of the reaction front (h) for a given reaction, defined as the zone over which a parent mineral such as plagioclase completely weathers to rind material, should also increase with curvature. Values of h were

  8. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  9. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...... of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O...

  10. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  11. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001

    Science.gov (United States)

    Wiens, R. C.; Pepin, R. O.

    1988-01-01

    Basalts from the Servilleta flows, Taos, NM, described by Lofgren (1983) were analyzed by mass spectrometry for shock-implanted noble gases, N2, and CO2 (which were isotopically labeled) after an exposure to 20-60 GPa shock in the presence of 0.0045-3.0 atm of ambient gas. The results were compared with data available on the constituents of the EETA 79001 meteorite. As expected, the samples shocked in this study attained emplacement efficiencies significantly lower than those apparent for lithology C of EETA 79001. Possible explanations for this difference include atmospheric overpressure at the time of EETA 79001 exposure to shock, the trapping of gas already in vugs by the intruding melt material, or the collapse of gas-filled vugs to form gas-laden glass inclusions.

  12. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    Science.gov (United States)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  13. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Katherine A.; Cottrell, Elizabeth (Rhode Island); (Smithsonian)

    2012-05-09

    Subduction zone basalts are more oxidized than basalts from other tectonic settings (e.g., higher Fe{sup 3+}/{Sigma}Fe), and this contrast may play a central role in the unique geochemical processes that generate arc and continental crust. The processes generating oxidized arc magmas, however, are poorly constrained, although they appear inherently linked to subduction. Near-surface differentiation processes unique to arc settings might drive oxidation of magmas that originate in equilibrium with a relatively reduced mantle source. Alternatively, arc magmas could record the oxidation conditions of a relatively oxidized mantle source. Here, we present new measurements of olivine-hosted melt inclusions from a single eruption of Agrigan volcano, Marianas, in order to test the influence of differentiation processes vs. source conditions on the Fe{sup 3+}/{Sigma}Fe ratio, a proxy for system oxygen fugacity (fO{sub 2}). We determined Fe{sup 3+}/{Sigma}Fe ratios in glass inclusions using {mu}-XANES and couple these data with major elements, dissolved volatiles, and trace elements. After correcting for post-entrapment crystallization, Fe{sup 3+}/{Sigma}Fe ratios in the Agrigan melt inclusions (0.219 to 0.282), and their modeled fO{sub 2}s ({Delta}QFM + 1.0 to + 1.8), are uniformly more oxidized than MORB, and preserve a portion of the evolution of this magma from 5.7 to 3.2 wt.% MgO. Fractionation of olivine {+-} clinopyroxene {+-} plagioclase should increase Fe{sup 3+}/{Sigma}Fe as MgO decreases in the melt, but the data show Fe{sup 3+}/{Sigma}Fe ratios decreasing as MgO decreases below 5 wt.% MgO. The major element trajectories, taken in combination with this strong reduction trend, are inconsistent with crystallization of common ferromagnesian phases found in the bulk Agrigan sample, including magnetite. Rather, decreasing Fe{sup 3+}/{Sigma}Fe ratios correlate with decreasing S concentrations, suggesting that electronic exchanges associated with SO{sub 2} degassing may

  14. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  15. Iron in Silicate Glasses: Systematic Analysis of Pre-Edge And Xanes Features

    Energy Technology Data Exchange (ETDEWEB)

    Farges, F.; Rossano, S.; Wilke, M.; Lefrere, Y.; Brown, G.E., Jr.; /SLAC, SSRL

    2006-10-27

    A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordination of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.

  16. Spin Glass Patch Planting

    Science.gov (United States)

    Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.

    2016-01-01

    In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.

  17. Athermal photofluidization of glasses

    Science.gov (United States)

    Fang, G. J.; Maclennan, J. E.; Yi, Y.; Glaser, M. A.; Farrow, M.; Korblova, E.; Walba, D. M.; Furtak, T. E.; Clark, N. A.

    2013-02-01

    Azobenzene and its derivatives are among the most important organic photonic materials, with their photo-induced trans-cis isomerization leading to applications ranging from holographic data storage and photoalignment to photoactuation and nanorobotics. A key element and enduring mystery in the photophysics of azobenzenes, central to all such applications, is athermal photofluidization: illumination that produces only a sub-Kelvin increase in average temperature can reduce, by many orders of magnitude, the viscosity of an organic glassy host at temperatures more than 100 K below its thermal glass transition. Here we analyse the relaxation dynamics of a dense monolayer glass of azobenzene-based molecules to obtain a measurement of the transient local effective temperature at which a photo-isomerizing molecule attacks its orientationally confining barriers. This high temperature (Tloc~800 K) leads directly to photofluidization, as each absorbed photon generates an event in which a local glass transition temperature is exceeded, enabling collective confining barriers to be attacked with near 100% quantum efficiency.

  18. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  19. Primitive off-rift basalts from Iceland and Jan Mayen

    DEFF Research Database (Denmark)

    Debaille, Vinciane; Trønnes, Reidar G.; Brandon, Alan D.

    2009-01-01

    and appear to be contaminated at a shallow level. The 187Os/188Os ratios in the remaining lavas with >30 ppt Os (n = 17) range between 0.12117 and 0.13324. These values are surprisingly low for oceanic island basalts and include some samples that are less than putative present-day primitive upper mantle (PUM...... with 187Os/188Os of 0.1296). These low 187Os/188Os preclude significant shallow-level contamination from oceanic crust. The 187Os/188Os ratios for Jan Mayen lavas are less than PUM, severely limiting the presence of any continental crust in their mantle source. A positive correlation between 143Nd/144Nd......-members. One end-member, characterized in particular by its unradiogenic 187Os/188Os and 143Nd/144Nd, low 3He/4He and high 87Sr/86Sr, is represented by subcontinental lithospheric mantle stranded and disseminated in the upper mantle during the opening of the Atlantic Ocean. The second end-member corresponds...

  20. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts

    Science.gov (United States)

    Aubaud, Cyril; Hauri, Erik H.; Hirschmann, Marc M.

    2004-10-01

    We have measured hydrogen partition coefficients between nominally anhydrous minerals (olivine, pyroxenes) and basaltic melts in 13 hydrous melting experiments performed at upper mantle P-T conditions (1-2 GPa and 1230-1380°C). Resulting liquids have 3.1-6.4 wt.% H2O and average mineral/melt partition coefficients as follows: DHol/melt = 0.0017 +/- 0.0005 (n = 9), DHopx/melt = 0.019 +/- 0.004 (n = 8), and DHcpx/melt = 0.023 +/- 0.005 (n = 2). Mineral/mineral partition coefficients are DHol/opx = 0.11 +/- 0.01 (n = 4), DHol/cpx = 0.08 +/- 0.01 (n = 2) and DHcpx/opx = 1.4 +/- 0.3 (n = 1). These measurements confirm that water behaves similarly to Ce during mantle melting (DHperidotite/melt is ~0.009). For mantle water concentrations of 50-200 ppm, the onset of melting is 5-20 km deeper than the dry solidus, less than previous estimates.

  1. A note on sulphide-oxide mineralisation in Carlsberg Ridge basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Pillow basalts from the Carlsberg Ridge at 3 degrees 35'N contain disseminated chalcopyrite, pyrite, and magnetite. The euhedral shape of the pyrite grains indicate them to be early formed and grown unobstructed while magnetite occurs as skeletal...

  2. Mineral/groundmass partition coefficients for nepheline, melilite, clinopyroxene and perovskite in melilitenepheline basalt, Nyiragongo, Zaire

    National Research Council Canada - National Science Library

    Onuma, Naoki; Ninomiya, Shuji; Nagasawa, Hiroshi

    1981-01-01

    Four new partition coefficient versus ionic radius diagrams have been presented for nepheline-, melilite-, perovskite-, and clinopyroxene-groundmass of a melilite-nepheline basalt, Nyiragongo volcano, Zaire, Africa...

  3. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  4. Petrologic Variations Within Submarine Basalt Pillows of the South Pacific-Antarctic Ocean

    National Research Council Canada - National Science Library

    Paster, Theodore P

    1968-01-01

    .... In an effort to define alteration criteria, variations in the mineralogical, chemical and magnetic parameters of one alkalic and eight tholeiitic basalt pillows from abyssal hills in eight widely...

  5. Mineral chemistry of Carlsberg Ridge basalts at 3 degrees 35'- 3 degrees 41' N

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Banerjee, R.

    Mineral chemical analyses of transitional basalts from the Carlsberg Ridge show plagioclase (An approximately 87 mole %), phenocrysts, and microphenocrysts have a K sub(2)O depletion as compared to the laths (approximately 79 mole %). Olivine...

  6. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  7. Planetary Basalt Construction of a Launch/Landing Pad - PISCES Project Update

    Science.gov (United States)

    Kelso, R. M.

    2015-10-01

    Provide a briefing on the progress of a joint project between the PISCES and NASA to develop and demonstrate technologies associated with planetary robotic construction using basalt: called “Additive Construction with Mobile Emplacement” (ACME).

  8. Combined Thickness of the Modeled Saddle Mountains Basalt and Mabton Interbed Geomodel Units (smthk_f)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The smthk_f grid represents the modeled combined thickness of the Saddle Mountains Basalt and Mabton interbed geomodel units at a 500 foot resolution. It is one grid...

  9. Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic

    Science.gov (United States)

    Sammarco, Carmelo; Cornwell, David G.; Rawlinson, Nicholas

    2017-11-01

    Ambient noise tomography is applied to seismic data recorded by a portable array of seismographs deployed throughout the Faroe Islands in an effort to illuminate basalt sequences of the North Atlantic Igneous Province, as well as underlying sedimentary layers and Precambrian basement. Rayleigh wave empirical Green's functions between all station pairs are extracted from the data via cross-correlation of long-term recordings, with phase weighted stacking implemented to boost signal-to-noise ratio. Dispersion analysis is applied to extract inter-station group travel-times in the period range 0.5-15 s, followed by inversion for period-dependent group velocity maps. Subsequent inversion for 3-D shear wave velocity reveals the presence of significant lateral heterogeneity (up to 25%) in the crust. Main features of the final model include: (i) a near-surface low velocity layer, interpreted to be the Malinstindur Formation, which comprises subaerial compound lava flows with a weathered upper surface; (ii) a sharp velocity increase at the base of the Malinstindur Formation, which may mark a transition to the underlying Beinisvørð Formation, a thick laterally extensive layer of subaerial basalt sheet lobes; (iii) a low velocity layer at 2.5-7.0 km depth beneath the Beinisvørð Formation, which is consistent with hyaloclastites of the Lopra Formation; (iv) an upper basement layer between depths of 5-9 km and characterized by S wave velocities of approximately 3.2 km/s, consistent with low-grade metamorphosed sedimentary rocks; (v) a high velocity basement, with S wave velocities in excess of 3.6 km/s. This likely reflects the presence of a crystalline mid-lower crust of Archaean continental origin. Compared to previous interpretations of the geological structure beneath the Faroe Islands, our new results point to a more structurally complex and laterally heterogeneous crust, and provide constraints which may help to understand how continental fragments are rifted from the

  10. Vapor Undersaturation in Primitive Mid-Ocean Ridge Basalt and the Volatile Content of the Earth's Upper Mantle

    Science.gov (United States)

    Saal, A. E.; Hauri, E. H.; Langmuir, C. H.; Perfit, M. R.

    2002-05-01

    We present the first report of undersaturated pre-eruptive volatile content for one of the most primitive sample suites of mid-ocean ridge basalts (MORB) from the Siqueiros intra-transform spreading center. Our results clearly show that carbon dioxide and sulfur are incompatible elements during mantle melting, and behave similarly to niobium and dysprosium respectively. These results can be used to constrain the amount of carbon dioxide and helium degassing during magma transport and eruption, and suggest that carbonate, rather than graphite, is the phase controlling the carbon budget in the mantle during MORB generation. The undersaturation of volatiles, constant ratios of CO2/Nb, F/P, S/Dy and Cl/K in glasses and melt inclusions, and previous estimates of the trace element content in the MORB mantle generate precise new constraints on the abundances of H2O (160ñ40 ppm), CO2 (100ñ40 ppm), F (16ñ3 ppm), S (150ñ20 ppm) and Cl (2.0ñ0.5 ppm) in the Earth's upper mantle. These abundances are much lower than similar estimates for the source regions of hotspots, indicating the presence of volatile heterogeneity in the Earth's mantle.

  11. Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts

    Directory of Open Access Journals (Sweden)

    Jessica J. Mitchell

    2013-10-01

    Full Text Available Basalt outcrops are significant features in the Western United States and consistently present challenges to Natural Resources Conservation Service (NRCS soil mapping efforts. Current soil survey methods to estimate basalt outcrops involve field transects and are impractical for mapping regionally extensive areas. The purpose of this research was to investigate remote sensing methods to effectively determine the presence of basalt rock outcrops. Five Landsat 5 TM scenes (path 39, row 29 over the year 2007 growing season were processed and analyzed to detect and quantify basalt outcrops across the Clark Area Soil Survey, ID, USA (4,570 km2. The Robust Classification Method (RCM using the Spectral Angle Mapper (SAM method and Random Forest (RF classifications was applied to individual scenes and to a multitemporal stack of the five images. The highest performing RCM basalt classification was obtained using the 18 July scene, which yielded an overall accuracy of 60.45%. The RF classifications applied to the same datasets yielded slightly better overall classification rates when using the multitemporal stack (72.35% than when using the 18 July scene (71.13% and the same rate of successfully predicting basalt (61.76% using out-of-bag sampling. For optimal RCM and RF classifications, uncertainty tended to be lowest in irrigated areas; however, the RCM uncertainty map included more extensive areas of low uncertainty that also encompassed forested hillslopes and riparian areas. RCM uncertainty was sensitive to the influence of bright soil reflectance, while RF uncertainty was sensitive to the influence of shadows. Quantification of basalt requires continued investigation to reduce the influence of vegetation, lichen and loess on basalt detection. With further development, remote sensing tools have the potential to support soil survey mapping of lava fields covering expansive areas in the Western United States and other regions of the world with similar

  12. The Salittu Formation in southwestern Finland, part II: Picritic-basaltic volcanism in mature arc environment

    Directory of Open Access Journals (Sweden)

    M. Nironen

    2017-09-01

    Full Text Available Svecofennian orogen that contain ultramafic rocks. New samples were collected from the picritic and basaltic rocks as well as spatially associated gabbroic rocks, and their major and trace element compositions are presented and discussed here. Although the metavolcanic rocks have experienced primary alteration and two metamorphic events, elements that are insensitive to alteration (rare earth elements, Zr, Nb, Ni have been used to infer their source and evolution. Based on the similar shapes of the rare earth element patterns in the metabasalt and metapicrite, basaltic melt derived from picritic one by fractional crystallization. The high Ni and Mg contents, Ni/MgO and Zr/Nb ratios, and multielement patterns make a slightly enriched garnet lherzolite a likely source for the metapicrite. With the exception of synvolcanic gabbros within the metavolcanic rocks, the gabbroic intrusions at Salittu have no genetic link to the metavolcanic rocks. Geochemical comparison with modern basalts suggests that the picritic and basaltic melts were generated in a mature arc environment during a rifting event. Picritic melt rose from convective mantle to the crust and formed a magma chamber. Basaltic melt fractionated in the chamber and extruded upon an earlier formed volcanic pile as basalt and synvolcanic gabbro. Soon after extrusion of the basalt, picritic melts, similar in composition to the earlier picrite, rose through the crust and extruded on top of the basalt. Comparison with three other metapicrite occurrences in southern Finland suggests that although the occurrences may be considered broadly comagmatic, each had their specific sources and probably also tectonic environments during emplacement.

  13. Experimental petrology of ancient lunar mare basalt Asuka-881757: Spinel crystallization as a petrologic indicator

    Science.gov (United States)

    Tomoko, Arai; Hiroshi, Takeda; Masamichi, Miyamoto

    The paucity of titanian chromites in lunar-meteorite basalt Asuka (A)-881757 is unusual compared to the general occurrence of co-existing chromites and ulvospinels in the Apollo and Luna mare basalts. The unique spinel crystallization of A-881757 is expected to hold a key to elucidate the crystallization and cooling episodes of the basalt. In this study, we investigated the possible reason for the missing chromite by conducting isothermal and cooling experiments on the bulk-rock composition of A-881757 and discuss the petrogenesis of the ancient low-Ti mare basalt in light of spinel crystallization. A series of isothermal experiments showed the A-881757 basalt magma is not saturated with chromite under the expected lunar oxygen fugacity condition (IW???IW-1). A peritectic reaction among chromite, melt, and pyroxene is present for A-881757 basalt magma under the more oxidized condition which is one or two log unit higher than the lunar condition. The cooling experiment successfully reproduced the chromian ulvospinels with similar compositions to those in A-881757. The result of the cooling experiments further implies that ulvospinels solely crystallized from highly-fractionated interstitial melts in the late crystallization stage. The disparity in the crystallization of the liquidus chromite between the low-Ti and very low-Ti basalts might reflect the difference of bulk Cr_2O_3 concentration. The low liquidus temperature and the paucity of the liquidus olivine in A-881757 infer that the A-881757 basalt represents a liquid derived from near-surface fractionation processes. Chromites might possibly have been present during that near-surface fractionation episode prior to the eruption of the magma.

  14. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    Science.gov (United States)

    Greenberger, Rebecca N; Mustard, John F; Cloutis, Edward A; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L; Robertson, Kevin; Salvatore, Mark R; Edwards, Christopher

    2015-01-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop.

  15. Petrographical indicators of petrogenesis: Examples from Central Indian Ocean Basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    for the ‘fresh’ fragments, to brown and its variations for the altered ones. In few cases, on slicing the samples, minute rounded to semi-rounded vesicles occur. In well-preserved basalts, three broad textural zones can be noted from the glassy top... of the ferrobasalts, minute titanomagnetite crystals occur between the plagioclase fibres. Vesicles are few and are usually empty or at times partly filled by cryptocrystalline materials. Besides the basalts, few other interesting samples were noted...

  16. The Relative Rates of Secondary Hydration in Basalt and Rhyolite, and the use of δD as a Paleoclimate Indicator: Implications for Paleoenvironmental and Volcanic Degassing Studies

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.

    2014-12-01

    The δD-H2O correlation is important for volcanic degassing and secondary hydration trends. We utilize the caibration of the TC/EA - MAT 253 continuous flow system, which permits us to analyze wt.% H2O and its δD extracted from 1-8 mg of glass with as little as 0.1 wt% H2O. Tephra that has been secondarily hydrated with meteoric water is widely used as a paleoenvironmental tool, but the rate of secondary hydration, the relative amounts of primary magmatic (degassed) and secondary meteoric water, and the retention of primary and secondary δD values are not well understood. To quantify these processes, we use a natural experiment involving dated Holocene tepha in Kamchatka and Oregon. Our research illustrates the drastic difference in hydration rates between silicic (hydrated after ~1.5 ka) and mafic tephra, which is not hydrated in the Holocene (similar to results for submarine volcanic glasses), and andesitic tephra with intermediate degrees of hydration. The 0.05-7.3 ka basaltic scoria from Klyuchevskoy volcano retains ≤0.45 wt.% primary magmatic H2O, with δD values from -99 to -121 ‰. Four other 0.05-7.6 ka basaltic tephra units from Kamchatka with 65 wt.% have higher (1.5 -3.4) wt.% H2O and δD values between -115 - -160 ‰. We interpret the lower δD values and higher water contents (opposite of the magmatic degassing trend) to be a characteristic of secondary hydration in regions of higher latitude such as Kamchatka and Oregon. We are also investigating 7.7 ka Mt. Mazama tephra in Oregon that are known to be fully hydrated and cover nearly 5000 km2 northeast of Crater Lake and range in elevation from ~1.3-1.9 km to understand the δD and δ18O details of the hydrated water's correspondence with local Holocene meteoric waters. In the future, we plan to use a combination of δD in mid-high latitude precipitation to delineate δD-H2O hydration trends to better understand the distinction between primary magmatic and secondary meteoric water in volcanic

  17. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  18. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  19. Magmatic recharge buffers the isotopic compositions against crustal contamination in formation of continental flood basalts

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2017-07-01

    Isotopic compositions of continental flood basalts are essential to understand their genesis and to constrain the character of their mantle sources. Because of potential crustal contamination, it needs to be evaluated if and to which degree these basalts record original isotopic signals of their mantle sources and/or crustal signatures. This study examines the Sr, Nd, Hf, and Pb isotopic compositions of the late Cenozoic Xinchang-Shengzhou (XS) flood basalts, a small-scale continental flood basalt field in eastern China. The basalts show positive correlations between 87Sr/86Sr and 143Nd/144Nd, and negative correlations between 143Nd/144Nd and 176Hf/177Hf, which deviate from compositional arrays of crustal contamination and instead highlight variations in magmatic recharge intensity and mantle source compositions. The lava samples formed by high-volume magmatic recharge recorded signals of recycled sediments in the mantle source, which are characterized by moderate Ba/Th (91.9-106.5), excess 208Pb/204Pb relative to 206Pb/204Pb, and excess 176Hf/177Hf relative to 143Nd/144Nd. Thus, we propose that magmatic recharge buffers the original isotopic compositions of magmas against crustal contamination. Identifying and utilizing the isotope systematics of continental flood basalts generated by high volumes of magmatic recharge are thus crucial to trace their mantle sources.

  20. The durability of fired brick incorporating textile factory waste ash and basaltic pumice

    Energy Technology Data Exchange (ETDEWEB)

    Binici, Hanifi [Kahramanmaras Sutcu Imam Univ., Kahramanmaras (Turkey). Dept. of Civil Engineering; Yardim, Yavuz [Epoka Univ., Tirana (Albania). Dept. of Civil Engineering

    2012-07-15

    This study investigates the durability of fired brick produced with additives of textile factories' waste ash and basaltic pumice. The effects of incorporating waste ash and basaltic pumice on durability and mechanical properties of the clay bricks were studied. Samples were produced with different ratios of the textile factories' waste ash and basaltic pumice added and at different fire temperatures of 700, 900, and 1 050 C for 8 h. The bricks with additives were produced by adding equal amounts of textile factories' waste ash and basaltic pumice, separately and together, with rates of 5, 10 and 20 wt.%. The produced samples were kept one year in sodium sulphate and sodium nitrate and tested under freezing - unfreezing and drying - wetting conditions. Then compression strength and mass loss of the samples with and without additives were investigated. The test results were compared with standards and results obtained from control specimens. The results showed that incorporations up to 10 wt.% of textile factories' waste ash and basaltic pumice is beneficial to the fired brick. Both textile factories' waste ash and basaltic pumice were suitable additives and could be used for more durable clay brick production at 900 C fire temperature. (orig.)

  1. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  2. Volcanic Glasses as Habitat for Microfossils: Evidence from the Early Paleoproterozoic Pillow Lavas of Karelia and their Modern Analogues in the Mid-Atlantic Ridge

    Science.gov (United States)

    Adtafieva, M. M.; Rozanov, A. Yu; Sharkov, E. V.; Chistyakov, A. V.; Bogina, M. M.; Hoover, R. B.

    2009-01-01

    Microbial complexes were identified in the volcanic glasses from the ancient (2.4-Ga-old basaltic pillow-lavas of Karelia) and modern (pillow lavas of Mid-Atlantic ridge) volcanic rocks. It was shown that that their microbial colonization is likely to occur by the same mechanism. Thus, well preserved pillow lavas, which occupy a spacious fields in the Archean and Early Paleoproterozoic greenstone belts, are promising object for search of the earliest traces of life on Earth.

  3. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  4. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    Science.gov (United States)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature

  5. Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans

    Science.gov (United States)

    Duncan, Megan S.; Dasgupta, Rajdeep; Tsuno, Kyusei

    2017-05-01

    Knowledge of the carbon carrying capacity of peridotite melt at reducing conditions is critical to constrain the mantle budget and planet-scale distribution of carbon set at early stage of differentiation. Yet, neither measurements of CO2 content in reduced peridotite melt nor a reliable model to extrapolate the known solubility of CO2 in basaltic (mafic) melt to solubility in peridotitic (ultramafic) melt exist. There are several reasons for this gap; one reason is due to the unknown relative contributions of individual network modifying cations, such as Ca2+ versus Mg2+, on carbonate dissolution particularly at reducing conditions. Here we conducted high pressure, temperature experiments to estimate the CO2 contents in silicate melts at graphite saturation over a compositional range from natural basalts toward peridotite at a fixed pressure (P) of 1.0 GPa, temperature (T) of 1600 °C, and oxygen fugacity (log ⁡ fO2 ∼ IW + 1.6). We also conducted experiments to determine the relative effects of variable Ca and Mg contents in mafic compositions on the dissolution of carbonate. Carbon in quenched glasses was measured and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman Spectroscopy and was found to be dissolved as carbonate (CO32-). The FTIR spectra showed CO32- doublets that shifted systematically with the MgO and CaO content of silicate melts. Using our data and previous work we constructed a new composition-based model to determine the CO2 content of ultramafic (peridotitic) melt representative of an early Earth, magma ocean composition at graphite saturation. Our data and model suggest that the dissolved CO2 content of reduced, peridotite melt is significantly higher than that of basaltic melt at shallow magma ocean conditions; however, the difference in C content between the basaltic and peridotitic melts may diminish with depth as the more depolymerized peridotite melt is more compressible. Using our model of CO2 content at

  6. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  7. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kercher, Andrew K [ORNL; Ramey, Joanne Oxendine [ORNL; Carroll, Kyler J [Massachusetts Institute of Technology (MIT); Kiggans Jr, James O [ORNL; Veith, Gabriel M [ORNL; Meisner, Roberta [Oak Ridge National Laboratory (ORNL); Boatner, Lynn A [ORNL; Dudney, Nancy J [ORNL

    2014-01-01

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  8. Estudo comparativo da estratégia da Federação Portuguesa de Atividades Subaquáticas entre os ciclos 2003/2006 e 2007/2010

    Directory of Open Access Journals (Sweden)

    Manuel António Delgado Preto

    2013-06-01

    Full Text Available O presente estudo tem como objetivo fazer a análise estratégica e de decisões dos corpos diretivos da Federação Portuguesa de Atividades Subaquáticas (FPAS entre os quadriênios 2003/2006 e 2007/2010. Para atender este objetivo utilizamos o modelo iconográfico de análise proposto por Correia (1999 que contempla quatro dimensões (recursos; análise estratégica; natureza de decisão e resultados nas quais são utilizados indicadores que nos permitiram chegar a valores quantificáveis. A amostra foi constituída por 82 instrutores de mergulho que são stakeholders¹ desse processo. Foi aplicado um questionário em dois momentos (início e fim de cada ciclo presidencial. Os resultados obtidos indicam uma tendência de falibilidade do processo de tomada de decisão. Esta incapacidade deve-se essencialmente ao fato do processo não estar assente em instrumentos robustos. Os objetivos da estratégia, ainda que conseguidos, não o foram de forma sustentada, potenciando conflitos, que hipotecam de forma clara a sedimentação das linhas estratégicas.

  9. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  10. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  11. Complexity of Curved Glass Structures

    Science.gov (United States)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  12. Relaxation Pathways in Metallic Glasses

    Science.gov (United States)

    Gallino, Isabella; Busch, Ralf

    2017-11-01

    At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

  13. Weathering Rinds and Soil Development on Basaltic Andesite, Guadeloupe

    Science.gov (United States)

    Sak, P. B.; Murphy, M.; Ma, L.; Engel, J.; Pereyra, Y.; Gaillardet, J.; Brantley, S. L.

    2014-12-01

    An oriented clast of basaltic andesite collected from the B horizon of a soil developed in a late Quaternary volcanoclastic debris flow on the eastern, windward side of Basse Terre Island, Guadeloupe exhibits weathering patterns like that observed in many clasts from tropical settings. The sample consists of unweathered core material overlain by a ~19 mm thick weathering rind and a narrow ≤ 2mm thick indurated horizon separating the outer portion of the rind from the overlying >10mm of soil matrix material. Elemental variations are constrained by a seven point bulk ICP-AES vertical transect extending from the core, across the rind and ~15 mm into the overlying soil matix and six parallel electron microprobe transections. The porous-hydrated fraction increases from the core to the rind to the surrounding soil from 7±4% to 45±18% to 60±15%, respectively. Like the well-studied clast from the nearby Bras David watershed (Sak et al., 2010) the isovolumetric transformation from core to rind material is marked by a narrow (Ba>K≈Mn>Mg>Si>Al≈P>Fe»Ti, consistent with the relative reactivity of phases in the clast from plagioclasepyroxeneglass>apatite>ilmenite. Unlike previously studied clasts, the preservation of the rind-soil interface permits characterization of weathering reactions between the weathering clast and surrounding soil matrix. The abrupt (Mn, Ba, Al, Mg and K. The enrichment trends may result from soil waters percolating through atmospherically depositioned dust within the upper few meters of the soil profile, as documented in a deep soil profile in the Bras David watershed. The lack of an enrichment signal within the weathering rind suggests that weathering processes active within clasts are distinct from surrounding soil formation processes.

  14. Like a cannonball: origin of dense spherical basaltic ejecta

    Science.gov (United States)

    Di Piazza, Andrea; Del Bello, Elisabetta; Mollo, Silvio; Vona, Alessandro; Alvarado, Guillermo E.; Masotta, Matteo

    2017-05-01

    Cannonballs are rare spherical to sub-spherical eruptive products associated with basaltic explosive activity. The origin of cannonballs is still debated and subjected to a wide spectrum of different interpretations. In order to better understand the physicochemical mechanisms controlling the formation of these explosive products, we investigated the textural and chemical features of cannonballs from the Cerro Chopo monogenetic volcano (Costa Rica). These explosive products ubiquitously show a core domain with coalesced bubbles (30-36% porosity) wrapped in a dense rim domain with small, isolated bubbles (20-27% porosity). Both domains are identical in terms of bulk rock composition and mineral chemistry and are portions of the same magma batch. Results from combined petrological and thermodynamic modeling indicate that a low-viscosity ( 20 Pa s) melt containing early-formed olivine phenocrysts ( 9 vol.%) ascended from storage at a decompression rate of 0.5 MPa s-1 until it reached a depth of 4.5 km (equivalent to a pressure of 150 MPa). While rising from depth to 4.5 km, the melt underwent rapid decompression (0.5-2.6 MPa s-1) and H2O exsolution, driving late-stage crystallization of the groundmass. The fast ascent velocity (21-110 m s-1) while rising between 4.5 km and the surface induced turbulent (Re >103), annular flow development in the uppermost region of the conduit. We propose that cannonballs represent blebs of fluid magmas that underwent shear-driven detachment from the annulus of magma lining the conduit walls at depths lower than 4.5 km. The formation of such cannonballs is dictated by magma transport dynamics of low-viscosity, phenocryst-poor, and volatile-rich melts that rapidly accelerate within the shallow conduit.

  15. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  16. The Latest Developments in Glass Science and Technology

    OpenAIRE

    KARASU, Bekir; BEREKET, Oğuz; BİRYAN, Ecenur; SANOĞLU, Deniz

    2018-01-01

    The aim of this study is togive detailed information about the latest developments/ applications in theglass science and technology. In this aspect, smart glass, security glass, thinglass, amorphous metal, electrolytes, molecular liquid, colloidal glass, glassadded polymer, glass-ceramic, fiberglass, double glazing, Dragontrail glass,Gorilla glass, fluorescent lamp, glass to metal seal, glassphalt, heatableglass, lamination, nano channel glass, photochromic lenses, night visionglasses, glass ...

  17. Petrogenesis of Mt. Baker Basalts and Andesites: Constraints From Mineral Chemistry and Phase Equilibria

    Science.gov (United States)

    Mullen, E.; McCallum, I. S.

    2009-12-01

    Basalts in continental arcs are volumetrically subordinate to andesites and this is the case for Mt. Baker in the northern Cascade magmatic arc. However, basalts provide indirect evidence on mantle compositions and processes that produce magmas parental to the abundant andesites and dacites of the stratocones. Basalts at Mt. Baker erupted from monogenetic vents peripheral to the andesitic stratocone. Flows are variable in composition; some samples would more appropriately be classified as basaltic andesites. The “basalts” have relatively low Mg/(Mg+Fe) indicating that they have evolved from their original compositions. Samples studied are Park Butte, Tarn Plateau, Lk. Shannon, Sulphur Cr. basalts, and Cathedral Crag, Hogback, and Rankin Ridge basaltic andesites. Mt. Baker lavas belong to the calc-alkaline basalt suite (CAB) defined by Bacon et al. (1997) and preserve arc geochemical features. High alumina olivine tholeiite (HAOT) are absent. Equilibrium mineral pairs and whole rock compositions were used to calculate pre-eruptive temperatures, water contents, and redox states of the “basalts.” All samples have zoned olivine phenocrysts with Fo68 to Fo87 cores and chromite inclusions. Cpx and zoned plagioclase occur in all flows, but opx occurs only in Cathedral Crag, Rankin Ridge, and Tarn Plateau. Ti-magnetite and ilmenite coexist in all flows except for Sulphur Cr., Lk. Shannon and Hogback, which contain a single Fe-Ti oxide. Liquidus temperatures range from 1080 to 1232°C and are negatively correlated with water contents. Water contents estimated using liquidus depression due to H2O (0.8 to 5.4 wt.%) agree well with plag core-whole rock equilibria estimates (1.2 to 3.9 wt.%). Park Butte, Sulphur Cr. and Lk. Shannon had phase diagrams in the multi-component basalt system relevant to arc basalts and andesites ranging from 0 to 3 GPa and variable water contents. Projections of Mt. Baker lava compositions (corrected for loss or gain of olivine and plag

  18. Understanding the mechanisms of Si-K-Ca glass alteration using silicon isotopes

    Science.gov (United States)

    Verney-Carron, Aurélie; Sessegolo, Loryelle; Saheb, Mandana; Valle, Nathalie; Ausset, Patrick; Losno, Rémi; Mangin, Denis; Lombardo, Tiziana; Chabas, Anne; Loisel, Claudine

    2017-04-01

    It is important to understand glass alteration mechanisms and to determine their associated kinetics in order to develop models able to predict the alteration of nuclear, basaltic or archaeological glasses. Recent studies revealed that the respective contributions of diffusion, dissolution, condensation and precipitation processes in alteration are still a matter for debate. In this work, the alteration of a medieval-type glass (Si-K-Ca) was investigated as it presents a specific composition (without B and with low Al). Experiments were performed using a dynamic device, at 30 °C, at pH 8 and 9 and during 1 month in order to simulate alteration in contact with water (rainfall or condensation). The solution was doped in 29Si to discriminate between the silicon from glass (mainly 28Si) and from solution. The results showed that the external region of the alteration layer is devoid of modifier cations (K, Ca) and presents a 29Si/28Si ratio close to the solution one. This excludes that the alteration layer is a glass skeleton and highlights a progressive hydrolysis/condensation process, even if non-hydrolyzed silica tetrahedra could remain when the Si isotopic equilibrium is not reached. The internal zone appears to be gradually depleted in modifier cations and partly enriched in 29Si, but the thickness of this zone is overestimated using SEM-EDS and SIMS techniques. Even if in these experiments the dissolution mechanism is favored, the contribution of interdiffusion cannot be neglected to explain the weathering of ancient stained glassed windows in the atmosphere. The respective contribution of diffusion and dissolution are also discussed as a function of glass composition and surface texture, as well as of experimental conditions (alkaline pH, renewal of the solution).

  19. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  20. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  1. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    Science.gov (United States)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  2. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria).

    Science.gov (United States)

    Asfahani, J; Abdul Ghani, B; Ahmad, Z

    2015-11-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria).

    Science.gov (United States)

    Asfahani, Jamal

    2014-02-01

    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted. © 2013 Elsevier Ltd. All rights reserved.

  4. Autogenous Tumbling Media Assessment to Clean Weathered Surfaces of Waste-Rock Particles from a Basalt Quarry

    Directory of Open Access Journals (Sweden)

    Baran Tufan

    2015-06-01

    Full Text Available In this study, the optimum feed composition in autogenous tumbling of basalt waste-rock particles to clean their weathered surface was determined. The weathered surfaces of basalt are generally cut out consequent to extraction of basalt columns in quarry operations. The inefficiently cut out portions of basalt cause formation of huge quarry waste dumps causing visual pollution on roadsides. Mixtures of different particle size fractions of basalt waste-rock particles were experimented to achieve the optimum feed material composition. The minimum loss of commercially available basalt particles and maximum clear surface was intended. The results were compared with respect to weight loss (% and reflectance values of used and generated samples.

  5. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    Science.gov (United States)

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  6. Ties of Heat and Mass Transport Properties in Glasses and Melts, with Emphasis on Natural Lava Compositions

    Science.gov (United States)

    Hofmeister, A. M.; Whittington, A. G.; Robert, G.; Sehlke, A.

    2016-12-01

    We have discovered strong ties of mass and heat transport properties in glasses and melts via coordinated measurements of thermal diffusivity (D) and viscosity (η). Over the course of several studies we have compared over 50 remelted natural lavas, tektites, and synthetic glasses and melts, with substantially different chemical compositions, e.g., from 50 to 100% silica, and with slight variations in H and Fe cations and the presence/absence of Al. We use laser flash analysis to obtain D, which avoids contact and radiative errors and constrain η over a wide range of temperature (T). We use a combination of parallel-plate and concentric-cylinder viscometry to obtain η from the glass transition to above the liquidus. Our most recent studies include differential scanning calorimetric measurements of heat capacity (CP) to calculate their thermal conductivity (k), and we are now measuring thermal expansivity using dilatometry. The combined datasets show consistent macroscopic behavior, providing an improved understanding of microscopic behavior, particularly of heat transport properties, which have been misunderstood. Both viscosity and the glass transition temperature decrease with decreasing melt polymerization. Clear correlations exist between D of glass or melt with Si content, density, NBO/T, and, most strongly, with fragility (obtained from η). Glass thermal diffusivity is represented by D = FT-G +HT, where F, G and H are fitting parameters. For melts, D drops upon melting but we could only resolve D/T for a small number of samples. The results show that high-T behavior is controlled by Fe oxidation state and polymerization and involves radiative transfer (HT) but at infrared frequencies. In disordered materials, acoustic scattering is less important to heat transfer than is IR absorption/re-emissions. We find that k for glasses is described by a Maier-Kelly formula, consistent with the T response being dominated by CP. Trends in k are irregular due to k being

  7. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    Science.gov (United States)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  8. INORGANIC PHOSPHORS IN GLASS BASED ON LEAD SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2014-09-01

    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  9. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  10. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  11. Conduit convection driving persistent degassing at basaltic volcanoes

    Science.gov (United States)

    Beckett, F. M.; Burton, M.; Mader, H. M.; Phillips, J. C.; Polacci, M.; Rust, A. C.; Witham, F.

    2014-08-01

    The persistent release of gas at basaltic volcanoes where there is a low magma eruption rate can be driven by an exchange flow of magma in the conduit, in which gas-rich magma ascends, degasses and crystallises and then sinks back down the conduit. The driving force of the flow is provided by the density difference between the buoyant bubble-rich magma at depth and the dense degassed crystallised magma at shallow levels. In this study we attempt to constrain the physical and chemical processes driving an exchange flow of magma at Stromboli, Aeolian Archipelago, Italy. The model uses a simple, cylindrical geometry. We define degassing and crystallisation paths of the ascending and descending magmas, constrained by gas flux and melt inclusion data given in the literature, to produce a three-phase model of ascending and descending magmas driving persistent gas fluxes. We calculate the viscosity of the three-phase magma using end-member rheological models for bubble and crystal suspensions. Combining our modelled magma properties with analogue exchange flow experiments we can relate the regime of magma flow driving persistent degassing to pressure. At pressures ≲ 90 MPa (≲ 3 km) the viscosity ratio is ≲ 100 and the regime is predicted to be side by side flow with both ascending and descending magmas adjacent to a portion of the conduit wall. At pressures ≳ 90 MPa (≳ 3 km) the viscosity ratio between the ascending and descending magma is ≳ 100 and the flow is predicted to be core annular flow, with the ascending vesiculating magma in the inner core and the more crystalline degassed magma flowing down along the conduit wall. By analogy, we hypothesise that degassed magma would flow down along the walls in dike-like plumbing geometries that have been proposed for the deeper Strombolian system. Analogue experiments suggest that exchange flows do not overturn under conditions of maximum volume flux; we use an empirical relationship to characterise the volume

  12. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults.

  13. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    Science.gov (United States)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  14. Who will buy smart glasses?

    DEFF Research Database (Denmark)

    Rauschnabel, Philipp; Brem, Alexander; Ivens, Bjørn S.

    2015-01-01

    Recent market studies reveal that augmented reality (AR) devices, such as smart glasses, will substantially influence the media landscape. Yet, little is known about the intended adoption of smart glasses, particularly: Who are the early adopters of such wearables? We contribute to the growing bo...

  15. Molecular mobility in sugar glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar

  16. Degradable borate glass polyalkenoate cements.

    Science.gov (United States)

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  17. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  18. Developing the bundled glass column

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T; Veer, F.A.; Nijsse, R.; da Sousa Cruz, Paulo J.

    In this paper a bundled glass column is presented as a promising solution for a completely transparent, almost dematerialized structural compressive element. The aim is to ob-tain a glass column that can safely carry loads, achieve a high visual result and be relatively eas-ily manufactured.

  19. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  20. Training Guidelines: Glass Furnace Operators.

    Science.gov (United States)

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  1. A brief overview of bulk metallic glasses

    National Research Council Canada - National Science Library

    Mingwei Chen

    2011-01-01

      The discovery of bulk metallic glasses (BMGs) has stimulated widespread research enthusiasm because of their technological promise for practical applications and scientific importance in understanding glass formation and glass phenomena...

  2. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  3. Lateral heterogeneity of lunar volcanic activity according to volumes of mare basalts in the farside basins

    Science.gov (United States)

    Taguchi, Masako; Morota, Tomokatsu; Kato, Shinsuke

    2017-07-01

    Estimates for volumes of mare basalts are essential to understand the thermal conditions of the lunar mantle and its lateral heterogeneity. In this study, we estimated the thicknesses and volumes of mare basalts within five farside basins, Apollo, Ingenii, Poincare, Freundlich-Sharonov, and Mendel-Rydberg, using premare craters buried by mare basalts and postmare craters that penetrated/nonpenetrated mare basalts employing topographic and multiband image data obtained by SELENE (Kaguya). Furthermore, using the Gravity Recovery and Interior Laboratory crustal thickness model and the mare volumes estimated by this and previous studies, we investigated the relationship between the volumes of the mare basalts and the crustal thicknesses. The results suggest that the minimum crustal thicknesses within the basins were a dominant factor determining whether magma erupted at the surface and that the critical crustal thicknesses for magma eruption were 10 km on the farside and >20 km on the nearside. The total areas of the regions in which magmas could erupt at the surface are 10 times larger on the nearside than on the farside. A comparison between the mare volumes within the mare basins on the nearside and the farside shows that magma production in the farside mantle might have been 20 times smaller than that in the nearside mantle, implying a stronger dichotomy than previously estimated. These results suggest that the mare hemispherical asymmetry should be attributed to both the difference in the crustal thickness distribution and the difference in the quantity of magma production between the nearside and farside mantles.

  4. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    Science.gov (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  5. Pillow basalts of the Angayucham terrane: oceanic plateau and island crust accreted to the Brooks Range

    Science.gov (United States)

    Pallister, J.S.; Budahn, J.R.; Murchey, B.L.

    1989-01-01

    The Angayucham Mountains (north margin of the Yukon-Koyukuk province) are made up of an imbricate stack of four to eight east-west trending, steeply dipping, fault slabs composed of Paleozoic, Middle to Late Triassic, and Early Jurassic oceanic upper crustal rocks. Field relations and geochemical characteristics of the basaltic rocks suggest that the fault slabs were derived from an oceanic plateau or island setting and were emplaced onto the Brooks Range continental margin. The basalts are variably metamorphosed to prehnite-pumpellyite and low-greenschist facies. Major element analyses suggest that many are hypersthene-normative olivine tholeiites. The Triassic and Jurassic basalts are geochemically most akin to modern oceanic plateau and island basalts. Field evidence also favors an oceanic plateau or island setting. The great composite thickness of pillow basalt probably resulted from obduction faulting, but the lack of fault slabs of gabbro or peridotite suggests that obduction faults did not penetrate below oceanic layer 2, a likely occurrence if layer 2 were anomalously thick, as in the vicinity of an oceanic island. -from Authors

  6. Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts

    Science.gov (United States)

    Xue, Q.; Shuo, Q.; Chen, H.

    2016-12-01

    Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.

  7. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.L.; O' Rourke, J.E.; Allirot, D.; O' Connor, K.

    1980-09-01

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report.

  8. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands

    Science.gov (United States)

    Clague, D.A.; Holcomb, R.T.; Sinton, J.M.; Detrick, R. S.; Torresan, M.E.

    1990-01-01

    The North Arch volcanic field is located north of Oahu on the Hawaiian Arch, a 200-m high flexural arch formed by loading of the Hawaiian Islands. These flood basalt flows cover an area of about 25,000 km2; the nearly flat-lying sheet-like flows extend about 100 km both north and south from the axis of the flexural arch. Samples from 26 locations in the volcanic field range in composition from nephelinite to alkalic basalt. Ages estimated from stratigraphy, thickness of sediment on top of the flows, and thickness of palagonite alteration rinds on the recovered lavas, range from about 0.75-0.9 Ma for the youngest lavas to somewhat older than 2.7 Ma for the oldest lavas. Most of the flow field consists of extensive sheetflows of dense basanite and alkalic basalt. Small hills consisting of pillow basalt and hyaloclastite of mainly nephelinite and alkalic basalt occur within the flow field but were not the source vents for the extensive flows. Many of the vent lavas are highly vesicular, apparently because of degassing of CO2. The lavas are geochemically similar to the rejuvenated-stage lavas of the Koloa and Honolulu Volcanics and were generated by partial melting of sources similar to those of the Koloa Volcanics. Prior to eruption, these magmas may have accumulated at or near the base of the lithosphere in a structural trap created by upbowing of the lithosphere. ?? 1990.

  9. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  10. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon.

    Science.gov (United States)

    Hales, T C; Abt, D L; Humphreys, E D; Roering, J J

    2005-12-08

    Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.

  11. Glass Forming Ability of Sub-Alkaline Silicate Melts

    Science.gov (United States)

    Vetere, F. P.; Iezzi, G.; Behrens, H.; Holtz, F.; Ventura, G.; Misiti, V.; Mollo, S.; Perugini, D.

    2014-12-01

    The glass forming ability (GFA) and critical cooling rate (Rc) of six natural sub-alkaline melts from basalt to rhyolite (i.e., B100, B80R20, B60R40, B40R60, B20R80, and R100) have been quantified through cooling-induced solidification experiments of 9000, 1800, 180, 60, 7 and 1 °C/h conducted at ambient pressure and air buffering conditions, in a temperature range between 1300 °C (superliquidus region) and 800 °C (glass transition region), The phase proportion in each run-product was determined by image analysis on about 500 BS-SEM microphotographs. The phase assemblage consists of glass, clinopyroxene, spinel, and plagioclase with the occurrence of sporadic olivine, orthopyroxene and melilite. Both the glass and crystalline fractions are well correlated with the composition of residual melt. Generally, the amount of crystals decreases with increasing cooling rate. However, some exceptions occurs showing no correlations or even opposite trends. For the example of, Al2O3 and CaO in clinopyroxenes from B100, B80R20, B60R40 and B40R60, their concentrations scale as a function of both cooling rate and the degree of clinopyroxene crystallization. The value of Rc changes of 5 order of magnitude from <1 to ~9000 °C/h when the melt composition changes from R100 to B100, respectively. The most important Rc variations are measured between B80R20 and B60R40, levelling off towards B100. This trend scales with NBO/T (non bridging oxygen per tetrahedron) and can be modelled by the following master sigmoid equation: Rc = a / 1+e-(NBO/T-xo/b), where a, b and xo are fitting parameters equal to 9214, 0.040 and 0.297, respectively. Our data can be used to retrieve the solidification conditions of aphyric, degassed and oxidised lavas. Indeed, the relationship between crystal content and cooling kinetics suggests that the solidification path is more complex than previously assumed and strongly non-linear. This finding has also implications to design glass-ceramics based on natural

  12. Database and Interim Glass Property Models for Hanford HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  13. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  14. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    One of the major reasons for using glass in structures is its transparency; however, traditional mechanical joints such as friction joints and steel dowel pinned connections are compromising the transparency. The present paper describes a novel joint which is practically maintaining the complete...... transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  15. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  16. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  17. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    Science.gov (United States)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  18. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  19. Application of D-CRDM Method in Columnar Jointed Basalts Failure Analysis

    Directory of Open Access Journals (Sweden)

    Changyu Jin

    2013-01-01

    Full Text Available Columnar jointed basalt is a type of joint rock mass formed by the combined cutting effect of original joints and aphanitic microcracks. After excavation unloading, such rock mass manifested distinct mechanical properties including discontinuity, anisotropy, and proneness of cracking. On the basis of former research findings, this paper establishes a D-CRDM method applicable to the analysis of columnar jointed basalt, which not only integrates discrete element and equivalent finite-element methods, but also takes into account the coupling effect of original joints and aphanitic microcracks. From the comparative study of field monitoring data and strain softening constitutive model calculated results, it can be found that this method may well be used for the simulation of mechanical properties of columnar jointed basalts and the determination of rock failure mechanism and failure modes, thus providing references for the selection of supporting measures for this type of rock mass.

  20. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    Science.gov (United States)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  1. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    Science.gov (United States)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  2. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  3. Petrologic Evolution of Karayazı Basaltic Plateau: Mixture of melts-derived from both spinel and garnet lherzolite

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Jourdan, Fred

    2016-04-01

    Collision-related volcanism in Eastern Anatolia spreads in a wide zone from the Erzurum-Kars Plateau in the northeast to the Karacadaǧ in the south. Volcanic activity in the region started 15 Ma ago (Middle Miocene) in the south of region following the continent-continent collision between Arabian and Eurasia plates, and continued up to historical times. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. Karayazı basatic lava area located in the Northeast of Turkey is one of the most important and largest basaltic plateau in the East Anatolia. This area which is named to be Karayazı basaltic plateau has covered an area of approximately 200 km2. Lavas of the Karayazı basaltic plateau are characterized with alkali and subalkali basalt erupted from different centers up to from Miocene to Quaternary times. Lavas of the Karayazı basaltic plateau is characterized by alkali olivine basalts and subalkali basalts. These lavas are composed of olivine, plagioclase, augite and titanoaugite crystals and display porphyritic to aphyric textures. Sr, Nd and Hf isotopic compositions of the basaltic plateau vary between 0.703396-0.704976, 0.512730-0.512918 ve 0.282002-0.283029, respectively. MORB pattern of the lavas and isotopic composition imply that alkali and subalkali basalts erupted from Karayazı plateau could have been derived from a mantle source that had previously been enriched by a distinct subduction component. A partial melting model was conducted to evaluate partial melting processes in mantle source of the alkali and subalkali basalts. Results of this model suggest the presence of both strongly spinel and slightly garnet peridotite in the source, a partial melting degree of 2-10 % and mixing of the derivative melts from them in the genesis of the Karayazı basaltic volcanism. All these findings indicate that the source region of the Karayaz

  4. Late Paleozoic rift-related basalts from central Inner Mongolia, China

    Science.gov (United States)

    Zhu, Wenping; Tian, Wei; Wei, Chunjing; Shao, Ji-an; Fu, Bin; Fanning, C. Mark; Chen, Mimi; Wang, Bin

    2017-08-01

    Late Paleozoic basaltic volcanism widely occurred in central Inner Mongolia, the southeastern part of the Central Asia Orogenic Blet (CAOB). Three volcanic pulses are identified by ion microprobe (SHRIMP II) zircon U-Pb analysis, which are Late Carboniferous (ca. 315 Ma), the latest Carboniferous (ca. 303 Ma) and early Permian (ca. 284 Ma). Basalts in the earliest stage are characterized by flat HREE, depletion in Nb and Ta, MORB-like Th/Yb ratios and depleted mantle (DM)-like Hf isotopic ratios. These are similar to forearc basalts, that have been generated by melting of a fluxed depleted mantle in an extensional environment. The latest Carboniferous basalts (sample D1363) have no Zr-Hf anomalies, relatively radiogenic Hf isotopic ratios (εHf(t) = +12.1 to +19.7) and high δ18O values up to 8.5‰, VSMOW. These are likely to be magmas originated from decompressional melting of a depleted mantle that interacted with ocean floor pillow basalts during their ascending through the crust. The early Permian sample D1380 have variable 206Pb/238U zircon ages with an interpreted magma crystallization age of 284.4 ± 2.5 Ma. These zircons have scattered Hf isotope (εHf(t) = +5 to +14) and δ18O (1.8-11.0‰, VSMOW), which suggest the involvement of a relatively enriched mantle source. Overall the temporal evolution of the Late Paleozoic basaltic volcanism from central Inner Mongolia suggests a rift-related tectonic setting.

  5. High-level waste-basalt interactions. Annual progress report, February 1, 1977--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, G.J.; Scheetz, B.E.

    1978-05-01

    Commercial radioactive waste can be placed under ground in a basalt repository to contain significant amounts of radioactive decay heat for the first hundred or so years, which constitutes the ''thermal period'' of waste isolation, if the feasibility is determined that a basalt geology is a suitable medium for storage of radioactive wastes. Several physical-chemical changes analogous to natural geochemical processes can occur in and around this repository during the thermal period. The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding basalts. Geochemically, this is ''contact metamorphism.'' This phenomenon needs to be investigated because it could affect the behavior of the basalt with regard to migration of long-lived radionuclides away from the immediate repository. It is well known that even the relatively low-grade hydrothermal conditions possible in the repository (temperatures up to 400 degrees Centigrade; pressures up to 300 bars) can cause extensive modifications in rocks and minerals. At the end of the thermal period, the residue of the original waste plus the waste-basalt interaction products would constitute the actual waste form (or ''source term'') subject to the low-temperature leaching and migration processes under investigation in other laboratories. During the last eight months of fiscal year 1977, a program was initiated at The Pennsylvania State University which had as its objective the determination of the nature and implication of any chemical or mineralogical changes in, or interactions between, each candidate radioactive waste form and representative Columbia River Basalt under the various relevant repository conditions during the thermal period. Results of these investigations are given.

  6. Glass ceramic seals to inconel

    Science.gov (United States)

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  7. SCHOTT optical glass in space

    Science.gov (United States)

    Jedamzik, Ralf; Petzold, Uwe

    2017-09-01

    Optical systems in space environment have to withstand harsh radiation. Radiation in space usually comes from three main sources: the Van Allen radiation belts (mainly electrons and protons); solar proton events and solar energetic particles (heavier ions); and galactic cosmic rays (gamma- or x-rays). Other heavy environmental effects include short wavelength radiation (UV) and extreme temperatures (cold and hot). Radiation can damage optical glasses and effect their optical properties. The most common effect is solarization, the decrease in transmittance by radiation. This effect can be observed for UV radiation and for gamma or electron radiation. Optical glasses can be stabilized against many radiation effects. SCHOTT offers radiation resistant glasses that do not show solarization effects for gamma or electron radiation. A review of SCHOTT optical glasses in space missions shows, that not only radiation resistant glasses are used in the optical designs, but also standard optical glasses. This publication finishes with a selection of space missions using SCHOTT optical glass over the last decades.

  8. Experimental Study into the Stability of Whitlockite in Basaltic Magmas

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Srinivasan, P.; Whitson, E. S.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    latter treatment resulted in the dehydrogenation of whitlockite to form merrillite. The presence of merrillite vs. whitlockite was widely thought to serve as an indication that magmas were anhydrous [e.g., 6-7]. However, McCubbin et al., [8] determined that merrillite in the martian meteorite Shergotty had no discernible whitlockite component despite its coexistence with OH-rich apatite. Consequently, McCubbin et al., (2014) speculated that the absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T less than1050degC), which would prohibit merrillite-whitlockite solid-solution at high temperatures. In the present study, we have aimed to test this hypothesis experimentally by examining the stability of whitlockite in basaltic magmas at 1.2 GPa and a temperature range of -1000- 1300degC.

  9. From shifting silt to solid stone: the manufacture of synthetic basalt in ancient mesopotamia

    Science.gov (United States)

    Stone; Lindsley; Pigott; Harbottle; Ford

    1998-06-26

    Slabs and fragments of gray-black vesicular "rock," superficially resembling natural basalt but distinctive in chemistry and mineralogy, were excavated at the second-millennium B.C. Mesopotamian city of Mashkan-shapir, about 80 kilometers south of Baghdad, Iraq. Most of this material appears to have been deliberately manufactured by the melting and slow cooling of local alluvial silts. The high temperatures (about 1200 degreesC) required and the large volume of material processed indicate an industry in which lithic materials were manufactured ("synthetic basalt") for grinding grain and construction.

  10. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    Science.gov (United States)

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  11. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments

    Directory of Open Access Journals (Sweden)

    Karen Olsson-Francis

    2017-09-01

    Full Text Available Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe. Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate

  12. Petrology and chemistry of the Huntzinger flow, Columbia River basalt, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ward, A.W. Jr.

    1976-11-01

    Drill core samples of basalts of the Columbia River Group from the Hanford Reservation reveal a spotted, diabasic flow of up to 60 meters in thickness. These samples and those from the flow outcropping at Wahatis Peak (Saddle Mountains, Washington) were examined in detail to document intraflow textural, mineralogical, and chemical variations, which are of importance in basalt flow correlations. Analyses were by atomic absorption, instrumental neutron activation, electron microprobe, natural gamma well logging, K-Ar age dating, X-ray fluorescence, field (portable) magnetometer, and petrographic microscope.

  13. Solubility and partitioning of Ne, Ar, Kr, and Xe in minerals and synthetic basaltic melts

    Science.gov (United States)

    Broadhurst, C. L.; Drake, M. J.; Hagee, B. E.; Bernatowicz, T. J.

    1992-01-01

    The solubilities of Ne, Ar, Kr, and Xe gases were measured in natural samples of anorthite, diopside, forsterite, spinel, and synthetic basaltic melts, the samples which represent equilibrium pairs in the Fo-An-Di-SiO2 system. Results show that, in natural minerals, the solubilities of these gases increase with increasing atomic number. In contrast, the solubilities of noble gases in the synthetic basaltic melts decreased with increasing atomic number. The partition coefficients increased with increasing atomic number for all mineral/melt pairs.

  14. Hydrologic bibliography of the Columbia River basalts in Washington with selected annotations

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Wildrick, L.; Pearson, B.

    1979-08-01

    The objective of this compilation is to present a comprehensive listing of the published, unpublished, and open file references pertaining to the surface and subsurface hydrology of the Columbia River basalts within the State of Washington and is presented in support of Rockwell's hydrologic data compilation effort for the Basalt Waste Isolation Program. A comprehensive, annotated bibliography of the Pasco Basin (including the Hanford Site) hydrology has been prepared for Rockwell as part of the Pasco Basin hydrology studies. In order to avoid unnecessary duplication, no effort was made to include a complete list of bibliographic references on Hanford in this volume.

  15. Technical characterization of sintered glass-ceramics derived from glass fibers recovered by pyrolysis

    OpenAIRE

    Martín, María Isabel; López Gómez, Félix Antonio; Alguacil,Francisco José; Romero, Maximina

    2015-01-01

    Sintered wollastonite-plagioclase glass-ceramics were prepared through crystallization of a parent glass generated by vitrification of pyrolysis residual glass fibers that had been pyrolytically recovered from waste composite materials. A vitrifiable mixture consisting of 95 wt.% glass fiber and 5 wt.% Na2O was melted at 1450ºC to obtain a glass frit. The glass-ceramic materials were produced by a sinter-crystallization process from the powdered glass frit. The effect of firing temperature on...

  16. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    Science.gov (United States)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2