Sample records for subaerial mauna kea

  1. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010 (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle


    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  2. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NARCIS (Netherlands)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; Ten Kate, Inge L.; Russell, Patrick


    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities

  3. Long-term response of the mamane forest to feral herbivore management on Mauna Kea, Hawaii (United States)

    E. Reddy; D. H. Van Vuren; P. G. Scowcroft; J. B. Kauffman; L. Perry


    Seven exclosure sites located on Mauna Kea, Hawaii and established in the 1960s and 70s were sampled to characterize long-term response of the mamane (Sophora chrysophylla) forest to protection from feral sheep grazing, and to assess impacts of non-native plant species and recurrent sheep presence on forest recovery. The forest provides essential...

  4. Mapping Lithologic Units Exposed on the Summit of Mauna Kea Using AVIRIS Hyperspectral Reflectance Data (United States)

    Guinness, E. A.; Arvidson, R. E.; Jolliff, B. L.; Morris, R. V.; Ming, D. W.


    The Mauna Kea summit region is largely comprised of cinder cones and lava flows that form the cap of the Mauna Kea Volcano. The cones and flows at the summit are part of the Laupahoehoe Volcanic series. The Laupa hoehoe volcanism occurred both during and after the late Pleistocene Makanaka glacial episode at the summit. In addition, a few Laupahoehoe cones have been glacially eroded as evidenced by oversteepened slopes, which suggests that they predate the Makanaka glacial period. Two notable examples of possible preglacial cones are Puu Waiau and Puu Poliahu. These two cones are also significantly altered, most likely by hydrothermal activity that has weakly cemented the materials on the cones. Well-crystalline sulfates (alunite and jarosite), phyllosilicates, and zeolites, have been found in samples collected from altered cones at the summit. In addition, palagonitic tephra, which have nanophase ferric oxide, allophane, and other poorly crystalline forms of weakly altered basaltic glass (i.e., no phyllosilicates), have been described at several locations on Mauna Kea. While several studies have discussed the occurrence of alteration products on Mauna Kea, the distribution of these materials exposed at the summit has not been extensively mapped. Hyperspectral imaging can provide information for identifying and mapping lithologic units containing alteration minerals, such as are found on Mauna Kea. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral imaging instrument that covers the wavelength range from about 0.4 to 2.5 micron in 224 bands, with a band spacing of 10 nm and average band width of 10 nm

  5. Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries" (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.


    Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of

  6. Ages and inferred causes of late Pleistocene glaciations on Mauna Kea, Hawai'i (United States)

    Pigati, J.S.; Zreda, M.; Zweck, C.; Almasi, P.F.; Elmore, D.; Sharp, W.D.


    Glacial landforms on Mauna Kea, Hawai'i, show that the summit area of the volcano was covered intermittently by ice caps during the Late Pleistocene. Cosmogen 36Cl dating of terminal moraines and other glacial landforms indicates that the last two ice caps, called Older Makanaka and Younger Makanaka, retreated from their maximum positions approximately 23ka and 13ka, respectively. The margins and equilibrium line altitudes of these ice caps on the remote, tropical Pacific island were nearly identical, which would seem to imply the same mechanism for ice growth. But modelling of glacier mass balance, combined with palaeotemperature proxy data from the subtropical North Pacific, suggests that the causes of the two glacial expansions may have been different. Older Makanaka airatop Mauna Kea was likely wetter than today and cold, whereas Younger Makanaka times were slightly warmer but significantly wetter than the previous glaciation. The modelled increase in precipitation rates atop Mauna Kea during the Late Pleistocene is consistent with that near sea level inferred from pollen data, which suggests that the additional precipitation was due to more frequent and/ or intense tropical storms associated with eastward-moving cold fronts. These conditions were similar to modern La Ni??a (weak ENSO) conditions, but persisted for millennia rather than years. Increased precipitation rates and the resulting steeper temperature lapse rates created glacial conditions atop Mauna Kea in the absence of sufficient cooling at sea level, suggesting that if similar correlations existed elsewhere in the tropics, the precipitation-dependent lapse rates could reconcile the apparent difference between glacial-time cooling of the tropics at low and high altitudes. Copyright ?? 2008 John Wiley & Sons, Ltd.

  7. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii (United States)

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.


    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a

  8. The Mauna Kea Observatories Outreach Committee Brings Astronomy To The Hawaiian Public (United States)

    Heyer, I.; Harvey, J.; Usuda, K. S.; Fujihara, G.; Hamilton, J.


    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawaii. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers, we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket, we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours of Astronomy" webcast. In the fall, we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  9. Long-Term Trend of Stratospheric Chlorine Monoxide Over Mauna Kea, Hawaii, 1982-2004 (United States)

    Solomon, P.; Barrett, J.; Parrish, A.; Mooney, T.; Connor, B.


    We report on the long-term trend in stratospheric ClO concentration and column over Mauna Kea, Hawaii (latitude 19.8 N, altitude 4200 meters). We present altitude profiles, trends in mixing ratio and trends in total ClO column. At the meeting, results up to December 2004 will be presented. The mixing ratio at the peak of the altitude distribution is determined more precisely than the total column, and is the best parameter for tracing the long-term trend of active chlorine. At the peak, essentially all of the active chlorine is ClO. The ClO mixing ratio near the peak at 35--39~km (~4~hPa) increased by 38% from 1982.8 to 1995, when it reached a maximum and declined from 1994--95 to 2003. The trend is consistent with that expected from the increase of total tropospheric chlorine which reached a maximum in 1992. The trend of ClO at 37~km appears to have a time lag of 3 to 4 years with respect to total tropospheric ClO. Most important, the data since 1994--95 show clear evidence of declining active chlorine. A linear fit to 74 measurements gives a decline of MR(35-39~km) = 0.560 - 0.006 ± 0.0014( DATE - 1994) ppbv which corresponds to a decline of 0.95% ± 0.26%, or slightly less than 1% per year. A fit to yearly averages of the data gives essentially the same decline. Measured over the period of 1994 to 2003 the total decline is 8.5%, consistent with the trend expected from total tropospheric chlorine. We have been making ground-based millimeter-wave measurements of stratospheric ClO from Mauna Kea in Hawaii since October, 1982. Before 1989, measurements were made several times a year with a portable instrument. Since 1992, an improved, automated instrument has been permanently stationed at the site, as part of the Network for the Detection of Stratospheric Change (NDSC), and takes data continuously. The instrument is a spectrometer tuned to the thermally-excited emission line of ClO at 278.3 GHz. Its bandwidth permits the measurement of the pressure-broadened line

  10. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii (United States)

    Graham, L. D.; Graff, T. G.


    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  11. Home range and movements of Feral cats on Mauna Kea, Hawai'i (United States)

    Goltz, Dan M.; Hess, S.C.; Brinck, K.W.; Banko, P.C.; Danner, R.M.


    Feral cats Felis catus in dry subalpine woodland of Mauna Kea, Hawai'i, live in low density and exhibit some of the largest reported home ranges in the literature. While 95% fixed kemel home range estimates for three females averaged 772 ha, four males averaged 1 418 ha, and one male maintained a home range of 2 050 ha. Mean daily movement rates between sexes overlapped widely and did not differ significantly (P = 0.083). Log-transformed 95% kernel home ranges for males were significantly larger than those of females (P = 0.024), but 25% kernel home ranges for females were larger than those of males (P = 0.017). Moreover, log-transformed home ranges of males were also significantly larger than those of females in this and seven other studies from the Pacific region (P = 0.044). Feral cats present a major threat to endangered Hawaiian birds, but knowledge of their ecology can be used for management by optimizing trap spacing and creating buffer zones around conservation areas.

  12. Geomorphometric variability of "monogenetic" volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones (United States)

    Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.


    Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.

  13. Habitat and food preferences of the endangered Palila (Loxioides bailleui) on Mauna Kea, Hawai'i (United States)

    Hess, Steven C.; Banko, Paul C.; Miller, Linda J.; Laniawe, Leona P.


    Seeds and flowers of the leguminous māmane (Sophora chrysophylla) tree are the primary food resource of the federally endangered Palila (Loxioides bailleui; Fringillidae: Drepanidinae), which is now restricted to dry subalpine woodland on Mauna Kea Volcano on the island of Hawai'i because of centuries of habitat degradation by non-native ungulates. Palila are morphologically and behaviorally adapted to consume māmane seeds by grasping seed pods with their feet and opening pods with stout bills and demonstrate limited ability to exploit alternative food resources. This degree of single species dependency is rare among birds and illustrates unique adaptations that also occurred in other Hawaiian species that are now extinct. In mixed-woodland with co-dominant naio (Myoporum sandwicense), Palila spent 1.7-3.9 times longer in māmane than in naio during foraging observations where naio was 1.3-4.6 times as dense as māmane. Naio fruit was readily available, but it comprised proportionally flowers were more abundant than māmane pods throughout this study except at one lower-elevation mixed-woodland site, Palila spent more time foraging on pods than flowers in both māmane woodland and mixed-woodland, but consumed more flowers than pods in mixed-woodland. Insects, which have been reported as an important component of the diet of Palila, were apparently taken rarely in this study. Protecting and restoring māmane in woodlands adjacent to the current range of Palila will benefit their recovery, allowing them to exploit increased food availability in areas of their former range.

  14. Moessbauer/XRF MIMOS Instrumentation and Operation During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii (United States)

    Graff, Trevor G.; Morris, R. V.; Klingelhofer, G.; Blumers, M.


    Field testing and scientific investigations were conducted on the Mauna Kea Volcano, Hawaii, as part of the 2012 Moon and Mars Analog Mission Activities (MMAMA). Measurements were conducted using both stand-alone and rover-mounted instruments to determine the geophysical and geochemical properties of the field site, as well as provide operational constraints and science considerations for future robotic and human missions [1]. Reported here are the results from the two MIMOS instruments deployed as part of this planetary analog field test.

  15. Designing remote operations strategies to optimize science mission goals : Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NARCIS (Netherlands)

    Yingst, R. A.; Russell, P.; Ten Kate, I. L.|info:eu-repo/dai/nl/292012217; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to

  16. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii. (United States)

    Danner, Raymond M; Goltz, Daniel M; Hess, Steven C; Banko, Paul C


    We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.

  17. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii (United States)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.


    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  18. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii. (United States)

    Kramer, Marc G; Chadwick, Oliver A


    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of ecosystem development are not well understood. We examined soil organic matter dynamics and soil development across a high-altitude (3,560-3,030 m) 20-kyr climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected (~250-500 mm rainfall), which range from sparsely vegetated to sites that contain a mix of shrubs and grasses. At each site, two or three pits were dug and major diagnostic horizons down to bedrock (intact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption, and major elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al, and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation. Reactive-phase (SRO) minerals show a general trend of increasing abundance with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20 kyr, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall are severely limited. Carbon storage comparisons with lower-elevation soils on Mauna Kea and other moist mesic (2,500 mm rainfall) sites on Hawaii suggest that these soils have reached only between 1% and 15% of their capacity to retain carbon. Our results suggest that, after 20 kyr in low rainfall and a cold climate, weathering was decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Overall, we conclude that the rate of carbon supply to the subsoil (driven by coupling of rainfall

  19. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.


    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  20. Hydrothermal Alteration on Basaltic Mauna Kea Volcano as a Template for Identification of Hydrothermal Alteration on Basaltic Mars (United States)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Mertzman, S. A.; Bell, J. F., III


    Certain samples of palagonitic tephra from Mauna Kea Volcano (Hawaii) are spectral analogues for bright martian surface materials at visible and near-IR wavelengths because both are characterized by a ferric absorption edge extending from about 400 to 750 nm and relatively constant reflectivity extending from about 750 nm to beyond 2000 nm. Palagonite is a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass. For Mars-analogue palagonite, the pigment is nanometersized ferric oxide particles (np-Ox) dispersed throughout an allophane-like hydrated basaltic glass matrix. Crystalline phyllosilicates are not generally detected, and the hydration state of the is not known. The poorly crystalline nature of glass alteration products implies relatively low temperature formation pathways. We report here x-ray diffraction, major element, Mossbauer, and VNIR data for 9 basaltic tephras. Thermal emission spectra are reported in a separate abstract. Our multidisciplinary approach both tightly constrains mineralogical interpretations and maximizes overlap with datasets available for the martian surface available now and in the future.

  1. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack


    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  2. Pu'u Poli'ahu, Mauna Kea: A Possible Analog for the Hematite Bearing Layer Located in Gale Crater, Mars. (United States)

    Adams, M. E.


    Hyperspectral data detected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board Mars Reconnaissance Orbiter (MRO) indicated the presence of a hematite bearing ridge on Mount Sharp situated in the Gale Crater, Mars. [Fraeman]. The presence of this mineral in high concentrations is indicative of possible aqueous origins. [Fraeman] In 2012, Curiosity Rover landed in Gale Crater on Mars. Curiosity's mission is to determine Mars' habitability and is equipped with an advanced suite of scientific instruments that are capable of conducting analyses on rocks and soil. The hematite bearing ridge on Mount Sharp is thought to be a good candidate of study for Curiosity. To better understand this type of terrain, the study of analog sites similar in geologic setting is of great importance. One site thought to be a comparable analog is a cinder cone called Pu'u Poli'ahu located on the summit of Mauna Kea, Hawai?i. Poli'ahu is unique among the tephra cones of Mauna Kea because it is thought to have formed in subaqueous conditions approximately 170,000 to 175,000 years ago. [Porter] Consequently located on the inner flanks of Poli'ahu is a rock outcrop that contains hematite. Samples were collected from the outcrop and characterized using the following instruments: Digital Microscope, Panalytical X-ray diffraction (XRD), and scanning electron microscope (SEM). The initial preparation of the rocks involved documenting each sample by creating powdered samples, thick sections, and photo documentation.

  3. Steepest-descent lines for Kīlauea, Mauna Loa, Hualālai, and Mauna Kea Volcanoes, Hawaiʻi (United States)

    Kauahikaua, James P.; Orr, Tim; Patrick, Matthew R.; Trusdell, Frank


    This USGS data release includes two ESRI polyline shapefiles (file_names.shp) describing the describing the steepest-descent lines calculated at two levels of detail (See Process Step for explanation). To increase access to these data, KMZ (Compressed Keyhole Markup Language) versions of the polyline feature layers are included in this release (file_names.kmz). In addition to these data layers, two supplementary data layers from the Big Island Mapping Project (BIMP) showing lava flows originating on Mauna Loa and Kilauea volcanoes, originally published in Trusdell, Wolfe, and Morris (2006), are included for context and reference. Both ESRI polygon shapefiles and KMZ versions of these files are included, naming conventions are identical as the files in this release. This metadata file provides information for the GIS data files unique to this data release. Below are the files that comprise this release, including the metadata files: Steepest-Descent_lines_3M_m2.shp Steepest-Descent_lines_750K_m2.shp Steepest-Descent_lines_3M_m2.KMZ Steepest-Descent_lines_750K_m2.KMZ Kilauea1983-1996_from_BIMP.shp ML1984_from_BIMP.shp Kilauea1983-1996_from_BIMP.kmz ML1984_from_BIMP.kmz mauna_loa_steepest_descent_lines_FGDC.xml mauna_loa_steepest_descent_lines_FGDC.txt

  4. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. (United States)

    Brounce, Maryjo; Stolper, Edward; Eiler, John


    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle fO2 may influence the fO2 at Earth's surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2 We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  5. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Brounce, Maryjo; Stolper, Edward; Eiler, John


    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  6. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R.; Sims, K.W.W.


    Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar results provide good precision even on ages as low as 19 {+-} 4 ka. Hence, the strengths and weaknesses of the U-Th/He and {sup 40}Ar/{sup 39}Ar methods are

  7. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite (United States)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.


    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively.

  8. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test (United States)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.


    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  9. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign (United States)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; hide


    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  10. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii (United States)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.


    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  11. Hematite Spherules in Basaltic Tephra Altered Under Aqueous, Acid-Sulfate Conditions on Mauna Kea Volcano, Hawaii: Possible Clues for the Occurrence of Hematite-Rich Spherules in the Burns Formation at Meridiani Planum, Mars (United States)

    Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.


    Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.

  12. Summit Crater of Mauna Loa (United States)


    Astronauts obtained this detailed image of the summit caldera of Mauna Loa volcano, called Mokuaweoweo Caldera. Mauna Loa is the largest volcano on our planet-the summit elevation is 4,170 m (over 13,600 ft), but the volcano's summit rises 9 km above the sea floor. The sharp features of the summit caldera and lava flows that drain outward from the summit are tribute to the fact that Mauna Loa is one of the Earth's most active volcanoes. The most recent eruption was in 1984. The straight line the cuts through the center of the crater from top to bottom is a rift zone-an area that pulls apart as magma reaches the surface. A weather observatory run by NOAA's Climate Monitoring and Diagnostics Lab is on the volcano's north slope at 11,000 ft (3397 m). This facility, known as the Mauna Loa Observatory, is the site where scientists have documented the constantly increasing concentrations of global atmospheric carbon dioxide. Other resources about Mauna Loa: Astronaut photograph ISS005-E-7002 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  13. Operation of the University of Hawaii 2.2M telescope on Mauna Kea (United States)

    Hall, Donald N. B.


    NASA's planetary astronomy program provides part of the funding for the 2.2 meter telescope. The parameters for time on the telescope are laid out. A major instrumental highlight has been the commissioning of a 256 x 256 near infrared camera which uses a Rockwell NICMOS-3 array. At the f/10 focus, image scales of 0.37 and 0.75 arcsec/pixel are available. A new, high quantum efficiency Tektronix 1024 x 1024 CCD saw first light on the telescope in 1991, and was available regularly from April 1991. Data from both of these detectors are transmitted directly to the Sun workstation for immediate analysis by the observers. The autoguider software was enhanced to permit guided tracking on objects have nonsideral motions (i.e., solar system objects).

  14. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea (United States)

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi


    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  15. Papaha-naumokua-kea Marine National Monument Digital Boundary (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Papaha-naumokua-kea Marine National Monument (NWHI-MNM) was designated by Presidential Proclamation 8031, June 15th 2006. The legal boundaries for the NWHI-MNM...

  16. Survival of feral cats, Felis catus (Carnivora: Felidae), on Mauna Kea, Hawai'i, based on tooth cementum lines (United States)

    Danner, Raymond M.; Farmer, Chris; Hess, Steven C.; Stephens, Robert M.; Banko, Paul C.


    Feral cats (Felis catus) have spread throughout anthropogenic and insular environments of the world. They now threaten many species of native wildlife with chronic depredation. Knowledge of feral cat population dynamics is necessary to understand their ecological effects and to develop effective control strategies. However, there are few studies worldwide regarding annual or lifetime survival rates in remote systems, and none on Pacific islands. We constructed the age distribution and estimated survival of feral cats in a remote area of Hawai'i Island using cementum lines present in lower canine teeth. Our data suggest annual cementum line formation. A log-linear model estimated annual survival ≥ 1 yr of age to be 0.647. Relatively high survival coupled with high reproductive output allows individual cats to affect native wildlife for many years and cat populations to rebound quickly after control efforts.

  17. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.


    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  18. Chronic West Nile virus infection in kea (Nestor notabilis). (United States)

    Bakonyi, Tamás; Gajdon, Gyula K; Schwing, Raoul; Vogl, Wolfgang; Häbich, Annett-Carolin; Thaller, Denise; Weissenböck, Herbert; Rudolf, Ivo; Hubálek, Zdenek; Nowotny, Norbert


    Six kea (Nestor notabilis) in human care, naturally infected with West Nile virus (WNV) lineage 2 in Vienna, Austria, in 2008, developed mild to fatal neurological signs. WNV RNA persisted and the virus evolved in the birds' brains, as demonstrated by (phylo)genetic analyses of the complete viral genomes detected in kea euthanized between 2009 and 2014. WNV antibodies persisted in the birds, too. Chronic WNV infection in the brain might contribute to the circulation of the virus through oral transmission to predatory birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Changing Carbon Cycle at Mauna Loa Observatory

    National Research Council Canada - National Science Library

    Wolfgang Buermann; Benjamin R. Lintner; Charles D. Koven; Alon Angert; Jorge E. Pinzon; Compton J. Tucker; Inez Y. Fung


    The amplitude of the CO₂ seasonal cycle at the Mauna Loa Observatory (MLO) increased from the early 1970s to the early 1990s but decreased thereafter despite continued warming over northern continents...

  20. Mauna Loa Revealed: Structure, Composition, History, and Hazards (United States)

    Rhodes, J. M.; Lockwood, John P.

    Mauna Loa is a volcano of superlatives: it is the largest active volcano on Earth and among the most productive. This volume serves to place on record the current state of our knowledge concerning Mauna Loa at the beginning of the Decade Volcano Project. The scope is broad, encompassing the geologic and exploratory history of the volcano, an overview of its submarine geology, its structure, petrologic and geochemical characteristics, and what Mauna Loa has to tell us about the Hawaiian mantle plume; it covers also remote sensing methods and the use of gravity, seismic and deformational studies for eruption monitoring and forecasting, hazards associated with the volcano, and even the importance of a changing volcanic landscape with a wide spectrum of climate zones as an ecological laboratory. We have made a deliberate effort to present a comprehensive spectrum of current Mauna Loa research by building on a December 1993 symposium at the AGU Fall Meeting that considered (1) what is currently known about Mauna Loa, (2) critical problems that need to be addressed, and (3) the technical means to solve these problems, and by soliciting contributions that were not part of the symposium. We encouraged authors to consider how their papers relate to others in the volume through crossreferencing. The intent was that this monograph should be a book about Mauna Loa rather than a collection of disparate papers.

  1. Geologic map of the northeast flank of Mauna Loa volcano, Island of Hawai'i, Hawaii (United States)

    Trusdell, Frank A.; Lockwood, John P.


    SummaryMauna Loa, the largest volcano on Earth, has erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity.The majority of the eruptions of Mauna Loa began in the summit area (>12,000-ft elevation; Lockwood and Lipman, 1987); yet the Northeast Rift Zone (NERZ) was the source of eight flank eruptions since 1843 (table 1). This zone extends from the 13,680-ft-high summit towards Hilo (population ~60,000), the second largest city in the State of Hawaii. Although most of the source vents are farther than 30 km away, the 1880 flow from one of the vents extends into Hilo, nearly reaching Hilo Bay. The city is built entirely on flows erupted from the NERZ, most older than that erupted in 1843.Once underway, Mauna Loa's eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities in their path. For example, lava flows erupted from the Southwest Rift Zone (SWRZ) in 1950 advanced at an average rate of 9.3 km per hour, and all three lobes reached the ocean within approximately 24 hours (Finch and Macdonald, 1953). The flows near the eruptive vents must have traveled even faster.In terms of eruption frequency, pre-eruption warning, and rapid flow emplacement, Mauna Loa poses an enormous volcanic-hazard threat to the Island of Hawai‘i. By documenting past activity and by alerting the public and local government officials of our findings, we can anticipate the volcanic hazards and substantially mitigate the risks associated with an eruption of this massive edifice.From the geologic record, we can deduce several generalized facts about the geologic history of the NERZ. The middle to the uppermost section of the rift zone were more active in the past 4,000 years than the lower part, perhaps due to buttressing of the lower east rift zone by Mauna Kea and Kīlauea volcanoes. The historical flows

  2. 78 FR 33356 - Proposed Information Collection; Comment Request; Papahānaumokuākea Marine National Monument... (United States)


    ... naumoku kea Marine National Monument Permit Application and Reports for Permits (Formerly Known as Northwestern Hawaiian Islands Marine National Monument) AGENCY: National Oceanic and Atmospheric Administration..., President Bush established the Papah naumoku kea Marine National Monument by issuing Presidential...

  3. Temperature trends at the Mauna Loa observatory, Hawaii

    Directory of Open Access Journals (Sweden)

    B. D. Malamud


    Full Text Available Observations at the Mauna Loa Observatory, Hawaii, established the systematic increase of anthropogenic CO2 in the atmosphere. For the same reasons that this site provides excellent globally averaged CO2 data, it may provide temperature data with global significance. Here, we examine hourly temperature records, averaged annually for 1977–2006, to determine linear trends as a function of time of day. For night-time data (22:00 to 06:00 LST (local standard time there is a near-uniform warming of 0.040 °C yr−1. During the day, the linear trend shows a slight cooling of −0.014 °C yr−1 at 12:00 LST (noon. Overall, at Mauna Loa Observatory, there is a mean warming trend of 0.021 °C yr−1. The dominance of night-time warming results in a relatively large annual decrease in the diurnal temperature range (DTR of −0.050 °C yr−1 over the period 1977–2006. These trends are consistent with the observed increases in the concentrations of CO2 and its role as a greenhouse gas (demonstrated here by first-order radiative forcing calculations, and indicate the possible relevance of the Mauna Loa temperature measurements to global warming.

  4. Breeding productivity and survival of the endangered Hawai'i Creeper in a wet forest refuge on Mauna Kea, Hawai'i (United States)

    Collins, Mark


    We studied the demography of the endangered Hawai‘i Creeper (Oreomystis muna) from 1994-1999 at three sites in Hakalau Forest National Wildlife Refuge (NWR). Hawai‘i Creepers bred from January to June, with peak breeding in February through May (about 120-l 80 days), and molted from May to August. A small proportion (4.9%) of individuals overlapped breeding and molting activities. We located and monitored the fates of 60 nests. Mean clutch size was 2.1 eggs, nest building required 19 days, incubation was 16 to 17 days, and nestling period lasted 18 days. Of all nest attempts, 25% were abandoned before egg laying, 6.7% were removed for captive propagation, 13.3% had undetermined fates, 38.3% failed during incubation or nestling periods, and 16.7% were successful. Thus, of 33 nests that were active through egg laying and outcome was confirmed, only 30% were successful. The daily survival rate of active nests was 0.960 t 0.009 SE. An average of 1.7 chicks fledged from successful nests. Thirty-two percent of hatch-year birds were alive and in the study area at least one year later. Annual adult survival was high (0.88 t 0.03). The primary factors limiting productivity of Hawai‘i Creeper in Hakalau Forest NWR appear to be low reproductive potential in combination with high rates of nesting failure. Further research into the causes of nest failure, the length of the breeding season, and renesting behavior of females is needed, and protection of the forest from the degrading impacts of introduced mammals is paramount.

  5. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. (United States)

    Zheng, Sheng; Pan, Ting; Fan, Ligang; Qiu, Quan-Sheng


    AtKEAs, homologs of bacterial KefB/KefC, are predicted to encode K(+)/H(+) antiporters in Arabidopsis. The AtKEA family contains six genes forming two subgroups in the cladogram: AtKEA1-3 and AtKEA4-6. AtKEA1 and AtKEA2 have a long N-terminal domain; the full-length AtKEA1 was inactive in yeast. The transport activity was analyzed by expressing the AtKEA genes in yeast mutants lacking multiple ion carriers. AtKEAs conferred resistance to high K(+) and hygromycin B but not to salt and Li(+) stress. AtKEAs expressed in both the shoot and root of Arabidopsis. The expression of AtKEA1, -3 and -4 was enhanced under low K(+) stress, whereas AtKEA2 and AtKEA5 were induced by sorbitol and ABA treatments. However, osmotic induction of AtKEA2 and AtKEA5 was not observed in aba2-3 mutants, suggesting an ABA regulated mechanism for their osmotic response. AtKEAs' expression may not be regulated by the SOS pathway since their expression was not affected in sos mutants. The GFP tagging analysis showed that AtKEAs distributed diversely in yeast. The Golgi localization of AtKEA3 was demonstrated by both the stably transformed seedlings and the transient expression in protoplasts. Overall, AtKEAs expressed and localized diversely, and may play roles in K(+) homeostasis and osmotic adjustment in Arabidopsis.

  6. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sheng Zheng

    Full Text Available AtKEAs, homologs of bacterial KefB/KefC, are predicted to encode K(+/H(+ antiporters in Arabidopsis. The AtKEA family contains six genes forming two subgroups in the cladogram: AtKEA1-3 and AtKEA4-6. AtKEA1 and AtKEA2 have a long N-terminal domain; the full-length AtKEA1 was inactive in yeast. The transport activity was analyzed by expressing the AtKEA genes in yeast mutants lacking multiple ion carriers. AtKEAs conferred resistance to high K(+ and hygromycin B but not to salt and Li(+ stress. AtKEAs expressed in both the shoot and root of Arabidopsis. The expression of AtKEA1, -3 and -4 was enhanced under low K(+ stress, whereas AtKEA2 and AtKEA5 were induced by sorbitol and ABA treatments. However, osmotic induction of AtKEA2 and AtKEA5 was not observed in aba2-3 mutants, suggesting an ABA regulated mechanism for their osmotic response. AtKEAs' expression may not be regulated by the SOS pathway since their expression was not affected in sos mutants. The GFP tagging analysis showed that AtKEAs distributed diversely in yeast. The Golgi localization of AtKEA3 was demonstrated by both the stably transformed seedlings and the transient expression in protoplasts. Overall, AtKEAs expressed and localized diversely, and may play roles in K(+ homeostasis and osmotic adjustment in Arabidopsis.

  7. 75 FR 43823 - Safety Zone; He'eia Kea Small Boat Harbor, Kaneohe Bay, Oahu, HI (United States)


    ..., Oahu, HI AGENCY: Coast Guard, DHS. ACTION: Temporary Final Rule. SUMMARY: The Coast Guard is establishing a temporary safety zone in He'eia Kea Small Boat Harbor located in Kaneohe Bay, Oahu, Hawaii. The... Small Boat Harbor located in Kaneohe Bay, Oahu, Hawaii. This safety zone is in the shape of a box...

  8. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii (United States)

    Trusdell, Frank A.; Zoeller, Michael H.


    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  9. KeaA, a Dictyostelium kelch-domain protein that regulates the response to stress and development

    Directory of Open Access Journals (Sweden)

    Souza Glaucia M


    Full Text Available Abstract Background The protein kinase YakA is responsible for the growth arrest and induction of developmental processes that occur upon starvation of Dictyostelium cells. yakA- cells are aggregation deficient, have a faster cell cycle and are hypersensitive to oxidative and nitrosoative stress. With the aim of isolating members of the YakA pathway, suppressors of the death induced by nitrosoative stress in the yakA- cells were identified. One of the suppressor mutations occurred in keaA, a gene identical to DG1106 and similar to Keap1 from mice and the Kelch protein from Drosophila, among others that contain Kelch domains. Results A mutation in keaA suppresses the hypersensitivity to oxidative and nitrosoative stresses but not the faster growth phenotype of yakA- cells. The growth profile of keaA deficient cells indicates that this gene is necessary for growth. keaA deficient cells are more resistant to nitrosoative and oxidative stress and keaA is necessary for the production and detection of cAMP. A morphological analysis of keaA deficient cells during multicellular development indicated that, although the mutant is not absolutely deficient in aggregation, cells do not efficiently participate in the process. Gene expression analysis using cDNA microarrays of wild-type and keaA deficient cells indicated a role for KeaA in the regulation of the cell cycle and pre-starvation responses. Conclusions KeaA is required for cAMP signaling following stress. Our studies indicate a role for kelch proteins in the signaling that regulates the cell cycle and development in response to changes in the environmental conditions.

  10. What you see is what you get? Exclusion performances in ravens and keas.

    Directory of Open Access Journals (Sweden)

    Christian Schloegl


    Full Text Available Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied.We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently.To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds.

  11. Semen Collection and Spermatozoa Characteristics in the Kea Parrot (Nestor notabilis). (United States)

    Dogliero, Andrea; Rota, Ada; Lofiego, Renato; von Degerfeld, Mitzy Mauthe; Quaranta, Giuseppe


    We describe the seminal characteristics of the kea parrot (Nestor notabilis), an endangered species endemic to the South Island of New Zealand. Semen was collected in the full breeding season from 6 birds in the collection of an amateur aviculturist. The manual massage technique was used. A total of 25 ejaculates was collected and evaluated for volume, degree of contamination, and spermatozoa concentration; motility and kinetic parameters were assessed on diluted samples (modified Tyrode's Albumin Lactate Pyruvate, pH 8.2, temperature 37.5°C) with a computer-aided sperm analyzer. Four ejaculates were not analyzed because of an excessively high degree of contamination. Semen color ranged from transparent or turbid yellow to whitish. The geometric mean of spermatozoa number/ejaculate was 765.9 ± 2084.7 × 106. Total and progressive motility were 71.7% ± 20.0% and 59.8% ± 22.0%, respectively. Great variability was observed both among birds and among different ejaculates of the same subject. The seminal characteristics of kea are worth further investigation, with the aim of relating semen quality to fertility and defining a minimum inseminating dose for breeding purposes. A deeper knowledge of male reproductive biology also can increase the success of breeding programs and enable the use of the kea as a model species for other more threatened species, such as the kaka ( Nestor meridionalis ) and the kakapo (Strigops habroptila).

  12. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile (United States)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.


    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  13. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows (United States)

    White, A.F.; Hochella, M.F.


    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  14. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore. (United States)

    Eliás, Marek; Nemcová, Yvonne; Skaloud, Pavel; Neustupa, Jirí; Kaufnerová, Veronika; Sejnohová, Lenka


    The algal flora of subaerial habitats in the tropics remains largely unexplored, despite the fact that it potentially encompasses a wealth of new evolutionary diversity. Here we present a detailed morphological and molecular characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells. Autosporulation was the only mode of reproduction observed. The cell periphery was filled with numerous vacuoles, and a single parietal chloroplast contained a conspicuous pyrenoid surrounded by a bipartite starch envelope. The cell wall was composed of a thick inner layer and a thin trilaminar outer layer, and the cell surface was ornamented with a few delicate ribs. Phylogenetic analyses of 18S rRNA gene sequences placed our strain in the family Scenedesmaceae (Sphaeropleales, Chlorophyceae) as a strongly supported sister branch of the genus Desmodesmus. Analyses of an alternative phylogenetic marker widely used for the Scenedesmaceae, the ITS2 region, confirmed that the strain is distinct from any scenedesmacean alga sequenced to date, but is related to the genus Desmodesmus, despite lacking the defining phenotypic features of Desmodesmus (cell wall with four sporopolleninic layers ornamented with peculiar submicroscopic structures). Collectively, our results establish that we identified a novel, previously undocumented, evolutionary lineage of scenedesmacean algae necessitating its description as a new species in a new genus. We propose it be named Hylodesmus singaporensis gen. et sp. nov. A cryopreserved holotype specimen has been deposited into the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP C-H8001.

  15. Response surface optimization of a method for extracting extracellular polymeric substances (EPS) from subaerial biofilms on rocky substrata. (United States)

    Vázquez-Nion, Daniel; Echeverri, María; Silva, Benita; Prieto, Beatriz


    The aim of the present study was to optimize a protocol for extracting extracellular polymeric substances (EPS) from biofilms on rocky substrata, as the EPS matrix is considered key to understanding the biofilm mode of life. For this purpose, we tested the extraction efficacy of NaOH and H2SO4 at different concentrations, temperatures and times for obtaining EPS from multi-species subaerial biofilms grown on granite blocks under laboratory conditions. Two experimental designs (Box-Behnken design and full factorial design) were used in testing each extractant. The extraction efficiency was determined by analysing the carbohydrate, protein and DNA contents of the extracts obtained. H2SO4 proved unsuitable as an extractant as it caused excessive cell lysis. However, response surface optimization of NaOH-mediated extraction enabled cell lysis to be minimized. Confirmation experiments were performed under the optimal conditions established and a protocol for extracting EPS is proposed, yielding the first quantitative data on EPS extracted from subaerial biofilms developed on rocky substrata. Graphical abstract Development of a method for extracting EPS from subaerial biofilms on rocky substrata.

  16. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR (United States)

    Colón, Cindy; Webb, A. Alexander G.; Lasserre, Cécile; Doin, Marie-Pierre; Renard, François; Lohman, Rowena; Li, Jianghai; Baudoin, Patrick F.


    Surface salt bodies in the western Kuqa fold-thrust belt of northwestern China allow study of subaerial salt kinematics and its possible correlations with weather variations. Ephemeral subaerial salt exposure during the evolution of a salt structure can greatly impact the subsequent development and deformation of its tectonic setting. Here, we present a quantitative time-lapse survey of surface salt deformation measured from interferometric synthetic aperture radar (InSAR) using Envisat radar imagery acquired between 2003 and 2010. Time series analysis and inspection of individual interferograms confirm that the majority of the salt bodies in western Kuqa are active, with significant InSAR observable displacements at 3 of 4 structures studied in the region. Subaerial salt motion toward and away from the satellite at rates up to 5 mm/yr with respect to local references. Rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) and temperature from a local weather station are used to test the relationship between seasonality and surface salt motion. We observe decoupling between surface salt motion and seasonality and interpret these observations to indicate that regional and local structural regimes exert primary control on surface salt displacement rates.

  17. The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis (United States)

    O'Hara, Mark; Huber, Ludwig; Gajdon, Gyula Kopanny


    Studies investigating the same paradigm but employing different methods are often directly compared in the literature. One such paradigm used to assess behavioural flexibility in animals is reversal learning. Commonly, these studies require individuals to learn the reward contingency of either solid objects presented on the ground or images presented on a touchscreen. Once learned, these contingencies are swapped. Researchers often refer to trials required to reach learning criteria from different studies, to compare the flexibility of different species, but rarely take methodological differences into account. A direct evaluation of the validity of such comparisons is lacking. To address this latent question, we confronted kea, an alpine parrot species of New Zealand and known for its behavioural flexibility, with a standard reversal learning paradigm on the touchscreen and a standard reversal learning paradigm with solid objects. The kea required significantly more trials to reach criterion in the acquisition and the reversal on the touchscreen. Also, the absolute increase in the number of trials required for the reversal was significantly greater on the touchscreen. This indicates that it is not valid to compare learning speed across studies that do not correspond in the addressed methodology. Taking into account the kea's ecology and explorative nature we discuss stimulus abstraction (limited depth cues and tactile stimulus feedback) and the spatial relation between reward and stimulus on the touchscreen as possible causes for decreased inhibition in this condition. Contrary to the absolute increase in number of trials required for the reversal, the increase in relation to the acquisition was greater with solid objects. This highlights the need for further research on the mechanisms involved causing methodology-dependent differences, some of which we discuss, in order to increase the validity of interpretations across studies and in respect to the subject

  18. Sea surface temperature variation linked to elemental mercury concentrations measured on Mauna Loa (United States)

    The Hg0 time series recorded at the Mauna Loa Observatory (MLO) in Hawaii between 2002 and 2009 has been analyzed using Empirical Mode Decomposition. This technique has been used in numerous contexts in order to identify periodical variations in time series data. The periodicitie...

  19. Map showing lava inundation zones for Mauna Loa, Hawai'i (United States)

    Trusdell, F.A.; Graves, P.; Tincher, C.R.


    The Island of Hawai‘i is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km.Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes.In Hawai‘i, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawai‘i. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions.Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are established, we

  20. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers (United States)

    Talbot, Christopher J.; Pohjola, Veijo


    Ice (H 20) and salt (halite, NaCl) share many physical properties and resemble each other in hand specimens and subaerial gravity-driven flows. However, while most significant bodies of ice accumulate in cold highlands and gravity-spread where and soon after they form, most significant bodies of salt accumulate in tropical marine basins and have to be buried by > 1 km of other rocks before they flow. Buried salt is driven by differential loading into various categories of piercing structures known as diapirs. Many diapirs extrude onto the surface as sheets of allochthonous (out of place) salt. Thousands of sheets of allochthonous salt have been interpreted in over 35 basins worldwide in the last 25 years, mainly in the toes of passive continental margins and in orogenic belts where some are > 10 3 km 2 in area. Most former salt sheets are now submarine or subsurface but several active examples are beautifully exposed in Iran. These were compared to ice glaciers soon after they were introduced to western science, a comparison that has been neglected since. Here we update this analogy and use modern understanding of flowing ice and salt to examine the similarities and differences that might be mutually beneficial to both fields of study as well as to extraterrestrial scientists. The profiles, internal structures and fabrics in flowing bodies of ice and salt are sensitive gauges of the histories of their budgets of supply and loss. However, whereas snow merely compacts where it accumulates, salt sheets are fed from below by already deformed salt. When salt diapirs first emerge on land they extrude domes that mature to the profiles of viscous fountains that often feed glacier-like flows known as namakiers. After locally exhausting their deep source layers, salt fountains spread to the profiles of viscous droplets normal for ice caps. Ice typically deforms at > 80% (usually > 90%) of its absolute melting temperature while most salt deforms at memories than in ice

  1. Mauna Loa--history, hazards and risk of living with the world's largest volcano (United States)

    Trusdell, Frank A.


    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  2. Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm.

    Directory of Open Access Journals (Sweden)

    Alice M I Auersperg

    Full Text Available Parrots and corvids show outstanding innovative and flexible behaviour. In particular, kea and New Caledonian crows are often singled out as being exceptionally sophisticated in physical cognition, so that comparing them in this respect is particularly interesting. However, comparing cognitive mechanisms among species requires consideration of non-cognitive behavioural propensities and morphological characteristics evolved from different ancestry and adapted to fit different ecological niches. We used a novel experimental approach based on a Multi-Access-Box (MAB. Food could be extracted by four different techniques, two of them involving tools. Initially all four options were available to the subjects. Once they reached criterion for mastering one option, this task was blocked, until the subjects became proficient in another solution. The exploratory behaviour differed considerably. Only one (of six kea and one (of five NCC mastered all four options, including a first report of innovative stick tool use in kea. The crows were more efficient in using the stick tool, the kea the ball tool. The kea were haptically more explorative than the NCC, discovered two or three solutions within the first ten trials (against a mean of 0.75 discoveries by the crows and switched more quickly to new solutions when the previous one was blocked. Differences in exploration technique, neophobia and object manipulation are likely to explain differential performance across the set of tasks. Our study further underlines the need to use a diversity of tasks when comparing cognitive traits between members of different species. Extension of a similar method to other taxa could help developing a comparative cognition research program.

  3. A possible mechanism to produce the 'Loa' and 'Kea' trends at Hawaii (United States)

    Morgan, W. J.; Morgan, J. P.


    The subparallel ‘Loa’ and ‘Kea’ lineaments of recent Hawaiian volcanism may provide a clue to the rheological changes associated with plume melt-extraction. Elastic gravitational stresses from pre-existing edifices were used to explain the geometry of Hawaiian rift zones with Fiske and Jackson's (1972) elegant analog jello model (and with more recent numerical treatments, c.f. Bianco et al. and Hieronymus and Bercovici). However, the idea of a top-down control of the intrusion geometry by gravitational stresses doesn’t explain why the ‘Loa’ and ‘Kea’ volcanic trends should be associated with distinct geochemical signals. At face value, this suggests that there has been a persistent difference between the deep mantle sources of the Loa and Kea trends. Two ideas have been proposed to create the chemical contrast between the Loa and Kea sources: (1) a ‘spaghetti’ plume model with persistent lateral compositional ‘stripes’ within the plume, and (2) zoned melting between a hot-plume-center and cooler-plume-rim. Here we propose a different mechanical mechanism for this phenomenon, where a spaghetti-like column is buckling back and forth to produce the separate volcanic trends. We have earlier proposed that melt-extraction in the central (hot) region of a rising plume leads to the formation of dessicated restite that is more viscous and less dense than surrounding asthenosphere. Many features of the Hawaiian swell and the subsidence of this swell with age are explained by this carrot-shaped (or for a moving plate, blade-shaped) column as it spreads outward in the asthenosphere when it reaches the base of the lithosphere. Ribe (Phys. Rev. E, vol. 68(3), 2003) examined the periodic buckling of a stiff, dense sheet of viscous material when it encounters a rigid surface, and proposed this explains the broadening of a subducted slab when it strikes the 660 boundary. We use his results upside-down - a lighter but stiffer (because of melt extraction

  4. Comparison of Subaerial and Submarine Mixing and Sediment Transport in Sinuous Channel Bends Using Turbulence-Resolving Numerical Models (United States)

    Schmeeckle, M. W.


    Large eddy simulations (LES) of turbulence and sediment suspension are conducted in both subaerial and submarine meandering channels. The Boussinesq approximation of buoyancy is applied to the spatially-filtered, Navier-Stokes equations through the simultaneous solution of the suspended sediment continuity equation with the Smith-McLean boundary condition. Production of turbulence and, consequently, turbulent kinetic energy is stronger at channel bends than in straight sections. This pattern is more pronounced in subaerial channels. Depth integrated, two-dimensional models of turbidity currents critically rely upon parameterization of the entrainment of water at the top of the flow and sediment exchange with the bed. Secondary flow and turbulence structure due to channel sinuosity significantly alter these parameterizations and the assumed vertical profiles of velocity and sediment concentration. Large turbulent structures episodically inject relatively clear water from the top to the base of the flow at the outside of channel bends, and, simultaneously, sediment laden fluid is ejected from the bed at the inside of channel bends. As a result, sediment deposition in sinuous channels is reduced compared to application of two-dimensional models. The LES turbidity current model is extended to channel morphodynamics by grid adjustment at each fluid and sedment time step. The LES morphodynamic model has been tested, thus far, in strongly depositional sinuous channel turbidity currents. Relatively uniform channel deposition and rapidly developing sharp-crested levees are built in these conditions. Further simulations involving partially erosional conditions and bedload transport will be presented.

  5. EX0909 Legs 1 through 4 Mapping Field Trials V through VIII Hawaiian Islands (EX0909, EM302) on NOAA Ship Okeanos Explorer in Hawaiian Islands, Necker Ridge, Mauna Kea (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer arrived in Honolulu, HI on 7 August, 2009. The ship planned to stay and work in Hawaii till March / April 2009. A total of 77 days-at-sea...

  6. Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system (Jurassic, Deseado Massif), Patagonia, Argentina (United States)

    Guido, Diego M.; Campbell, Kathleen A.


    The Late Jurassic (~ 150 Ma) Cerro Negro volcanic-epithermal-geothermal system (~ 15 km2 area), Deseado Massif, Patagonia, Argentina, includes two inferred volcanic emission centers characterized by rhyolitic domes linked along NW-SE regional faults that are associated with deeper level Au/Ag mineralization to the NW, and with shallow epithermal quartz veins and mainly travertine surface hot spring manifestations to the SE. Some travertines are silica-replaced, and siliceous and mixed silica-carbonate geothermal deposits also are found. Five hot spring-related facies associations were mapped in detail, which show morphological and textural similarities to Pleistocene-Recent geothermal deposits at Yellowstone National Park (U.S.A.), the Kenya Rift Valley, and elsewhere. They are interpreted to represent subaerial travertine fissure ridge/mound deposits (low-flow spring discharge) and apron terraces (high-flow spring discharge), as well as mixed silica-carbonate lake margin and shallow lake terrace vent-conduit tubes, stromatolitic mounds, and volcano-shaped cones. The nearly 200 mapped fossil vent-associated deposits at Cerro Negro are on a geographical and numerical scale comparable with subaerial and sublacustrine hydrothermal vents at Mammoth Hot Springs, and affiliated with Yellowstone Lake, respectively. Overall, the Cerro Negro geothermal system yields paleoenvironmentally significant textural details of variable quality, owing to both the differential preservation potential of particular subaerial versus subaqueous facies, as well as to the timing and extent of carbonate diagenesis and silica replacement of some deposits. For example, the western fault associated with the Eureka epithermal quartz vein facilitated early silicification of the travertine deposits in the SE volcanic emission center, thereby preserving high-quality, microbial macro- and micro-textures of this silica-replaced "pseudosinter." Cerro Negro provides an opportunity to reconstruct

  7. Internal Structure of the West Submarine Flanks of Mauna Loa and Hualalai, Hawaii Island: investigation of ROV KAIKO and Manned Submersible SHINKAI (United States)

    Yokose, H.


    Submersible-based exploration of basaltic rocks west flank of the Hawaii Island, mostly at 2000 to 5000 m depths, was a focus of Japan USA joint research during two cruises by the JAMSTEC in 2001-02. The observations from submersibles and samples recovered are summarized, based on the twelve recent submersible dives and numerous newly obtained samples from deep submarine flanks of Hualalai and Mauna Loa Topographic nature of the studied area are categorized using high-resolution bathymetric data obtained during the cruses and are very effective for deciphering the sequence of landslides. Because the west of Hawaii Island is lee side having a little rain, topographic characteristics of landslide deposits are preserved without buried by material of the later subaerial erosion process. Submarine geological map of the west flank of Hawaii Island has been revised on the basis of these investigations. Major difference between maps proposed previously and this work is twofold. The first is the submarine flank of this area consists mainly of pillow lavas. This is contrastive to the Nuuanu landslide and Hilina slump regions in which hyaloclastite and fragmental debris are dominated. The debris avalanche deposits are prevailing only in the lower submarine slope. The second is the sequence of landslide events. Base on the topographic and geologic investigations major landslide events can be redefined in the sequence from early to late: South Kona Slide 1(South Kona slump and Ka Lae west debris-avalanche), South Kona Slide 2 (South Kona slide), North Kona Slump (North Kona slide + Alika 1 debris-avalanche), Ka Lae slump (newly defined), Ka Lae debris-avalanche (Ka Lae East debris-avalanche), Alika debris-avalanche (Alika 2 debris-avalanche). It is concluded that these slope failures were probably result in the rift propagation rather than instability of the slope itself which made of unstable fragmental lavas. Therefore, the pillow lava model is more suitable for present case

  8. Application of Earthquake Subspace Detectors at Kilauea and Mauna Loa Volcanoes, Hawai`i (United States)

    Okubo, P.; Benz, H.; Yeck, W.


    Recent studies have demonstrated the capabilities of earthquake subspace detectors for detailed cataloging and tracking of seismicity in a number of regions and settings. We are exploring the application of subspace detectors at the United States Geological Survey's Hawaiian Volcano Observatory (HVO) to analyze seismicity at Kilauea and Mauna Loa volcanoes. Elevated levels of microseismicity and occasional swarms of earthquakes associated with active volcanism here present cataloging challenges due the sheer numbers of earthquakes and an intrinsically low signal-to-noise environment featuring oceanic microseism and volcanic tremor in the ambient seismic background. With high-quality continuous recording of seismic data at HVO, we apply subspace detectors (Harris and Dodge, 2011, Bull. Seismol. Soc. Am., doi: 10.1785/0120100103) during intervals of noteworthy seismicity. Waveform templates are drawn from Magnitude 2 and larger earthquakes within clusters of earthquakes cataloged in the HVO seismic database. At Kilauea, we focus on seismic swarms in the summit caldera region where, despite continuing eruptions from vents in the summit region and in the east rift zone, geodetic measurements reflect a relatively inflated volcanic state. We also focus on seismicity beneath and adjacent to Mauna Loa's summit caldera that appears to be associated with geodetic expressions of gradual volcanic inflation, and where precursory seismicity clustered prior to both Mauna Loa's most recent eruptions in 1975 and 1984. We recover several times more earthquakes with the subspace detectors - down to roughly 2 magnitude units below the templates, based on relative amplitudes - compared to the numbers of cataloged earthquakes. The increased numbers of detected earthquakes in these clusters, and the ability to associate and locate them, allow us to infer details of the spatial and temporal distributions and possible variations in stresses within these key regions of the volcanoes.

  9. Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia) (United States)

    Stobbe, Nina; Westphal-Fitch, Gesche; Aust, Ulrike; Fitch, W. Tecumseh


    Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training. PMID:22688635

  10. Examples of Models Fit to Magnetic Anomalies Observed Over Subaerial, Submarine, and Subglacial Volcanoes in the West Antarctic Rift System (United States)

    Behrendt, J. C.; Finn, C. A.; Blankenship, D. D.


    Aeromagnetic and marine magnetic surveys over the volcanically active West Antarctic rift system, constrained by seismic reflection profiles over the Ross Sea continual shelf, and radar ice sounding surveys over the West Antarctic Ice Sheet (WAIS) allowed calculation of models fit to very high-amplitude anomalies. We present several examples: exposed 2700-m high, subaerial erupted volcano Mt Melbourne; the 750-m high source of anomaly D (Hamilton submarine volcano) in the Ross sea; and the 600-m high edifice of Mt. CASERTZ beneath the WAIS. The character of these anomalies and their sources varies greatly, and is inferred to be the result of subaerial, submarine and subglacial emplacement respectively. Mt. Melbourne erupted through the WAIS at a time when it was grounded over the Ross Sea continental shelf. Highly magnetic volcanic flows inferred to have high remanent (normal) magnetization in the present field direction produce the 600-nT positive anomaly. The flows protected the edifice above the ice from erosion. Negligible amounts of probably subglacially erupted, apparently non-magnetic hyaloclastite exist in association with Mt. Melbourne. Mt. CASERTZ is nonmagnetic and the edifice is interpreted as consisting of a transient mound of unconsolidated hyaloclastite injected into the WAIS. However Mt. CASERTZ, about 8-km diameter, overlies a 200-m high, 40-km wide highly magnetic residual edifice modeled as the top of the source (an active subglacial volcano) of a 400-nT high positive anomaly. Any former edifices comprising hyaloclastite, pillow breccia or other volcanic debris injected into the moving WAIS apparently have been removed. About 400 other high- amplitude anomalies associated with low relief (80 percent less than 200 m) edifices at the base of the ice (the tops of the sources of these steep gradient anomalies) beneath the WAIS defined by radar ice sounding have been interpreted as having former hyaloclastite edifices, which were removed by the moving

  11. Culture-independent methods to study subaerial biofilm growing on biodeteriorated surfaces of stone cultural heritage and frescoes. (United States)

    Cappitelli, Francesca; Villa, Federica; Polo, Andrea


    Actinobacteria, cyanobacteria, algae, and fungi form subaerial biofilm (SAB) that can lead to material deterioration on artistic stone and frescoes. In studying SAB on cultural heritage surfaces, a general approach is to combine microscopy observations and molecular analyses. Sampling of biofilm is performed using specific adhesive tape and sampling of SAB and the substrate with sterile scalpels and chisels. Biofilm observations are carried out using optical and scanning electron microscopy. Specific taxa and EPS in biofilm can be readily visualized by fluorochrome staining and subsequent observation using fluorescence or confocal laser scanning microscopy. The observation of cross sections containing both SAB and the substrate shows if biofilm has developed not only on the surface but also underneath. Following nucleic acid extraction, 16S rRNA gene sequencing is used to identify bacterial taxa, while 18S rRNA gene and internal transcribed spacer (ITS) sequence analysis is used to study eukaryotic groups. In this chapter, we illustrate the protocols related to fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), and denaturing gradient gel electrophoresis (DGGE).

  12. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific (United States)

    Cronin, S. J.; Smith, I. E.


    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of <6500 cal. years B.P., including several very large and regionally significant tephras. Erupted compositions range from basaltic to dacitic, with some showing compositional change during eruption. In addition, some large eruptions appear to have generated regionally significant tsunami, represented by characteristically mixed sandy layers with lithologies including shell fragment, foraminifera and volcanic particles.

  13. New methodology for computing tsunami generation by subaerial landslides: Application to the 2015 Tyndall Glacier landslide, Alaska (United States)

    George, D. L.; Iverson, R. M.; Cannon, C. M.


    Landslide-generated tsunamis pose significant hazards and involve complex, multiphase physics that are challenging to model. We present a new methodology in which our depth-averaged two-phase model D-Claw is used to seamlessly simulate all stages of landslide dynamics as well as tsunami generation, propagation, and inundation. Because the model describes the evolution of solid and fluid volume fractions, it treats both landslides and tsunamis as special cases of a more general class of phenomena. Therefore, the landslide and tsunami can be efficiently simulated as a single-layer continuum with evolving solid-grain concentrations, and with wave generation via direct longitudinal momentum transfer—a dominant physical mechanism that has not been previously addressed in this manner. To test our methodology, we used D-Claw to model a large subaerial landslide and resulting tsunami that occurred on 17 October 2015, in Taan Fjord near the terminus of Tyndall Glacier, Alaska. Modeled shoreline inundation patterns compare well with those observed in satellite imagery.


    Energy Technology Data Exchange (ETDEWEB)



    Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation

  15. Results of a Longer Term NDACC Measurements Comparison Campaign at Mauna Loa Observatory

    Directory of Open Access Journals (Sweden)

    McGee Thomas J.


    Full Text Available Between November, 2015 and January, 2015, the Goddard Space Flight Center operated a pair of lidar instruments at the NOAA facility at Mauna Loa on the Big Island of Hawaii (Lat. 19.5N, Lon. 155.5 W, Altitude 3.397 km. Measurements were made during six different four week periods during this time period by both the NASA GSFC Stratospheric Ozone Lidar (STROZ and the Aerosol and Temperature (ATL lidar. Also making measurements were the JPL Stratospheric Ozone Lidar and the NOAA Aerosol and Water Vapor Lidar. All instruments participate and archive data with the Network for the Detection of Atmospheric Composition Change. Measurement comparisons were made among various instruments in accordance with the standard intercomparison protocols of the NDACC.

  16. Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet (United States)

    Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.


    Mt. Resnik is one of the previously reported 18 subaerially erupted volcanoes (in the West Antarctic rift system), which have high elevation and high bed relief beneath the WAIS in the Central West Antarctica (CWA) aerogeophysical survey. Mt. Resnik lies 300 m below the surface of the West Antarctic Ice Sheet (WAIS); it has 1.6 km topographic relief, and a conical form defined by radar ice-sounding of bed topography. It has an associated complex negative magnetic anomaly revealed by the CWA survey. We calculated and interpreted magnetic models fit to the Mt. Resnik anomaly as a volcanic source comprising both reversely and normally magnetized (in the present field direction) volcanic flows, 0.5-2.5-km thick, erupted subaerially during a time of magnetic field reversal. The Mt. Resnik 305-nT anomaly is part of an approximately 50- by 40-km positive anomaly complex extending about 30 km to the west of the Mt. Resnik peak, associated with an underlying source complex of about the same area, whose top is at the bed of the WAIS. The bed relief of this shallow source complex has a maximum of only about 400 m, whereas the modeled source is >3 km thick. From the spatial relationship we interpret that this source and Mt Resnik are approximately contemporaneous. Any subglacially (older?) erupted edifices comprising hyaloclastite or other volcanic debris, which formerly overlaid the source to the west, were removed by the moving WAIS into which they were injected as is the general case for the ???1000 volcanic centers at the base of the WAIS. The presence of the magnetic field reversal modeled for Mt. Resnik may represent the Bruhnes-Matayama reversal at 780 ka (or an earlier reversal). There are ???100 short-wavelength, steep-gradient, negative magnetic anomalies observed over the West Antarctic Ice Sheet (WAIS), or about 10% of the approximately 1000 short-wavelength, shallow-source, high-amplitude (50- >1000 nT) "volcanic" magnetic anomalies in the CWA survey. These

  17. Ancient and contemporary DNA reveal a pre-human decline but no population bottleneck associated with recent human persecution in the kea (Nestor notabilis). (United States)

    Dussex, Nicolas; Rawlence, Nicolas J; Robertson, Bruce C


    The impact of population bottlenecks is an important factor to consider when assessing species survival. Population declines can considerably limit the evolutionary potential of species and make them more susceptible to stochastic events. New Zealand has a well documented history of decline of endemic avifauna related to human colonization. Here, we investigate the genetic effects of a recent population decline in the endangered kea (Nestor notabilis). Kea have undergone a long-lasting persecution between the late 1800s to 1970s where an estimated 150,000 kea were culled under a governmental bounty scheme. Kea now number 1,000-5,000 individuals in the wild and it is likely that the recent population decline may have reduced the genetic diversity of the species. Comparison of contemporary (n = 410), historical (n = 15) and fossil samples (n = 4) showed a loss of mitochondrial diversity since the end of the last glaciation (Otiran Glacial) but no loss of overall genetic diversity associated with the cull. Microsatellite data indicated a recent bottleneck for only one population and a range-wide decline in Ne dating back some 300 - 6,000 years ago, a period predating European arrival in NZ. These results suggest that despite a recent human persecution, kea might have experienced a large population decline before stabilizing in numbers prior to human settlement of New Zealand in response to Holocene changes in habitat distribution. Our study therefore highlights the need to understand the respective effects of climate change and human activities on endangered species dynamics when proposing conservation guidelines.

  18. Ancient and contemporary DNA reveal a pre-human decline but no population bottleneck associated with recent human persecution in the kea (Nestor notabilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Dussex

    Full Text Available The impact of population bottlenecks is an important factor to consider when assessing species survival. Population declines can considerably limit the evolutionary potential of species and make them more susceptible to stochastic events. New Zealand has a well documented history of decline of endemic avifauna related to human colonization. Here, we investigate the genetic effects of a recent population decline in the endangered kea (Nestor notabilis. Kea have undergone a long-lasting persecution between the late 1800s to 1970s where an estimated 150,000 kea were culled under a governmental bounty scheme. Kea now number 1,000-5,000 individuals in the wild and it is likely that the recent population decline may have reduced the genetic diversity of the species. Comparison of contemporary (n = 410, historical (n = 15 and fossil samples (n = 4 showed a loss of mitochondrial diversity since the end of the last glaciation (Otiran Glacial but no loss of overall genetic diversity associated with the cull. Microsatellite data indicated a recent bottleneck for only one population and a range-wide decline in Ne dating back some 300 - 6,000 years ago, a period predating European arrival in NZ. These results suggest that despite a recent human persecution, kea might have experienced a large population decline before stabilizing in numbers prior to human settlement of New Zealand in response to Holocene changes in habitat distribution. Our study therefore highlights the need to understand the respective effects of climate change and human activities on endangered species dynamics when proposing conservation guidelines.

  19. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    C. Varotsos


    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, USA during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  20. The Ecology of Coral Reef Top Predators in the Papahānaumokuākea Marine National Monument

    Directory of Open Access Journals (Sweden)

    Jonathan J. Dale


    Full Text Available Coral reef habitats in the Papahānaumokuākea Marine National Monument (PMNM are characterized by abundant top-level predators such as sharks and jacks. The predator assemblage is dominated both numerically and in biomass by giant trevally (Caranx ignobilis and Galapagos sharks (Carcharhinus galapagensis. A lower diversity of predatory teleosts, particularly groupers and snappers, distinguishes the PMNM from other remote, unfished atolls in the Pacific. Most coral reef top predators are site attached to a “home” atoll, but move extensively within these atolls. Abundances of the most common sharks and jacks are highest in atoll fore reef habitats. Top predators within the PMNM forage on a diverse range of prey and exert top-down control over shallow-water reef fish assemblages. Ecological models suggest ecosystem processes may be most impacted by top predators through indirect effects of predation. Knowledge gaps are identified to guide future studies of top predators in the PMNM.

  1. Forecast, Measurement, and Modeling of an Unprecedented Polar Ozone Filament Event over Mauna Loa Observatory, Hawaii (United States)

    Tripathi, Om Prakash; Leblanc, Thierry; McDermid, I. Stuart; Lefevre, Frank; Marchand, Marion; Hauchecorne, Alain


    In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modele Isentrope du transport Meso-echelle de l'Ozone Stratospherique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17-20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3-4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone- depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics.

  2. Diagenesis associated with subaerial exposure of Miocene strata, southeastern Spain: Implications for sea-level change and preservation of low-temperature fluid inclusions in calcite cement (United States)

    Goldstein, R.H.; Franseen, E.K.; Mills, M.S.


    Many ancient carbonate rocks contain calcite cements that precipitated from shallow, fresh groundwater that entered strata during events of subaerial exposure. Such low-temperature cementation may be difficult to interpret from fluid inclusion studies because some of the inclusions may reequilibrate during later thermal events. Miocene rocks of southeast Spain provide an example of the utility of fluid inclusion studies in rocks that have not been subjected to significant heating. In the Mesa Roldan area, one type of calcite cement occurs exclusively below a regional stratigraphic surface of enigmatic origin. The cement has petrographic characteristics indicative of cementation in the vadose zone (generally thought to be a zone of oxidation) but has cathodoluminescent bands containing reduced manganese and iron. Primary fluid inclusions contain mostly fresh water, have variable ratios of vapor to liquid, and are at one atmosphere of pressure. Our observations indicate that calcite precipitated from a freshwater vadose zone, which was subjected to local or repetitive saturation, and minor brackish water. The fluid inclusion data indicate that low-temperature fluid inclusions can be preserved in ancient sequences despite a later history of different pore fluids. This indication of subaerial diagenesis of distal slope deposits suggests a relative sea-level drop of at least 50-55 m during the Late Miocene. Similar petrographic and fluid inclusion observations can be used to interpret sea-level changes in other areas. ?? 1990.


    Directory of Open Access Journals (Sweden)



    Full Text Available The detailed sedimentary and micropalaeontological analysis of a complex association of continental to marginal-marine deposits from the Oxfordian of Portugal (Cabaços Formation has allowed the recognition of high-frequency, subtle changes in the environmental conditions. The main factors controlling the palaeobiological responses to such minor-scale fluctuations were also identified. Two factors have shown to be especially significant: subaerial exposure duration and frequency (estimated by assigning type of features to the exposure index and salinity trends, as suggested by the sedimentary and fossil records. In the west of the basin, salinity fluctuations were much stronger and more frequent (fresh- brackish-restricted marine-hypersaline, and subaerial exposure more marked for longer periods, than in the east of the basin. The microfossil assemblages, as a whole, but in particular the ostracod faunas, show differences in abundance, diversity, dominant species, degree of intrageneric and intraspecific variations, both along the successions and between west and east. The western populations seem to have been much less stable, which suggests that high-frequency changes in salinity (more than its absolute values and degree of exposure were the most important controls on the palaeobiota. PDF

  4. Using Mauna Loa Atmospheric CO2 Data in Large General Education Geoscience Courses (United States)

    Richardson, R. M.; Kapp, J. L.


    We have been using the Mauna Loa atmospheric CO2 dataset ( in a large (up to 300) General Education Geoscience course, primarily in small breakout groups (30 students). The exercise is designed to address quantitative literacy including percentages, slopes and linear trends, issues of data completeness and bias, quality of extrapolations, as well as implications for climate change. We are significantly revising the course, which serves 600 students a semester, with help from a curriculum grant. A major goal is to improve student learning by incorporating inquiry based activities in the large lecture setting. Lectures now incorporate several activities throughout a given class period, in which students are asked to use critical thinking skills such as interpreting patterns in data and graphs, analyzing a scientific hypothesis for its coherence with the scientific method, and answering higher order synthesis questions in both verbal and written form. This differs from our past format where class periods were dominated by lecture, with a single short activity done individually about every other lecture. To test the effectiveness of the new course format we will give students the same atmospheric CO2 exercise in the lecture setting that they were given previously in breakout groups. Students will work in small groups in lecture after receiving a short introduction to the exercise by the instructor. They will plot CO2 concentrations, make extrapolations, and interpret patterns in the data. We will compare scores on the exercise with previous semesters. We expect that students will do better having had more experience with interpreting scientific data and practicing higher order thinking skills. We also expect working in small groups will foster better learning through peer teaching and discussion. We will incorporate responses from students who took part in the exercises from current and previous semesters. We

  5. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado - article no. L15808

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D.; Barnes, J.; O' Neill, M.; Trudeau, M.; Neely, R. [NOAA, Boulder, CO (United States)


    The stratospheric aerosol layer has been monitored with lidars at Mauna Loa Observatory in Hawaii and Boulder in Colorado since 1975 and 2000, respectively. Following the Pinatubo volcanic eruption in June 1991, the global stratosphere has not been perturbed by a major volcanic eruption providing an unprecedented opportunity to study the background aerosol. Since about 2000, an increase of 4-7% per year in the aerosol backscatter in the altitude range 20-30 km has been detected at both Mauna Loa and Boulder. This increase is superimposed on a seasonal cycle with a winter maximum that is modulated by the quasi-biennial oscillation (QBO) in tropical winds. Of the three major causes for a stratospheric aerosol increase: volcanic emissions to the stratosphere, increased tropical upwelling, and an increase in anthropogenic sulfur gas emissions in the troposphere, it appears that a large increase in coal burning since 2002, mainly in China, is the likely source of sulfur dioxide that ultimately ends up as the sulfate aerosol responsible for the increased backscatter from the stratospheric aerosol layer. The results are consistent with 0.6-0.8% of tropospheric sulfur entering the stratosphere.

  6. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate (United States)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh


    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  7. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption (United States)

    Parcheta, Carolyn E.; Houghton, Bruce F.; Swanson, Donald A.


    Hawaiian-style eruptions, or Hawaiian fountains, typically occur at basaltic volcanoes and are sustained, weakly explosive jets of gas and dominantly coarse, juvenile ejecta (dense spatter to delicate reticulite). Almost the entire range of styles and mass eruption rates within Hawaiian fountaining occurred during twelve fountaining episodes recorded at Mauna Ulu, Kīlauea between May and December 1969. Such diversity in intensity and style is controlled during magma ascent by many processes that can be constrained by the size and shape of vesicles in the 1969 pyroclasts. This paper describes pyroclast vesicularity from high, intermediate, and low fountaining episodes with eruption rates from 0.05 to 1.3 × 106 m3 h− 1. As each eruptive episode progressed, magma ascent slowed in and around the vent system, offering extended time for bubbles to grow and coalesce. Late ejected pyroclasts are thus characterized by populations of fewer and larger vesicles with relaxed shapes. This progression continued in the intervals between episodes after termination of fountain activity. The time scale for this process of shallow growth, coalescence and relaxation of bubbles is typically tens of hours. Rims and cores of pumiceous pyroclasts from moderate to high fountaining episodes record a second post-fragmentation form of vesicle maturation. Partially thermally insulated pyroclasts can have internal bubble populations evolve more dynamically with continued growth and coalescence, on a time scale of only minutes, during transport in the fountains. Reticulite, which formed in a short-lived fountain 540 m in height, underwent late, short-lived bubble nucleation followed by rapid growth of a uniform bubble population in a thermally insulated fountain, and quenched at the onset of permeability before significant coalescence. These contrasting patterns of shallow degassing and outgassing were the dominant controls in determining both the form and duration of fountaining

  8. Controls on size and occurrence of the largest sub-aerial landslide on Earth: Seymareh (Saidmarreh) landslide, Zagros fold-thrust belt, Iran (United States)

    Roberts, N. J.; Evans, S. G.


    Gigantic (> 1 Gm3) landslides are high-magnitude, low-frequency extremes of mass movements. They are important factors in topographic evolution and hazard in mountain regions due to their magnitude. However, few examples exist for study because of their infrequency. Consequently, controls on the location and size gigantic landslides remain poorly understood. Re-examination of the Seymareh (Saidmarreh) rock avalanche, Zagros fold-thrust belt, shows it to be the largest sub-aerial landslide on Earth (initial failure volume 38 Gm3), thus representing the upper magnitude limit for terrestrial landslides. Detailed examination of the source area (including orbital remote sensing, geotechnical investigation and structural mapping) provides new insights into controls on the size and mobility of gigantic landslides. The gigantic Early Holocene rockslide initiated on the northeast limb of Kabir Kuh, the largest anticline in the Zagros fold-thrust belt, and involved the simultaneous failure of a rock mass measuring 15 km along strike. The rockslide transformed into a rock avalanche that ran-out 19.0 km, filling two adjacent valleys and overtopping an intervening low mountain ridge. The failure involved 220 m of competent jointed limestone (Asmari Formation) underlain by 580 m of weaker mudrock-dominated units. Geologic structure, geomechanical strength and topography of the source slope strongly controlled failure initiation. Extreme landslide dimensions resulted in part from extensive uniform pre-failure stability, produced by structural and topographic features related to the large scale of the Kabir Kuh anticline. High continuity bedding planes determined the large lateral extent along strike. Bedding normal joints, the breached nature of the anticline and fluvial undercutting at the slope toe accommodated expansive lateral, headscarp and toe release, respectively, necessary for extensive failure. Geomechanically weak units at depth aided the penetration of the failure

  9. Effect of short-term subaerial exposure on the cauliflower coral, Pocillopora damicornis, during a simulated extreme low-tide event

    KAUST Repository

    Castrillón-Cifuentes, Ana Lucia


    There is increased interest in understanding how stress reduces coral resistance to disturbances and how acclimatization increases the ability of corals to resist future stress. Most extreme low tides at Gorgona Island, which expose reef flats to air, do not appear to negatively affect corals because corals usually do not undergo lethal bleaching during such events. However, coral physiology and fitness may be impacted by this phenomenon. The aim of this study was to evaluate whether corals exposed to air have modified biological functions to resist bleaching. To test this, an extreme low-tide event was simulated in the field. Colonies of Pocillopora damicornis were exposed to air for 15 or 40 min over the course of one, two, or three consecutive days. This procedure was repeated for one to three months. Colonies of P. damicornis exposed to air had reduced fecundity, decreased zooxanthellae density, and changed color from darker to lighter. However, the growth rate of exposed corals was similar to that of non-exposed colonies. We conclude that short periods of subaerial exposure during extreme low tides are not lethal to P. damicornis, but negatively affect sexual reproduction, which might have deleterious effects at the population level. The periodic occurrence of extreme low tides in the tropical eastern Pacific may be one factor responsible for the high rate of asexual reproduction (e.g., fragmentation) in pocilloporid corals of this region.

  10. Effect of short-term subaerial exposure on the cauliflower coral, Pocillopora damicornis, during a simulated extreme low-tide event (United States)

    Castrillón-Cifuentes, Ana Lucia; Lozano-Cortés, Diego F.; Zapata, Fernando A.


    There is increased interest in understanding how stress reduces coral resistance to disturbances and how acclimatization increases the ability of corals to resist future stress. Most extreme low tides at Gorgona Island, which expose reef flats to air, do not appear to negatively affect corals because corals usually do not undergo lethal bleaching during such events. However, coral physiology and fitness may be impacted by this phenomenon. The aim of this study was to evaluate whether corals exposed to air have modified biological functions to resist bleaching. To test this, an extreme low-tide event was simulated in the field. Colonies of Pocillopora damicornis were exposed to air for 15 or 40 min over the course of one, two, or three consecutive days. This procedure was repeated for one to three months. Colonies of P. damicornis exposed to air had reduced fecundity, decreased zooxanthellae density, and changed color from darker to lighter. However, the growth rate of exposed corals was similar to that of non-exposed colonies. We conclude that short periods of subaerial exposure during extreme low tides are not lethal to P. damicornis, but negatively affect sexual reproduction, which might have deleterious effects at the population level. The periodic occurrence of extreme low tides in the tropical eastern Pacific may be one factor responsible for the high rate of asexual reproduction (e.g., fragmentation) in pocilloporid corals of this region.

  11. Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats. (United States)

    Neustupa, Jirí; Nemcová, Yvonne; Veselá, Jana; Steinová, Jana; Škaloud, Pavel


    The diversity of green microalgae in subaerial habitats remains largely unexplored and a number of new genus- and species-level lineages have been discovered recently. The traditional green algal genus, Chlorella, which accommodated coccoid unicellular green algal species with globular to oval cells, reproducing entirely by autospores, has been found to be polyphyletic. In this study, we provide a detailed characterization of two strains of microalgae isolated from tree bark in the Mediterranean. These algae share the general Chlorella-like morphology and their 18S rRNA and rbcL gene sequences place them in the Trebouxiophyceae. Strain CAUP H8401 forms an independent trebouxiophycean lineage, together with three previously published 18S rRNA gene environmental sequences of undescribed microalgae, which were retrieved from profoundly different habitats. In contrast, strain CAUP H7902 is related to Kalinella bambusicola in the Watanabea clade of the Trebouxiophyceae on the basis of its 18S rRNA gene sequence. This relationship is also supported by the rbcL gene sequence, acquired from the type strain of K. bambusicola. The investigated strains are described as representatives of a novel species in a new genus, Leptochlorella corticola gen. et sp. nov., and a novel species, Kalinella apyrenoidosa sp. nov., according to the International Code of Nomenclature for Algae, Fungi and Plants.

  12. Community preparedness for lava flows from Mauna Loa and Hualālai volcanoes, Kona, Hawai'i (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, Donald A.; Johnston, David M.


    Lava flows from Mauna Loa and Huala??lai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawai'i (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in A.D. 1950 and ca. 1800, respectively. In contrast, in eastern Hawai'i, eruptions of neighboring Ki??lauea volcano have occurred frequently since 1955, and therefore have been the focus for hazard mitigation. Official preparedness and response measures are therefore modeled on typical eruptions of Ki??lauea. The combinations of short-lived precursory activity (e.g., volcanic tremor) at Mauna Loa, the potential for fast-moving lava flows, and the proximity of Kona communities to potential vents represent significant emergency management concerns in Kona. Less is known about past eruptions of Huala??lai, but similar concerns exist. Future lava flows present an increased threat to personal safety because of the short times that may be available for responding. Mitigation must address not only the specific characteristics of volcanic hazards in Kona, but also the manner in which the hazards relate to the communities likely to be affected. This paper describes the first steps in developing effective mitigation plans: measuring the current state of people's knowledge of eruption parameters and the implications for their safety. We present results of a questionnaire survey administered to 462 high school students and adults in Kona. The rationale for this study was the long lapsed time since the last Kona eruption, and the high population growth and expansion of infrastructure over this time interval. Anticipated future growth in social and economic infrastructure in this area provides additional justification for this work. The residents of Kona have received little or no specific information about how to react to future volcanic eruptions or warnings, and short-term preparedness levels are low. Respondents appear uncertain about how to respond

  13. Morphology of the last subaerial unconformity on a shelf: insights into transgressive ravinement and incised valley occurrence in the Gulf of Cádiz (United States)

    Lobo, F. J.; García, M.; Luján, M.; Mendes, I.; Reguera, M. I.; Van Rooij, D.


    The main aim of this study is to explore the spatial patterns of the shelf-scale erosional unconformity related to the last glacial maximum (LGM), particularly in terms of the role of underlying geology and the presumed primary influence of sea-level changes. This involved a detailed mapping of the most recent and widespread erosional shelf surface in a sector of the northern margin of the Gulf of Cádiz (northeast Atlantic Ocean) located adjacent to a major fluvial source. A dense network of high-resolution seismic profiles collected in the 1990s and 2013 off the Guadiana River revealed two distinct geomorphological domains on the LGM shelf-scale subaerial surface. The outer domain exhibits a widespread occurrence of erosional truncations, with a rugged, erosional pattern over the most distal shelf setting that evolves landward into a planar unconformity. The inner domain is more extensive and is characterized by the common occurrence of highly reflective, localized mounded seismic facies that laterally evolve into an irregular surface and in places may develop a channelized morphology. Significant fluvial incision is limited to a major straight valley and a secondary distributary channel. A distinct partition of the lowstand surface is documented, and attributed to a well-marked lithological change. A coarse-grained inner shelf comprises underlying lithified coastal deposits, whereas a fine-grained outer shelf is regarded as the uppermost expression of regressive prodeltaic wedges. The influence of regional indurated surfaces is also expressed in (1) the pattern of erosion, this being more patchy on the inner shelf due to lateral changes of erodibility, whereas on the outer shelf it shows laterally continuous bands, owing to different modes of transgressive ravinement; (2) the spatial and temporal variability of fluvial incision. Inner shelf armoring by indurated deposits prevents reoccupation of previously incised valleys.

  14. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass (United States)

    Wright, Katherine E.; Williamson, Charles; Grasby, Stephen E.; Spear, John R.; Templeton, Alexis S.


    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the

  15. The Spatial and Temporal Variability of a High-Energy Beach: Insight Gained From Over 50 High-Resolution Sub-aerial Surveys (United States)

    Hansen, J. E.; Barnard, P. L.


    Since April 2004 a monitoring program of 7 km-long Ocean Beach, San Francisco, CA, has led to the completion of 55 Global Positioning System topographic surveys of the sub-aerial beach. The four-year timeseries contains over 1 million beach elevation measurements and documents detailed changes of the beach over a variety of spatial, temporal, and physical forcing scales. The goal of this ongoing data collection is to understand the variability in beach response as a function of wave forcing and offshore morphology which will ultimately aid in sediment management and erosion mitigation efforts. Several statistical methods are used to describe and account for the observed beach change, including empirical orthogonal functions (EOFs) and linear regression. Results from the EOF analysis show that the first mode, and approximately 50% of the observed variance of either the mean high water (MHW) or mean sea level (MSL) position, is explained by the seasonal movement of sediment on and offshore. The second mode, and approximately 15% of the variance, is dominated by alongshore variability, possibly corresponding to the position of cusps and embayments. Higher level modes become increasingly variable in the alongshore direction and each explain little of the observed variance. In both cases the first temporal mode is well correlated (R2~=0.7) with offshore significant wave height averaged over the previous 80 to 110 days, suggesting that seasonal wave height variations are the primary driver of intra-annual shoreline position. No other modes exhibit good correlation with offshore wave parameters regardless of the averaging time. The observed seasonal change is superimposed on a longer term trend of net annual accretion at the north end of Ocean Beach and erosion at the south end. Areas at the northern end have seen as much as 60 m of cumulative shoreline progradation since 2004, while some areas of the southern portion have retrograded nearly as much. This pattern shows an

  16. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans (United States)

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.


    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans

  17. Hawaiian fissure fountains 1: decoding deposits-episode 1 of the 1969-1974 Mauna Ulu eruption (United States)

    Parcheta, C.E.; Houghton, Bruce F.; Swanson, D.A.


    Deposits from episode 1 of the 1969–1974 Mauna Ulu eruption of Kīlauea provide an exceptional opportunity to study processes of low intensity Hawaiian fissure fountains. Episode 1 lava flows passed through dense forest that had little impact on flow dynamics; in contrast, the pattern of spatter preservation was strongly influenced by the forest (through the formation of tree molds) and the preexisting topography. A low, near-continuous spatter rampart is present upwind and upslope, on the north side of the fissure. Most of the pyroclastic products, however, fell downwind to the south of the fissure, but little was preserved due to two processes: (1) incorporation of proximal spatter in rheomorphic lava flows 10–20 m from the vents, and (2) the downslope transport of cooler spatter falling on top of these flows beyond 20 m from vent. The lava flow field itself shows a complex history. Initially, discharge from the fissure exceeded the transport capacity of the southern drainage pathways, and lava ponded dynamically to a maximum height of 4 m for 40–120 min, until fountains began to decline. During declining discharge, lava flowed both southward away from the fissure and increasingly back into the vents. There is a clear “lava-shed” or delineation between where lava drained northwards back into the fissure, and where it continued flowing to the south. The 1969 deposits suggest that care is needed when products of less well-documented eruptions are analyzed, as postdepositional transport of spatter may preclude the formation of classic paired (symmetrical) ramparts.

  18. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.


    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in

  19. Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption: Chapter 17 (United States)

    Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique


    Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with geometry of a shallow magmatic pathway, as the western vents remain unobstructed to depths >30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution geometries have been used in computational modeling. Our data can provide more accurate conduit shapes for better understanding of shallow fissure fluid dynamics and how it controls eruptive behavior, especially if incorporated into computer models.

  20. Assessing individual and organizational response to volcanic crisis and unrest at Kīlauea and Mauna Loa volcanoes, Hawai'i (United States)

    Reeves, Ashleigh; Gregg, Chris; Lindell, Michael; Prater, Carla; Joyner, Timothy; Eggert, Sarah


    This study describes response to and preparedness for eruption and unrest at Kīlauea and Mauna Loa volcanoes, respectively. The on-going 1983-present eruption of Kīlauea's East Rift Zone (ERZ) has generated a series of lava flow crises, the latest occurring in 2014 and 2015 when lava from a new vent flowed northeast and into the perimeter of developed areas in the lower Puna District, some 20km distant. It took ca. 2 months for the June 27 lava flow to advance a distance to which scientists reported it might be a concern to people downslope, but this prompted widespread formal and informal responses and culminated in improvements to infrastructure, voluntary evacuations of residents and businesses and closure of schools. Unlike Kīlauea, which has had frequent crises since the mid-20th century, the last eruption of nearby Mauna Loa occurred in 1984 and the last eruption and crisis on its Southwest Rift Zone (SWZ) was in 1950, so residents there are less familiar with eruptions than in Puna. In September 2015, the US Geological Survey, Hawaiian Volcano Observatory upgraded Mauna Loa's Alert Level from Normal to Advisory due to increases in unrest above known background levels. A crisis on Mauna Loa's SWZ would likely be much different than the recent 2014-15 crisis at Kīlauea as steep topography downslope of the SWZ and typical high discharge rates mean lava flows move fast, posing increased risk to areas downslope. Typically, volcanic eruptions have significant economic consequences out of proportion with their magnitudes. Furthermore, uncertainties regarding the physical and organizational communication of risk information amplify these economic losses. One significant impediment to risk communication is limited knowledge about the most effective ways to verbally, numerically and graphically communicate scientific uncertainty. This was a challenge in the recent lava flow crisis on Kīlauea. The public's demand for near-real time information updates, including

  1. An application of the lottery competition model to a montane rainforest community of two canopy trees, ohia (Metrosideros polymorpha) and koa (Acacia koa) on Mauna Loa, Hawaii (United States)

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.


    This rainforest occurs on Mauna Loa at 1500-2000 m elevation. Earthwatch volunteers, studying the habitat of 8 native forest bird species (3 endangered), identified 2382 living canopy trees, and 99 dead trees, on 68 study plots, 400 m2 each. Ohia made up 88% of the canopy; koa was 12%. The two-species lottery competition model, a stochastic model in which coexistence of species results from variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by one species. A discrete version was fit to the live tree data and a likelihood ratio test (p=0.02) was used to test if the mean death rates were equal. This test was corroborated by a contingency table analysis (p=0.03) based on dead trees. Parameter estimates from the two analyses were similar.

  2. Water vapor isotopes measurements at Mauna Loa, Hawaii: Comparison of laser spectroscopy and remote sensing with traditional methods, and the need for ongoing monitoring (United States)

    Galewsky, J.; Noone, D.; Sharp, Z.; Worden, J.


    The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link water sources to regional sinks, and thus proves useful in understanding large scale atmospheric humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and

  3. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands.

    Directory of Open Access Journals (Sweden)

    Courtney S Couch

    Full Text Available 2014 marked the sixth and most widespread mass bleaching event reported in the Northwestern Hawaiian Islands, home to the Papahānaumokuākea Marine National Monument (PMNM, the world's second largest marine reserve. This event was associated with an unusual basin-scale warming in the North Pacific Ocean, with an unprecedented peak intensity of around 20°C-weeks of cumulative heat stress at Lisianksi Island. In situ bleaching surveys and satellite data were used to evaluate the relative importance of potential drivers of bleaching patterns in 2014, assess the subsequent morality and its effects on coral communities and 3D complexity, test for signs of regional acclimation, and investigate long-term change in heat stress in PMNM. Surveys conducted at four island/atoll (French Frigate Shoals, Lisianski Island, Pearl and Hermes Atoll, and Midway Atoll showed that in 2014, percent bleaching varied considerably between islands/atolls and habitats (back reef/fore reef and depth, and was up to 91% in shallow habitats at Lisianski. The percent bleaching during the 2014 event was best explained by a combination of duration of heat stress measured by Coral Reef Watch's satellite Degree Heating Week, relative community susceptibility (bleaching susceptibility score of each taxon * the taxon's abundance relative to the total number of colonies, depth and region. Mean coral cover at permanent Lisianski monitoring sites decreased by 68% due to severe losses of Montipora dilatata complex, resulting in rapid reductions in habitat complexity. Spatial distribution of the 2014 bleaching was significantly different from the 2002 and 2004 bleaching events likely due to a combination of differences in heat stress and local acclimatization. Historical satellite data demonstrated heat stress in 2014 was unlike any previous event and that the exposure of corals to the bleaching-level heat stress has increased significantly in the northern PMNM since 1982, highlighting

  4. A map of human impacts to a ``pristine'' coral reef ecosystem, the Papahānaumokuākea Marine National Monument (United States)

    Selkoe, K. A.; Halpern, B. S.; Ebert, C. M.; Franklin, E. C.; Selig, E. R.; Casey, K. S.; Bruno, J.; Toonen, R. J.


    Effective and comprehensive regional-scale marine conservation requires fine-grained data on the spatial patterns of threats and their overlap. To address this need for the Papahānaumokuākea Marine National Monument (Monument) in Hawaii, USA, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise. These data were combined with habitat maps and expert judgment on the vulnerability of different habitat types in the Monument to estimate spatial patterns of current cumulative impact at 1 ha (0.01 km2) resolution. Cumulative impact was greatest for shallow reef areas and peaked at Maro Reef, where 13 of the 14 threats overlapped in places. Ocean temperature variation associated with disease outbreaks was found to have the highest predicted impact overall, followed closely by other climate-related threats, none of which have easily tractable management solutions at the regional scale. High impact threats most tractable to regional management relate to ship traffic. Sensitivity analyses show that the results are robust to both data availability and quality. Managers can use these maps to (1) inform management and surveillance priorities based on the ranking of threats and their distributions, (2) guide permitting decisions based on cumulative impacts, and (3) choose areas to monitor for climate change effects. Furthermore, this regional analysis can serve as a case study for managers elsewhere interested in assessing and mapping region-specific cumulative human impacts.

  5. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). (United States)

    Couch, Courtney S; Burns, John H R; Liu, Gang; Steward, Kanoelani; Gutlay, Tiffany Nicole; Kenyon, Jean; Eakin, C Mark; Kosaki, Randall K


    2014 marked the sixth and most widespread mass bleaching event reported in the Northwestern Hawaiian Islands, home to the Papahānaumokuākea Marine National Monument (PMNM), the world's second largest marine reserve. This event was associated with an unusual basin-scale warming in the North Pacific Ocean, with an unprecedented peak intensity of around 20°C-weeks of cumulative heat stress at Lisianksi Island. In situ bleaching surveys and satellite data were used to evaluate the relative importance of potential drivers of bleaching patterns in 2014, assess the subsequent morality and its effects on coral communities and 3D complexity, test for signs of regional acclimation, and investigate long-term change in heat stress in PMNM. Surveys conducted at four island/atoll (French Frigate Shoals, Lisianski Island, Pearl and Hermes Atoll, and Midway Atoll) showed that in 2014, percent bleaching varied considerably between islands/atolls and habitats (back reef/fore reef and depth), and was up to 91% in shallow habitats at Lisianski. The percent bleaching during the 2014 event was best explained by a combination of duration of heat stress measured by Coral Reef Watch's satellite Degree Heating Week, relative community susceptibility (bleaching susceptibility score of each taxon * the taxon's abundance relative to the total number of colonies), depth and region. Mean coral cover at permanent Lisianski monitoring sites decreased by 68% due to severe losses of Montipora dilatata complex, resulting in rapid reductions in habitat complexity. Spatial distribution of the 2014 bleaching was significantly different from the 2002 and 2004 bleaching events likely due to a combination of differences in heat stress and local acclimatization. Historical satellite data demonstrated heat stress in 2014 was unlike any previous event and that the exposure of corals to the bleaching-level heat stress has increased significantly in the northern PMNM since 1982, highlighting the increasing

  6. Deep Coral Habitat Characterization of the North End of Raita Bank, Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands (United States)

    Foxworth, L.; Sautter, L.


    The purpose of this study is to characterize and explore the north end of Raita Bank in the Northwestern Hawaiian Islands, to assess where deep marine coral would most likely grow and flourish. The bank is located within the largest U.S marine protected area, the Papahānaumokuākea Marine National Monument (PMNM), 1120 km northwest of Honolulu, Hawaii. Multibeam sonar data were collected by the Schmidt Ocean Institute using the R/V Falkor's Kongsberg EM302 and EM710 during an exploratory cruise within the PMNM in May-June 2014. Raita Bank hosts both shallow and deep coral; however, this study was focused on potential deep coral habitat at depths ranging 400 to 3000 m. The bank stretches approximately 44.0 km east-west and 35.8 km north-south and its shallowest point surveyed is 320 m. Overall gradients between 400 and 3000 m depths range from 0.10 to 0.26, including major terraces at 500 and 1000 m. The steeper gradients and terraced areas indicate favorable conditions for deep coral. A bathymetric map created with CARIS HIPS and SIPS 9.0 software was used to visualize seafloor geomorphology and characterize deep coral habitat by examining slope relief, distance to shelf edge, and other geomorphologic features. Additionally, backscatter was used to analyze the seafloor's relative hardness to identify hard-bottom seafloor areas that would be more likely to support deep coral. Maps generated from this study will be invaluable for future explorations of deep coral habitat on the bank.

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from MIRAI in the North Pacific Ocean, Papahānaumokuākea Marine National Monument and others from 1998-01-31 to 2003-02-12 (NODC Accession 0080986) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080986 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the North Pacific Ocean, Papahānaumokuākea...

  8. New R/V Falkor Multibeam Data from the Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands (United States)

    Smith, J. R., Jr.; Kelley, C.; Boston, B.; Dechnik, B.; Habel, S.; Harrison, L.; Leonard, J.; Lichowski, F.; Luers, D.; Miller, J. E.; Orange, R.; Patterson, M. A.; Shiro, B.; Taylor, J.; Togia, H.; Tree, J. P.; Tucker, J.; Wagner, D.; Webster, J.; Wright, N.


    From March to June 2014, the Schmidt Ocean Institute, along with National Marine Sanctuaries and the National Science Foundation, supported 72 days of mapping surveys on two cruises using R/V Falkor in the Papahānaumokuākea Marine National Monument (PMNM) located within the Northwestern Hawaiian Islands (NWHI). PMNM is one of the largest marine protected areas in the world. Approximately 127,000 km2, 35% of the PMNM, were surveyed using dual multibeam systems from less than 30 to >5000 meters water depth, and thus covering the habitat depth ranges for shallow living corals, mesophotic corals, drowned reefs, to deep-sea corals and sponge communities. A total of 18 seamounts, guyots, banks, or atoll flanks (e.g., Midway and Kure) were mapped in the upper northwestern section of the monument, including the generically named Bank 9 Seamount, which appears to be a composite of a younger Hawaiian seamount and an older Cretaceous guyot. The middle segment of the PMNM consists mostly of large volcanic rift zone ridges and broad carbonate platforms. The rift zones located there are comparable in shape and size with those off Maui and the Island of Hawai'i in the main islands. Likewise, the magnitude of the largest carbonate platform of Gardner Pinnacles suggests its original high island may have met or exceeded the enormity of the Island of Hawai'i. Furthermore, the new mapping data have revealed the detail of numerous landslides and their deposits all along the chain, including an unusual rift zone flank failure creating a knife-edge ridge off Pioneer Bank. Dives with the Pisces V submersible were previously carried out on this feature, where extensive filter feeding biological communities were discovered. Not to be overlooked, the sidescan backscatter component of the multibeam data proved essential for identifying subtle reef features, numerous carbonate terraces, and debris channels that appear to transport sediment down the edifice flanks to the deep seafloor

  9. The Early Gulf of Mexico as a Subaerial Basin Below Sea Level (SABSEL) Basin. Evidence from Stratigraphy and Facies of Luanne salt, Norphlet sandstone and Smackover Brown Dense Formations. (United States)

    Cassidy, M. M.


    Many workers recognize that large salt deposits form in post-rift sag basins which were subaerial and susceptible to rapid flooding from adjacent oceansl. I have termed these basins "subaerial basins below sea level" or "SABSEL" basins. A key marker of SABSEL basins are terrestrial sediments immediately overlain by deepwater sediments with no transition. Desert deposits -including Aeolian dunes- are preserved in the adiabatically heated depression. Dunes are not eroded by transgressing seas but are drowned by rising water as in a bath tub. They maintain their shape. Deepwater marine black shales or limestones drape the dunes. The Southern North sea is an example. Above the original marine shale over the dunes are evaporites. Winds descending into the basin were heated by adiabatic compression providing the very hot air need to allow survival of potassium salts. A similar situation was probably active during the Messinian salinity crisis in the Mediterranean basin, and the opening of the South Atlantic. In the Gulf of Mexico (GOM) a desert is on the Louann salt. Here the sea invaded the lows first to deposit the salt overlying tilted fault blocks of the opening basin, as in the Afar Triangle of Africa. In the GOM entry to the west fed in sea water, then closed. The Norphlet desert formed. Streams carried sands to the basin to be spread by winds where they willed, not limited to sand entry areas. Upon deposition their original weight depressed the salt. Seismic shows depressions in the salt but the dunes are high at the top Norphlet, forming distinctive small "eyes" at the top salt. The 600 foot dunes are draped by deep water dolomitic finely laminated organic rich black/ brown shale, the Brown Dense Facies of the Smackover formation. The lack of reworking of the dunes found by detailed seismic is distinctive of deposition in a SABSEL basin. The overlap of terrestrial sediments by deep water deposition is good evidence of sudden flooding. In summary this vertical

  10. Response of native and invasive plant species to selective logging in an Acaia koa-Metrosideros polymorpha forest in Hawai'i (United States)

    James B. Friday; Paul G. Scowcroft; Adrian. Ares


    Questions: Is the introduced timber species Fraxinus uhdei invasive in Hawai‘i? Has logging disturbance facilitated the spread of Fraxinus and other alien species?Location: Windward Mauna Kea, island of Hawai‘i.

  11. Observations of carbon dioxide, methane, and carbon monoxide at Tae-Ahn peninsula (Korea), Mount Waliguan (China), Ulaan Uul (Mongolia) and at Mauna Loa (Hawaii USA)

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.S. [Korea National Univ. of Education, Chongwon (Korea, Republic of); Tans, P.P.; Conway, T.J.; Dlugokencky, E.J. [Climate Monitoring and Diagnostics Lab., Bouler (United States); Novelli, P.C.; Tolier, M. [Colorado Univ. (United States). Cooperative Inst. for Research in Environmental Sciences; Wen, Y. [Chinese Academy of Meteorological Sciences, Beijing (China); Dagvadorj, D. [Mongolian Hydrometeorological Research Inst., Ulaan Batar (Mongolia)


    It has been discussed that the greenhouse gases, e.g. carbon dioxide (CO{sub 2}) methane (CH{sub 4}), enhance warming in the biosphere. Many scientists are therefore interested in monitoring the minor constituents of the atmosphere and in the carbon cycle. In cooperation with the Climate Monitoring and Diagnostics Laboratory (CMDL) of U.S. National Oceanic and Atmospheric Administration (NOAA), CO{sub 2}, CH{sub 4} and carbon monoxide (CO) at the western tip of the Tae-ahn Peninsula (TAP) in central Korea since October 1990 has been measured. Shortly thereafter, two more sites were added for the measurement of greenhouse gases in East Asia; one at Mount Waliguar Qinghai Province (QPC) in China and another at Ulaan Uul (UUM), the Gobi Desert in Mongolia. Also, trace gas data obtained at Mauna Loa (MLO) in Hawaii in the USA has been used. The Hawaiian data represent the world`s longest period of CO{sub 2} monitoring since 1958. The present monitoring is a part of the Global Air Sampling Network the WMO`s Global Atmospheric Watch. The method of collecting and measuring CO{sub 2}, CO and CH{sub 4} have been described else where. Here the four year monitoring of the trace gases at the three sites in East Asia is reported. The results are also compared with the measured values obtained at the free troposphere background site at MLO in Hawaii

  12. A Comparison of Aircraft and Ground-Based Measurements at Mauna Loa Observatory, Hawaii, During GTE PEM-West and MLOPEX 2 (United States)

    Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.


    During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.

  13. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from JOHN P. TULLY in the North Pacific Ocean, Papahānaumokuākea Marine National Monument and South Pacific Ocean from 1994-09-06 to 1994-11-10 (NODC Accession 0115011) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115011 includes chemical, discrete sample, physical and profile data collected from JOHN P. TULLY in the North Pacific Ocean, Papahānaumokuākea...

  14. Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kent, A.J.R.; Clague, D.A.; Honda, M.; Stolper, E.M.; Hutcheon, I.D.; Norman, M.D.


    Many tholeiitic and transitional pillow-rim and fragmental glasses from Loihi seamount, Hawaii, have high Cl contents and Cl/K{sub 2}O ratios (and ratios of Cl to other incompatible components, such as P{sub 2}O{sub 5}, H{sub 2}O, etc.) relative to other Hawaiian subaerial volcanoes (e.g., Mauna Loa, Mauna Kea, and Kilauea). The authors suggest that this results from widespread contamination of Loihi magmas by a Cl-rich, seawater-derived component. Assimilation of high-Cl phases such as saline brine or Cl-rich minerals (halite or iron-hydroxychlorides) with high Cl/H{sub 2}O ratios can explain the range and magnitude of Cl contents in Loihi glasses, as well as the variations in the ratios of Cl to other incompatible elements. Brines and Cl-rich minerals are thought to form from seawater within the hydrothermal systems associated with submarine volcanoes, and Loihi magmas could plausibly have assimilated such materials from the hydrothermal envelope adjacent to the magma chamber. Their model can also explain semiquantitatively the observed contamination of Loihi glasses with atmospheric-derived noble gases, provided the assimilant has concentrations of Ne and Ar comparable to or slightly less than seawater. This is more likely for brines than for Cl-rich minerals, leading the authors to favor brines as the major assimilant. Cl/Br ratios for a limited number of Loihi samples are also seawater-like, and show no indication of the higher values expected to be associated with the assimilation of Cl-rich hydrothermal minerals. Although Cl enrichment is a common feature of lavas from Loihi, submarine glasses from other Hawaiian volcanoes show little (Kilauea) or no (Mauna Loa, Mauna Kea) evidence of this process, suggesting that assimilation of seawater-derived components is more likely to occur in the early stages of growth of oceanic volcanoes. Summit collapse events such as the one observed at Loihi in October 1996 provide a ready mechanism for depositing brine

  15. Stratospheric ozone interannual variability (1995–2011 as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA

    Directory of Open Access Journals (Sweden)

    G. Kirgis


    Full Text Available The Jet Propulsion Laboratory (JPL lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W, have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalised monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11 yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen-Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude Ozone Depleting Gas Index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment, and Aura-Microwave Limb Sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the Ozone Depleting Gas Index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11 yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.

  16. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    Energy Technology Data Exchange (ETDEWEB)

    Goryaev, F.; Slemzin, V.; Vainshtein, L. [P.N. Lebedev Physical Institute of the RAS (LPI), Moscow 119991 (Russian Federation); Williams, David R., E-mail: [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom)


    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.

  17. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii. (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D


    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E) and Mauna Loa (19.5° N, 155.6° W) (United States)

    Bègue, Nelson; Mbatha, Nkanyiso; Bencherif, Hassan; Tato Loua, René; Sivakumar, Venkataraman; Leblanc, Thierry


    In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ˜ 1 km thinner and ˜ 1 km lower, with an amplitude of ˜ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the inversion zone is in agreement with most previously

  19. Pinatubo and Pre-Pinatubo Optical-Depth Spectra: Mauna Loa Measurements, Comparisons, Inferred Particle Size Distributions, Radiative Effects, and Relationship to Lidar Data (United States)

    Russell, P. B.; Livingston, J. M.; Dutton, E. G.; Pueschel, R. F.; Reagan, J. A.; DeFoor, T. E.; Box, M. A.; Pilewskie, P.; Herman, B. M.; Kinne, S. A.; hide


    The Ames airborne tracking sunphotometer was operated at the National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory (MLO) in 1991 and 1992 along with the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) automated tracking sunphotometer and lidar. June 1991 measurements provided calibrations, optical-depth spectra, and intercomparisons under relatively clean conditions; later measurements provided spectra and comparisons for the Pinatubo cloud plus calibration checks. June 1991 results are similar to previous MLO springtime measurements, with midvisible particle optical depth tau(sub p)(lambda = 0.526 microns) at the near-background level of 0.012 +/- 0.006 and no significant wavelength dependence in the measured range (lambda = 0.38 to 1.06 microns). The arrival of the Pinatubo cloud in July 1991 increased midvisible particle optical depth by more than an order of magnitude and changed the spectral shape of tau(sub p)(lambda) to an approximate power law with an exponent of about -1.4. By early September 1991, the spectrum was broadly peaked near 0.5 microns, and by July 1992, it was peaked near 0.8 microns. Our optical-depth spectra include corrections for diffuse light which increase postvolcanic midvisible tau(sub p) values by 1 to 3% (i.e., 0.0015 to 0.0023). NOAA- and Ames Research Center (ARC)-measured spectra are in good agreement. Columnar size distributions inverted from the spectra show that the initial (July 1991) post-Pinatubo cloud was relatively rich in small particles (r less than 0.25 microns), which were progressively depleted in the August-September 1991 and July 1992 periods. Conversely, both of the later periods had more of the optically efficient medium-sized particles (0.25 less than r less than 1 micron) than did the fresh July 1991 cloud. These changes are consistent with particle growth by condensation and coagulation. The effective, or area-weighted, radius increased from 0.22 +/- 0.06 micron in July 1991 to 0

  20. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory

    Directory of Open Access Journals (Sweden)

    J. Lee


    Full Text Available The Aura satellite Tropospheric Emission Spectrometer (TES instrument is capable of measuring the HDO/H2O ratio in the lower troposphere using thermal infrared radiances between 1200 and 1350 cm−1. However, direct validation of these measurements is challenging due to a lack of in situ measured vertical profiles of the HDO/H2O ratio that are spatially and temporally co-located with the TES observations. From 11 October through 5 November 2008, we undertook a campaign to measure HDO and H2O at the Mauna Loa observatory in Hawaii for comparison with TES observations. The Mauna Loa observatory is situated at 3.1 km above sea level or approximately 680 hPa, which is approximately the altitude where the TES HDO/H2O observations show the most sensitivity. Another advantage of comparing in situ data from this site to estimates derived from thermal IR radiances is that the volcanic rock is heated by sunlight during the day, thus providing significant thermal contrast between the surface and atmosphere; this thermal contrast increases the sensitivity to near surface estimates of tropospheric trace gases. The objective of this inter-comparison is to better characterize a bias in the TES HDO data, which had been previously estimated to be approximately 5 % too high for a column integrated value between 850 hPa and 500 hPa. We estimate that the TES HDO profiles should be corrected downwards by approximately 4.8 % and 6.3 % for Versions 3 and 4 of the data respectively. These corrections must account for the vertical sensitivity of the TES HDO estimates. We estimate that the precision of this bias correction is approximately 1.9 %. The accuracy is driven by the corrections applied to the in situ HDO and H2O measurements using flask data taken during the inter-comparison campaign and is estimated to be less than 1 %. Future comparisons of TES data to accurate vertical profiles of in situ measurements are needed to refine this bias estimate.

  1. Forecasting the impact of storm waves and sea-level rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument—a comparison of passive versus dynamic inundation models (United States)

    Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.


    Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested

  2. Propuesta de proyecto de estadística: un modelo de regresión lineal simple para pronosticar la concentración de co2 del volcán Mauna Loa

    Directory of Open Access Journals (Sweden)

    Claudio Alfredo López Miranda


    Full Text Available Este trabajo aplica un modelo predictivo de regresión lineal para analizar la contaminación atmosférica de dióxido de carbono (CO2 producida por el volcán Mauna Loa de Hawái. Los datos fueron extraídos de un repositorio de internet que contiene múltiples casos de geología, climatología, física, etcétera. El modelo se utilizó para predecir la tendencia de emisiones de CO2 con respecto al tiempo; se estimó la contaminación promedio de dicha tendencia, la cual descubrimos ha crecido aproximadamente 0.1 partes por millón por mes; así como también se obtuvieron los intervalos de predicción para una emisión puntual que existió en un momento determinado. Se recomienda el trabajo para estudiantes de ciencias exactas y naturales, como prototipo de artículo de investigación donde se aplique específicamente el modelo de regresión lineal simple; aunque la estructura también puede servir en otras áreas donde se enseñen los modelos de regresión.

  3. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E and Mauna Loa (19.5° N, 155.6° W

    Directory of Open Access Journals (Sweden)

    N. Bègue


    Full Text Available In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ∼ 1 km thinner and ∼ 1 km lower, with an amplitude of ∼ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the

  4. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions (United States)

    Wilson, Robert M.


    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  5. Large historical eruptions at subaerial mud volcanoes, Italy

    Directory of Open Access Journals (Sweden)

    M. Manga


    Full Text Available Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s−1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.

  6. Confirmation of 5 SN in the Kepler/K2 C16 Field with Gemini (United States)

    Margheim, S.; Tucker, B. E.; Garnavich, P. M.; Rest, A.; Narayan, G.; Smith, K. W.; Smartt, S.; Kasen, D.; Shaya, E.; Mushotzky, R.; Olling, R.; Villar, A.; Forster, F.; Zenteno, A.; James, D.; Smith, R. Chris


    We report new spectroscopic classifications by KEGS of supernova discovered by Pan-STARRS1 during a targeted search of the Kepler/K2 Campaign 16 field using the Gemini Multi-Object Spectrograph (GMOS) on both the Gemini North Observatory on Mauna Kea, and the Gemini South Observatory on Cerro Pachon.

  7. Special Session on Adaptive Optics in Russia and China. Volume 23 (United States)


    Kingdom, Canada, Chile, Brazil and Argentina to built two eight-meter astronomical telescopes, one on Mauna Kea, Hawaii and one on Cerro Pachon , Chile... Pachon instrument will await a second round of instrument construction. The following science requirements and goals have been adopted by the Gemini

  8. VizieR Online Data Catalog: 72 faint CV candidates in CRTS (Breedt+, 2014) (United States)

    Breedt, E.; Gansicke, B. T.; Drake, A. J.; Rodriguez-Gil, P.; Parsons, S. G.; Marsh, T. R.; Szkody, P.; Schreiber, M. R.; Djorgovski, S. G.


    We obtained identification spectra of a total of 72 faint CV candidates identified by the CRTS, using the Gran Telescopio Canarias (GTC; La Palma, Spain) and the Gemini telescopes (North: Mauna Kea, Hawaii and South: Cerro Pachon, Chile). The observations were carried out in service mode during 2010, 2011 and 2013. (5 data files).

  9. International Gemini Observatory officially launched

    CERN Multimedia


    Over 200 research, engineering, and science leaders from seven countries journeyed to the top of a remote mountain in the Chilean Andes to celebrate the inauguration the new Gemini South telescope, the complement of the Gemini North telescope already operating in Mauna Kea, Hawaii.

  10. SEVEN COLOR ASTEROID SURVEY V1.0 (United States)

    National Aeronautics and Space Administration — The Seven-color Asteroid Survey (SCAS) was conducted at the IRTF on Mauna Kea, Hawaii from 1992 to 1994. It consists of photometry in seven filters from 0.9 to 2.3...

  11. The Thirty Meter Telescope (TMT): An International Observatory

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... The Thirty Meter Telescope (TMT) will be the first truly global ground-based optical/infrared observatory. It will initiate the era of extremely large (30-meter class) telescopes with diffraction limited performance from its vantage point in the northern hemisphere on Mauna Kea, Hawaii, USA. The astronomy ...

  12. Gemini enclosure and support facility design philosophy and design description (United States)

    Raybould, Keith; Ford, Robert M.; Gillett, Paul E.; Hardash, Steven G.; Pentland, Gordon


    The Gemini project is an international collaboration between the USA, United Kingdom, Canada, Chile, Argentina, and Brazil, to design, fabricate and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements, a document developed by the Gemini Science Committee. This paper describes the design considerations that influence the scientific performance of the enclosure and support facility, and the features that have been incorporated to meet the demanding science requirements, particularly the 0.026 arc sec allowance for `enclosure seeing'. A description of the Gemini enclosure, support facilities and site plans for Mauna Kea is given here together with a brief description of the analysis and testing that has been performed to establish the performance of the facility.

  13. VizieR Online Data Catalog: Extended H2 emission from massive YSOs survey (Navarete+, 2015) (United States)

    Navarete, F.; Damineli, A.; Barbosa, C.-L.; Blum, R.-D.


    The Northen sample were obtained with the CFHT, Mauna Kea, Hawaii, using the Wide-field InfraRed Camera (WIRCam) between 2010 August and 2012 August. The Southern sample have been observed with the Southern Astrophysical Research Telescope (SOAR), Cerro Pachon, Chile, using the Ohio State Imager/Spectrometer (OSIRIS) camera between 2011 March and 2011 June and the Spartan camera between 2011 August and 2012 December. (4 data files).

  14. Mountain Breathing Revisited-the Hyperventilation of a Volcano Cinder Cone. (United States)

    Woodcock, Alfred H.


    During 23 hours of fresh to strong winds in December 1975, air flowed rapidly and continuously out of a drill hole in the top of the summit cone of Mauna Kea volcano, Hawaii. Measurements made during this outflow indicate that the air entered the mountain dry and cold, but flowed out relatively wet and warm, resulting in an average latent- and sensible-heat loss from the cone interior of about 116 W·m2. A sensitive vane anemometer, and thermistor and mercury-in-glass thermometers, were used to make these observations.Published observations made during moderate winds in this and a second drill hole had revealed relatively low air and heat flow rates, alternating daily into as well as out of the cone, with outflow generally during the day and inflow largely at night. The diurnal differences in the flow direction suggested that the well-known, semidiurnal atmospheric-pressure changes were the main cause of the air "breathing" within the cone. The latent-heat outflow in moderate winds was about 4 W·m2.The continuous outflow observations presented here indicate that wind speed has a marked if not dominant effect on the airflow and heat flow from the Mauna Kea summit cones, and that the resulting cooling during one day of strong winds can equal that of ten or more days of lower winds. This intense local cooling may explain the long survival of permafrost on Mauna Kea, and underscores the potential of air-land interaction in altering the internal air pressure and heat and water distribution in the cinder cones of Mauna Kea and perhaps in other volcanoes as well.

  15. Composition, Physical State, and Distribution of Ices at the Surface of Triton (United States)

    deBergh, Catherine; Cruikshank, Dale P.; Owen, Tobias C.; Geballe, Thomas R.; Roush, Ted L.; DeVincenzi, Donald L. (Technical Monitor)


    This paper presents the analysis of near-infrared observations of the icy surface of Triton, recorded on 1995 September 7, with the cooled grating spectrometer CGS4 at the United Kingdom Infrared Telescope (Mauna Kea, HI). This analysis was performed in two steps. The step consisted of identifying the molecules composing Triton's surface by comparing the observations with laboratory transmission spectra (direct spectral analysis ); this also gives information on the physical state of the components.

  16. An adaptive strategy for reducing Feral Cat predation on endangered hawaiian birds (United States)

    Hess, S.C.; Banko, P.C.; Hansen, H.


    Despite the long history of Feral Cats Felis catus in Hawai'i, there has been little research to provide strategies to improve control programmes and reduce depredation on endangered species. Our objective Was to develop a predictive model to determine how landscape features on Mauna Kea, such as habitat, elevation, and proximity to roads, may affect the number of Feral Cats captured at each trap. We used log-link generalized linear models and QAIC c model ranking criteria to determine the effect of these factors. We found that The number of cats captured per trap Was related to effort, habitat type, and Whether traps Were located on The West or North Slope of Mauna Kea. We recommend an adaptive management strategy to minimize trapping interference by non-target Small Indian Mongoose Herpestes auropunctatus with toxicants, to focus trapping efforts in M??mane Sophora chrysophylla habitat on the West slope of Mauna Kea, and to cluster traps near others that have previously captured multiple cats.

  17. Optical Sky Brightness at Dome C, Antarctica (United States)

    Kenyon, S.; Storey, J. W. V.; Burton, M. G.


    Dome C, Antarctica is a prime site for astronomical observations in terms of climate, wind speeds and turbulence. The infrared and terahertz sky backgrounds are the lowest of any inhabited place on Earth. However, at present little is known about the optical sky brightness and atmospheric extinction. Using a variety of modelling techniques together with data from the South Pole, we estimate the brightness of the night sky including the contributions from scattered sunlight, moonlight, aurorae, airglow, zodiacal light and artificial sources. We compare our results to another prime astronomical site, Mauna Kea. We find moonlight has significantly less effect at Dome C than at Mauna Kea. Aurorae are expected to have a minor impact at both sites, and zodiacal light is expected to be less at Dome C than at Mauna Kea. Airglow emissions at Dome C are expected to be similar to those at temperate sites. With proper planning, artificial sources of light pollution should be non-existent. The overall atmospheric extinction, or opacity, is expected to be the minimum possible. We conclude that Dome C is a very promising site not only for infrared and terahertz astronomy, but for optical astronomy as well..

  18. Environmental conditions associated with lesions in introduced free-ranging sheep in Hawai‘i (United States)

    Powers, Jenny G.; Duncan, Colleen G.; Spraker, Terry R.; Schuler, Bridget A.; Hess, Steven C.; Faford, Jonathan K.J.; Sin, Hans


    Wildlife species which have been translocated between temperate and tropical regions of the world provide unique opportunities to understand how disease processes may be affected by environmental conditions. European mouflon sheep (Ovis gmelini musimon) from the Mediterranean Islands were introduced to the Hawaiian Islands for sport hunting beginning in 1954 and were subsequently hybridized with feral domestic sheep (O. aries), which had been introduced in 1793. Three isolated mouflon populations have become established in the Hawaiian Islands but diseases in these populations have been little studied. The objective of this study was to evaluate and compare gross and histologic lesions in respiratory, renal, and hepatic systems of free-ranging sheep in two isolated volcanic environments on Hawai‘i Island. Tissue and fecal samples were collected in conjunction with population reductions during February 2011. We found gross or histologic evidence of lungworm infection in 44/49 sheep from Mauna Loa which were exposed to gaseous emissions from Kīlauea Volcano. In contrast, only 7/50 sheep from Mauna Kea had lesions consistent with lungworm, but Mauna Kea sheep had significantly more upper respiratory tract inflammation and hyperplasia consistent with chronic antigenic stimulation, possibly associated with exposure to fine airborne particulates during extended drought conditions. We hypothesize that gasses from Kīlauea Volcano contributed to severity of respiratory disease principally associated with chronic lungworm infections at Mauna Loa; however, there were numerous other potentially confounding environmental factors and interactions that merit further investigation.

  19. Seismic Hazards at Kilauea and Mauna LOA Volcanoes, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Fred W.


    A significant seismic hazard exists in south Hawaii from large tectonic earthquakes that can reach magnitude 8 and intensity XII. This paper quantifies the hazard by estimating the horizontal peak ground acceleration (PGA) in south Hawaii which occurs with a 90% probability of not being exceeded during exposure times from 10 to 250 years. The largest earthquakes occur beneath active, unbuttressed and mobile flanks of volcanoes in their shield building stage.

  20. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes (United States)

    Queisser, Manuel; Burton, Mike


    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures the absorption, and therefore path amount, of CO2 in the atmosphere. The kit has been optimized to be rugged, man-portable and to use little power (~ 70W). By flying the instrument over a volcanic plume we will be able to swiftly determine CO2 fluxes. This opens the possibility of rapid, comprehensive surveys of both point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. We present initial test results from the new instrument. We believe that the CO2 LIDAR could make a major contribution to volcano monitoring. Potential follow-on applications include environmental monitoring, such as fugitive CO2 detection in storage sites or urban monitoring of car and ship emissions.

  1. A concept for a thirty-meter telescope (United States)

    Burgarella, Denis; Zamkotsian, Frederic; Dohlen, Kjetil; Ferrari, Marc; Hammer, Francois; Sayede, Frederic; Rigaud, Francois


    In May 2000, the Canada-France-Hawaii (CFHT) Telescope Science Advisory Committee solicited the Canadian, Hawaiian and French communities to propose concepts to replace the present CFH telescope by a larger telescope. Three groups were selected: Carlberg et al. (2001) in Canada, Khun et al. (2001) in Hawaii and Burgarella et al. (2001a) in France. The reports were delivered to CFHT in May 2001 and are now available throughout the CFHT website. One of the main constraints was due to the fact that the new and larger telescope should use as much as possible the existing site and be compliant with the Mauna Kea Science reserve Master Plan (2000). This plan analyses all aspects of the Mauna Kea summit but most of them are related to the facts that the mountain must be considered as a sacred area for indigenous Hawaiian people and that the ecosystem is fragile. But in addition, the plan also tries to account for the fact that the summit of Mauna Kea is a world famous site for astronomy. The points that we can highlight in the context of our project are of two types. Since then, the project evolved and Hawaii is not considered as the one and only site to build an Extremely Large Telescope (ELT). Moreover, the size of the primary mirror, which was strongly dependent on the above constraints, is no more limited to the 16 - 20 m which was our conclusion at this time. Nevertheless, the three points of the resolution are still valid and since then, we have kept on working on the concept by launching differnt follow-up studies that are necessary to start such a project. Of course, the main point is the Science Objectives which drive the main specifications for an ELT. But related technical studies are also mandatory e.g. Adaptive Optics, Building of a primary mirror larger than 30 m in diameter, Image Quality as a function of the segment size and shape.

  2. Desing of a Laser Guide Star System for the Keck II Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, H.W.; Erbert, G.V.; Kuklo, T.; Thompson, G.R.; Wong, N.J.; Gavel, D.T.; Salmon, J.T.; Feldman, M.


    A laser guide star system similar to that deployed at the Lick Observatory has been designed for the Keck II 10 m telescope on Mauna Kea, Hawaii. The subaperature size on the primary is comparable to that at Lick, and at the same observational wavelength centered about the K band, so that the average power requirements of the laser system are also comparable, at about 20 W. One major difference is that the seeing at Mauna Kea is about a factor of two better than at Lick so that the spot diameter requirements are smaller and this can give rise to reduced back scatter resulting from saturation effects in the sodium layer. To reduce the peak flux in the sodium layer and obtain a smaller spot diameter, the output beam diameter has been increased along with the repetition rate of the laser. As with the Lick laser system, a dye laser is pumped by a series of frequency doubled YAG lasers which are remotely located and coupled to the dye laser on the telescope by optical fibers. The laser system has a full set of beam control optics as well as launch telescope and safety systems. A computer system couples the laser system to the User Interface and Supervisory Control system of the main telescope. The laser system is due to be shipped to Keck during the fall of 1997 where it will be integrated with the telescope at Mauna Kea. The Adaptive Optics and Optics Bench systems will be integrated first and be ready for integration with the laser in the summer of 1998. 1 ref., 8 figs.

  3. Study of Electro-Cyclonic Filtration and Pneumatic Transfer of Lunar Regolith Simulants under 1/6-g and 1-g Gravity Conditions (United States)

    Mantovani, James G.; Townsend, Ivan I.; Mueller, Robert P.


    NASA has built a prototype oxygen production plant to process the lunar regolith using the hydrogen reduction chemical process. This plant is known as "ROxygen - making oxygen from moon rocks". The ROxygen regolith transfer team has identified the flow and transfer characteristics of lunar regolith simulant to be a concern for lunar oxygen production efforts. It is important to ISRU lunar exploration efforts to develop hardware designs that can demonstrate the ability to flow and transfer a given mass of regolith simulant to a desired vertical height under lunar gravity conditions in order to introduce it into a reactor. We will present results obtained under both 1/6-g and 1-g gravity conditions for a system that can pneumatically convey 16.5 kg of lunar regolith simulant (NU-LHT-2M, Mauna Kea Tephra, and JSC-1A) from a flat-bottom supply hopper to a simulated ISRU reactor (dual-chambered receiving hopper) where the granular material is separated from the convey gas (air) using a series of cyclone separators, one of which is an electrically enhanced cyclone separator (electrocyclone). The results of our study include (1) the mass flow rate as a function of input air pressure for lunar regolith simulants that are conveyed pneumatically as a dusty gas in a vertical direction against gravity under lunar gravity conditions (for NU-LHT-2M and Mauna Kea Tephra), and under earth gravity conditions (for NU-LHT-2M, Mauna Kea Tephra and JSC-1A), and (2) the efficiency of the cyclone/electrocyclone filtration system in separating the convey gas (air) from the granular particulates as a function of particle size.

  4. Challenges and Opportunities in Developing the Hawaiian Scientific and Technical Workforce (United States)

    Kennedy, James R.


    In searching for dark skies, persistently clear weather, and minimal atmospheric interference, astronomical observing sites are generally located in remote, mountainous locations, and usually far from large communities. Such locations often have weak economies, and shallow workforce pools in the technical and administrative areas generally needed by the observatories. This leads to a problem, and an opportunity, for both the observatories and their local communities. Importing employees from far away locations is costly, leads to high turnover, and deprives the community of economic benefits and the sense of fealty with the observatories that would naturally result if local people occupied these comparatively good paying jobs. While by no means unique, the observatories on Mauna Kea Hawai`i are a clear example of this dual dilemma. This presentation will report findings from a model workforce needs assessment survey of all the Mauna Kea observatories, which has establish likely annual staffing requirements in several categories of technological and administrative support, including the educational entrance requirements. Results indicated that through 2023, 80% of observatory job openings on Hawai`i Island will be in technology and administration. Furthermore, the vast majority of these jobs will require only a two-year or four-year college degree in a relevant field as an entrance requirement. Efforts to realign the existing resources to better meet these common needs will be discussed, including the highly successful partnership between County of Hawai`i Workforce Development Board, the Mauna Kea observatories, the local K-12 systems, Hawai`i Community College, the University of Hawai`i Hilo, and a number of informal education and workplace experience programs. This collaboration has resulted in no fewer than three, interlocked, community programs have stepped up to meet this challenge to the benefit of both the local community and the observatories.

  5. Orbits of Saturn's Inner Moons and Other Observations Connected with the 1995-1996 Saturnian Ring Plane Crossing (United States)


    Keck infrared observations of Saturn's E and G rings during Earth's 1995 Ring Plane Crossing are reported along with the NASA's Mauna Kea IR Telescope Facility (IRTF) observations of Saturn's faint outer rings and small moons in the Near-IR Astronomy Program. Observations of the rings and satellites with the 5-m Hale telescope at Palomar Observatory, following the solar crossing of Saturn's ring plane on 19 Nov. 1995, are also addressed. Images of Saturn at radio wavelengths, the data containing information on the structure and composition of the rings as well as the planet's deep atmosphere between the 1- and 10-bar pressure levels, are discussed.

  6. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.A.; Yee, S.; Roellig, T.L.; Hills, R.; Brock, D. (Hawaii Univ., Honolulu (USA) NASA, Ames Research Center, Moffett Field, CA (USA) Mullard Radio Astronomy Observatory, Cambridge (England) Joint Astronomy Centre, Hilo, HI (USA))


    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun. 7 refs.

  7. Managing the cryogenic systems of SCUBA-2 for long term operation (United States)

    Cookson, Jamie L.; Bintley, Dan


    SCUBA-2 has been operational on JCMT producing excellent science for almost 5 years. We describe the strategy and methods that we have evolved to keep one of the world's first "dry dilution refrigerators" and the other cryogenic systems working effectively at the summit of Mauna Kea, keeping the instrument functioning at peak efficiency for extended periods (over 12 months at a time), with minimum downtime. We discuss new plans to reduce day-to-day operational costs and to add remote management of the gas handling systems, as we look to the future and envisage another ten years of SCUBA-2 science.

  8. Submillimeter observations of the sun from the James Clerk Maxwell Telescope (United States)

    Lindsey, Charles A.; Yee, Selwyn; Roellig, Thomas L.; Hills, Richard; Brock, David


    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun.

  9. Submillimeter Continuum Observations of Comets (United States)

    Jewitt, David


    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  10. High-resolution spectroscopy with the multi-anode microchannel array detector systems (United States)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.


    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  11. Undercooled water in basaltic regoliths and implications for fluidized debris flows on Mars (United States)

    Gooding, James L.


    Pursuant to the past attribution of many geomorphic features on Mars to the movements of water- or ice-lubricated debris, experiments have been conducted for water freezing in wet, sand-like basaltic substrates. It is found that substantial undercooling can be achieved under Martian conditions, independently of freezing-point depressions due to soluble salts. Attention is given to results for a clay-poor soil with negligible salinity from Mauna Kea, Hawaii, which demonstrate that the degree of undercooling is essentially independent of both soil particle size and water/soil mass ratio, albeit with cooling rate variations.

  12. Developing Engineering Model Cobra fiber positioners for the Subaru Telescope Prime Focus Spectrometer


    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Dan; Mao, Peter


    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5um of a specifie...

  13. Developing Engineering Model Cobra fiber positioners for the Subaru Telescope's Prime Focus Spectrometer


    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Dan; Mao, Peter


    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5μm of a specifie...

  14. Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN (United States)

    Meier, R.; Owen, T. C.; Jewitt, D. C.; Matthews, H. E.; Senay, M.; Biver, N.; Bockel e-Morvan, D.; Crovisier, J.; Gautier, D.


    Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature >/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.

  15. Kosteneffectiviteits- en kostenbatenanalyse (KEA/KBA) voor het screenen op SCID binnen de Nederlandse hielprikscreening

    NARCIS (Netherlands)

    Ploeg, K. van der; Akker-van Marle, E. van den; Brediu, R.; Staal, F.; Burg, M. van den; Verkerk, P.


    De minister van VWS is voornemens om de neonatale hielprikscreening met veertien aandoeningen uit te breiden, waaronder severe combined immunodeficiency (SCID). Deze aandoening leidt vaak al kort na geboorte tot ernstige infecties en overlijden op jonge leeftijd. Vroegtijdige ontdekking via

  16. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude resolution (United States)

    Avila, R.; Avilés, J. L.; Wilson, R. W.; Chun, M.; Butterley, T.; Carrasco, E.


    We report the development and first results of an instrument called Low Layer SCIDAR (Scintillation Detection and Ranging) (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude resolution. The method is based on the Generalized SCIDAR (GS) concept, but unlike the GS instruments which need a 1-m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude resolution. Using a 200-arcsec-separation double star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilization. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterization. The instrument was built as part of the Ground Layer Turbulence Monitoring Campaign on Mauna Kea for Gemini Observatory.

  17. The cosmic background radiation - Prospects for MM astronomy (United States)

    Lasenby, A. N.; Gull, S. F.

    The various ways in which anisotropies in the 3 K background are being investigated are reviewed. Intrinsic (primordial) anisotropy has either adiabatic or isothermal disturbances that are detected by their adiabatic, gravitational or Doppler signatures. Analytic models relate the observed anisotropies to variations in mass density fields to gain a perspective on the formation of galaxies and galactic clusters. The Sunyaev-Zeldovich decrement (SZD) is a perturbation of the black-body spectrum caused by passage of the radiation through hot intracluster gas. Analytic modeling of this effect permits extracting data on conditions in intracluster gas. Significant corrective efforts are required when using ground-based instrumentation because of distortions caused by atmospheric interference. Only balloon- or aircraft-borne bolometry has been carried out at mm wavelengths for intrinsic effects. The SZD has been examined using the Owens Valley 40 m dish, the Mauna Kea IR telescope, the Bell Labs 7 m dish and the NRAO 12 m dish, and the UKIRT facility on Mauna Kea. All experiments have illustrated the importance of minimizing and stabilizing sidelobe effects in the observations.

  18. Hawaiian Starlight: Sharing the Beauty of the Hawaiian Skies (United States)

    Cuillandre, J. C.

    Canada-France-Hawaii Telescope Corp. The summit of Mauna Kea (14,000 feet) offers the best viewing of the Cosmos in the northern hemisphere, and the film "Hawaiian Starlight" delivers a pure esthetic experience from the mountain into the Universe. Seven years in the making, this cinematic symphony reveals the spectacular beauty of the mountain and its connection to the Cosmos through the magical influence of time-lapse cinematography scored exclusively (no narration) with the awe-inspiring, critically acclaimed, Halo music by Martin O'Donnell and Michael Salvatori. Daytime and nighttime landscapes and skyscapes alternate with stunning true color images of the Universe captured by an observatory on Mauna Kea, all free of any computer generated imagery. An extended segment of the film will be presented at the Advanced Maui Optical and Space Surveillance Technologies Conference to celebrate the international year of Astronomy 2009, a global effort initiated by the IAU (International Astronomical Union) and UNESCO (United Nations Educational, Scientific and Cultural Organization) to help the citizens of the world rediscover their place in the Universe through the day- and night-time sky, and thereby engage a personal sense of wonder and discovery. Hawaiian Starlight is true to this commitment. The inspiration and technology of the film will be shortly presented by the film's director.

  19. Local Community Advocacy for the Thirty Meter Telescope on the Big Island of Hawai’i (United States)

    Currie, Thayne; Ha, Richard; Imai-Hong, Amber; Silva, Jasmin; Stark, Chris; Naea Stevens, Dashiel


    The Thirty Meter Telescope project is a next-generation ground-based optical/infrared telescope planned for construction on Mauna Kea. It is also a prominent social issue in Hawai’i, touching upon a wide range of island-specific issues, including economic/educational opportunities and justice, Hawaii’s long and proud history of astronomy/navigation, the cultural significance of Mauna Kea to some Hawaiians, and Hawaiian sovereignty. In this talk, we describe local community outreach carried out by Hawai’i island resident members of our group, Yes2TMT, and also by the pro-TMT Hawaiian group P.U.E.O based in Hilo. We have cultivated a substantial social media community and persistent on-the-ground advocacy that addresses the many misconceptions about TMT while providing an outlet for concerns from our neighbors. Since early 2016 and thanks to the efforts of many on Hawai’i, support for TMT has increased, especially from the Hawaiian community: the project is now favored by at least 70% of Hawaii’s residents. Our goal is to help bring TMT to Hawai’i under conditions deemed acceptable by the vast majority of the local community.

  20. Continued activity in P/2013 P5 PANSTARRS. Unexpected comet, rotational break-up, or rubbing binary asteroid? (United States)

    Hainaut, O. R.; Boehnhardt, H.; Snodgrass, C.; Meech, K. J.; Deller, J.; Gillon, M.; Jehin, E.; Kuehrt, E.; Lowry, S. C.; Manfroid, J.; Micheli, M.; Mottola, S.; Opitom, C.; Vincent, J.-B.; Wainscoat, R.


    The object P/2013 P5 PANSTARRS was discovered in August 2013, displaying a cometary tail, but its orbital elements indicated that it was a typical member of the inner asteroid main belt. We monitored the object from 2013 August 30 until 2013 October 05 using the CFHT 3.6 m telescope (Mauna Kea, HI), the NTT (ESO, La Silla), the CA 1.23 m telescope (Calar Alto), the Perkins 1.8m (Lowell) and the 0.6 m TRAPPIST telescope (La Silla). We measured its nuclear radius to be r ≲ 0.25-0.29 km, and its colours g' - r' = 0.58 ± 0.05 and r' - i' = 0.23 ± 0.06, typical for an S-class asteroid, as expected for an object in the inner asteroid belt and in the vicinity of the Flora collisional family. We failed to detect any rotational light curve with an amplitude Chile (NTT), program 184.C-1143(H), the Canada France Hawaii Telescope, Mauna Kea, Hawaii, and the 1.2 m telescope on Calar Alto, Spain.

  1. Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1 2. Groundwater geochemistry and regional flow patterns (United States)

    Thomas, D.M.; Paillet, Frederick L.; Conrad, M.E.


    A series of downhole and surface water samples were taken from the 1-km-deep KP-1 borehole located on the eastern flank of the island of Hawaii. Early samples from depths of more than 700 m showed salinities nearly equivalent to seawater but having anomalous cation concentrations that are attributed to ion exchange between formation fluids and residual drilling mud clays. Later deep samples found only minor variations from seawater cation chemistry that are consistent with low-temperature weathering of basalts; ??18O values are equivalent to seawater values and are consistent with this interpretation. Carbon 14 activities of dissolved inorganic carbonate indicate a water age ranging from 5890 to 7170 years B.P. and fluid transport rates of 1.8 to 2.2 m/yr. Fluid samples from perforations at 310 m in the borehole demonstrate that a freshwater aquifer is present at the Mauna Kea/Mauna Loa interface; borehole resistivity logs indicate that it is ???200 m thick. Although it has not yet been possible to obtain samples of the freshwater zone without contamination from the deep saline fluids, the chloride concentrations of the low-salinity zone are estimated using a mixing enthalpy calculation to be less than 100 mg/L. Light stable isotope data indicate that the fresh water at 320 m is derived from recharge entering the island at an average elevation of 2000 m. Inferred 14C activities of the dissolved bicarbonate in the freshwater zone indicate an average calibrated age of 2200 years B.P. and an average fluid velocity of at least 14 m/yr. A regional water flow model is proposed that suggests that the fresh water found at the 320-m depth is derived from rainfall recharge from the middle elevations of Mauna Kea volcano. This rainfall is channeled beneath the Mauna Loa lavas by the thick soil layer separating the two volcanoes. A second shallow fresh-to-brackish water zone, derived from Mauna Loa recharge, is also inferred to exist below the carbonate formation that

  2. Seismic instrumentation plan for the Hawaiian Volcano Observatory (United States)

    Thelen, Weston A.


    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  3. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event (United States)

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  4. Recycled oceanic crust observed in plagioclase within the source of Mauna Loa Lavas

    NARCIS (Netherlands)

    Sobolev, A.V.; Hofmann, A.W.; Nikogosian, I.; Delgado, J.


    The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-

  5. Recycled oceanic crust observed in "ghost" plagioclase within the source of Mauna Loa lavas.

    NARCIS (Netherlands)

    Sobolev, A.V.; Hofmann, A.W.; Nikogosian, I.


    The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-

  6. New Concept of Hungarian Robotic Telescopes (United States)

    Hegedus, T.; Kiss, Z.; Biro, B.; Jager, Z.

    As the result of a longer innovation of a few Hungarian opto-mechanical and electronic small companies, a concept of fully robotic mounts has been formed some years ago. There are lots of Hungarian Automated Telescopes over the world (in Arizona, South Korea, Izrael and atop Mauna Kea, just below the famous Keck domes). These are cited as HAT telescopes (Bakos et al. 2002), and served thousands of large-frame time-series CCD images since 2004, and the working team found already 6 exoplanets, and a number of new variable stars, etc... The newest idea was to build a more robust robotic mount, hosting larger optics (D > 50 cm) for achieving much fainter celestial objects, than the HAT series (they are operating with Nikon teleobjective lenses) on a still relatively wide celestial area. The very first sample model is the BART-1, a 50cm f/6 telescope.

  7. Palagonitic Mars from Rock Rinds to Dust: Evidence from Visible, Near-IR, and Thermal Emission Spectra of Poorly Crystalline Materials (United States)

    Morris, R. V.; Graff, T. G.; Mertzman, S. A.; Lane, M. D.; Christensen, P. R.


    Visible and near-IR (VNIR) spectral data for Martian bright regions are characterized by a general shape consisting of a ferric absorption edge extending from about 400 to 750 nm and relatively constant reflectivity extending from about 750 nm to beyond 2000 nm . Among terrestrial geologic materials, the best spectral analogues are certain palagonic tephras from Mauna Kea Volcano (Hawaii). By definition, palagonite is a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass. The ferric pigment in palagonite is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles is not known, and the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. We show here that laboratory VNIR and TES spectra of palagonitic alteration rinds developed on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  8. Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil (United States)

    Morris, Richard V.; Gooding, James L.; Lauer, Howard V., Jr.; Singer, Robert B.


    Results are presented on spectral, Moessbauer, static magnetic, petrographic, and compositional data for a Hawaiian palagonitic soil from Mauna Kea (HWMK1). It was found that reflectivity spectra of size separates smaller than 20 microns resemble spectra for Martian bright regions, while spectra of larger size separates show characteristics in common with spectra for Martian dark regions. Data on the HWMK1 soil are consistent with the partitioning of iron among the following minerals: olivine, titanomagnetite, hematite, and a superparamagnetic colored ferric oxide. These mineralogies are heterogeneously distributed within the soil with respect to both particle type and soil-particle diameter. The strongly magnetic titanomagnetite is associated with black particles and is responsible for the magnetic nature of the soil, while the colored weakly magnetic superparamagnetic ferric oxide and minor hematite are associated with orange particles.

  9. Tracking Publications Based on Telescope Sharing among Gemini, Subaru, and Keck: An Update (United States)

    Zhang, X.; Tsang, E.; Kamisato, P.


    Gemini Observatory, Subaru Telescope, and Keck Observatory collectively operate five 8-10 meters telescopes on the summit of Mauna Kea on the Island of Hawaii and at Cerro Pachon in Chile. The three institutions began a telescope exchange program in 2005 to expand the range of backend instruments available to their respective users. A participating observatory's users can apply for telescope time from the other two observatories through the time exchange program. To measure the success of the program, we collected publications that resulted from the exchange program for the period from 2005 to 2013. Bibliometric analysis was performed on these publications to measure the productivity and impact of the exchange program. This is an enhanced and updated version of the paper presented at the IAU Commission 5 working Group Libraries session in Beijing, 2012.

  10. First statistics of the isopistonic angle for long baseline interferometry (United States)

    Ziad, A.; Elhalkouj, T.; Petrov, R. G.; Borgnino, J.; Lazrek, M.; Benkhaldoun, Z.; Martin, F.; Elazhari, Y.


    To reach a suitable limiting magnitude with a multi-aperture interferometer, we need to cophase the different telescopes using a reference source. The latter should be located in the same isopistonic domain as the science source. We developed a direct analytical expression of deducing the isopistonic angle from atmospheric optical parameters as seeing, isoplanatic angle and outer scale. All of these atmospheric turbulence parameters are measured by the Generalized Seeing Monitor (GSM). The first statistics of the isopistonic angle obtained from the GSM data are presented and comparison between the major sites over the world are discussed (La Silla, Cerro Pachon, Paranal, San Pedro, Mt Palomar, Mauna Kea, La Palma, Oukaïmeden, Maydanak, Dome C). Implications of these isopistonic angle statistics on large interferometers cophasing in terms of sky coverage and limiting magnitude are discussed.


    Energy Technology Data Exchange (ETDEWEB)

    MacLennan, Eric M.; Hsieh, Henry H., E-mail:, E-mail: [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)


    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of H{sub R} = 19.71 {+-} 0.05 mag and slope parameter of G{sub R} = -0.08 {+-} 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of r{sub e} = 0.30 {+-} 0.02 km, assuming an R-band albedo of p{sub R} = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets.

  12. Worlds Smaller than Saturn (United States)


    Computerized animations show the following: (1) an artist's conception of a Saturn-like extrasolar planet; (2) star and planet motion; and (3) young stellar disk and planet formation. Footage shows the outside of the Mauna Kea Observatories in Hawaii and Geoff Marcy and Paul Butler inside while they are processing information. Then a press conference,'Worlds Smaller than Saturn', is seen. Anne Kinney, Origins Science Director, NASA Headquarters, introduces Geoff Marcy, Paul Butler, Alan Boss, and Heidi Hammel. They discuss the discovery of the two new Saturn-sized extrasolar planets that are orbiting the stars HD46375 and 79 Seti, giving details on the search technique and size distribution. They then answer questions from the press.

  13. Theoretical and observational planetary physics (United States)

    Caldwell, J.


    This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.

  14. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs (United States)

    Sinton, William M.; Kaminski, Charles


    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake.

  15. Infrared observations of low-mass star formation in Orion - HH objects (United States)

    Harvey, P. M.; Wilking, B. A.; Cohen, M.


    The results of a preliminary analysis of IR data on Herbig-Haro objects in the Orion nebula are reported. The observations were made with the high angular resolution IR photometry equipment on the NASA Kuiper Airborne Observatory and the NASA facility on Mauna Kea, HI. Data were taken in the 1-200 microns region with 40, 6, and 8 arcsec resolution. Attention was focused on NGC 1999 (HH1-3) and M78 (HH24-25) and the determination of absolute luminosities of the exciting stars. Measurements were also made of the IR energy distribution in the thermally emitting dust clouds and the point sources. Herbig-Haro objects featured compact and far IR sizes and large visual extinction, in addition to a steeply rising energy distribution up to 50-100 microns, where the luminosity emitted was concentrated.

  16. VizieR Online Data Catalog: Jame Clerk Maxwell Telescope Science Archive (CADC, 2003) (United States)

    Canadian Astronomy Data, Centre


    The JCMT Science Archive (JSA), a collaboration between the CADC and EOA, is the official distribution site for observational data obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea, Hawaii. The JSA search interface is provided by the CADC Search tool, which provides generic access to the complete set of telescopic data archived at the CADC. Help on the use of this tool is provided via tooltips. For additional information on instrument capabilities and data reduction, please consult the SCUBA-2 and ACSIS instrument pages provided on the JAC maintained JCMT pages. JCMT-specific help related to the use of the CADC AdvancedSearch tool is available from the JAC. (1 data file).

  17. VizieR Online Data Catalog: New SpeX Observations of M7-L6 Dwarfs (Bardalez+, 2014) (United States)

    Bardalez Gagliuffi, D. C.; Burgasser, A. J.; Gelino, C. R.; Looper, D. L.; Nicholls, C. P.; Schmidt, S. J.; Cruz, K.; West, A. A.; Gizis, J. E.; Metchev, S.


    The SpeX Prism Library is composed of low-resolution (λ/Δλ=75-120) spectra acquired with the SpeX 0.8-2.5 um spectrograph, mounted on the 3.0 m NASA Infrared Telescope Facility (IRTF), located in Mauna Kea, HI (Rayner et al. 2003PASP..115..362R). All spectra were obtained using the prism-dispersed SpeX mode, which continuously samples wavelengths between 0.75 and 2.5 um at a dispersion of 20-30 Å/pixel. The library includes close to 2000 sources, both previously published data (e.g., Burgasser et al. 2010, J/ApJ/710/1142; Chiu et al. 2006, J/AJ/131/2722; Cruz et al. 2003, J/AJ/126/2421) and 530 new spectra acquired between 2000 November and 2013 December. (2 data files).

  18. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater. (United States)

    Bish, D L; Blake, D F; Vaniman, D T; Chipera, S J; Morris, R V; Ming, D W; Treiman, A H; Sarrazin, P; Morrison, S M; Downs, R T; Achilles, C N; Yen, A S; Bristow, T F; Crisp, J A; Morookian, J M; Farmer, J D; Rampe, E B; Stolper, E M; Spanovich, N


    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  19. VizieR Online Data Catalog: M,L,T dwarfs fundamental parameters and SEDs (Filippazzo+, 2015) (United States)

    Filippazzo, J. C.; Rice, E. L.; Faherty, J.; Cruz, K. L.; van, Gordon M. M.; Looper, D. L.


    The primary sources of optical, NIR, and MIR photometry were the Sloan Digital Sky Survey (SDSS; York et al. 2000AJ....120.1579Y), the 2MASS (Skrutskie et al. 2006, Cat. VII/233), and WISE (Cutri et al. 2012, Cat. II/311), respectively. Additional magnitudes came from the Looper Near-Infrared Survey of the Southern Sky (DENIS; Epchtein et al. 1997Msngr..87...27E; Cat. B/denis) and the literature using the Mauna Kea Observatory Near-Infrared (Simons & Tokunaga 2002PASP..114..169S; Tokunaga et al. 2002PASP..114..180T), Spitzer Space Telescope IRAC and Johnson-Cousins V(RI)C filter sets. (9 data files).

  20. VizieR Online Data Catalog: GRB 080810 Keck/HIRES spectrum (Wiseman+, 2017) (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Kruehler, T.; Yates, R. M.; Greiner, J.


    On 2008-08-10 at T0=13:10:12 UT, the Burst Alert Telescope on board Swift triggered on GRB 080810 2008), which at T0+80s was detected as a bright source in Swift's X-ray Telescope (XRT) and Ultra-violet and Optical Telescope (UVOT). Starting 37.6 minutes after the trigger at 13:47:50 UT, GRB 080810 was observed with the High Resolution Echelle Spectrometer (HIRES) mounted on the 10-metre Keck I telescope of the W. M Keck Observatory located at the summit of Mauna Kea, Hawaii. A series of two exposures of 1000 s each were taken using the C5 decker, providing a FWHM spectral resolution of ~8km/s. The normalised reduced Keck/HIRES spectrum of GRB 080810 in ASCII format. The respective FITS header appears first, and is commented out with #. (2 data files).

  1. Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization (United States)

    Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.


    In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.

  2. The University of Hawaii NEO Follow-Up Program (United States)

    Fohring, Dora; Tholen, David J.; Claytor, Zach; Ramanjooloo, Yudish; Hung, Denise; Aspin, Colin


    At the University of Hawaii, we carry out NEO follow-up observations for orbital refinement. We regularly observe eight nights a month using the University of Hawaii 88-inch (UH88) telescope and utilise Canada-France-Hawaii Telescope queue time for recovery of targets with large ephemeris uncertainties. Our focus is follow-up of Virtual Impactors and faint asteroids with magnitudes V>21. The combination of excellent atmospheric conditions on Mauna Kea and long integration times allow us to observe asteroids as faint as V=25. Recent extensive improvements to our workhorse UH88 telescope have included renovations to the telescope exterior, software upgrades, and the commissioning of the new monolithic STA-1600 10K CCD. Recent observational highlights include astrometry of 2017 JB2 during its diurnal retrograde loop and photometric observations 2016 HO3 which was measured to have a synodic period of 27.90 minutes.

  3. Submillimeter solar images from the JCMT

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, G.; Lindsey, C.


    We present nearly full-disk, diffraction-limited solar images made at 350 and 850 [mu]m and at 1.3 mm from the 15 m James Clerk Maxwell Telescope on Mauna Kea. These wavelengths sample the thermal structure of the solar chromosphere at altitude from 500 to about 1500 km, providing a height-dependent diagnostic of the atmosphere. Filament channels and neutral lines are apparent in the submillimeter images, although filaments themselves are not clearly visible. The submillimeter images show plage approximately 20% brigher than the surrounding quiet Sun, while sunspot intensities are comparable to the quiet Sun. Circumfacules,' dark are similar to those seen in Ca 8542; comparison with Ca H and K may give estimates of the temperature and filing factor of the hot gas present in these probably bifurcated regions.

  4. The Solar System Beyond Neptune (United States)

    Jewitt, David; Nava, David (Technical Monitor)


    This proposal supported deep and wide-field optical imaging of the trans-Neptunian Solar System capitalizing on our broad access to state-of-the-art facilities on Mauna Kea. Key quantities determined include the size distribution of Kuiper Belt objects (a differential power law with an index -4), and the inclination and radial distance distributions. We identified an outer edge to the classical Kuiper Belt that has since been confirmed by independent workers. We also obtained an assessment of the population densities in the mean-motion resonances with Neptune and discovered the Scattered Kuiper Belt Object dynamical class. Scientific issues on which these measurements have direct bearing include the collisional environment of the Kuiper Belt, the origin of the short-period comets, and the origin by capture into resonance of Pluto and other Kuiper Belt objects.

  5. Atmospheric propagation of THz radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.


    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  6. Thermally altered palagonitic tephra - A spectral and process analog to the soil and dust of Mars (United States)

    Bell, James F., III; Morris, Richard V.; Adams, John B.


    Six palagonitic soil samples (PH-1 through PH-6) which were collected at 30-cm intervals from a lava slab on Mauna Kea, Hawaii, are studied. The samples present an alteration sequence caused by heating during emplacement of molten lava over a preexisting tephra cone. Techniques employed include visible and near-IUR spectroscopy, Moessbauer spectroscopy, and magnetic analysis. The four samples closest to the slab (PH-1 through PH-4) were strongly altered in response to heating during its emplacement; their iron oxide mineralogy is dominated by nanophase ferric oxide. The sample adjacent to the slab (PH-1) has a factor of 3 less H2O and contains crystalline hematite and magnetite in addition to nanophase ferric oxide. It is argued that localized thermal alteration events may provide a volumetrically important mechanism for the palagonitization of basaltic glass and the production of crystalline ferric oxides on Mars.

  7. Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization (United States)

    Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.


    In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.

  8. Surface compositions in the Aristarchus Region: Implications for regional stratigraphy (United States)

    Hawke, H. R.; Lucey, P. G.; Mccord, T. B.; Pieters, C. M.; Head, J. W.


    Near infrared reflectance spectra for the Aristachus region, obtained using the 2.2m UH telescope at the Mauna Kea Observatory, were reduced and analyzed. The spectra obtained for the central peak, southern floor, southwestern wall, eastern wall, and northwestern wall of Aristachus crater exhibit shallow continuum slopes, relatively strong feldspar bands, pyroxene bands stronger than those typically seen in the spectra of fresh higland features, and pyroxene band centers near l micrometer suggesting the dominance of Ca rich clinopyroxene. The spectrum of the south rim of Aristachus is quite distinct from those of other crater units. The position of Aristrchus on the plateau/mare boundary raises questions concerning compositional variations in crater ejects deposits.

  9. [CII] At 1 Zeus (1 and 2) (United States)

    Ferkinhoff, Carl; Hailey-Dunsheath, S.; Nikola, T.; Oberst, T.; Parshley, S.; Stacey, G.; Benford, D.; staguhn, J.


    We report the detection of the [CII] 158 micron fine structure line from six submillimeter galaxies with redshifts between 1.12 and 1.73. This more than doubles the total number of [CII] 158 micron detections reported from high redshift sources. These observations were made with the Redshift(z) and Early Universe Spectrometer(ZEUS) at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii between December 2006 and March 2009. ZEUS is a background limited submm echelle grating spectrometer (Hailey-Dunsheath 2009). Currently we are constructing ZEUS-2. This new instrument will utilize the same grating but will feature a two dimensional transition-edge sensed bolometer array with SQUID multiplexing readout system enabling simultaneous background limited observations in the 200, 340,450 and 650 micron telluric windows. ZEUS-2 will allow for long slit imaging spectroscopy in nearby galaxies and a [CII] survey from z 0.25 to 2.5.

  10. KEA-144: Final Results of the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) Project (United States)

    Notardonato, William; Fesmire, James; Swanger, Adam; Jumper, Kevin; Johnson, Wesley; Tomsik, Thomas


    GODU-LH2 system has successfully met all test objectives at the 33%, 67%, and 100% tank fill level. Complete control over the state of the fluid has been demonstrated using Integrated Refrigeration and Storage (IRAS). Almost any desired point along the H2saturation curve can essentially be "dialed in" and maintained indefinitely. System can also be used to produce densified hydrogen in large quantities to the triple point. Exploring multiple technology infusion paths. Studying implementation of IRAS technology into new LH2sphere for EM-2 at LC39B. Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic.

  11. Anisoplanatic error evaluation and wide-field adaptive optics performance at Dome C, Antarctica (United States)

    Carbillet, M.; Aristidi, É.; Giordano, C.; Vernin, J.


    The aim of this paper is twofold: (i) to deduce the most representative C_N^2 profile(s) for Dome C (DC), Antarctica, from the latest measurements, and (ii) to evaluate the performance of a wide-field adaptive optics (AO) system equipping a 2-3 m telescope. Two models of the C_N^2 profile, corresponding to the bimodal distribution of seeing (a poor seeing mode and a good seeing mode), are composed from both Single Star Scidar data and balloon radio soundings. The anisoplanatic error is first evaluated for a standard AO system from Monte Carlo simulations. DC is shown to outperform Mauna Kea for both seeing modes. A simple ground-layer AO (GLAO) system is then considered. This provides an anisoplanatic error of less than 150 nm over a field of 30 arcmin for the good seeing mode, corresponding to a basic performance Strehl ratio (considering also the fitting and the servo-lag errors) of more than ˜80 per cent in K and ˜50 per cent in J. The poor seeing model shows performance comparable to the Mauna Kea model. We also studied the influence of telescope elevation, showing that a telescope at 40 m would perform, in the poor seeing mode, like a telescope observing 8 m above the ground in the good seeing mode. Finally, we show that while tip-tilt-only correction permits high levels of correction in the good seeing mode at 40 m, it is not as efficient as the GLAO system, even at an altitude of 8 m, and it is not sufficient for high levels of correction for poor seeing, even at a height of 40 m.

  12. Synthetic (Hydrothermal) Hematite-Rich Mars-Analog Spherules from Acid-Sulfate Brines: Implications for Formation and Diagenesis of Hematite Spherules in Outcrops at Meridiani Planum, Mars (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Graff, T. G.


    The Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) orbiter discovered a large area at Meridiani Planum (MP) covered with the Fe-oxide hematite (alpha-Fe2O3) [1,2]. This discovery and favorable landing site characteristics led to selection of MP as the landing site for the Opportunity Mars Exploration Rover (MER) [3]. The Athena science payload onboard the Opportunity rover identified hematite-rich spherules (mean spherule diameter approx.4.2+/-0.8 mm) embedded in S-rich outcrop rock and also as lag deposits of whole and broken spherules [4,5,6,7,8,9]. Although the chemical and mineralogical compositions of spherules are not fully constrained, Moessbauer spectrometer (MB) Miniature Thermal Emission Spectrometer (Mini-TES) and chemical analyses from the Alpha Particle X-Ray Spectrometer (APXS) are consistent with a hematite mineralogical composition and an oxide bulk chemical composition consisting of Fe2O3. MGS-TES, also provides an important constraint that emission from the hematite-rich spherules is dominated by emission along the crystallographic c-axis [1,2,10,11]. The formation of hematite-rich spherules with similar chemical, mineralogical, morphological, and crystallographic properties to the MP spherules is rare on Earth, to date, only two natural analogs have been proposed; one from Utah (Navaho Concretions) and the other from Mauna Kea, Hawaii [12,13]. In this study, we synthesized in the laboratory hematite-rich spherules using conditions that may have existed on Early Mars [14] and compared their properties to those for MP hematite spherules of Mars and the analog spherules from Utah and Mauna Kea in order to assess their relative merit as MP hematite spherule analogs. Such comparisons yield clues to the formation pathway for MP spherules.

  13. Status and management of the Palila, an endangered Hawaiian honeycreeper, 1987-1996 (United States)

    Pratt, T.K.; Banko, P.C.; Fancy, S.G.; Lindsey, G.D.; Jacobi, J.D.


    A single, relictual population of Palila Loxioides bailleui, a Hawaiian honeycreeper, survives on the slopes of Mauna Kea volcano on the island of Hawai'i, where it feeds principally on flowers and green seeds of the mamane tree Sophora chrysophylla. The Palila was listed as an endangered species by state and federal governments because of continuing damage to its habitat by browsing Feral and Mouflon Sheep Ovis aries and O. musimon and Goats Capra hircus and because of the bird's restricted range and low numbers. Ecology of the Palila was studied from 1987 to 1996. Annual population estimates fluctuated between 1 600 and 5 700 and averaged 3 400 birds. Estimates varied with availability of mamane seeds, which are less abundant in drought years. In drought years, most birds did not attempt to breed, and survival rates were lower because of a shortage of food. Availability of mamane seeds also showed large seasonal variability. While some nests were preyed upon by Owls Asio flammeus, Cats Felis catus and Rats Rattus rattus, losses were high at the end of the season from unexplained death of eggs and chicks. Genetic studies did not implicate inbreeding depression. Neither avian malaria nor avian pox appeared at this site, where the mosquito vector was absent. However, weather and food shortage worsened towards the end of the nesting season. Availability of food and habitat remain the principal factors limiting increase in the Palila population. Recovery efforts now focus on reducing numbers of feral ungulates, fire management, removing mammalian predators, and developing techniques for captive propagation and introduction to currently unoccupied sites within the bird's former range. Reforestation adjacent to the Mauna Kea Forest Reserve would allow the Palila population to expand and grow.

  14. Digital database of the geologic map of the island of Hawai'i [Hawaii (United States)

    Trusdell, Frank A.; Wolfe, Edward W.; Morris, Jean


    This online publication (DS 144) provides the digital database for the printed map by Edward W. Wolfe and Jean Morris (I-2524-A; 1996). This digital database contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2524-A (available only in paper form; see The database contains the distribution and relationships of volcanic and surficial-sedimentary deposits on the island of Hawai‘i. This dataset represents the geologic history for the five volcanoes that comprise the Island of Hawai'i. The volcanoes are Kohala, Mauna Kea, Hualalai, Mauna Loa and Kīlauea.This database of the geologic map contributes to understanding the geologic history of the Island of Hawai‘i and provides the basis for understanding long-term volcanic processes in an intra-plate ocean island volcanic system. In addition the database also serves as a basis for producing volcanic hazards assessment for the island of Hawai‘i. Furthermore it serves as a base layer to be used for interdisciplinary research.This online publication consists of a digital database of the geologic map, an explanatory pamphlet, description of map units, correlation of map units diagram, and images for plotting. Geologic mapping was compiled at a scale of 1:100,000 for the entire mapping area. The geologic mapping was compiled as a digital geologic database in ArcInfo GIS format.

  15. Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Donald M. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Inst. of Geophysics; Lienert, Barry R. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Inst. of Geophysics; Wallin, Erin L. [Univ. of Hawaii, Honolulu, HI (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Our objectives for the current project were to develop an innovative inversion and analysis procedure for magnetotelluric field data and time variable self-potentials that will enable us to map not only the subsurface resistivity structure of a geothermal prospect but to also delineate the permeability distribution within the field. Hence, the ultimate objective were to provide better targeting information for exploratory and development drilling of a geothermal prospect. Field data were collected and analyzed from the Kilauea Summit, Kilauea East Rift Zone, and the Humuula Saddle between Mauna Loa and Mauna Kea volcanoes. All of these areas were known or suspected to have geothermal activity of varying intensities. Our results provided evidence for significant long-term coordinated changes in spontaneous potential that could be associated with subsurface flows, significant interferences were encountered that arose from surface environmental changes (rainfall, temperature) that rendered it nearly impossible to unequivocally distinguish between deep fluid flow changes and environmental effects. Further, the analysis of the inferred spontaneous potential changes in the context of depth of the signals, and hence, permeability horizons, were unable to be completed in the time available.

  16. The Big Island of Hawaii (United States)


    Boasting snow-covered mountain peaks and tropical forest, the Island of Hawaii, the largest of the Hawaiian Islands, is stunning at any altitude. This false-color composite (processed to simulate true color) image of Hawaii was constructed from data gathered between 1999 and 2001 by the Enhanced Thematic Mapper plus (ETM+) instrument, flying aboard the Landsat 7 satellite. The Landsat data were processed by the National Oceanographic and Atmospheric Administration (NOAA) to develop a landcover map. This map will be used as a baseline to chart changes in land use on the islands. Types of change include the construction of resorts along the coastal areas, and the conversion of sugar plantations to other crop types. Hawaii was created by a 'hotspot' beneath the ocean floor. Hotspots form in areas where superheated magma in the Earth's mantle breaks through the Earth's crust. Over the course of millions of years, the Pacific Tectonic Plate has slowly moved over this hotspot to form the entire Hawaiian Island archipelago. The black areas on the island (in this scene) that resemble a pair of sun-baked palm fronds are hardened lava flows formed by the active Mauna Loa Volcano. Just to the north of Mauna Loa is the dormant grayish Mauna Kea Volcano, which hasn't erupted in an estimated 3,500 years. A thin greyish plume of smoke is visible near the island's southeastern shore, rising from Kilauea-the most active volcano on Earth. Heavy rainfall and fertile volcanic soil have given rise to Hawaii's lush tropical forests, which appear as solid dark green areas in the image. The light green, patchy areas near the coasts are likely sugar cane plantations, pineapple farms, and human settlements. Courtesy of the NOAA Coastal Services Center Hawaii Land Cover Analysis project

  17. Carbone_et_al_2016_ambient_data - Sea surface temperature variation linked to elemental mercury concentrationsmeasured on Mauna Loa (United States)

    U.S. Environmental Protection Agency — This data set has two sets of gaseous elemental mercury data. The first column contains all Hg related data some of which may have been affected by the upslope...

  18. Organizational preparedness for and management of volcanic crises at Kīlauea and Mauna Loa volcanoes, Hawaii (United States)

    Gregg, C. E.; Reeves, A.; Lindell, M. K.; Prater, C.; Joyner, T. A.; Eggert, S.


    The eruption of Kīlauea volcano since 1983 has produced a series of crises, the latest one occurring in 2014 and 2015 when a new vent sent lava flows northeastward toward developed areas in the lower Puna District of Kīlauea. The June 27 lava flow took about 2 months to advance to the edge of developed areas in Puna, prompting widespread reaction. Volcanic eruptions often have large economic consequences out of proportion with their magnitudes, and uncertainties about the physical and organizational communication of risk information amplify these losses. This study aims to improve tools to communicate uncertainty of volcanic activity and organizational and individual response, offering clearer and more reliable information to guide civic leaders in issuing appropriate warnings. One significant impediment to risk communication is limited knowledge about the most effective ways to communicate scientific uncertainty through verbal, numeric and graphic methods. The public's demand for near-real time information updates during the June 27 lava crisis, including both written messages and graphics, required some agencies to provide information at a faster rate than in any previous eruption. In order to understand how these and other stakeholders involved with the crisis can better plan for and manage future crises, including implementing evacuation decisions, we conducted a series of interviews and a mental model exercise with stakeholders. We explored their knowledge of local risk communication messages and hazard mitigation efforts and their experiences during the June 27 lava flow crisis. Stakeholders represented county, state and federal agencies and included elected officials, emergency managers, scientists, and other professionals involved with the crisis (traffic engineers, land use planners, police officers, fire fighters). We also assessed factors that influence individual and household preparedness to implement officials' protective action recommendations, such as evacuation, and their attitudes toward hazard mitigation efforts. Collectively, these two studies provide a detailed evaluation of important risk communication and risk management issues at both individual and organizational levels and insight about uncertainties that influence the outcome of volcanic crises.

  19. Submarine geology of South Kona landslide complex: investigation using ROV Kaiko (United States)

    Yokose, H.; Yoshida, S.


    KR01-12 cruise of Japan Marine Science and Technology Center using ROV KAIKO and its mother ship R/V KAIREI were carried out around Hawaii islands in the early fall of 2001. During this cruise, two dives of ROV KAIKO were made on western submarine flank of the island of Hawaii: South Kona landslide complex (K210:proximal part of the south Kona landslide, K211: distal block of the landslide). One single channel seismic reflection line was collected from vicinity of the above dive sites. These areas have never been systematically studied using submersible due to the bad sea state and /or the depth of outcrops. Valuable information about the submarine geology and in situ rock samples from western franks of the island of Hawaii were obtained. K211 site is one of the distal landslide block and can be divided into 3 geological units from bottom to top: picritic sheet lava and hyaloclastite, volcaniclastic deposit with picritic breccia, muddy breccia with highly vesiculated ol basalt. On the other hand, rocks recovered from K210 are composed mainly of aa clinker and aa lava which are highly vesiculated and reddish in color. The rocks from K210 is similar to the upper part of K211 in their bulk rock chemistry. Based on the geological and bulk rock chemistry, rocks recovered from both sites should be erupted subaerially. It suggests that these landslide blocks were composed subaerial portion of the paleo-Mauna Loa volcano.

  20. Giant blocks in the South Kona landslide, Hawaii (United States)

    Moore, James G.; Bryan, Wilfred B.; Beeson, Melvin H.; Normark, William R.


    A large field of blocky sea-floor hills, up to 10 km long and 500 m high, are gigantic slide blocks derived from the west flank of Mauna Loa volcano on the island of Hawaii. These megablocks are embedded in the toe of the South Kona landslide, which extends ˜80 km seaward from the present coastline to depths of nearly 5 km. A 10 15-km-wide belt of numerous, smaller, 1 3-km-long slide blocks separates the area of giant blocks from two submarine benches at depths of 2600 and 3700 m depth that terminate seaward 20 to 30 km from the shoreline. Similar giant blocks are found on several other major submarine Hawaiian landslides, including those north of Oahu and Molokai, but the South Kona blocks are the first to be examined in detail using high-resolution bathymetry, dredging, and submersible diving. Dredging of two of the giant blocks brought up pillowed tholeiitic lava. Observations from the U.S. Navy submersible Sea Cliff on the asymmetrically steep eastern flank of one block 10 km long and 300 m high revealed a succession of fractured massive basalt, laminar lava flows, hyaloclastite, and pillow lavas. Chemical analyses of dredged lava identified 19 units that overlap compositionally with lavas from the south rift-zone ridge of Mauna Loa. Sulfur content indicates that most of the lavas were erupted in subaerial and shallow submarine (<200 m depth) sites, but some were erupted in deeper submarine sites. These results indicate that the megablocks were carried by a late Pleistocene giant landslide 40 80 km west from the ancestral shoreline of Mauna Loa volcano before growth of the midslope benches by later slump movement.

  1. Present-day stress state analysis on the Big Island of Hawaíi, USA (United States)

    Pierdominici, Simona; Kueck, Jochem; Millett, John; Planke, Sverre; Jerram, Dougal A.; Haskins, Eric; Thomas, Donald


    We analyze and interpret the stress features from a c. 1.5 km deep fully cored borehole (PTA2) on the Big Island of Hawaíi within the Humúula saddle region, between the Mauna Kea and Mauna Loa volcanoes. The Big Island of Hawaii comprises the largest and youngest island of the Hawaiian-Emperor seamount chain and is volumetrically dominated by shield stage tholeiitic volcanic rocks. Mauna Kea is dormant whereas Mauna Loa is still active. There are also a series of normal faults on Mauna Loa's northern and western slopes, between its two major rift zones, that are believed to be the result of combined circumferential tension from the two rift zones and from added pressure due to the westward growth of the neighboring Kīlauea volcano. The PTA2 borehole was drilled in 2013 into lava dominated formation (Pahoehoe and Aā) as part of the Humúula Groundwater Research Project (HGPR) with the purpose of characterizing the groundwater resource potential in this area. In 2016 two downhole logging campaigns were performed by the Operational Support Group of the International Continental Scientific Drilling Program (ICDP) to acquire a set of geophysical data as part of the Volcanic Margin Petroleum Prospectivity (VMAPP) project. The main objective of the logging campaign was to obtain high quality wireline log data to enable a detailed core-log integration of the volcanic sequence and to improve understanding of the subsurface expression of volcanic rocks. We identify stress features (e.g. borehole breakouts) and volcanic structures (e.g. flow boundaries, vesicles and jointing) at depth using borehole images acquired with an ABI43 acoustic borehole televiewer. We analyzed and interpreted the stress indicators and compared their orientation with the regional stress pattern. We identified a set of stress indicators along the hole dominantly concentrated within the lower logged interval of the PTA2 borehole. Two primary horizontal stress indicators have been taken into account

  2. Improved Climatological Characterization of Optical Turbulence for Space Optical Imaging and Communications (United States)

    Alliss, R.; Felton, B.


    including the Desert Southwest and Haleakala and Mauna Kea on Hawaii. A recent improvement to our modeling over Hawaii was performed by using a more representative land usage dataset. Simulations indicate that the vast lava fields which characterize the Big Island to the shoreline have a large impact on turbulence generation. The same turbulence characteristics are also present in the simulations on the Southeastern face of Haleakala. Turbulence is greatest during the daytime when the lava fields produce tremendous heat fluxes. Good agreement is found when the WRF simulations are compared to in situ data taken from the Thirty Meter Telescope (TMT) on Mauna Kea. The TMT study used a variety of seeing instruments which provided data day and night. Both the WRF simulations and TMT showed ro values bottoming out in the 3-4 cm range during daytime at Mauna Kea. Simulations are also performed over White Sands New Mexico and will be reported on at the conference. Results of these analyses are assisting engineers in developing state of the art adaptive optics designs. Detailed results of this study will be presented at the conference.

  3. Predicting the Impact of Storm Waves and Sea-Level Rise within the Papahānaumokuākea Marine National Monument (PMNM) (United States)

    US Fish and Wildlife Service, Department of the Interior — Recent storms and a tsunami (11 March 2011) have underscored the intrinsic potential for sea-level rise to damage wildlife populations and ecosystems of the...

  4. Harm of ultraviolet rays and sun care cosmetics. Care of ultraviolet rays for comfortable life; Shigaisen no gai to sankea keshohin. Kaiteki raifu no tameno shigaisen kea

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Takafumi.; Matsumoto, Takashi. [Shiseido Corp. Tokyo (Japan)


    Ultraviolet rays are the electromagnetic waves from 10 to 400nm. Ultraviolet rays related to the practical life are UV B and UV A from 290 to 400nm. These ultraviolet rays caused various harms to human skin. In order to maintain healthy and beautiful skin, the protection of ultraviolet rays is one of important skin care. In this paper, concerning sunscreen that is a comfortable cosmetic to protect the skin from ultraviolet rays, technical points were explained from a viewpoint of improvement on transparency. A petal shape zinc oxide was the zinc oxide obtained from shape control of secondary particles to petal by controlling mixed alkali kinds and neutralization conditions in the wet method. By the application of this petal shape zinc oxide on a basic agent, a sunscreen was successfully developed that transparency could be improved to sustain the high protection effect of ultraviolet rays, whiteness after making up could not be found. (NEDO)

  5. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations. (United States)

    Barnes, Paul W; Ryel, Ronald J; Flint, Stephan D


    Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, TUV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V. reticulatum

  6. Temporally Varying Ethylene Emission on Jupiter (United States)

    Romani, Paul N.; Jennings, Donald E.; Bjoraker, Gordon L.; Sada, Pedro V.; McCabe. Geprge; Boyle, Robert J.


    Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm(sup -1) spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-alpha, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5 x 10(exp -7) - 1.7 x 10(exp -6) near 2.2 x 10(exp -3) mbar, with a total column of 5.7 x 10(exp 14) - 2.2 x 10(exp 15) molecules cm(exp -2) above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral "hot spot" decreased by a factor of three over a two-day interval. This transient its contribution peak at 5-10 microbar suggests that the polar e is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-"hot spot" auroral regions did not change over the three-year period while that in the southern polar regions decreased.

  7. New Opportunities for Astronomy in Hawaii (United States)

    Hasinger, Guenther


    As one of the premier astronomy sites in the world, Hawai'i is well positioned to assume a leadership role in the development of the next generation of the world's most powerful ground-based telescopes: the Thirty Meter Telescope (TMT), the Advanced Technology Solar Telescope (ATST), and Pan-STARRS, all slated for the Hawaiian islands. The development of these new facilities represents great scientific potential for the astronomy research community. Pan-STARRS, an innovative wide-field imaging facility developed at IfA, has been operational via its first telescope, PS1, since 2010. With the largest digital camera ever built - 1.4 Gigapixels - and an unprecedented field of 7 deg2, PS1 generates a time-lapse movie of the Northern sky in 5 pass-bands. PS1 has already discovered a number of potentially hazardous asteroids, comets, and a new class of very luminous supernova explosions. The second telescope, PS-2, is under construction on Haleakala, with an ultimate aim a four-telescope system in one enclosure on Mauna Kea. Haleakala--the House of the Sun--is the best place on Earth for solar astronomy and has therefore been chosen by NSF as the site of the world's largest solar telescope, the ATST. ATST will employ a 4m primary mirror with a unique off-axis design optimized for high-contrast solar imaging and spectropolarimetry. Construction, which is already funded, is expected to start soon with two of the first-light instruments being developed in Hawaii. The TMT, ready for construction on Mauna Kea, will be among the world's most advanced ground-based observatories, operating in wavelengths ranging from the ultraviolet to mid-infrared, integrating the most modern innovations in precision control, segmented mirror design, and adaptive optics. It will address bold scientific questions like the search for habitable extrasolar planets, the First Light in the Universe, the earliest Black Holes and the nature of space itself.

  8. Geologic Mapping of the Olympus Mons Volcano, Mars (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.


    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  9. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole (United States)

    Morin, R.H.; Wilkens, R.H.


    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.


    Energy Technology Data Exchange (ETDEWEB)

    Meech, Karen J.; Yang, Bin; Kleyna, Jan; Chiang, Hsin-Fang; Riesen, Timm; Keane, Jacqueline V.; Reipurth, Bo; Hsieh, Henry H. [NASA Astrobiology Institute, Honolulu, HI 96822 (United States); Ansdell, Megan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hainaut, Olivier [European Southern Observatory, Santiago 19001 (Chile); Vincent, Jean-Baptiste; Boehnhardt, Hermann [Max-Planck-Institut fur Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Fitzsimmons, Alan [Queens University Belfast, Belfast BT7 1NN (United Kingdom); Rector, Travis [Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508 (United States); Michaud, Peter [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Milani, Giannantonio [Associazione Astronomica Euganea, via Tommaseo, I-35131 Padova (Italy); Bryssinck, Erik [BRIXIIS Observatory, Eyckensbeekstraat, B-9150 Kruibeke (Belgium); Ligustri, Rolando [Talmassons Observatory (C.A.S.T.), via Cadorna, I-33030 Talmassons (Italy); Trabatti, Roberto [Stazione Astronomica Descartes, via Lambrinia 4, I-2013 Chignolo Po' (Italy); Tozzi, Gian-Paolo, E-mail: [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-40125 Firenze (Italy); and others


    We report photometric observations for comet C/2012 S1 (ISON) obtained during the time period immediately after discovery (r = 6.28 AU) until it moved into solar conjunction in mid-2013 June using the UH2.2 m, and Gemini North 8 m telescopes on Mauna Kea, the Lowell 1.8 m in Flagstaff, the Calar Alto 1.2 m telescope in Spain, the VYSOS-5 telescopes on Mauna Loa Hawaii and data from the CARA network. Additional pre-discovery data from the Pan STARRS1 survey extends the light curve back to 2011 September 30 (r = 9.4 AU). The images showed a similar tail morphology due to small micron sized particles throughout 2013. Observations at submillimeter wavelengths using the James Clerk Maxwell Telescope on 15 nights between 2013 March 9 (r = 4.52 AU) and June 16 (r = 3.35 AU) were used to search for CO and HCN rotation lines. No gas was detected, with upper limits for CO ranging between 3.5-4.5 × 10{sup 27} molecules s{sup –1}. Combined with published water production rate estimates we have generated ice sublimation models consistent with the photometric light curve. The inbound light curve is likely controlled by sublimation of CO{sub 2}. At these distances water is not a strong contributor to the outgassing. We also infer that there was a long slow outburst of activity beginning in late 2011 peaking in mid-2013 January (r ∼ 5 AU) at which point the activity decreased again through 2013 June. We suggest that this outburst was driven by CO injecting large water ice grains into the coma. Observations as the comet came out of solar conjunction seem to confirm our models.

  11. Palaeomagnetic study of a subaerial volcanic ridge (Sao Jorge Island, Azores) for the past 1.3 Myr: evidence for the CobbMountain Subchron, volcano flank instability and tectonomagmatic implications

    Czech Academy of Sciences Publication Activity Database

    Silva, P. F.; Henry, B.; Marques, F. O.; Hildenbrand, A.; Madureira, P.; Mériaux, C. A.; Kratinová, Zuzana


    Roč. 188, č. 3 (2012), s. 959-978 ISSN 0956-540X Institutional research plan: CEZ:AV0Z30120515 Keywords : palaeomagnetic secular variation * magnetostratigraphy * rock and mineral magnetism * Atlantic Ocean Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.853, year: 2012

  12. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai`i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011-2013 (United States)

    Poland, Michael P.


    Differencing digital elevation models (DEMs) derived from TerraSAR add-on for Digital Elevation Measurements (TanDEM-X) synthetic aperture radar imagery provides a measurement of elevation change over time. On the East Rift Zone (EZR) of Kīlauea Volcano, Hawai`i, the effusion of lava causes changes in topography. When these elevation changes are summed over the area of an active lava flow, it is possible to quantify the volume of lava emplaced at the surface during the time spanned by the TanDEM-X data—a parameter that can be difficult to measure across the entirety of an ~100 km2 lava flow field using ground-based techniques or optical remote sensing data. Based on the differences between multiple TanDEM-X-derived DEMs collected days to weeks apart, the mean dense-rock equivalent time-averaged discharge rate of lava at Kīlauea between mid-2011 and mid-2013 was approximately 2 m3/s, which is about half the long-term average rate over the course of Kīlauea's 1983-present ERZ eruption. This result implies that there was an increase in the proportion of lava stored versus erupted, a decrease in the rate of magma supply to the volcano, or some combination of both during this time period. In addition to constraining the time-averaged discharge rate of lava and the rates of magma supply and storage, topographic change maps derived from space-based TanDEM-X data provide insights into the four-dimensional evolution of Kīlauea's ERZ lava flow field. TanDEM-X data are a valuable complement to other space-, air-, and ground-based observations of eruptive activity at Kīlauea and offer great promise at locations around the world for aiding with monitoring not just volcanic eruptions but any hazardous activity that results in surface change, including landslides, floods, earthquakes, and other natural and anthropogenic processes.

  13. Palaeomagnetic study of a subaerial volcanic ridge (São Jorge Island, Azores) for the past 1.3 Myr: evidence for the Cobb Mountain Subchron, volcano flank instability and tectonomagmatic implications (United States)

    Silva, P. F.; Henry, B.; Marques, F. O.; Hildenbrand, A.; Madureira, P.; Mériaux, C. A.; Kratinová, Z.


    We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores Archipelago—North Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3°N, 160.7°E, K= 33 and A95= 3.4°) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 ± 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNW-SSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNW-SSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNW-ESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.


    Energy Technology Data Exchange (ETDEWEB)

    Hardersen, Paul S. [University of North Dakota, Department of Space Studies, 4149 University Avenue, Stop 9008, 530 Clifford Hall, Grand Forks, ND 58202-9008 (United States); Reddy, Vishnu [Planetary Science Institute, 1700 E. Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Roberts, Rachel, E-mail: [University of North Dakota, Department of Space Studies, 4149 University Avenue, Stop 9008, 521 Clifford Hall, Grand Forks, ND 58202-9008 (United States)


    Improving the constraints on the abundance of basaltic asteroids in the main asteroid belt is necessary for better understanding the thermal and collisional environment in the early solar system, for more rigorously identifying the genetic family for (4) Vesta, for determining the effectiveness of Yarkovsky/YORP in dispersing asteroid families, and for better quantifying the population of basaltic asteroids in the outer main belt (a > 2.5 AU) that is likely unrelated to (4) Vesta. Near-infrared (NIR) spectral observations in this work were obtained for the V{sub p}-type asteroids (2011) Veteraniya, (5875) Kuga, (8149) Ruff, (9147) Kourakuen, (9553) Colas, (15237) 1988 RL{sub 6}, (31414) Rotaryusa, and (32940) 1995 UW{sub 4} during 2014 August/September utilizing the SpeX spectrograph at the NASA Infrared Telescope Facility, Mauna Kea, Hawaii. Spectral band parameter (band centers, band area ratios) and mineralogical analysis (pyroxene chemistry) for each average asteroid NIR reflectance spectrum suggest a howardite–eucrite–diogenite meteorite analog for each asteroid. (5875) Kuga is most closely associated with the eucrite meteorites, (31414) Rotaryusa is most closely associated with the diogenites, and the remaining other six asteroids are most closely associated with the howardite meteorites. Along with their orbital locations in the inner main belt and in the vicinity of (4) Vesta, the existing evidence suggests that these eight V{sub p}-type asteroids are also likely Vestoids.

  15. Soil nitrogen cycling and availability are linked to ammonia oxidizer abundance across a tropical mean annual temperature gradient (United States)

    Pierre, S.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P.; Hewson, I.; Fahey, T.


    Interactions among environmental variables can obfuscate the primary drivers linking soil microbial community function to ecosystem biogeochemistry. These connections are important to understand in order to predict ecosystem responses to global climate change. In particular, the role of mean annual temperature (MAT) in regulating carbon (C) and nitrogen (N) cycling via microbial communities remains unclear. To study these dynamics in situ, we used a a natural elevation gradient of tropical wet montane forest on Mauna Kea, Hawai'i with established permanent plots. Across the gradient, environmental variables besides MAT remain constant. We studied the abundance and activity of the amoA gene, which regulates the rate-limiting step of nitrification, in ammonia oxidizing archaea (AOA) and bacteria (AOB) with relation to N availability and cycling across increasing MAT. Our results show that the abundance of amoA is positively correlated with MAT (p<0.05; r2=0.34) and that MAT and amoA abundance are the primary predictors of nitrate (NO3-) bioavailability (p<0.05). We also found that the relative expression of amoA (cDNA/DNA) is not correlated with MAT or potential net nitrification rate. Our results indicate the direct role of MAT in ammonia oxidizer community structure and demonstrate feedbacks to nutrient availability in forest systems. These findings suggest that forest primary production and carbon cycling may be affected by AOA and AOB responses to rising MAT.

  16. More Results from a Long-Term Infrared Survey of M-Class Asteroids (United States)

    Clark, Beth E.; Shepard, M. K.; Rivkin, A. S.


    In collaboration with Shepard et al. (abstract this volume), we are continuing a long-term infrared spectroscopic survey of main-belt M-class (and other X-complex) asteroids. When an asteroid is observed to have rotational variability in radar cross-section, one possible explanation is compositional variability, which should be reflected in a correlated infrared spectral rotational variability. One third of the 12 M-types observed to date show radar albedos unambiguously consistent with metallic compositions. How is this reflected in infrared-derived composition? Our goal is to parallel the tripling in the number of radar observed M-class targets with rotationally-resolved infrared and 3-micron observations within the next five years. This year, we will present results focusing on asteroid 129 Antigone. Acknowledgements. This work was supported by grants from the Research Corporation and the National Science Foundation (AST-0605903). BEC, MKS, and ASR are guest astronomers at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii.

  17. Palagonitic (Not Andesitic) Mars: Evidence from Thermal Emission and VNIR Spectra of Palgonitic Alteration Rinds on Basaltic Rock (United States)

    Morris, R. V.; Graff, T. G.; Mertzman, S. A.; Lane, M. D.; Christensen, P. R.


    Visible and near-IR (VNIR) spectra of both Martian bright and dark regions are characterized by a ferric absorption edge extending from approx. 400 to 750 nm, with bright regions having about twice the reflectivity at 750 nm as dark regions. Between 750 nm to beyond 2000 nm, bright and dark regions have nearly constant and slightly negative spectral slopes, respectively. Depending on location, bright regions have shallow reflectivity minima in the range 850-910 nm that are attributed to ferric oxides. Similarly, dark regions have shallow reflectivity minima near approx. 950 and 1700-2000 nm that are attributed to ferrous silicate minerals (pyroxene). Among terrestrial geologic materials, the best spectral analogues for Martian bright regions are certain palagonitic tephras from Mauna Kea Volcano (Hawaii). By definition, palagonite is a "yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass". The ferric pigment in palagonite is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates.

  18. Search for Water in Outer Main Belt Based on AKARI Asteroid Catalog (II) (United States)

    Usui, Fumihiko


    We propose a program to search water ice and/or aqueously altered silicates on the surface of asteroids in outer main belt regions, which have high albedo measured with AKARI. The distribution of water in the main belt provides important information to understanding the formation and evolution of the solar system, because water is a good indicator of temperature in the early solar nebula, and it may be linked to the origin of Earth's water. The existence of water ice is a hot topic in the solar system studies today. Water ice is recently found in the outer region of the main asteroid belt and some of them are related with the main belt comets. Brand-new albedo data brought by AKARI opens the possibility of detection of water ice on asteroids like C-type and D-type, which contain primitive materials. Here we propose to make the spectroscopic observations with the Subaru telescope in the near-infrared wavelengths to detect water ice on these high-albedo C-type and D-type asteroids. Thanks to a large aperture of Subaru telescope and a high altitude of Mauna Kea, it can be only possible to observe a weak signal of the existence of water on the surface of asteroids with a certain S/N (typically, > 30 is required).

  19. Taiwanese antennas for the Sub-Millimeter Array: a progress report (United States)

    Raffin, Phillippe A.; Liu, Ching-Tang; Cervera, Mathieu; Chang, Chi-Ling; Chen, Ming-Tang; Lee, Cheng-Ching; Lee, Typhoon; Lo, Kwok-Yung; Ma, Rwei-Ping; Martin, Robert N.; Martin-Cocher, Pierre; Ong, Ching-Long; Park, Yong-Sun; Tsai, Rong-Den; Wu, Enboa; Yang, Shun-Cheng; Yang, Tien-Szu


    The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is building two antennas to be added to the six antennas of the Sub-Millimeter Array (SMA) of the Smithsonian Astrophysical Observatory (SAO). The antennas have been designed at SAO and are currently under construction at Mauna Kea. ASIAA's two antennas are made in Taiwan from parts manufactured locally and imported from Europe and from the USA. This report will focus on the manufacturing and testing of 2 major components: the alidade and the reflector. We will emphasize the work done on the composite parts used in the 6- meter reflectors, namely the carbon fiber tubes for the backup structure, the carbon fiber legs of the quadrupod and the composite central hub. We will discuss the modal testing and pointing tests of the antennas. Finally this report will show how the Taiwanese industry was able to respond to the high manufacturing standards required to build sub-millimeter antennas. The design and manufacturing capabilities of the Aeronautical Research Laboratories and China Shipbuilding Corporation have made possible the construction of the telescopes in Taiwan.

  20. Simultaneous seeing measurements at Atacama (United States)

    Uraguchi, Fumihiro; Motohara, Kentaro; Doi, Mamoru; Takato, Naruhisa; Miyashita, Akihiko; Tanabe, Toshihiko; Oyabu, Shinki; Soyano, Takao


    Institute of Astronomy, University of Tokyo is now planning to build a 6.5-m optical-infrared telescope in Atacama, Chile. This project is called "Univ. Tokyo Atacama Observatory (TAO)", and the site evaluation is now under way. As a part of this evaluation process, we started an investigation to compare the astronomical seeing at Atacama with that at Mauna Kea. Here, we report preliminary results of seeing measurements at several sites in Atacama, carried out on October 2003. In order to separate the temporal and site-to-site variation of the seeing, we used two sets of Differential Image Motion Monitors (DIMMs), each of which has two pairs of 7.4 cm sub-apertures with 20.5 cm separation. Three sites were investigated; the point near the TAO weather station (4,950m), the summit of Cello Chico (5,150m) and the point at 5,430m altitude on Cello Toco. Simultaneous measurements were carried out for three half nights out of four half nights measurements. Although the amount of our data is very limited, the results suggest following: 1) Seeing becomes better and more stable as time passing to midnight (eg. From 0."7 to 0."4 at V-band). 2) Higher altitude sites show better seeing than lower altitude sites.

  1. Interpolity exchange of basalt tools facilitated via elite control in Hawaiian archaic states. (United States)

    Kirch, Patrick V; Mills, Peter R; Lundblad, Steven P; Sinton, John; Kahn, Jennifer G


    Ethnohistoric accounts of late precontact Hawaiian archaic states emphasize the independence of chiefly controlled territories (ahupua'a) based on an agricultural, staple economy. However, elite control of unevenly distributed resources, such as high-quality volcanic rock for adze production, may have provided an alternative source of economic power. To test this hypothesis we used nondestructive energy-dispersive X-ray fluorescence (ED-XRF) analysis of 328 lithic artifacts from 36 archaeological features in the Kahikinui district, Maui Island, to geochemically characterize the source groups. This process was followed by a limited sampling using destructive wavelength-dispersive X-ray fluorescence (WD-XRF) analysis to more precisely characterize certain nonlocal source groups. Seventeen geochemical groups were defined, eight of which represent extra-Maui Island sources. Although the majority of stone tools were derived from Maui Island sources (71%), a significant quantity (27%) of tools derived from extraisland sources, including the large Mauna Kea quarry on Hawai'i Island as well as quarries on O'ahu, Moloka'i, and Lāna'i islands. Importantly, tools quarried from extralocal sources are found in the highest frequency in elite residential features and in ritual contexts. These results suggest a significant role for a wealth economy based on the control and distribution of nonagricultural goods and resources during the rise of the Hawaiian archaic states.

  2. VizieR Online Data Catalog: Observed light curve of (3200) Phaethon (Ansdell+, 2014) (United States)

    Ansdell, M.; Meech, K. J.; Hainaut, O.; Buie, M. W.; Kaluna, H.; Bauer, J.; Dundon, L.


    We obtained time series photometry over 15 nights from 1994 to 2013. All but three nights used the Tektronix 2048x2048 pixel CCD camera on the University of Hawaii 2.2 m telescope on Mauna Kea. Two nights used the PRISM 2048x2048 pixel CCD camera on the Perkins 72 inch telescope at the Lowell Observatory in Flagstaff, Arizona, while one night used the Optic 2048x4096 CCD camera also on the University of Hawaii 2.2 m telescope. All observations used the standard Kron-Cousins R filter with the telescope guiding on (3200) Phaethon at non-sidereal rates. Raw images were processed with standard IRAF routines for bias subtraction, flat-fielding, and cosmic ray removal (Tody, 1986SPIE..627..733T). We constructed reference flat fields by median combining dithered images of either twilight or the object field (in both cases, flattening reduced gradients to <1% across the CCD). We performed photometry using the IRAF phot routine with circular apertures typically 5'' in radius, although aperture sizes changed depending on the night and/or exposure as they were chosen to consistently include 99.5% of the object's light. (1 data file).

  3. Velocity-resolved Hot Water Emission Detected toward HL Tau with the Submillimeter Array (United States)

    Kristensen, Lars E.; Brown, Joanna M.; Wilner, David; Salyk, Colette


    Using the Submillimeter Array (SMA) on Mauna Kea, the {{{H}}}216{{O}} {10}{2,9}-9{}{3,6} transition ({E}{{up}} = 1863 K) at 321.2 GHz has been detected toward the embedded low-mass protostar HL Tau. The line centroid is blueshifted by 20 km s-1 with respect to the source velocity, and it has a FWHM of 25 km s-1. The emission is tentatively resolved and extends ˜3″-4″ over the sky (˜2 beams), or ˜500 au at the distance of Taurus. The velocity offset, and to a lesser degree the spatial extent of the emission, show that the line originates in the protostellar jet or wind. This result suggests that at least some water emission observed with Herschel and Spitzer toward embedded sources, and perhaps also disk sources, contains a wind or jet component, which is crucial for interpreting these data. These pathfinder observations done with the SMA open a new window into studying the origin of water emission with e.g., ALMA, thus providing new insights into where water is in protostellar systems.

  4. "Pleiades Visions" for organ solo: A composition supported by documented research (United States)

    Whitehouse, Matthew Robert

    Pleiades Visions is a three-movement work for organ solo inspired by indigenous music and mythology associated with the Pleiades (Seven Sisters) star cluster. Three cultural groups are represented in Pleiades Visions. The first movement, entitled "Uluru," draws from Australian Aboriginal music and mythology. The second movement, entitled " on other worlds," is based loosely on a Quechan (Yuman) Indian song. The concluding movement, entitled "Mauna Kea," is inspired by the opening lines of the Kumulipo, a creation chant of the Native Hawaiian culture. The source material for Pleiades Visions was identified through research incorporating techniques from the fields of cultural astronomy and ethnomusicology. This research represents a new line of inquiry for both fields. This document situates Pleiades Visions in the context of the organ literature, and suggests that Pleiades Visions might be the first organ work with a cultural astronomy inspiration. It also describes the research undergirding Pleiades Visions, demonstrates the manner in which that research informed the composition of the work, and addresses issues surrounding the use of indigenous source material in a culturally sensitive manner.

  5. Simulated Guide Stars: Adapting the Robo-AO Telescope Simulator to UH 88” (United States)

    Ashcraft, Jaren; Baranec, Christoph


    Robo-AO is an autonomous adaptive optics system that is in development for the UH 88” Telescope on the Mauna Kea Observatory. This system is capable of achieving near diffraction limited imaging for astronomical telescopes, and has seen successful deployment and use at the Palomar and Kitt Peak Observatories previously. A key component of this system, the telescope simulator, will be adapted from the Palomar Observatory design to fit the UH 88” Telescope. The telescope simulator will simulate the exit pupil of the UH 88” telescope so that the greater Robo-AO system can be calibrated before observing runs. The system was designed in Code V, and then further improved upon in Zemax for later development. Alternate design forms were explored for the potential of adapting the telescope simulator to the NASA Infrared Telescope Facility, where simulating the exit pupil of the telescope proved to be more problematic. A proposed design composed of solely catalog optics was successfully produced for both telescopes, and they await assembly as time comes to construct the new Robo-AO system.

  6. Gemini telescope structure design (United States)

    Raybould, Keith; Gillett, Paul E.; Hatton, Peter; Pentland, Gordon; Sheehan, Mike; Warner, Mark


    The Gemini project is an international collaboration to design, fabricate, and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements (GSR), a document developed by the Gemini Science Committee (GSC) and the national project scientists. The Gemini telescope group, based on Tucson, has developed a telescope structure to meet the GSR. This paper describes the science requirements that have technically driven the design, and the features that have been incorporated to meet these requirements. This is followed by a brief description of the telescope design. Finally, analyses that have been performed and development programs that have been undertaken are described briefly. Only the designs that have been performed by the Gemini Telescope Structure, Building and Enclosure Group are presented here; control, optical systems, acquisition and guiding, active and adaptive optics, Cassegrain rotator and instrumentation issues are designed and managed by others and will not be discussed here, except for a brief description of the telescope configurations to aid subsequent discussions.

  7. Testing and First Light for the Pop-up Bolometric Detectors (PUDs) for the High Resoultion Airborne Wideband Camera (HAWC) on SOFIA (United States)

    Freund, M. M.; Moseley, S. H.; Allen, C. A.; Shafer, R. A.; Voellmer, G. M.; Staguhn, J.; Harper, D. A.; Dowell, D.; Phillips, T.


    The HAWC instrument on SOFIA is diffraction limited in four bands between 50-220μm , with background limited sensitivity. Its purpose is to provide sensitive and reliable facility-imaging capabilities for SOFIA during its first operational years. It is the first flight instrument to use a state of the art bolometric 12x32 pixel array of ion implanted silicon PUDs, a closed-packed 2D array with >95% filling factor. It will be cooled to ~0.2K, using an Adiabatic Demagnetization Refrigerator (ADR). Here we report on detector characteristics: Measured I/V curves for different temperatures are completely consistent with a four parameter bolometer model. The measured detector noise contribution to the measured noise is only ~1-2% of the sky background noise. In September, 2000 a prototype instrument operating at λ =350μm using a single linear array of detectors was successfully deployed, and saw first light on the Caltech Submillimeter Observatory (CSO) on Mauna Kea.

  8. Recollections of Tucson Operations The Millimeter-Wave Observatory of the National Radio Astronomy Observatory

    CERN Document Server

    Gordon, M A


    This book is a personal account of the evolution of millimeter-wave astronomy at the National Radio Astronomy Observatory. It begins with the construction of the hugely successful, but flawed, 36 ft radio telescope on Kitt Peak, Arizona, and continues through the funding of its ultimate successor, the Atacama Large Millimeter-wave Array (ALMA), being constructed on a 5.000 m (16.500 ft) site in northern Chile. The book describes the behind-the-scene activities of the NRAO Tucson staff. These include the identification and solution of technical problems, the scheduling and support of visiting astronomers, and the preparations and the politics of the proposal to replace the 36 ft telescope with a 25 m telescope on Mauna Kea, Hawaii. The book also describes the installation of a new 12 m surface and the involvement of the Tucson staff in the ALMA project. Finally, it describes events leading to the closing of the 36 ft telescope and, eventually, of the NRAO offices in Tucson.

  9. How Does Hawai’i Really Feel about the Thirty Meter Telescope? (United States)

    Currie, Thayne; Ha, Richard; Imai-Hong, Amber; Silva, Jasmin; Stark, Chris S.; Naea Stevens, Dashiel


    In 2015, protests temporarily halted the construction of the Thirty Meter Telescope on Mauna Kea in Hawai’i and a Hawai’i Supreme Court decision later revoked the permit for this observatory, requiring that the permitting process be restarted. Mainland United States media sources often alternately and simplistically described the opposition to TMT as similar to creationism or as a stand against colonialism, pitting astronomers on one side and Native Hawaiians on the other side. Both of these descriptions are wildly inaccurate, despite their continued invocation. Using a combination of scientific polling and on-the-ground discussions with Hawai’i community members, we present our impression of how Hawai’i residents and Hawaiians feel about the Thirty Meter Telescope. Polls show that support for TMT is very strong (70+% island wide) and increasing over time. The Hawaiian community is either split 50/50 on TMT or now is slightly in favor of the telescope. Finally, we describe *why* Hawai’i residents are for or against the telescope. Perhaps surprisingly, we find that support for TMT often has little to do with the scientific merit of astronomy; those against TMT often do not hold a blanket opposition based on sacredness or sovereignty.

  10. Circle of Ashes (United States)


    [figure removed for brevity, see original site] Circle of Ashes This plot tells astronomers that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA's Spitzer Space Telescope, is the first ever found around a pulsar. Astronomers believe planets might rise up out of these stellar ashes. The data in this plot, or spectrum, were taken by ground-based telescopes and Spitzer. They show that light from around the pulsar can be divided into two categories: direct light from the pulsar, and light from the dusty disk swirling around the pulsar. This excess light was detected by Spitzer's infrared array camera. Dust gives off more infrared light than the pulsar because it's cooler. The pulsar, called 4U 0142+61, was once a massive star, until about 100,000 years ago, when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the leftover stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born. The data have been corrected to remove the effects of light scattering from dust that lies between Earth and the pulsar. The ground-based data is from the Keck I telescope atop Mauna Kea, Hawaii.

  11. Nightglow vibrational distributions in the A3Σu+ and A'3Δu states of O2 derived from astronomical sky spectra

    Directory of Open Access Journals (Sweden)

    T. G. Slanger


    Full Text Available Astronomical sky spectra from the Keck I telescope on Mauna Kea have been used to obtain vibrational distributions in the O2A3Σu+ and O2(A'3Δu states from rotationally-resolved Herzberg I and Chamberlain band emissions in the terrestrial nightglow. The A3Σu+ distribution is similar to that presented in earlier publications, with the exception that there is significant population in the previously undiscerned v=0 level. The vibrational distributions of the A'3Δu and A3Σu+ states are essentially the same when comparison is made in terms of the level energies. The intensity of Chamberlain band emission at the peak of the distribution is about one-fourth that of the Herzberg I emission, as previously shown, and may be related primarily to radiative efficiency. The peaks in both population distributions are about 0.25eV below the O(3P+O(3P dissociation limit. We compare these Herzberg state distributions with that of the O2(b1Σg+ state, concurring with others that the intense nightglow emission associated with b1Σg+(v=0 is a reflection of direct transfer from the Herzberg states. This process takes place following O2 collisions, with simultaneous production of very high a1Δg and b1Σg+ vibrational levels.

  12. Developing engineering model Cobra fiber positioners for the Subaru Telescope's prime focus spectrometer (United States)

    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry E.; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Daniel; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Robert; Piazza, Daniele; Walkama, Eric


    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5μm of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014.

  13. VizieR Online Data Catalog: Massive star forming molecular clumps Tkin (Tang+, 2017) (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; Konig, C.; Yuan, Y.; He, Y. X.; Li, D. L.


    We have selected 30 massive clumps of the Galactic disk at various stages of high-mass star formation and with strong NH3 emission from the ATLASGAL survey (see Table 1). Our observations were carried out in 2015 April, July, and October with the 15m James Clerk Maxwell Telescope telescope (JCMT) on Mauna Kea. The beam size is ~23" and the main-beam efficiency is {eta}mb=Ta*/Tmb~=0.7 at 218GHz. The para-H2CO JKAKC =303-202, 322-221, and 321-220 transitions have rest frequencies of 218.222, 218.475, and 218.760GHz, respectively, which are measured simultaneously by employing the ACSIS digital autocorrelation spectrometer with the special backend configuration RxAH2CO250x3 allowing for three windows, each with a bandwidth of 250MHz. This provides a velocity resolution of 0.084km/s for para-H2CO (303-202 and 322-221) and 0.042km/s for para-H2CO (321-220); CH3OH (422-312) at 218.440GHz is also observed together with para-H2CO (322-221). (6 data files).

  14. Isolation and Identification of Microorganisms in JSC Mars-1 Simulant Soil (United States)

    Mendez, Claudia; Garza, Elizabeth; Gulati, Poonam; Morris, Penny A.; Allen, Carlton C.


    Microorganisms were isolated and identified in samples of JSC Mars-1, a Mars simulant soil. JSC Mars-1 is an altered volcanic ash from a cinder cone south of Mauna Kea, Hawaii. This material was chosen because of its similarity to the Martian soil in physical and chemical composition. The soil was obtained by excavating 40 cm deep in a vegetated area to prevent contamination. In previous studies, bacteria from this soil has been isolated by culturing on different types of media, including minimal media, and using biochemical techniques for identification. Isolation by culturing is successful only for a small percentage of the population. As a result, molecular techniques are being employed to identify microorganisms directly from the soil without culturing. In this study, bacteria were identified by purifying and sequencing the DNA encoding the 16s ribosomal RNA (16s rDNA). This gene is well conserved in species and demonstrates species specificity. In addition, biofilm formation, an indicator of microbial life, was studied with this soil. Biofilms are microbial communities consisting of microbes and exopolysaccharides secreted by them. This is a protective way of life for the microbes as they are more resistant to environmental pressures.

  15. Ground-based measurements of the 1.3 to 0.3 millimeter spectrum of Jupiter and Saturn, and their detailed calibration. (United States)

    Pardo, Juan R; Serabyn, Eugene; Wiedner, Martina C; Moreno, Raphäel; Orton, Glenn


    One of the legacies of the now retired Caltech Submillimeter Observatory (CSO) is presented in this paper. We measured for the first time the emission of the giant planets Jupiter and Saturn across the 0.3 to 1.3 mm wavelength range using a Fourier Transform Spectrometer mounted on the 10.4-meter dish of the CSO at Mauna Kea, Hawaii, 4100 meters above sea level. A careful calibration, including the evaluation of the antenna performance over such a wide wavelength range and the removal of the Earth's atmosphere effects, has allowed the detection of broad absorption lines on those planets' atmospheres. The calibrated data allowed us to verify the predictions of standard models for both planets in this spectral region, and to confirm the absolute radiometry in the case of Jupiter. Besides their physical interest, the results are also important as both planets are calibration references in the current era of operating ground-based and space-borne submillimeter instruments.

  16. 2015-2016 Palila abundance estimates (United States)

    Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.


    The palila (Loxioides bailleui) population was surveyed annually during 1998−2016 on Mauna Kea Volcano to determine abundance, population trend, and spatial distribution. In the latest surveys, the 2015 population was estimated at 852−1,406 birds (point estimate: 1,116) and the 2016 population was estimated at 1,494−2,385 (point estimate: 1,934). Similar numbers of palila were detected during the first and subsequent counts within each year during 2012−2016; the proportion of the total annual detections in each count ranged from 46% to 56%; and there was no difference in the detection probability due to count sequence. Furthermore, conducting repeat counts improved the abundance estimates by reducing the width of the confidence intervals between 9% and 32% annually. This suggests that multiple counts do not affect bird or observer behavior and can be continued in the future to improve the precision of abundance estimates. Five palila were detected on supplemental survey stations in the Ka‘ohe restoration area, outside the core survey area but still within Palila Critical Habitat (one in 2015 and four in 2016), suggesting that palila are present in habitat that is recovering from cattle grazing on the southwest slope. The average rate of decline during 1998−2016 was 150 birds per year. Over the 18-year monitoring period, the estimated rate of change equated to a 58% decline in the population.

  17. Test production of a mirror segment for the Thirty Meter Telescope (United States)

    Oota, Tetsuji; Shinonaga, Hirohiko; Akutsu, Kotaro; Hashimoto, Yuichiro; Otsuka, Itaru; Iwasaki, Yasushi; Iye, Masanori; Yamashita, Takuya; Akitaya, Hiroshi; Suzuki, Ryuji


    The Thirty Meter Telescope (TMT) is a next-generation optical/infrared telescope to be constructed on Mauna Kea, Hawaii toward the end of this decade, as an international project. Its 30 m primary mirror consists of 492 off-axis aspheric segmented mirrors. This paper describes the progress of the test fabrication of an outermost mirror segment for the TMT as a joint R&D program between National Astronomical Observatory and Canon. A zero-expansion glass CLEARCERAM™ blank was polished by a computer-controlled small-tool polishing machine (CSSP, Canon) and its surface shape was measured by a touch-probe measuring machine(A-Ruler, Canon). Residuals of lower Zernike terms of the surface shape were 11 nmRMS, clearing the original specifications based on the structure function. There remains, however, a need to fulfill latest revised specifications. Possible solutions to improve and achieve the new specifications and a plan for revising the process for mass production are also described.

  18. Hawai'i and Gale Crater: A Mars Analogue Study of Igneous, Sedimentary, Weathering, and Alteration Trends in Geochemistry (United States)

    Berger, J. A.; Flemming, R. L.; Schmidt, M. E.; Gellert, R.; Morris, R. V.; Ming, D. W.


    Sedimentary rocks in Gale Crater on Mars indicate a varied provenance with a range of alteration and weathering [1, 2]. Geochemical trends identified in basaltic and alkalic sedimentary rocks by the Alpha Particle X-ray Spectrometer (APXS) on the Mars rover Curiosity represent a complex interplay of igneous, sedimentary, weathering, and alteration processes. Assessing the relative importance of these processes is challenging with unknown compositions for parent sediment sources and with the constraints provided by Curiosity's instruments. We therefore look to Mars analogues on Earth where higher-resolution analyses and geologic context can constrain interpretations of Gale Crater geochemical observations. We selected Maunakea (AKA Mauna Kea) and Kohala volcanoes, Hawai'i, for an analogue study because they are capped by post-shield transitional basalts and alkalic lavas (hawaiites, mugearites) with compositions similar to Gale Crater [1, 3]. Our aim was to characterize Hawaiian geochemical trends associated with igneous processes, sediment transport, weathering, and alteration. Here, we present initial results and discuss implications for selected trends observed by APXS in Gale Crater.

  19. Characterizing Non-Resolved Debris Through Spectral and Photometric Ground-Based Telescopic Data: What Can Laboratory Ground-truth Data Do for You? (United States)

    Lederer, Susan


    NASA's ODPO has recently collected data of unresolved objects at GEO with the 3.8m UKIRT infrared telescope on Mauna Kea and the 1.3m MCAT visible telescope on Ascension Island. Analyses of SWIR data of rocket bodies and HS-376 solar-panel covered buses demonstrate the uniqueness of spectral signatures. Data of 3 classes of rocket bodies show similarities amongst a given class, but distinct differences from one class to another, suggesting that infrared reflectance spectra could effectively be used toward characterizing and constraining potential parent bodies of uncorrelated targets (UCTs). The Optical Measurements Center (OMC) at NASA JSC is designed to collect photometric signatures in the laboratory that can be used for comparison with telescopic data. NASA also has a spectral database of spacecraft materials for use with spectral unmixing models. Spectral unmixing of the HS-376 bus data demonstrates how absorption features and slopes can be used to constrain material characteristics of debris. Broadband photometry likewise can be compared with MCAT data of non-resolved debris images. Similar studies have been applied to IDCSP satellites to demonstrate how color-color photometry can be compared with lab data to constrain bulk materials signatures of spacecraft and debris.

  20. The Keck Cosmic Web Imager: a capable new integral field spectrograph for the W. M. Keck Observatory (United States)

    Morrissey, Patrick; Matuszewski, Mateusz; Martin, Chris; Moore, Anna; Adkins, Sean; Epps, Harland; Bartos, Randy; Cabak, Jerry; Cowley, Dave; Davis, Jack; Delacroix, Alex; Fucik, Jason; Hilliard, David; James, Ean; Kaye, Steve; Lingner, Nicole; Neill, James D.; Pistor, Christoph; Phillips, Drew; Rockosi, Connie; Weber, Bob


    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  1. Geology of the Hawaiian islands (United States)

    Stearns, Harold T.


    A brief summary of the geography, climate, and geomorphology is given. Streams develop slowly after the extinction of a volcano because of the high permeability of the rock. Once established they cut rapidly because of the steep slopes and fractured condition of the rock. Stream erosion varies enormously on different slopes of the same mountain due to the great differences in rainfall and to other causes. Six reasons are given for the development of amphitheater-headed valleys. Marine erosion has formed cliffs as much as 1,000 feet high on the leeward side and 3,000 feet high on the windward side of some of the domes. The islands have undergone a complex series of emergences and submergences leaving marine fossiliferous limestone up to 1,070 feet above sea level and valleys drowned more than 1,200 feet. Twelve terrace levels are recognized. Some are definitely eustatic.A synopsis is given of the present knowledge of the geology of each volcanic mountain, as well as a table of the rock units, and geologic maps of all major islands. The volcanoes pass through four major phases between birth and extinction and are built around one minor and two major rift zones. The volcanoes began their history above sea level in the Tertiary. Most of them became dormant either before or during the early Quaternary. Activity was renewed in the late Quaternary. Mauna Kea was glaciated in the late Pleistocene. The character of each islet in the archipelago is tabulated.

  2. The Return of Activity in Comet 133P/Elst-Pizarro (United States)

    Hsieh, Henry H.; Jewitt, D.; Lowry, S. C.; Snodgrass, C.


    Comet 133P/Elst-Pizarro, the first-known main-belt comet, has recently been observed (as of June 2007) to have resumed comet-like dust emission (Jewitt et al., 2007, IAUC 8847), as predicted by Hsieh et al. (2004, AJ 127, 2997). We present the results of an optical monitoring campaign confirming that 133P has been inactive in the five years since it was last observed to be active in 2002. We also present observations of the now-active comet (which displays a long, thin dust trail and minimal coma, as it did during both previous active episodes in 1996 and 2002) using the University of Hawaii 2.2-meter telescope on Mauna Kea, the European Southern Observatory's 3.58-meter New Technology Telescope (NTT) at La Silla, Chile, and the SMARTS 1.3-meter telescope at Cerro Tololo, Chile. In addition to chronicling the evolution of 133P's dust trail during the current outburst, we also present a multicolor (VRI) rotational lightcurve analysis of the nucleus to search for surface inhomogeneities.

  3. VizieR Online Data Catalog: Potential exoplanet targets with Palomar/TripleSpec (Zellem+, 2014) (United States)

    Zellem, R. T.; Griffith, C. A.; Deroo, P.; Swain, M. R.; Waldmann, I. P.


    We observed HD 209458b's emission with the 3.0 m NASA IRTF at the Mauna Kea Observatory and SpeX (Rayner et al. 2003PASP..115..362R), a near-IR spectrometer with a wavelength coverage of 2.0-4.2 um (K and L bands) and a resolution of R=2500, and with the 200 inch (5.08 m) Hale Telescope at the Palomar Observatory and TripleSpec, a near-IR spectrometer with a wavelength coverage of 1.0-2.4 um (J, H, and K bands) and a resolution of R=2500-2700. While low-resolution spectroscopic observations are incapable of observing the fine-scale structure of the spectral lines, the SpeX and TripleSpec spectral channels can be binned to increase the signal-to-noise ratio (S/N). We observed HD 209458b's 2011 September 9 (UT) secondary eclipse for ~8 hr, resulting in 1210 exposures of 10 s each in an ABBA nodding sequence. (1 data file).

  4. Winners and losers in the competition for space in tropical forest canopies. (United States)

    Kellner, James R; Asner, Gregory P


    Trees compete for space in the canopy, but where and how individuals or their component parts win or lose is poorly understood. We developed a stochastic model of three-dimensional dynamics in canopies using a hierarchical Bayesian framework, and analysed 267,533 positive height changes from 1.25 m pixels using data from airborne LiDAR within 43 ha on the windward flank of Mauna Kea. Model selection indicates a strong resident's advantage, with 97.9% of positions in the canopy retained by their occupants over 2 years. The remaining 2.1% were lost to a neighbouring contender. Absolute height was a poor predictor of success, but short stature greatly raised the risk of being overtopped. Growth in the canopy was exponentially distributed with a scaling parameter of 0.518. These findings show how size and spatial proximity influence the outcome of competition for space, and provide a general framework for the analysis of canopy dynamics. © 2014 John Wiley & Sons Ltd/CNRS.

  5. JCMT active surface control system: implementation (United States)

    Smith, Ian A.


    The James Clerk Maxwell Telescope on the summit of Mauna Kea in Hawaii is a 15 meter sub-millimeter telescope which operates in the 350 microns to 2 millimeter region. The primary antenna surface consists of 276 panels, each of which is positioned by 3 stepper motors. In order to achieve the highest possible surface accuracy we are embarking upon a project to actively control the position of the panels adjuster system is based on a 6809 micro connected to the control computer by a GPIB interface. This system is slow and inflexible and it would prove difficult to build an active surface control system with it. Part of the upgrade project is to replace the existing micro with a 68060 VME micro. The poster paper will describe how the temperature of the antenna is monitored with the new system, how a Finite Element Analyses package transforms temperature changes into a series of panel adjuster moves, and how these moves are then applied to the surface. The FEA package will run on a high end Sun workstation. A series of DRAMA tasks distributed between the workstation and the Baja 68060 VxWorks Active Surface Control System micro will control the temperature monitoring, FEA and panel adjustment activities. Users can interact with the system via a Tcl/TK based GUI.

  6. JCMT Telescope structure modifications and facility upgrades for SCUBA-2 instrument (United States)

    Chylek, Tomas; Craig, Simon C.; Chuter, Timothy C.; Lewsley, Harry J.; Hileman, Edward A.


    The James Clerk Maxwell Telescope (JCMT) on the summit of Mauna Kea is currently undergoing significant structural upgrade in order to accommodate the new generation instrument SCUBA-2 (Submillimeter Common-User Bolometric Array) which is being developed by the United Kingdom Astronomy Technology Centre (UK ATC). This four tonne instrument will be located at the Nasmyth focus of the telescope and will require five large auxiliary external warm mirrors to be installed on the telescope structure and in the receiver cabin along with dedicated automatically deployable tertiary mirror. The carousel of the observatory building as well as the original telescope structure was not designed for an instrument of this mass and complexity. The whole left Nasmyth platform of the telescope has to be removed and rebuilt in order to accommodate the instrument, its support structure and the warm optics. The floor of the observatory has to be reinforced and fitted with rail system and a scissor lift in order to handle the installation of the instrument on the telescope and removal from the telescope for maintenance. Details are given of particular challenges associated with handling, mechanical interfacing, optical alignment, design of the external warm mirrors mounts and the tertiary mirror deployment mechanism for SCUBA-2.

  7. Astrometry of the Orcus/Vanth occultation on UT 7 March 2017 (United States)

    Bosh, Amanda S.; Zuluaga, Carlos; Levine, Stephen; Sickafoose, Amanda A.; Genade, Anja; Schindler, Karsten; Lister, Tim; Person, Michael J.


    On UT 7 March 2017, Orcus was predicted to occult a star with m=14.3. Observations were made at five observatories: the 0.6-m Astronomical Telescope of the University of Stuttgart (ATUS) at Sierra Remote Observatories (SRO), California; Las Cumbres Observatory’s 1-m telescope (ELP) at McDonald Observatory, Fort Davis, Texas; NASA’s 3-m InfraRed Telescope Facility (IRTF) on Mauna Kea, Hawaii; the 4.1-m Southern Astrophysical Research telescope (SOAR) on Cerro Pachón, Chile; and the 0.6-m Southeastern Association for Research in Astronomy telescope (SARA-CT) at Cerro Tololo, Chile. While observations at all sites were successful, only two—ELP and IRTF—observed solid-body occultation signatures. We will discuss the various predictions for this event and the reasons for the differences among them, including an offset of 130 mas for the star position from the position in the Gaia catalog. The sum of the positive and negative detections place constraints on the geometry of the Orcus/Vanth system, and we present our astrometric results for the geometric solution for this occultation. The implications of the light curve analyses are presented by Sickafoose et al., this conference.

  8. Lunar Water Resource Demonstration (United States)

    Muscatello, Anthony C.


    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  9. International lunar observatory / power station: from Hawaii to the Moon (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  10. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration (United States)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.


    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  11. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory (United States)

    Morrissey, Patrick; KCWI Team


    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  12. NIR Color vs Launch Date: A 20-Year Analysis of Space Weathering Effects on the Boeing 376 Spacecraft (United States)

    Frith, James; Anz-Meador, Philip; Lederer, Sue; Cowardin, Heather; Buckalew, Brent


    The Boeing HS-376 spin stabilized spacecraft was a popular design that was launched continuously into geosynchronous orbit starting in 1980 with the last launch occurring in 2002. Over 50 of the HS-376 buses were produced to fulfill a variety of different communication missions for countries all over the world. The design of the bus is easily approximated as a telescoping cylinder that is covered with solar cells and an Earth facing antenna that is despun at the top of the cylinder. The similarity in design and the number of spacecraft launched over a long period of time make the HS-376 a prime target for studying the effects of solar weathering on solar panels as a function of time. A selection of primarily non-operational HS-376 spacecraft launched over a 20 year time period were observed using the United Kingdom Infrared Telescope on Mauna Kea and multi-band near-infrared photometry produced. Each spacecraft was observed for an entire night cycling through ZYJHK filters and time-varying colors produced to compare near-infrared color as a function of launch date. The resulting analysis shown here may help in the future to set launch date constraints on the parent object of unidentified debris objects or other unknown spacecraft.

  13. LiDAR-derived surface roughness signatures of basaltic lava types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai`i (United States)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.


    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (´áā and pāhoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pāhoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pāhoehoe to slabby-pāhoehoe is a meter-scale process, and the finer roughness characteristics of pāhoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate. We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  14. Dicty_cDB: Contig-U15533-1 [Dicty_cDB

    Lifescience Database Archive (English)


  15. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes (United States)

    Klein, Fred W.


    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  16. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars (United States)

    Ming, D. W.; Morris, R. V.; Golden, D. C.


    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the Mössbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  17. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.


    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  18. Ground Penetrating Radar Field Studies of Planetary Analog Geologic Settings: Impact Ejecta, Volcanics, and Fluvial Terrains (United States)

    Russell, P. S.; Grant, J. A.; Carter, L. M.; Garry, W.; Williams, K. K.; Morgan, G. A.; Daubar, I.; Bussey, B.


    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar and martian surfaces, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future landed scientific or engineering operations. Results and interpretations presented here from impact ejecta (Barringer Meteorite Crater), volcanic deposits (Northern Arizona cinders overlying lavas, columnar-jointed Columbia River flood basalts, Hawaii lava flows), and terrains influenced by fluvial-related activity (channeled scablands megaflood bar, Mauna Kea glacio-fluvial deposits) focus on defining the radar "fingerprint" of geologic materials and settings that may be analogous to those found on the Moon and Mars. The challenge in using GPR in geologic investigations is the degree to which different geologic features and processes can be uniquely identified and distinguished in the data. Our approach to constraining this is to qualitatively and quantitatively characterize GPR signatures of different geological environments and to compare them with "ground-truth" observations of subsurface exposures immediately adjacent or subjacent to our GPR transects. Several sites were chosen in each field area based on accessibility, visual access to the subsurface, and presence of particular geologic features of interest. The interpreted distribution of blocks in impact ejecta at Meteor Crater, using a 400 MHz antenna (wavelength of 75 cm) is 1.5-3 blocks per m^3 in the upper 1 m (and 0.5-1 blocks per m^3 in the upper two meters), which is close to the in situ measured block distribution of 2-3 blocks larger than 0.25-0.30 m per m^3. This is roughly the detection limit to be expected from the λ/3 resolution approximation of radar wavelength and indicates that the 400 MHz GPR is characterizing the block population in ejecta. While megaflood bar deposits are also reflector-rich, individual reflectors are in

  19. Strip Coating Metrology on Large Scale Telescope Optics: Scalable Cost Saving Preventative Maintenance with First Contact Polymer (United States)

    Hamilton, J.


    Protection and cleaning of precision optical surfaces on large scale astronomical instruments has entered a new era. First surface mirrors have been restored to "like-new" condition avoiding the expense and downtime of recoating. Nearly 10 years of testing and evaluation at a variety of sites including optics at Vandenberg Air Force Base, the Canada France Hawaii Telescope (CFHT) and the W.M Keck Telescope on Mauna Kea, have yielded impressive results: restored reflectivity, no residue, insitu cleaning and better coating performance when used as a precleaner when coating. Metrology and research in our labs has resulted in these novel, commercially available polymeric stripcoatings that are applied as a liquid and subsequently peeled off the substrate as a solid film. These designer polymer solutions safely clean and protect a wide variety of nanostructured surfaces and leave the surface almost atomically clean. Contaminant removal was monitored by a variety of techniques including Reflectivity, Nomarski, Atomic Force and Scanning Electron Microscopy as well as XPS. In addition, data demonstrates that the material safely removes particulate contamination and finger oils from nanostructures such as the 300nm wide lines on diffraction gratings and similar submicron features on Si wafers. High power laser damage testing found no residue on the optical surfaces following dried film removal and YAG laser damage thresholds after cleaning on coated BK7 of 15J/cm2 at 20ns and 20Hz were unchanged. Additionally to these adhesion tunable polymer systems, nanotube and graphene doped, ESD free polymer strip coatings for surface protection, nanoreplication, cleaning and dust mitigation have also been developed. Our coatings have been successfully used on diverse surfaces like high power laser optics, the Hope Diamond in Washington DC, CCD s for the 520 megapixel Dark Energy Survey Camera being built at Fermilab and lithographically fabbed detector surfaces for the Cryogenic Dark

  20. IPY Data Management - How one can deploy a virtual observatory in cyberspace? (United States)

    Papitashvili, V. O.


    Proliferation of global observing systems and distributed scientific and operational databases challenges human abilities to comprehend effectively ever increasing volume of information about the Earth and geospace. At the same time, better communication and advent of the Internet and World Wide Web provide effective means for development of sophisticated search engines capable of identifying discipline-specific data on the Web and then retrieving requested intervals for scientific analyses or practical applications. By analogy with physical observatories deployed over the Globe and in Geospace, a concept of "Virtual Observatory" has been introduced where a personal computer can serve as an "observing" instrument that retrieves specific data from remote Internet servers and data provider nodes. Thus, collecting astronomical data from many telescopes located elsewhere in the World (and even in space) via the Internet, one can turn his/her computer to a great telescope equivalent to Hubble or Mauna Kea world-class instruments. Similar approach can turn personal computers into global magnetic, atmospheric, oceanographic, ecological (you name it!) observatories if the data from corresponding disciplines are available from the World Wide Web. Thus, we postulate here that a "Virtual Observatory" can only be deployed in cyberspace if a discipline-specific data structure (primitive or sophisticated) becomes available electronically - that is, if the appropriate "data fabric" is created in cyberspace, making itself available for search and retrieval by any software (or middleware) packages developed and installed at a single (i.e., portal-based) Internet server or at a number of personal computers (nodes) with open FTP or HTTP (or SSL and S-HTTP) ports through which specific scientific data are provided. (Generally speaking, these data may not be necessarily "scientific"; the proposed concept is applicable for "Virtual Corporation" or "Virtual Retailer" networks as well

  1. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri


    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  2. First On-Site Data Analysis System for Subaru/Suprime-Cam (United States)

    Furusawa, Hisanori; Okura, Yuki; Mineo, Sogo; Takata, Tadafumi; Nakata, Fumiaki; Tanaka, Manobu; Katayama, Nobuhiko; Itoh, Ryosuke; Yasuda, Naoki; Miyazaki, Satoshi; Komiyama, Yutaka; Utsumi, Yousuke; Uchida, Tomohisa; Aihara, Hiroaki


    We developed an automated on-site quick analysis system for mosaic CCD data of Suprime-Cam, which is a wide-field camera mounted at the prime focus of the Subaru Telescope, Mauna Kea, Hawaii. The first version of the data-analysis system was constructed, and started to operate in general observations. This system is a new function of observing support at the Subaru Telescope to provide the Subaru user community with an automated on-site data evaluation, aiming at improvements of observers' productivity, especially in large imaging surveys. The new system assists the data evaluation tasks in observations by the continuous monitoring of the characteristics of every data frame during observations. The evaluation results and data frames processed by this system are also useful for reducing the data-processing time in a full analysis after an observation. The primary analysis functions implemented in the data-analysis system are composed of automated realtime analysis for data evaluation and on-demand analysis, which is executed upon request, including mosaicing analysis and flat making analysis. In data evaluation, which is controlled by the organizing software, the database keeps track of the analysis histories, as well as the evaluated values of data frames, including seeing and sky background levels; it also helps in the selection of frames for mosaicing and flat making analysis. We examined the system performance and confirmed an improvement in the data-processing time by a factor of 9 with the aid of distributed parallel data processing and on-memory data processing, which makes the automated data evaluation effective.

  3. Nonlinear Spectral Mixture Modeling to Estimate Water-Ice Abundance of Martian Regolith (United States)

    Gyalay, Szilard; Chu, Kathryn; Zeev Noe Dobrea, Eldar


    We present a novel technique to estimate the abundance of water-ice in the Martian permafrost using Phoenix Surface Stereo Imager multispectral data. In previous work, Cull et al. (2010) estimated the abundance of water-ice in trenches dug by the Mars Phoenix lander by modeling the spectra of the icy regolith using the radiative transfer methods described in Hapke (2008) with optical constants for Mauna Kea palagonite (Clancy et al., 1995) as a substitute for unknown Martian regolith optical constants. Our technique, which uses the radiative transfer methods described in Shkuratov et al. (1999), seeks to eliminate the uncertainty that stems from not knowing the composition of the Martian regolith by using observations of the Martian soil before and after the water-ice has sublimated away. We use observations of the desiccated regolith sample to estimate its complex index of refraction from its spectrum. This removes any a priori assumptions of Martian regolith composition, limiting our free parameters to the estimated real index of refraction of the dry regolith at one specific wavelength, ice grain size, and regolith porosity. We can then model mixtures of regolith and water-ice, fitting to the original icy spectrum to estimate the ice abundance. To constrain the uncertainties in this technique, we performed laboratory measurements of the spectra of known mixtures of water-ice and dry soils as well as those of soils after desiccation with controlled viewing geometries. Finally, we applied the technique to Phoenix Surface Stereo Imager observations and estimated water-ice abundances consistent with pore-fill in the near-surface ice. This abundance is consistent with atmospheric diffusion, which has implications to our understanding of the history of water-ice on Mars and the role of the regolith at high latitudes as a reservoir of atmospheric H2O.

  4. Photonic local oscillator development (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray


    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  5. Oral histories in meteoritics and planetary science—XXIV: William K. Hartmann (United States)

    Sears, Derek W. G.


    In this interview, William Hartmann (Bill, Fig. 1) describes how he was inspired as a teenager by a map of the Moon in an encyclopedia and by the paintings by Chesley Bonestell. Through the amateur journal "Strolling Astronomer," he shared his interests with other teenagers who became lifelong colleagues. At college, he participated in Project Moonwatch, observing early artificial satellites. In graduate school, under Gerard Kuiper, Bill discovered Mare Orientale and other large concentric lunar basin structures. In the 1960s and 1970s, he used crater densities to study surface ages and erosive/depositional effects, predicted the approximately 3.6 Gyr ages of the lunar maria before the Apollo samples, discovered the intense pre-mare lunar bombardment, deduced the youthful Martian volcanism as part of the Mariner 9 team, and proposed (with Don Davis) the giant impact model for lunar origin. In 1972, he helped found (what is now) the Planetary Science Institute. From the late 1970s to early 1990s, Bill worked mostly with Dale Cruikshank and Dave Tholen at Mauna Kea Observatory, helping to break down the Victorian paradigm that separated comets and asteroids, and determining the approximately 4% albedo of comet nuclei. Most recently, Bill has worked with the imaging teams for several additional Mars missions. He has written three college textbooks and, since the 1970s, after painting illustrations for his textbooks, has devoted part of his time to painting, having had several exhibitions. He has also published two novels. Bill Hartmann won the 2010 Barringer Award for impact studies and the first Carl Sagan Award for outreach in 1997.

  6. Remote Control of the CFHT Dome Shutter (United States)

    Look, Ivan; Roberts, Larry; Vermeulen, Tom; Taroma, Ralph; Matsushige, Grant


    Several years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Facility on Mauna Kea from their Headquarters in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will attempt to provide Design Information on the Dome Shutter, which is both Controlled and Monitored Remotely from Waimea. The Dome Shutter Control System incorporates an upgraded Allen-Bradley PLC processor (SLC 5/05), which provides Remote Operation and Monitoring of the existing System. Several earlier upgrade projects were integrated to provide improvement to the Shutter System such as PLC Control, System Feedback, and Safety Features. This particular upgrade provides Remote capability, CFHT developed Control GUI, and Remote monitoring that promise to deliver a more versatile, visual, and safer Shutter Operation. The Dome Shutter Control System provides three modes of Operation namely; Remote, Integration, and Local. The Control GUI is used to operate the Shutter remotely. Integration mode is provided to develop PLC software code and is performed by connecting a Laptop directly to the Shutter Control Panel. Local mode is retained to provide Remote Lockout (No Remote Control), which allows Shutter control ONLY via the existing Electrical Panel. This mode is primarily intended for Shutter maintenance and troubleshooting. The Dome Shutter remains the first Line-of-Defense for Telescope protection due to inclement weather and so special attention was considered during Remote development. The Shutter has been equipped with an Autonomous Shutdown sequence in the event of Power or Network failure. If Loss of HELCO Power or Start-up of our Stand-by Diesel Generator is detected; a planned timing sequence will Close the Shutter Automatically. Likewise, an internal CFHT Network heartbeat was

  7. SHARC II: A Caltech Submillimeter Observatory Facility Camera with 384 Pixels (United States)

    Dowell, C. Darren; Allen, Christine A.; Babu, Sachidananda; Freund, Minoru; Gardner, Matthew B.; Groseth, Jeffrey; Jhabvala, Murzy; Kovacs, Attila; Lis, Dariusz C.; Moseley, S. Harvey, Jr.


    SHARC II is a background-limited 350 micron and 450 micron facility camera for the Caltech Submillimeter Observatory undergoing commissioning in 2002. The key component of SHARC II is a 12 x 32 array of doped silicon 'pop-up' bolometers developed at NASA/Goddard. Each 1 mm x 1 mm pixel is coated with a 400 Omega/square bismuth film and located lambda/4 above a reflective backshort to achieve greater than 75% absorption efficiency. The pixels cover the focal plane with greater than 90% filling factor. At 350 microns, the SHARC II pixels are separated by 0.65 lambda/D. In contrast to the silicon bolometers in the predecessor of SHARC II, each doped thermistor occupies nearly the full area of the pixel, which lowers the 1/f knee of tile detector noise to less than 0.03 Hz, under load, at tile bath temperature of 0.36 K. The bolometers are AC-biased and read in 'total power' mode to take advantage of the improved stability. Each bolometer is biased through a custom approx. 130 MOmega CrSi load resistor at 7 K and read with a commercial JFET at 120 K. The JFETs and load resistors are integrated with the detectors into a single assembly to minimize microphonic noise. Electrical connection across the 0.36 K to 4 K and 4 K to 120 K temperature interfaces is accomplished with lithographed metal wires on dielectric substrates. In the best 25% of winter nights on Mauna Kea, SHARC II is expected to have an NEFD at 350 micron of 1 Jy Hz(sup -1/2) or better. The new camera should be at least 4 times faster at detecting known point sources and 30 times faster at mapping large areas compared to the prior instrument.

  8. Insight into the structure and physics of M dwarf stars through determination of the rotation, metallicities, and radii of the nearby population (United States)

    Newton, Elisabeth R.


    Despite the prevalence of M dwarfs, their fundamental properties--their sizes, compositions, and ages--are not well-constrained. Empirical determination of these properties is important for gaining insight into their stellar structure, magnetic field generation, and angular momentum evolution. Knowledge of the stellar parameters is also key to characterizing planetary systems. I used observations to empirically constrain the properties of nearby, mid-to-late M dwarfs targeted by the MEarth transiting planet survey. I obtained low-resolution (R=2000) NIR spectra of 450 M dwarfs using SpeX on IRTF. I measured their absolute radial velocities with an accuracy of 4 km/s by exploiting telluric lines to establish an absolute wavelength calibration, and developed techniques to estimate M dwarf metallicities from K-band spectral line equivalent widths (EWs) or 2MASS colors to 0.15 dex. Using stars with interferometric radii, I showed that H-band EWs can be used to infer K and M dwarf temperatures to 69K, and radii to 0.027Rsun. I applied these relations to planet-hosting stars from Kepler, showing that the typical planet is 15% larger than is inferred if adopting other stellar parameters. Using photometry from the MEarth-North Observatory, I measured rotation periods from 0.1 to 150 days for 350 M dwarfs. There is a prevalence of stable spot patterns, and no correlation between period and amplitude for fully-convective stars. Using galactic kinematics as a proxy for age, I demonstrated a smooth age-rotation relation. I found that rapid rotators (PJohn Templeton Foundation. ERN was supported by the NSF GRFP. This work includes observations obtained at the Infrared Telescope Facility, operated by the U. of Hawaii, and the Magellan Telescopes at Las Campanas Observatory, Chile. I recognize the significant role of Mauna Kea within the indigenous Hawaiian community, and acknowledge the opportunity to conduct these observations.

  9. Social Media Planning for the June 5, 2012 transit of Venus (United States)

    Young, C.; Wawro, M.; Cline, T. D.; Schenk, L. C.; Durscher, R.


    On June 5, 2012 at sunset on the East Coast of North America and earlier for other parts of the U.S., the planet Venus made its final trek across the face of the sun as seen from Earth until the year 2117! The NASA Goddard Sun-Earth Day and Solar Dynamics Observatory EPO teams developed a social media strategy to support NASAs Transit of Venus event and webcast from Mauna Kea, Hawaii, on June 5, 2012. Our goal was to connect our contacts with a growing and vibrant social media community during all phases of this celestial event! We also wanted to help spread the word about the Transit of Venus by sharing content, facts, videos, images and links about the transit with our networks. Although social media events occurred throughout the world, our strategy was to provide an additional focus on NASA related events in key locations including those events happening in Hawaii, Alaska, and NASA Ames thereby amplifying our outreach efforts while ensuring that a strong connection existed across geographical and cultural borders. We also wanted to provide the public with information that would help them understand the importance of staying connected via social media even if viewing the transit was possible from their own locations. The social media strategy and the transit of Venus events were a great success and well as a learning experience for future social media events. We present the results of our plan as well as ways to improve and expand for future events. In addition, we present our social media template developed for the transit and now used by other heliophysics EPO teams.

  10. Spectrophotometric Rapid-Response Classification of Near-Earth Objects (United States)

    Mommert, Michael; Trilling, David; Butler, Nat; Axelrod, Tim; Moskovitz, Nick; Jedicke, Robert; Pichardo, Barbara; Reyes-Ruiz, Mauricio


    Small NEOs are, as a whole, poorly characterized, and we know nothing about the physical properties of the majority of all NEOs. The rate of NEO discoveries is increasing each year, and projects to determine the physical properties of NEOs are lagging behind. NEOs are faint, and generally even fainter by the time that follow-up characterizations can be made days or weeks after their discovery. There is a need for a high-throughput, high-efficiency physical characterization strategy in which hundreds of faint NEOs can be characterized each year. Broadband photometry in the near-infrared is sufficiently diagnostic to assign taxonomic types, and hence constrain both the individual and ensemble properties of NEOs.We present results from our rapid response near-infrared spectrophotometric characterization program of NEOs. We are using UKIRT (on Mauna Kea) and the RATIR instrument on the 1.5m telescope at the San Pedro Martir Observatory (Mexico) to allow us to make observations most nights of the year in robotic/queue mode. We derive taxonomic classifications for our targets using machine-learning techniques that are trained on a large sample of measured asteroid spectra. For each target we assign a probability for it to belong to a number of different taxa. Target selection, observation, data reduction, and analysis are highly automated, requiring only a minimum of user interaction, making this technique powerful and fast. Our targets are NEOs that are generally too faint for other characterization techniques, or would require many hours of large telescope time.

  11. The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory (United States)

    Hollister, Matthew I.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; Nguyen, Hien Trong; Noroozian, Omid; Sayers, Jack; Schlaerth, James; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas


    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed.

  12. Circus Family of Stars (Artist's Concept) (United States)


    [figure removed for brevity, see original site] Quick Time Movie for PIA03521 Circus Family of Stars This artist's animation shows the clockwork-like orbits of a triple-star system called HD 188753, which was discovered to harbor a gas giant, or 'hot Jupiter,' planet. The planet zips around the system's main star (yellow, center) every 3.3 days, while the main star is circled every 25.7 years by a dancing duo of stars (yellow and orange, outer orbit). The star pair is locked in a 156-day orbit. This eccentric star family is a cramped bunch; the distance between the main star and the outer pair of stars is about the same as that between the Sun and Saturn. Though multiple-star systems like this one are common in the universe, astronomers were surprised to find a planet living in such tight quarters. One reason for the surprise has to do with theories of hot Jupiter formation. Astronomers believe that these planets begin life at the outer fringes of their stars, in thick dusty disks called protoplanetary disks, before migrating inward. The discovery of a world under three suns throws this theory into question. As seen in this animation, there is not much room at this system's outer edges for a hot Jupiter to grow. The discovery was made using the Keck I telescope atop Mauna Kea mountain in Hawaii. The triple-star system is located 149 light-years away in the constellation Cygnus. The sizes and orbital periods in the animation are not shown to scale. The relative motions are shown with respect to the main star.

  13. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009 (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John


    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  14. In vivo and ex vivo confocal endomicroscopy of pancreatic cystic lesions: A prospective study. (United States)

    Krishna, Somashekar G; Modi, Rohan M; Kamboj, Amrit K; Swanson, Benjamin J; Hart, Phil A; Dillhoff, Mary E; Manilchuk, Andrei; Schmidt, Carl R; Conwell, Darwin L


    To investigate the reproducibility of the in vivo endoscopic ultrasound (EUS) - guided needle based confocal endomicroscopy (nCLE) image patterns in an ex vivo setting and compare these to surgical histopathology for characterizing pancreatic cystic lesions (PCLs). In a prospective study evaluating EUS-nCLE for evaluation of PCLs, 10 subjects underwent an in vivo nCLE (AQ-Flex nCLE miniprobe; Cellvizio, MaunaKea, Paris, France) during EUS and ex vivo probe based CLE (pCLE) of the PCL (Gastroflex ultrahigh definition probe, Cellvizio) after surgical resection. Biopsies were obtained from ex vivo CLE-imaged areas for comparative histopathology. All subjects received intravenous fluorescein prior to EUS and pancreatic surgery for in vivo and ex vivo CLE imaging respectively. A total of 10 subjects (mean age 53 ± 12 years; 5 female) with a mean PCL size of 34.8 ± 14.3 mm were enrolled. Surgical histopathology confirmed 2 intraductal papillary mucinous neoplasms (IPMNs), 3 mucinous cystic neoplasms (MCNs), 2 cystic neuroendocrine tumors (cystic-NETs), 1 serous cystadenoma (SCA), and 2 squamous lined PCLs. Characteristic in vivo nCLE image patterns included papillary projections for IPMNs, horizon-type epithelial bands for MCNs, nests and trabeculae of cells for cystic-NETs, and a "fern pattern" of vascularity for SCA. Identical image patterns were observed during ex vivo pCLE imaging of the surgically resected PCLs. Both in vivo and ex vivo CLE imaging findings correlated with surgical histopathology. In vivo nCLE patterns are reproducible in ex vivo pCLE for all major neoplastic PCLs. These findings add further support the application of EUS-nCLE as an imaging biomarker in the diagnosis of PCLs.


    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U.; Thompson, Ian B. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sobeck, Jennifer S. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Cowan, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Frebel, Anna [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Ivans, Inese I. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schatz, Hendrik [Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824 (United States); Sneden, Christopher [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)


    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

  16. Protection of Existing and Potential Astronomical Sites in Chile - an Update. (United States)

    Smith, M. G.; Sanhueza, P.; Norman, D.; Schwarz, H.; Orellana, D.


    The IAU's Working Group on Controlling Light Pollution (iauwg) has declared Mauna Kea and a wide strip of Northern Chile between Antofagasta and Chajnanator as top priorities for its efforts to protect existing and potential sites in the Northern and Southern hemispheres respectively. This report provides an update on the iauwg's co-ordinated efforts to protect areas around the major international optical observatories in Chile, as well as the "Chilean Special Zone" (CSZ) mentioned above. This zone is of current and potential interest for the installation of extremely large optical telescopes and includes the ALMA radio-astronomy site. The CSZ is potentially vulnerable to adverse effects of mining in the region. Progess has been made in demonstrating to local mining interests within the CSZ the economic advantages of quality lighting. Educational and outreach activities to a variety of target audiences are building on legislation covering dark skies - itself part of work by the Chilean government to protect the natural heritage of Chile. Substantial good will was generated by an international, bilingual conference held last March in Chile. Just in the region around AURA's Observatory in Chile (Gemini South, CTIO and SOAR), a portable planetarium has been used to reach out to over 600 teachers and 65,000 pupils in the RedLaSer schools network within the last three years. This has attracted the direct interest of Chile's Ministry of Education. Videoconferencing over Internet2 is being used for educational purposes between Chile and various sites in the US. The NSF- initiated Mamalluca municipal observatory now receives more visitors than all the international observatories in Chile combined and is the focus of an expanding local industry of astronomical eco-tourism. Most of this work was supported by funding from, or via, the US NSF through CTIO and Gemini, and from ESO, OCIW, CONAMA and the IDA.

  17. The [Y/Mg] clock works for evolved solar metallicity stars (United States)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.


    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  18. A 2017 stellar occultation by Orcus/Vanth (United States)

    Sickafoose, Amanda A.; Bosh, Amanda S.; Levine, Stephen; Zuluaga, Carlos A.; Genade, Anja; Schindler, Karsten; Lister, Tim; Person, Michael J.


    (90482) Orcus is a large trans-Neptunian object (TNO) of diameter ~900 km, located in the 3:2 orbital resonance with Neptune. This plutino has a satellite, Vanth, approximately 280 km in diameter. Vanth orbits roughly 9000 km from Orcus in a ~9.5-day period. This system is particularly interesting, as Orcus falls between the small, spectrally-bland TNOs and the large TNOs having spectra rich in volatile features, while Vanth might have resulted from either collision or capture.A stellar occultation by Orcus was predicted to occur on 07 March 2017. Observations were made from five sites: the 0.6-m Astronomical Telescope of the University of Stuttgart (ATUS) at Sierra Remote Observatories (SRO), California; Las Cumbres Observatory’s 1-m telescope (ELP) at McDonald Observatory, Fort Davis, Texas; NASA’s 3-m InfraRed Telescope Facility (IRTF) on Mauna Kea, Hawaii; the 4.1-m Southern Astrophysical Research telescope (SOAR) on Cerro Pachón, Chile; and the 0.6-m Southeastern Association for Research in Astronomy telescope (SARA-CT) at Cerro Tololo, Chile. High-speed, visible-wavelength images were taken at all sites, in addition to simultaneous K-band images at the IRTF. A solid-body occultation was observed at both ELP and the IRTF. Offset midtimes and incompatible light ratios suggest that two different stars were occulted by two different bodies, likely Orcus and Vanth. See Bosh et al. this conference for details of the astrometry for the event. Here, we present results from the observations, including light curves, size and albedo estimates, and upper limits on a possible atmosphere.

  19. ASTER Images the Island of Hawaii (United States)


    These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched

  20. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii (United States)

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.


    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  1. Pre- and Post-perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-rich Heritage? (United States)

    Disanti, Michael Antonio; Villanueva, Geronimo Luis; Paganini, Lucas; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Mumma, Michael Jon


    We conducted pre- and post-perihelion observations of Comet C/2009 P1 (Garradd) on UT 2011 October 13 and 2012 January 8, at heliocentric distances of 1.83 and 1.57 AU, respectively, using the high-resolution infrared spectrometer (NIRSPEC) at the Keck II 10-m telescope on Mauna Kea, HI. Pre-perihelion, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. Post-perihelion, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their currentmean values asmeasured in a dominant group of Oort cloud comets. This may indicate processing of its pre-cometary ices in a relatively oxygen-rich environment. Our measurements indicate consistent pre- and post-perihelion abundance ratios relative to H2O, suggesting we were measuring compositional homogeneity among measured species to the depths in the nucleus sampled. However, the overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1, perhaps due to seasonal differences in the heating of one or more active regions on the nucleus. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules, including H2O on January 8, nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to quantify contributions due to release of H2O from the nucleus, and fromits release in the coma. This resulted in the latter source contributing 25-30% of the total observed water within our slit, which covered roughly +/-300 km by +/-4500 km from the nucleus. We attribute this excess H2O, which peaked at a mean projected distance of 1300-1500 km from the nucleus, to release from water-rich, relatively pure icy grains

  2. iVFTs - immersive virtual field trips for interactive learning about Earth's environment. (United States)

    Bruce, G.; Anbar, A. D.; Semken, S. C.; Summons, R. E.; Oliver, C.; Buxner, S.


    (Iceland), and Mauna Kea (Hawaii). iVFTs are being beta-tested and used at ASU in several large-enrollment courses to assess its usability and effectiveness in meeting specific learning objectives. We invite geoscience educators to partake of this resource and find new applications to their own teaching.

  3. The Pacific Islands Climate Science Center five-year science agenda, 2014-2018 (United States)

    Helweg, David; Nash, Sarah A.B.; Polhemus, Dan A.


    From the heights of Mauna Kea on Hawaiʻi Island to the depths of the Mariana Trench, from densely populated cities to sparse rural indigenous communities and uninhabited sandy atolls, the Pacific region encompasses diverse associations of peoples and places that are directly affected by changes to the atmosphere, ocean, and land. The peoples of the Pacific are among the first to observe and experience the effects of global climatic changes. Because the Pacific region is predominantly composed of vast ocean expanses punctuated only by small, isolated emergent islands and atolls, marine processes are critical factors in the region’s climate systems, and their impacts occur here to a greater degree than in continental regions. Rates of sea-level rise in the region during the modern altimetry period exceed the global rate, with the highest increases occurring in the western North Pacific (Cazenave and Llovel, 2010; Nerem and others, 2010; Timmermann and others, 2010). The ocean has also warmed during this period. Since the 1970s, sea-surface temperature has increased at a rate of 0.13 to 0.41 °F (0.07 to 0.23 °C) per decade, depending on the location (Keener and others, 2012a). Ocean chemistry has changed during this period as well, with surface pH having dropped by 0.1 pH units (Feely and others, 2009; Doney and others, 2012). Over the past century, air temperature has increased throughout the Pacific region. In Hawaiʻi, average temperatures increased by 0.08 °F per decade during the period 1919 to 2006, and in recent years, the rate of increase has been accelerating, particularly at high elevations (Giambelluca and others, 2008). In the western North Pacific, temperatures also increased over the past 60 years (Lander and Guard, 2003; Lander, 2004; Lander and Khosrowpanah, 2004; Kruk and others, 2013), with a concurrent warming trend in the central South Pacific since the 1950s (Australian Bureau of Meteorology and CSIRO, 2011).

  4. A spectroscopic survey of young brown dwarfs in the near-infrared (United States)

    McGovern, Mark Roland

    Motivated by the discovery of numerous Jupiter-sized brown dwarfs in infrared imaging surveys, and stimulated by the advent of sensitive near-infrared (NIR) spectrometers on very large telescopes, this thesis presents the results of a unique observational survey to investigate and characterize the near-infrared spectra of low-mass stars and brown dwarfs. The project, called the NIRSPEC Brown Dwarf Spectroscopic Survey (or BDSS) was carried out with the Keck 10- m telescope on Mauna Kea, Hawaii using the facility cryogenic NIR spectrometer (NIRSPEC) developed at UCLA by Professor Ian McLean. Beginning in April 1999, immediately after NIRSPEC was delivered to the telescope, this infrared spectroscopic survey was developed in multiple phases to obtain the largest self-consistent set of high quality spectra yet obtained for the two new classes of very cool objects known as L and T dwarfs (T eff ~ 2200-750K). This work presents the results of two of the major phases of the BDSS and includes near-infrared spectra from over 150 low-mass stars and brown dwarfs. In the first phase of the project the emphasis was on the effects of decreasing effective temperature (T eff ) on the infrared spectral morphology. Observations were concentrated on the J -band region of the spectrum from 1.14- 1.36 microns. Over 50 objects spanning the spectral types from M6 to T8 were observed in this band. With the spectral resolving power of the NIRSPEC instrument (R ~ 2000) we developed nine spectral indices to classify these objects in the J -band. From this data base it was possible for the first time to create a pure infrared spectral classification system for the L dwarfs, and to confirm the existing infrared classification system for T dwarfs. This is an important development because most of the flux from L and T dwarfs is radiated in the near-infrared, where they are several magnitudes brighter than at visible wavelengths, and classification via NIR properties is not only important but

  5. Cobra Fiber-Optic Positioner Upgrade (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.


    A prime focus spectrometer (PFS), along with corrective optics, will mount in place of the secondary mirror of the Subaru telescope on Mauna Kea, Hawaii. This will allow simultaneous observations of cosmologic targets. It will enable large-scale galactic archeology and dark energy surveys to help unlock the secrets of the universe. To perform these cosmologic surveys, an array of 2,400 optical fibers needs to be independently positioned within the 498-mm-diameter focal plane of the PFS instrument to collect light from galaxies and stars for spectrographic analyses. To allow for independent re-positioning of the fibers, a very small positioner (7.7 mm in diameter) is required. One hundred percent coverage of the focal plane is also required, so these small actuators need to cover a patrol region of 9.5 mm in diameter. To optimize the amount of light that can be collected, the fibers need to be placed within 5 micrometers of their intended target (either a star or galaxy). The Cobra Fiber Positioner was designed to meet the size and accuracy requirements stated above. Cobra is a two-degrees-of-freedom mechanism that can position an optical fiber in the focal plane of the PFS instrument to a precision of 5 micrometers. It is a theta-phi style positioner containing two rotary piezo tube motors with one offset from the other, which enables the optic fibers to be placed anywhere in a small circular patrol region. The patrol region of the actuator is such that the array of 2,400 positioners allows for full coverage of the instrument focal plane by overlapping the patrol areas. A second-generation Cobra positioner was designed based on lessons learned from the original prototype built in 2009. Improvements were made to the precision of the ceramic motor parts, and hard stops were redesigned to minimize friction and prevent jamming. These changes resulted in reducing the number of move iterations required to position the optical fiber within 5 micrometers of its target. At

  6. The Volatile Composition of newly-discovered C/2017 E4 (Lovejoy) before its dissolutionas revealed by iSHELL at NASA/IRTF (United States)

    Faggi, Sara; Villanueva, Geronimo Luis; Mumma, Michael J.; Paganini, Lucas


    In April 2017, we acquired comprehensive high-resolution spectra of newly-discovered comet C/2017 E4 (Lovejoy) as it approached perihelion, and before its disintegration. We detected many cometary emission lines across 4 customized instrument settings (L1-b, L3, Lp1-b and M1) in the (1 - 5) μm range, using iSHELL - the new near-IR high resolution immersion echelle spectrograph on NASA/IRTF (Mauna Kea, Hawaii).In M1, near 5μm, we detected multiple ro-vibrational lines of H2O, CO and the (X-X) system of CN; the latter data constitute a complete survey of CN at these wavelengths. We derived quantitative abundances for CN and addressed its origin by comparing with quantitative production rates for HCN. The ability to quantify both primary and product species eliminates systematic error that may be introduced when measurements are acquired with different astronomical techniques and instruments.In L1, around 3 μm, we detected fluorescence emission from HCN, C2H2, and water, prompt emission from OH, and many other features. Methane, ethane and methanol were detected both in L3 and Lp1 settings. These species are relevant to astrobiology, owing to questions regarding the origin of pre-biotic organics and water on terrestrial planets.The many water emission lines detected in L1-b (and M1) provided an opportunity to retrieve independent measures of rotational temperature for ortho- and para-H2O, thereby reducing systematic uncertainty in the derived ortho-para ratio and nuclear spin temperature. Deuterated species were also sought and results will be presented.The bright Oort cloud comet E4 Lovejoy combined with the new capabilities of iSHELL provided unique results. The individual iSHELL settings cover very wide spectral range with very high accuracy, eliminating many sources of systematic errors when retrieving molecular abundances; future comparisons amongst comets will clarify the nature and meaning of cosmogonic indicators based on composition.Acknowledgments NASA

  7. NASA's Orbital Debris Optical and IR Ground-Based Observing Program Utilizing the MCAT, UKIRT, and Magellan Telescopes (United States)

    Lederer, Susan; Cowardin, H. M.; Buckalew, B.; Frith, J.; Hickson, P.; Pace, L.; Matney, M.; Anz-Meador, P.; Seitzer, P.; Stansbery, E.; hide


    Characterizing debris in Earth-orbit has become increasingly important as the population growth rises steadily, posing greater and greater threats to active satellites with each passing year. Currently, the Joint Space Operations is tracking over 23,000 pieces of debris, ranging in size from 1-meter and larger in geosychronous orbits (GEO) to 10-cm and larger at low-Earth orbits (LEO). Model estimates suggest that there may be more than 500,000 pieces of spacecraft debris larger than 1 cm currently in orbit around the Earth. With such a small fraction of the total population being tracked, and new break-ups occurring in LEO, GEO, and Geo Transfer Orbits, new assets, techniques, and approaches for characterizing this debris are needed. With this in mind, NASA's Orbital Debris Program Office has actively tasked a suite of telescopes around the world. In 2015, the newly-built 1.3m optical Meter Class Autonomous Telescope (MCAT) came on-line on Ascension Island in the South Atlantic Ocean and is currently in its commissioning phase. MCAT is designed to track Earth-orbiting objects above 200km, conduct surveys at GEO, and work in tandem with a newly-installed Raven-class commercial-off-the-shelf system, a 0.4-meter telescope co-located on Ascension with a field-of-view similar to MCAT's and research-grade instrumentation designed to complement MCAT for observations taken either simultaneously or in tandem. The 3.8m infrared UKIRT telescope on Mauna Kea, Hawaii, has been heavily tasked throughout 2015 and into 2016, collecting data on individual targets as well as in survey modes to study both the general GEO population as well as an individual break-up event of a BRIZ-M Rocket body that occurred in January 2016. Data collected include photometry and spectroscopy in the near-Infrared (0.85-2.5 m) and the mid-infrared (8-16 m). Finally, the 6.5-m Baade Magellan telescope at Las Campanas Observatory in Chile was used to collect optical photometric survey data in October

  8. Reversion to virulence and efficacy of an attenuated canarypox vaccine in Hawai'i 'Amakihi (Hemignathus Virens) (United States)

    Atkinson, Carter T.; Wiegand, Kimberly C.; Triglia, Dennis; Jarvi, Susan I.


    Vaccines may be effective tools for protecting small populations of highly susceptible endangered, captive-reared, or translocated Hawaiian honeycreepers from introduced Avipoxvirus, but their efficacy has not been evaluated. An attenuated Canarypox vaccine that is genetically similar to one of two passerine Avipoxvirus isolates from Hawai‘i and distinct from Fowlpox was tested to evaluate whether Hawai‘i ‘Amakihi (Hemignathus virens) can be protected from wild isolates of Avipoxvirus from the Hawaiian Islands. Thirty-one (31) Hawai‘i ‘Amakihi were collected from high-elevation habitats on Mauna Kea Volcano, where pox transmission is rare, and randomly divided into two groups. One group was vaccinated with Poximune C®, whereas the other group received a sham vaccination with sterile water. Four of 15 (27%) vaccinated birds developed life-threatening disseminated lesions or lesions of unusually long duration, whereas one bird never developed a vaccine-associated lesion or “take.” After vaccine lesions healed, vaccinated birds were randomly divided into three groups of five and challenged with either a wild isolate of Fowlpox (FP) from Hawai‘i, a Hawai‘i ‘Amakihi isolate of a Canarypox-like virus (PV1), or a Hawai‘i ‘Amakihi isolate of a related, but distinct, passerine Avipoxvirus (PV2). Similarly, three random groups of five unvaccinated ‘Amakihi were challenged with the same virus isolates. Vaccinated and unvaccinated ‘Amakihi challenged with FP had transient infections with no clinical signs of infection. Mortality in vaccinated ‘Amakihi challenged with PV1 and PV2 ranged from 0% (0/5) for PV1 to 60% (3/5) for PV2. Mortality in unvaccinated ‘Amakihi ranged from 40% (2/5) for PV1 to 100% (5/5) for PV2. Although the vaccine provided some protection against PV1, both potential for vaccine reversion and low efficacy against PV2 preclude its use in captive or wild honeycreepers.

  9. VizieR Online Data Catalog: Multiwavelength obs. of BL Lac in 2012-2013 (Wehrle+, 2016) (United States)

    Wehrle, A. E.; Grupe, D.; Jorstad, S. G.; Marscher, A. P.; Gurwell, M.; Balokovic, M.; Hovatta, T.; Madejski, G. M.; Harrison, F. H.; Stern, D.


    Our Herschel target of opportunity observations began on 2012 October 29 (MJD 56229) and continued for the three-month visibility window. We arranged for daily Swift pointings starting on 2012 October 27 through 2013 February 1. We also arranged for two intense periods of every-orbit Swift monitoring on 2012 December 11-12 and 2013 January 11-12. We obtained target of opportunity observations with NuSTAR on 2012 December 11-12. Observations of BL Lac every two to four days were carried out at the SMA on Mauna Kea, HI during the Herschel observation window, and intermittently thereafter. Monitoring observations with CARMA at 3mm were already underway. VLBA monitoring continued throughout the time range reported here as part of the ongoing Boston University (BU) γ-ray blazar monitoring program. Observations at other wavebands were already underway by other collaborations, e.g., the Whole Earth Blazar Telescope. In addition, roughly weekly Swift observations have been carried out for several years by A. Falcone and M. Stroh (Stroh & Falcone 2013ApJS..207...28S). Herschel SPIRE and PACS FIR observations of BL Lac are presented in table 1 and sections 2.2 and 2.5. SMA millimeter and submillimeter observations are presented in tables 1, 2 and 3 and sections 2.3 and 2.5. Millimeter observations with CARMA are presented in table 4 and sections 2.4 and 2.5. Swift optical, UV and X-ray observations are presented in tables 5 and 6 and section 2.6. Hard X-ray observations with NuSTAR are presented in section 2.7. γ-ray observations with Fermi are presented in section 2.8. The 7mm band observations are presented in section 2.9. The BU group obtained 2.4-10keV X-ray fluxes with the RXTE PCA three times per week from 2005 March 3 to 2011 December 31; see table 10 and Appendix. (7 data files).

  10. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.


    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  11. Volatile Characterization on Near Earth Asteroids (United States)

    McGraw, Lauren; Emery, Joshua P.; Thomas, Cristina A.; Rivkin, Andrew S.; Wigton, Nathanael R.


    Near Earth Asteroids (NEAs) are excellent laboratories for processes that affect the surfaces of airless bodies. Most NEAs are not expected to contain surface volatiles such as OH/H2O since they formed in the anhydrous regions of the solar system and since their surface temperatures are high enough to evaporate such volatiles. However, OH/H2O has been discovered on other seemingly dry bodies in the inner solar system, such as the Moon and Vesta. Possible sources for OH/H2O on these bodies include carbonaceous chondrite impacts and interactions with protons implanted by solar wind. NEAs should be subjected to the same processes as other “dry” bodies in the inner solar system so are hypothesized to also contain OH/H2O on their surfaces. We observed NEAs using SpeX on NASA’s Infrared Telescope Facility on Mauna Kea, Hawaii. Spectra were collected using both prism (0.7-2.52 µm) and LXD_short (1.67-4.2 µm) modes in order to accurately characterize asteroid type and the 3-µm region, where the OH/H2O signature is present. We have made 19 observations of 13 NEAs as part of this ongoing project, with five more observations scheduled for this Fall. Of those, at least 3 NEAs exhibit an absorption feature in the 3-µm region: (433) Eros, (1036) Ganymed, and (3122) Florence. Eros and Ganymed have both been observed multiple times and by multiple observers (e.g., Rivkin et al. 2017), including two observations of Eros in Fall 2016, and Florence will be observed again in early September. Of the other 10 NEAs studied, eight do not exhibit a 3-µm spectral feature. The spectra for 1998 XB and 2014 JO25 are too noisy to definitively determine the presence of volatiles. Characterizing the shape of the 3-µm absorption feature can yield information on the source of the OH/H2O on the surface. Shallow features that gradually slope upward towards the continuum, such as is present in the spectra of Eros and Ganymed, indicate the presence of OH, which is inferred to have formed

  12. Palila Restoration Research, 1996−2012. Summary and management implications (United States)

    Banko, Paul C.; Farmer, Chris; Dougill, Steve; Johnson, Luanne


    The Palila Restoration Project was initiated in 1996 by the U.S. Geological Survey to assist government agencies mitigate the effects of realigning Saddle Road (Highway 200) through Palila Critical Habitat (U.S. Fish and Wildlife Service 1998, Federal Highway Administration 1999). Ecological research on the palila (Loxioides bailleui), an endangered Hawaiian forest bird, carried out by the U.S. Geological Survey (formerly organized as the Research Division of U.S. Fish and Wildlife Service) since 1987 and research conducted by the Palila Restoration Project provided the scientific bases for developing a recovery strategy (U.S. Fish and Wildlife Service 2006) and its adaptive implementation. The main objectives of the Palila Restoration Project were to develop techniques for reintroducing the palila to a portion of its former range, investigate the biological threats to the palila and its habitat, and synthesize the existing body of ecological knowledge concerning the palila. Five broad study themes formed the research framework: 1. Population reintroduction and restoration 2. Demography and breeding ecology 3. Habitat use and food ecology 4. Vegetation ecology 5. Predator ecology and management An element that was not included in the research program of the project was the ecology and management of introduced ungulates, which has historically constituted the single greatest threat to Palila Critical Habitat (Banko et al. 2009). The absence of ungulate studies should not be interpreted to mean that we believe ungulates no longer damage palila habitat. Other research has already established that removing alien browsers and grazers from Mauna Kea is essential for the recovery of the subalpine forest on which palila now depend (Scowcroft and Giffin 1983; Scowcroft and Sakai 1983; Scowcroft and Conrad 1988, 1992; Hess et al. 1999). Moreover, the Federal District Court of Hawai‘i has ordered the State of Hawai‘i to remove browsing ungulates from Palila Critical

  13. Palila restoration research, 1996−2012 (United States)

    Banko, Paul C.; Farmer, Chris; Atkinson, Carter T.; Brinck, Kevin W.; Camp, Richad; Cole, Colleen; Canner, Raymond; Dougill, Steve; Goltz, Daniel; Gray, Elizabeth; Hess, Steven C.; Higashino, Jennifer; Jarvi, Susan I.; Johnson, Luanne; Laniawe, Leona; Laut, Megan; Miller, Linda; Murray, Christopher J.; Nelson, Daniel; Leonard, David L.; Oboyshi, Peter; Patch-Highfill, Leanne; Pollock, David D.; Rapozo, Kalei; Schwarzfeld, Marla; Slotterback, John; Stephens, Robert M.; Banko, Paul C.; Farmer, Chris


    The Palila Restoration Project was initiated in 1996 by the U.S. Geological Survey to assist government agencies mitigate the effects of realigning Saddle Road (Highway 200) through Palila Critical Habitat (U.S. Fish and Wildlife Service 1998, Federal Highway Administration 1999). Ecological research on the palila (Loxioides bailleui), an endangered Hawaiian forest bird, carried out by the U.S. Geological Survey (formerly organized as the Research Division of U.S. Fish and Wildlife Service) since 1987 and research conducted by the Palila Restoration Project provided the scientific bases for developing a recovery strategy (U.S. Fish and Wildlife Service 2006) and its adaptive implementation. The main objectives of the Palila Restoration Project were to develop techniques for reintroducing the palila to a portion of its former range, investigate the biological threats to the palila and its habitat, and synthesize the existing body of ecological knowledge concerning the palila. Five broad study themes formed the research framework: 1. Population reintroduction and restoration 2. Demography and breeding ecology 3. Habitat use and food ecology 4. Vegetation ecology 5. Predator ecology and management An element that was not included in the research program of the project was the ecology and management of introduced ungulates, which has historically constituted the single greatest threat to Palila Critical Habitat (Banko et al. 2009). The absence of ungulate studies should not be interpreted to mean that we believe ungulates no longer damage palila habitat. Other research has already established that removing alien browsers and grazers from Mauna Kea is essential for the recovery of the subalpine forest on which palila now depend (Scowcroft and Giffin 1983; Scowcroft and Sakai 1983; Scowcroft and Conrad 1988, 1992; Hess et al. 1999). Moreover, the Federal District Court of Hawai‘i has ordered the state of Hawai‘i to remove browsing ungulates from Palila Critical

  14. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars (United States)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; hide


    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  15. Ground-Based Observing Campaign of Briz-M Debris (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.


    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  16. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i (United States)

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona


    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited

  17. Dust Accumulation on MER Solar Panels (United States)

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.


    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the

  18. HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star (United States)

    Bakos, G. Á.; Penev, K.; Bayliss, D.; Hartman, J. D.; Zhou, G.; Brahm, R.; Mancini, L.; de Val-Borro, M.; Bhatti, W.; Jordán, A.; Rabus, M.; Espinoza, N.; Csubry, Z.; Howard, A. W.; Fulton, B. J.; Buchhave, L. A.; Ciceri, S.; Henning, T.; Schmidt, B.; Isaacson, H.; Noyes, R. W.; Marcy, G. W.; Suc, V.; Howe, A. R.; Burrows, A. S.; Lázár, J.; Papp, I.; Sári, P.


    We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120 ± 0.012 {M}{{J}}, a radius of {0.563}-0.034+0.046 {R}{{J}}, and an orbital period of 3.1853 days. The host star is a moderately bright (V=13.340\\+/- 0.010 mag, {K}S=10.976\\+/- 0.026 mag) K dwarf star with a mass of 0.849 ± 0.027 {M}⊙ , a radius of {0.815}-0.035+0.049 {R}⊙ , and a metallicity of [{Fe}/{{H}}] =+0.250\\+/- 0.080. The star is photometrically quiet to within the precision of the HATSouth measurements, has low RV jitter, and shows no evidence for chromospheric activity in its spectrum. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18 ± 4% (rock-iron core and H2-He envelope), or 9 ± 4% (ice core and H2-He envelope), i.e., it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the 10 m Keck-I telescope at Mauna Kea, the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  19. Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu (United States)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Cloutis, Edward; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri


    In preparation for the arrival of the Japanese Space Agency’s (JAXA) Hayabusa2 sample return mission to near-Earth asteroid (NEA) (162173) Ryugu, we took the opportunity to characterize the target with a ground-based telescope. We observed Ryugu using the SpeX instrument in Prism mode on NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on July, 12 2016 when the asteroid was 18.87 visual magnitude, at a phase angle of 13.3°. The NIR spectra were used to constrain Ryugu’s surface composition, meteorite analogs and spectral affinity to other asteroids. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Masateru et al. (2014). Our spectrum of Ryugu has a broad absorption band at 1 µm, a slope change at 1.6 µm, and a second broad absorption band near 2.2 µm, but no well-defined absorption features over the 0.8-2.5 µm range. The two broad absorption features, if confirmed, are consistent with CO and CV chondrites. The shape of Ryugu’s spectrum matches very well those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regolith have similar composition. We also compared the spectrum of Ryugu with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as the source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our NIR spectrum of Ryugu. Our analysis shows Ryugu’s spectrum best matches two CM2 carbonaceous chondrites, Mighei and ALH83100. We expect the surface regolith of Ryugu to be altered by a range of factors including temperature, contamination by exogenic material, and space weathering, posing challenges to

  20. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.


    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  1. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations (United States)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.


    normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.

  2. Land coverage classification using EO-1/Hyperion and ALOS/PALSAR: Possibility of combined analysis with different type of sensors (United States)

    Koizumi, E.; Furuta, R.; Yamamoto, A.


    Hyper-spectral has huge advantage in determining the land surface coverage due to its spectral resolution and large number of bands, however, its swath is comparatively narrow, and there is cloud problem. In contrast, radar sensor can observe under almost all weather condition, and has wide observation swath. Therefore, if radar data can be used for the detection of land surface with hyper-spectral data, it will be useful tool for the monitoring in any field. However, there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data so far. In our previous study, we detected wet area around Sendai Airport where suffered Tsunami by 2011 great earthquake in the northern Japan by combined analysis of satellite hyper-spectral and SAR data. In that study, the possible wet regions were successfully detected objectively in wide area. In this study, we adopted similar method on soil surface to investigate the relationship between land coverage classification by hyper-spectral data (EO-1/Hyperion) and physical values from L-band SAR (ALOS/PALSAR), and to study how to apply the combined analysis of hyper-spectral and SAR data to land coverage monitoring (e.g. landslides). Mauna Kea, Hawaii was selected as the test site of this study because whose land coverage shows variety; various volcanic soils, mixture of soil and vegetation, and lava flow from Mauna Loa from top to hillside. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels by checking each channel, and select 105 channels. Before analysis, the atmospheric correction was applied by ENVI/FLAASH for the selected channels. The corrected data were analyzed by both unsupervised and supervised classification (based on the result from field work). Each classified results were extracted as vector data. For SAR data analysis, Dual Polarization data (FBD) is selected. SAR data were converted to backscattered

  3. Dataciones radiometricas (14C y K/Ar del Teide y el Rift noroeste, Tenerife, Islas Canarias

    Directory of Open Access Journals (Sweden)

    Hansen, A.


    Full Text Available Teide volcano, the highest volcano on earth (3,718 m a.s.l., > 7 km high after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the island of Tenerife. Its most recent eruptive activity (last 20 Ka is associated with the very active NW branch of the 120" triple rift system of the island. Most of the eruptions of Tenerife during the past 20 Ka have occurred along these volcanic features, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon- 14 ages, obtained via coupled mass spectrometry (other in progress, provide important time constraints on the evoliition of Teide's volcanic system, the frequency and distribution of its eruptions, and associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1,240 f 60 years BP (between 1,287 CAL years BP and 1,007 CAL years BP, corresponding to a time interval between the VI1 and X centuries, 663 years AD to 943 years AD, but to the Pico Viejo volcano (17,570 f 150 years BP, flank parasitic vents (Mña. Abejera upper vent, 5,170 f 110 years BP; Mña. Abejera lower vent, 4,790 f 70 years BP; Mña. de La Angostura early, 2,420 f 70 years BP; Mña. La Angostura late, 2,010 f 60 years BP and Roques Blancos, 1,790 f 60 years BP and the NW rift (Mña. Chío, 3,620 f 70 years BP. Although the volcanic activity during the past 20 Ka involved at least 7 voluminous phonolitic flank vents in the northem, more

  4. Vertical Motions of Oceanic Volcanoes (United States)

    Clague, D. A.; Moore, J. G.


    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  5. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement (United States)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald


    than those for typical Mauna Loa/Kilaueaq flows but comparable to those for the (1783) Laki eruption and the inferred flow rates of the Roza flows in the Columbia River flood basalts. The differences in ultrabasic eruption styles on Earth and Io appear to be controlled by the different eruption environments; Plumes at sites of ultrabasic eruptions on Io suggest strong magma-volatile interactions on a low-gravity body lacking an atmosphere, whereas the geology at sites of komatiite eruptions on Earth suggest mostly submarine emplacement of thick flows with a pronounced lack of subaerial explosive activity.

  6. Hawaiian submarine manganese-iron oxide crusts - A dating tool? (United States)

    Moore, J.G.; Clague, D.A.


    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  7. Geochemical characteristics of West Molokai shield- and postshield-stage lavas: Constraints on Hawaiian plume models (United States)

    Xu, Guangping; Frey, Frederick A.; Clague, David A.; Abouchami, Wafa; Blichert-Toft, Janne; Cousens, Brian; Weisler, Marshall


    There are systematic geochemical differences between the Hawaiian shields forming the subparallel spatial trends, known as Loa and Kea. These spatial and temporal geochemical changes provide insight into the spatial distribution of geochemical heterogeneities within the source of Hawaiian lavas, and the processes that create the Hawaiian plume. Lavas forming the ˜1.9 Ma West Molokai volcano are important for evaluating alternative models proposed for the spatial distribution of geochemical heterogeneities because (1) the geochemical distinction between Loa and Kea trends may end at the Molokai Fracture Zone and (2) West Molokai is a Loa-trend volcano that has exposures of shield and postshield lavas. This geochemical study (major and trace element abundances and isotopic ratios of Sr, Nd, Hf, and Pb) shows that the West Molokai shield includes lavas with Loa- and Kea-like geochemical characteristics; a mixed Loa-Kea source is required. In contrast, West Molokai postshield lavas are exclusively Kea-like. This change in source geochemistry can be explained by the observed change in strike of the Pacific plate near Molokai Island so that as West Molokai volcano moved away from a mixed Loa-Kea source it sampled only the Kea side of a bilaterally zoned plume.

  8. Cetacean Ecology Survey at North Western Hawaiian Islands (SE1303, EK60) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the cruise was to collect data on the abundance, distribution, stock structure, and habitat of cetaceans in the Papah?naumoku?kea Marine National...

  9. A 2016 Ganymede stellar occultation event (United States)

    D'Aversa, Emiliano; Oliva, Fabrizio; Sindoni, Giuseppe; Hinse, Tobias Cornelius; Plainaki, Christina; Aoki, Shohei; Person, Michael J.; Carlson, Robert W.; Orton, Glenn S.


    On 2016 April,13th the Jovian satellite Ganymede occulted a 7th magnitude star. The predicted occultation track crossed the Northern Pacific Ocean, Japan, and South Korea. Hence, it was a very favorable event due to the star brightness and to the visibility from the large aperture telescopes at Hawaii. While no other similar event is expected for the next 10 years, only two occultation events are reported in literature in the past, from Earth in 1972 [1] and from Voyager [2], in large disagreement in respect to the atmosphere detection. However, evidence of an exosphere around Ganymede was inferred by [3], through H Lyman alpha emission detected by Galileo UVS, and by [4], through HST/GHRS detection of far-UV atomic O airglow emissions, signature of dissociated molecular oxygen ([5],[6]). Later, the HST/STIS observations by [7] provided further evidence for exospheric neutral hydrogen. Since Ganymede is known to have an intrinsic magnetic field ([8]) reconnecting with the Jovian magnetic field and (partially) shielding the surface equatorial latitudes from the electron impact, the UV emissions have been so far attributed to auroral processes ([6]). Nevertheless, the physical mechanisms governing these processes are not known with certainty (e.g. whether the emissions morphology is determined by the spatial distribution of magnetospheric electrons or by an uneven O2 exosphere or both, see e.g.[9]). We took advantage of this event in order to search for a signature of Ganymede's exosphere in the occultation light curve, by using facilities on Mauna Kea at Hawaii (NASA-IRTF observatory) and at Sobaeksan Optical Astronomy Observatory (SOAO) in South Korea. At IRTF, both MORIS [10] and SpeX [11] instruments have been used, fed by the same optical entrance through a dichroic beam splitter at 0.95 micron. MORIS acquired a high-rate sequence of images about 0.25 sec apart in the visible range, while SpeX acquired a sequence of spectra at a bit lower rate, covering the 0

  10. Observational Search for Cometary Aging Processes (United States)

    Meech, Karen J.


    approximately 300 nights using the telescopes on Mauna Kea, Kitt Peak, Cerro Tololo, the European Southern Observatory, and several other large aperture facilities. A greater than 2 TB database of broad band comet images has been obtained which follows the systematic development and fading of the cometary coma for the comets in the database. The results to date, indicate that there is a substantial difference in the brightness and the amount of dust as a function of r between the two comet classes. In addition to this major finding, the program has been responsible for several exciting discoveries, including: the P/Halley outburst at r = 14.3 AU, the discovery of Chiron's coma and modelling and observations of the gravitationally bound component, observational evidence that activity continues out beyond r = 17 AU for many dynamically new comets

  11. HATS-50b through HATS-53b: Four Transiting Hot Jupiters Orbiting G-type Stars Discovered by the HATSouth Survey (United States)

    Henning, Th.; Mancini, L.; Sarkis, P.; Bakos, G. Á.; Hartman, J. D.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Ciceri, S.; Csubry, Z.; de Val-Borro, M.; Espinoza, N.; Fulton, B. J.; Howard, A. W.; Isaacson, H. T.; Jordán, A.; Marcy, G. W.; Penev, K.; Rabus, M.; Suc, V.; Tan, T. G.; Tinney, C. G.; Wright, D. J.; Zhou, G.; Durkan, S.; Lazar, J.; Papp, I.; Sari, P.


    La Silla. Based in part on observations made with the 3.9 m Anglo-Australian Telescope and the ANU 2.3 m Telescope, both at SSO. Based in part on observations made with the Keck I Telescope at Mauna Kea Observatory in Hawaii. Based in part on observations obtained with the facilities of the Las Cumbres Observatory Global Telescope and with the Perth Exoplanet Survey Telescope.

  12. Studies of low-mass interacting binary stars (United States)

    Rainger, Paul P.


    Spectroscopic and photometric observations of eight contact/near-contact binaries are presented and analysed. Spectroscopic observations were obtained at 4200 A (radial velocity spectra) and 6563 A (hydrogen-alpha line profiles). New photometric observations were obtained at visual and infrared wavelengths, and other previously published light curves are also re-analysed. Absolute dimensions have been obtained for five systems; TY Boo, VW Boo, BX And, SS Ari and AG Vir, and their evolutionary positions discussed. Four of the systems are found to be in marginal but poor thermal contact, exhibiting regions of apparent "excess luminosity" in their light curves. A qualitative analysis of these "hot spot" regions has been attempted for the first time using spot models now incorporated into a light curve synthesis programme. Substantial time for this project was awarded on telescopes funded by the United Kingdom Science and Engineering Research Council (SERC), comprising 14 nights at the Issac Newton Telescope (INT) on La Palma, and 4 nights at the United Kingdom Infrared Telescope (UKIRT) on Mauna Kea. Additional observations were made during an 8 night commissioning run on the Jacobus Kapteyn Telescope (JKT) on La Palma, and extensive observations were made with the Twin Photometric Telescope (TPT) at St Andrews University Observatory between 1985 and 1989. These resulted in over 100 spectra at 4200 A and over 50 spectra at 6563 A (INT and JKT observations), over 300 infrared photometric observations (UKIRT), and over 3500 visual photometric observations (TPT). Of the five systems analysed in detail in this work, TY Boo appears to be a normal shallow-contact W-type system. Both VW Boo and BX And exhibit regions of "excess luminosity" around the ingress and egress of secondary minimum which are well modelled by a warm spot on the cooler component sitting symmetrically around the neck joining the pair. Such a phenomenon may be expected to arise naturally in systems which

  13. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3 (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.


    abundant isotopes of Mg. This points to a scenario in which these abundance ratios arose in the ejected material of 3-6 Msolar cluster stars, material that was then used to form the atmospheres of the presently evolving low-mass cluster stars. It also suggests that the low oxygen abundance seen among the most evolved M13 giants arose in hot bottom O-to-N processing in these same intermediate-mass cluster stars. Thus, mixing is required by the dependence of some abundance ratios on luminosity, but an earlier nucleosynthesis process in a hotter environment than giants or main-sequence stars is required by the variations previously seen in stars near the main sequence. The nature and the site of the earlier process is constrained but not pinpointed by the observed Mg isotopic ratio. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

  14. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission (United States)

    Lauretta, D.


    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  15. Heartbeat Stars: the Key to Unlocking the Formation and Circularization of Tight Binaries and Short Period Planets (United States)

    Hambleton, Kelly

    Heartbeat stars are an emerging class of eccentric (e > 0.2) short-period ellipsoidal variables that undergo strong tidal interactions near orbital periastron. In the Kepler data we have identified 173 heartbeat stars, %20 of which pulsate with tidally excited modes: stellar oscillation modes that are excited to observable amplitudes (> 10 ppm) by the tidal forcing of the companion star. We have obtained 6 or more follow-up spectra for 31 Kepler heartbeat stars with tidally induced pulsations, most of which we obtained with the Keck telescope, Mauna Kea, and the 4-m Mayal telescope, Kitt Peak National Observatory. Using the combination of Kepler light curves and spectra (and distances from Gaia astrometry once available), we will produce binary star models for all the heartbeat stars in our sample by applying a combination of PHOEBE, a binary star modeling code; EMCEE, an afine invariant version of Markov chain Monte Carlo methods; and our own codes, which fit Doppler boosting and tidally induced pulsations. These models will provide accurate fundamental, orbital and pulsational parameters, which we will then use to pursue the two aims of this proposal. Our first aim is to determine orbital circularization rates due to tidally induced pulsations. It is predicted that the presence of tidally excited modes will cause an increase in the rate of orbital circularization. By analyzing the mode energies of the tidally excited modes using pulsation models (with the binary star parameters as inputs), we can determine the circularization rates of all the heartbeat stars in our sample. The results will provide key information on the link between tidally induced pulsations and orbital circularization, applicable to both binary stars and planets. Our second aim is to understand the impact of three body dynamics in forming tight binaries and short period planets. Approximately 96% of tight (P binaries have been observed to contain tertiary components. Heartbeat stars are

  16. Detection of soluble and fixed NH 4+ in clay minerals by DTA and IR reflectance spectroscopy: a potential tool for planetary surface exploration (United States)

    Bishop, J. L.; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.


    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, N, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH 4+ in soils using two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH 4+ in this study, then leached in order to remove the non-chemically bound ammonium species. Aliquots of these NH 4+-treated and then leached samples were analyzed by DTA and IR reflectance spectroscopy to quantify the detectability of soluble and sorbed/fixed NH 4+. An exotherm at 270-280°C was clearly detected in the DTA curves of NH 4+-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH 4+. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.25, 3.55, 4.2, 5.7 and 7.0 μm in the reflectance spectra of NH 4+-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite spectra have shown the most intense absorption features due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of fixed NH 4+ in clays may be detected by IR reflectance or emission spectroscopy. Distinction between soluble and fixed NH 4+ may be achieved through the presence or absence of several spectral features assigned to the fixed NH 4+ moiety and, specifically, by use of the 4.2 μm feature assigned to solution NH 4+. Thermal analyses furnish supporting evidence of ammonium in the clays/soil through detection of N released at temperatures of 270-330°C. Based on the results of this study, it is estimated that IR spectra measured from a rover should be able to detect ammonium if present above a few


    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Kaluna, Heather M.; Kleyna, Jan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Novakovic, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Abe, Shinsuke; Chen Wenping; Ip, Wing; Kinoshita, Daisuke [Institute of Astronomy, National Central University, 300 Jhongda Rd, Jhongli 32001, Taiwan (China); Fitzsimmons, Alan; Lacerda, Pedro [Astronomy Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Granvik, Mikael [Department of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Grav, Tommy [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Knight, Matthew M. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Maclennan, Eric, E-mail: [Department of Physics and Astronomy, Northern Arizona University, 602 South Humphreys Street, Flagstaff, AZ 86011 (United States); and others


    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H{sub R} = 17.9 {+-} 0.2 mag, corresponding to a nucleus radius of {approx}0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of A{sub d} /A{sub N} = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q{sub CN} < 6 Multiplication-Sign 10{sup 23} mol s{sup -1}, from which we infer an H{sub 2}O production rate of Q{sub H{sub 2O}} < 10{sup 26} mol s{sup -1}. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr

  18. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms (United States)

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.


    (also known as Kamehameha the Great) and is often associated with the founding of the Hawaiian Kingdom (Greene, 1993). The temple was constructed to incur the favor of the king's personal war god Kuka'ilimoku during the time that Kamehameha I waged several battles in an attempt to extend his control over all the Hawaiian Islands. The park is also the site of the older Mailekini Heiau, which was used by the ancestors of Kamehameha I, and an offshore, submerged temple, Hale O Kapuni Heiau, that was dedicated to the shark god. The park occupies the scenic Hill of the Whale overlooking Kawaihae Bay and Pelekane Beach. The seaward-sloping lands of PUHE lie at the convergence of lava flows formed by both Mauna Kea and Kohala Volcanoes. The park coastline is mostly rocky, with the exception of a small beach developed at the north boundary where an intermittent stream enters the sea. The park is bounded to the north by Kawaihae Harbor, to the south by Samuel M. Spencer Beach Park, and to the west by a broad submerged reef. The adjacent reef area is discussed in detail in the accompanying report by Cochran and others (2006). They mapped from the shoreline to depths of approximately 40 m, where the shelf drops off to a sand-covered bottom. PUHE park boundaries extend only to the mean high-tide line, however, landscape impacts created by development around the park are of concern to Park management.

  19. Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra⋆ (United States)

    Mathys, G.


    agreement with the National Science Foundation; and at the Canada-France-Hawaii Telescope (CFHT), which is operated from the summit of Mauna Kea by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Mauna Kea, which is a significant cultural and historic site.Table 7 is only available at the CDS via anonymous ftp to ( or via

  20. Preface (United States)

    Rhodes, J. M.; Lockwood, John P.

    Mauna Loa is a volcano of superlatives: it is the largest active volcano on Earth and among the most productive. This volume serves to place on record the current state of our knowledge concerning Mauna Loa at the beginning of the Decade Volcano Project. The scope is broad, encompassing the geologic and exploratory history of the volcano, an overview of its submarine geology, its structure, petrologic and geochemical characteristics, and what Mauna Loa has to tell us about the Hawaiian mantle plume; it covers also remote sensing methods and the use of gravity, seismic and deformational studies for eruption monitoring and forecasting, hazards associated with the volcano, and even the importance of a changing volcanic landscape with a wide spectrum of climate zones as an ecological laboratory. We have made a deliberate effort to present a comprehensive spectrum of current Mauna Loa research by building on a December 1993 symposium at the AGU Fall Meeting that considered (1) what is currently known about Mauna Loa, (2) critical problems that need to be addressed, and (3) the technical means to solve these problems, and by soliciting contributions that were not part of the symposium. We encouraged authors to consider how their papers relate to others in the volume through crossreferencing. The intent was that this monograph should be a book about Mauna Loa rather than a collection of disparate papers.

  1. Development and flight test results of an autothrottle control system at Mach 3 cruise (United States)

    Gilyard, G. B.; Burken, J. J.


    Flight test results obtained with the original Mach hold autopilot designed the YF-12C airplane which uses elevator control and a newly developed Mach hold system having an autothrottle integrated with an altitude hold autopilot system are presented. The autothrottle tests demonstrate good speed control at high Mach numbers and high altitudes while simultaneously maintaining control over altitude and good ride qualities. The autothrottle system was designed to control either Mach number or knots equivalent airspeed (KEAS). Excellent control of Mach number or KEAS was obtained with the autothrottle system when combined with altitude hold. Ride qualities were significantly better than with the conventional Mach hold system.

  2. 78 FR 31343 - Final Priorities, Requirement, Definitions, and Selection Criteria-Enhanced Assessment Instruments (United States)


    ... each child's progress in early learning programs or in kindergarten through third grade classrooms... artificial and do not take into account kindergarteners' development or growth in areas such as creativity... coherently in the classroom. Discussion: We agree that KEAs developed or enhanced under the priority should...

  3. Hawaiian Language and Culture in the Middle Level Math Class (United States)

    Terai, Kim E.


    The Kamehameha Schools (KS) is a private co-educational institution that was established under the terms of the will of Princess Bernice Pauahi Bishop in 1887. KS operates three campuses Kapalama (O'ahu), Pukalani (Maui), and Kea'au (Hawai'i island) that serves over 6,500 students from preschool through twelfth grade. KS recently adopted a…

  4. Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection. (United States)

    Park, Jongmin; Lin, Hsing-Ying; Assaker, Jean Pierre; Jeong, Sangmoo; Huang, Chen-Han; Kurdi, A; Lee, Kyungheon; Fraser, Kyle; Min, Changwook; Eskandari, Siawosh; Routray, Sujit; Tannous, Bakhos; Abdi, Reza; Riella, Leonardo; Chandraker, Anil; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho; Azzi, Jamil R


    Kidney transplant patients require life-long surveillance to detect allograft rejection. Repeated biopsy, albeit the clinical gold standard, is an invasive procedure with the risk of complications and comparatively high cost. Conversely, serum creatinine or urinary proteins are noninvasive alternatives but are late markers with low specificity. We report a urine-based platform to detect kidney transplant rejection. Termed iKEA (integrated kidney exosome analysis), the approach detects extracellular vesicles (EVs) released by immune cells into urine; we reasoned that T cells, attacking kidney allografts, would shed EVs, which in turn can be used as a surrogate marker for inflammation. We optimized iKEA to detect T-cell-derived EVs and implemented a portable sensing system. When applied to clinical urine samples, iKEA revealed high level of CD3-positive EVs in kidney rejection patients and achieved high detection accuracy (91.1%). Fast, noninvasive, and cost-effective, iKEA could offer new opportunities in managing transplant recipients, perhaps even in a home setting.

  5. Developing Collaborative Partnerships with Culturally and Linguistically Diverse Families during the IEP Process (United States)

    Rossetti, Zachary; Sauer, Janet Story; Bui, Oanh; Ou, Susan


    Although there has been a consistent vision for multicultural education and family collaboration in teacher preparation programs for decades, collaborative partnerships between culturally and linguistically diverse (CLD) families and their children's educators remain elusive (Harry, 2008; Trent, Kea, & Oh, 2008). Family engagement in special…

  6. Investigation of Minimum Sized Low-Profile Cockpits (MSLPC) and Crew Escape System Integration. (United States)


    successfully achieve three goals to be of real value: e Significantly reduce the enemy’s attack envelope (i.e., have fewer losses) * Significantly increase its...2ND STAGE MAIN PARACHUTE DIA 26 PT ESCAPE WVENT ICSIEDLIL avw~l EAPSED lUE055w ESAT -AJCSEARATMO 0 DROGUE INITIATION (V > no KEa"E OR ALT > (ALT< l

  7. Underwater acoustic signatures of glacier calving (United States)

    Glowacki, O.; Deane, G. B.; Moskalik, M.; Blondel, Ph.; Tegowski, J.; Blaszczyk, M.


    Climate-driven ice-water interactions in the contact zone between marine-terminating glaciers and the ocean surface show a dynamic and complex nature. Tidewater glaciers lose volume through the poorly understood process of calving. A detailed description of the mechanisms controlling the course of calving is essential for the reliable estimation and prediction of mass loss from glaciers. Here we present the potential of hydroacoustic methods to investigate different modes of ice detachments. High-frequency underwater ambient noise recordings are combined with synchronized, high-resolution, time-lapse photography of the Hans Glacier cliff in Hornsund Fjord, Spitsbergen, to identify three types of calving events: typical subaerial, sliding subaerial, and submarine. A quantitative analysis of the data reveals a robust correlation between ice impact energy and acoustic emission at frequencies below 200 Hz for subaerial calving. We suggest that relatively inexpensive acoustic methods can be successfully used to provide quantitative descriptions of the various calving types.

  8. Magnetic Fields Sculpt Narrow Jets From Dying Star (United States)


    of hydrogen atoms in their cores. As they near the end of their lives they begin to blow off their outer atmospheres and eventually collapse down to a white dwarf star about the size of Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Astronomers believe that W43A is in the transition phase that will produce a planetary nebula. That transition phase, they say, is probably only a few decades old, so W43A offers the astronomers a rare opportunity to watch the process. While the stars that produce planetary nebulae are spherical, most of the nebulae themselves are not. Instead, they show complex shapes, many elongated. The earlier discovery of jets in W43A showed one mechanism that could produce the elongated shapes. The latest observations will help scientists understand the mechanisms producing the jets. The water molecules the scientists observed are in regions nearly 100 billion miles from the old star, where they are amplifying, or strengthening, radio waves at a frequency of 22 GHz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation. The earlier observations showed that the jets are coming out from the star in a corkscrew shape, indicating that whatever is squirting them out is slowly rotating. Vlemmings and Diamond worked with Hiroshi Imai of Kagoshima University in Japan. The astronomers reported their work in the March 2 issue of the scientific journal Nature. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a

  9. Era of Galaxy and Black Hole Growth Spurt Discovered (United States)


    Distant galaxies undergoing intense bursts of star formation have been shown by NASA's Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth. By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars - distant galaxies that contain the largest and most active black holes in the Universe. Simulation of a Galaxy Collision Simulation of a Galaxy Collision "The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today's largest galaxies looked when they were producing most of their stars and growing black holes," said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work. The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time. Chandra X-ray Image of CDFN Chandra X-ray Image of CDFN These galaxies are very faint and it is only with the deepest observations of the

  10. Dark Matter Mystery Deepens in Cosmic "Train Wreck" (United States)


    Astronomers have discovered a chaotic scene unlike any witnessed before in a cosmic "train wreck" between giant galaxy clusters. NASA's Chandra X-ray Observatory and optical telescopes revealed a dark matter core that was mostly devoid of galaxies, which may pose problems for current theories of dark matter behavior. "These results challenge our understanding of the way clusters merge," said Dr. Andisheh Mahdavi of the University of Victoria, British Columbia. "Or, they possibly make us even reexamine the nature of dark matter itself." There are three main components to galaxy clusters: individual galaxies composed of billions of stars, hot gas in between the galaxies, and dark matter, a mysterious substance that dominates the cluster mass and can be detected only through its gravitational effects. Illustration of Abell 520 System Illustration of Abell 520 System Optical telescopes can observe the starlight from the individual galaxies, and can infer the location of dark matter by its subtle light-bending effects on distant galaxies. X-ray telescopes like Chandra detect the multimillion-degree gas. A popular theory of dark matter predicts that dark matter and galaxies should stay together, even during a violent collision, as observed in the case of the so-called Bullet Cluster. However, when the Chandra data of the galaxy cluster system known as Abell 520 was mapped along with the optical data from the Canada-France-Hawaii Telescope and Subaru Telescope atop Mauna Kea, HI, a puzzling picture emerged. A dark matter core was found, which also contained hot gas but no bright galaxies. "It blew us away that it looks like the galaxies are removed from the densest core of dark matter," said Dr. Hendrik Hoekstra, also of University of Victoria. "This would be the first time we've seen such a thing and could be a huge test of our knowledge of how dark matter behaves." Animation of Galaxy Cluster Animation of Galaxy Cluster In addition to the dark matter core, a

  11. Heaviest Stellar Black Hole Discovered in Nearby Galaxy (United States)


    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would

  12. Chandra Sees Shape of Universe During Formative, Adolescent Years (United States)


    universe in a box, scientists say that the large scale structure -- that is, galaxies, galaxy clusters and voids of seemingly empty space -- takes the appearance of a web. Galaxies and intergalactic gas are strung like pearls on unseen filaments of dark matter, which comprises over 85 percent of all matter. Galaxies are attracted to dark matter's gravitational potential. Dark matter does not shine, like ordinary matter made of atoms, and may very well be intrinsically different. Chandra's observation of distant galaxies in the Lockman Hole, spread out over several billion light years from Earth, essentially maps the distribution of dark matter. This provides clues to how the universe grew. "We are seeing the universe during its formative years," said Mushotzky. "This is billions of years after galaxies were born, during a period when the universe began to take on the trappings of an adult." The galaxies that the team saw with Chandra were either dim or altogether undetectable with optical and radio telescopes. This may be because they are enshrouded in dust and gas, which blocks radio waves and optical light. X-rays, a higher-energy form of light, can penetrate this shroud. "Chandra is the only X-ray telescope with a spatial resolution comparable to the optical telescopes," according to Dr. Amy Barger of University of Wisconsin at Madison, who led the optical follow-up with the 10-meter Keck telescope on Mauna Kea, Hawaii. "This is critical to unambiguously identify the optical counterparts of the X-ray sources and measuring distances, or redshifts. This allows scientists to create a three-dimensional image of the large-scale structure." The additive effect of future deep and long Chandra surveys over the next few years will provide an even sharper picture of the young universe. Other scientists who participated in this observation include Drs. Len Cowie and Dave Sanders of the University of Hawaii, and Ph.D. student Aaron Steffen of the University of Wisconsin at Madison

  13. Neptune's Stormy Disposition (United States)


    Using powerful ground-and space-based telescopes, scientists have obtained a moving look at some of the wildest, weirdest weather in the solar system.Combining simultaneous observations of Neptune made with the Hubble Space Telescope and NASA's Infrared Telescope Facility on Mauna Kea, Hawaii, a team of scientists led by Lawrence A. Sromovsky of the University of Wisconsin-Madison has captured the most insightful images to date of a planet whose blustery weather -- monster storms and equatorial winds of 900 miles per hour -- bewilders scientists.Blending a series of Hubble images, Sromovsky's team constructed a time-lapse rotation movie of Neptune, permitting scientists to watch the ebb and flow of the distant planet's weather. And while the observations, presented here at a meeting of the American Astronomical Society's Division of Planetary Science, are helping scientists tease out clues to the planet's stormy weather, they also are deepening some of Neptune's mysteries, said Sromovsky.The weather on Neptune, the eighth planet from the sun, is an enigma to begin with. The mechanism that drives its near-supersonic winds and giant storms has yet to be discerned.On Earth, weather is driven by energy from the sun as it heats the atmosphere and oceans. On Neptune, the sun is 900 times dimmer and scientists have yet to understand how Neptune's weather-generating machinery can be so efficient.'It's an efficient weather machine compared to Earth,' said Sromovsky. 'It seems to run on almost no energy.'In an effort to dissect the distant planet's atmosphere and monitor its bizarre weather, Sromovsky and his colleagues obtained a series of measurements and images over the span of three of Neptune's rotations.From those observations, Sromovsky said it is possible to measure Neptune's circulation and view a 'strange menagerie of variable, discrete cloud features and zonal bands' of weather. Moreover, the new observations enabled Sromovsky's team to probe some of the deeper

  14. NASA's Chandra Sees Brightest Supernova Ever (United States)


    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an

  15. VizieR Online Data Catalog: Spectroscopy and photometry for HAT-P-50--HAT-P-53 (Hartman+, 2015) (United States)

    Hartman, J. D.; Bhatti, W.; Bakos, G. A.; Bieryla, A.; Kovacs, G.; Latham, D. W.; Csubry, Z.; de Val-Borro, M.; Penev, K.; Buchhave, L. A.; Torres, G.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.; Isaacson, H.; Sato, B.; Boisse, I.; Falco, E.; Everett, M. E.; Szklenar, T.; Fulton, B. J.; Shporer, A.; Kovacs, T.; Hansen, T.; Beky, B.; Noyes, R. W.; Lazar, J.; Papp, I.; Sari, P.


    The HATNet network consists of six identical fully automated instruments, with four at Fred Lawrence Whipple Observatory (FLWO) in AZ, and two on the roof of the Submillimeter Array Hangar Building at Mauna Kea Observatory (MKO) in HI. The light-gathering elements of each instrument include an 11cm diameter telephoto lens, a Sloan r filter, and a 4K*4K front-side-illuminated CCD camera. Observations made in 2007 and early 2008 were carried out using a Cousins R filter. The instruments have a field of view of 10.6°*10.6° and a pixel scale of 9"/pixel at the center of an image. Additional time-series photometric measurements were obtained for all four of the systems using Keplercam on the FLWO 1.2m telescope. For HAT-P-50 we also obtained follow-up photometry with the CCD imager on the Byrne Observatory at Sedgwick (BOS) 0.8m telescope, located at Sedgwick Reserve in Santa Ynez Valley, CA, and operated by the Las Cumbres Observatory Global Telescope institute (LCOGT). HAT-P-50 was observed with HAT-10/G316 on 2008 Nov-2009 May, with HAT-5/G364 on 2009 May, with HAT-9/G364 on 2008 Dec-2009 May, with BOS on 2012 Feb 15, on 2012 Feb 21 and on 2012 Apr 08, and with Keplercam on 2012 Feb 18, on 2012 Nov 28, on 2012 Dec 23, on 2013 Jan 14, and on 2013 Jan 17. HAT-P-51 was observed with HAT-6/G164 on 2007 Sep-2008 Feb, with HAT-9/G164 on 2007 Sep-2008 Feb, with HAT-10/G165 on 2010 Sep-2011 Jan, with HAT-5/G165 on 2010 Nov-2011 Feb, with HAT-8/G165 on 2010 Nov-2011 Feb, with HAT-6/G209 on 2010 Nov-2011 Feb, with HAT-9/G209 on 2010 Nov-2011 Feb, with HAT-7/G210 on 2010 Nov-2011 Jan, and with Keplercam on 2011 Oct 21, on 2012 Jan 05, on 2012 Oct 05, on 2012 Oct 26, and on 2012 Nov 12. HAT-P-52 was observed with HAT-5/G212 on 2010 Sep-Nov, with HAT-8/G212 on 2010 Aug-Nov, and with Keplercam on 2010 Dec 23, on 2011 Sep 05, on 2011 Sep 27, on 2011 Nov 21, and on 2012 Jan 07. HAT-P-53 was observed with HAT-6/G164 on 2007 Sep-2008 Feb, with HAT-9/G164 on 2007 Sep-2008 Feb, with

  16. Exoplanets: The Hunt Continues! (United States)


    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  17. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources (United States)


    science theme. "Since it was first observedthirty-seven years ago, understanding the source of the X-ray background has been the Holy Grail of X-ray astronomy. Now, it is within reach." Drs. Cowie and Barger are searching for the optical counterparts to the newly discovered X-ray sources with the powerful Keck telescope atop Mauna Kea in hopes of determining their distance. However, these sources are very faint optically: They show up as a dim blue smudge or not at all. Further observations with the Hubble Space Telescope or Keck will be extremely difficult, and the power of the Next Generation Space Telescope and Constellation-X may be required to fully understand these sources. Resolution of the X-ray background relied on a 27.7-hour Chandra observation using the Advanced CCD Imaging Spectrometer (ACIS) in early December 1999, and also utilized data from the Japan-U.S. Advanced Satellite for Cosmology and Astrophysics (ASCA). The Chandra team has also reproduced the ROSAT lower-energy X-ray background observation with a factor of 2-5 times the resolution and sensitivity. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: AND The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  18. ATLAS17lqv: discovery of a supernova candidate in the Kepler Campaign 15 field (United States)

    Smith, K. W.; Smartt, S. J.; Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Weiland, H.; Rest, A.; Wright, D. E.


    ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. Both units are operational and are robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information on


    ORD initiated automated speciated mercury measurements at the NOAA Mauna Loa Observatory (MLO), a high altitude research station (~11,500 feet) in 2001. Mercury monitoring at MLO was supplemented with trace element aerosol, criteria gas, and gas and particulate halide measurement...

  20. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo (United States)


    imager to the Mauna Loa Observatory ( MLO ) on the island of Hawaii to measure clear-sky polarization under the cleanest possible conditions that...polarization. We used satellite imagery to determine the effective surface reflectance for the area surrounding the MLO , and processed clear-sky

  1. ATLAS discovery of a probable SN in 2MASX J17093078+2136344 (ATLAS16bcb) (United States)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.


    ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on

  2. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)



    Jan 1, 2002 ... 2 School of Pure and Applied Chemistry, University of Natal, Durban 4041, South Africa. Abstract ... In order to investigate the water chemistry of this system, water samples were collected throughout the study area from surface water ...... ELLERY K (1989) The inorganic chemistry of peat from the Mauna-.

  3. Iconic CO2 Time Series at Risk

    NARCIS (Netherlands)

    Houweling, S.; Badawy, B.; Basu, S.; Krol, M.C.; Röckmann, T.; Vermeulen, A.


    THE STEADY RISE IN ATMOSPHERIC LONGlived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory

  4. Verwarrende tijden

    NARCIS (Netherlands)

    Sijmons, D.F.


    Op 10 mei 2013 meldde het Mauna Loa Observatorium hoog in de bergen van Hawaii dat de hoeveelheid CO2 in de aardse atmosfeer de 400 deeltjes per miljoen (ppm) was gemeten. 400 ppm was uiteraard al eerder op verschillende plekken gemeten en overschreden maar de metingen op dit hoge, in het midden van

  5. Iconic CO2 Time Series at Risk

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, S. [SRON Netherlands Institute for Space Research, 3584 CA, Utrecht (Netherlands); Badawy, B. [Max-Planck-Institute for Biogeochemistry, 07745, Jena (Germany); Vermeulen, A.T. [Energieonderzoek Centrum Nederland ECN, 1755 ZG Petten (Netherlands)] [and others


    The Mauna Loa CO2 time series is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is currently threatened by the financial crisis.

  6. State of the climate in 2015

    NARCIS (Netherlands)

    Aaron-Morrison, Arlene P.; Ackerman, Steven A.; Adams, Nicolaus G.; Adler, Robert F.; Albanil, Adelina; Alfaro, Eric J.; Allan, Rob; Alves, Lincoln M.; Amador, Jorge A.; Andreassen, L. M.; Arendt, A.; Arévalo, Juan; Arndt, Derek S.; Arzhanova, N. M.; Aschan, M. M.; Azorin-Molina, César; Banzon, Viva; Bardin, M. U.; Barichivich, Jonathan; Baringer, Molly O.; Barreira, Sandra; Baxter, Stephen; Bazo, Juan; Becker, Andreas; Bedka, Kristopher M.; Behrenfeld, Michael J.; Bell, Gerald D.; Belmont, M.; Benedetti, Angela; Bernhard, G.; Berrisford, Paul; Berry, David I.; Bettolli, María L.; Bhatt, Uma S.; Bidegain, Mario; Bill, Brian D.; Billheimer, Sam; Bissolli, Peter; Blake, Eric S.; Blunden, Jessica; Bosilovich, Michael G.; Boucher, Olivier; Boudet, Dagne R.; Box, Jason E.; Boyer, Tim; Braathen, Geir O.; Bromwich, David H.; Brown, R.; Bulygina, Olga N.; Burgess, D.; Calderón, Blanca; Camargo, Suzana J.; Campbell, Jayaka D.; Cappelen, J.; Carrasco, Gualberto; Carter, Brendan R.; Chambers, Don P.; Chandler, Elise; Christiansen, Hanne H.; Christy, John R.; Chung, Daniel; Chung, E.S.; Cinque, Kathy; Clem, Kyle R.; Coelho, Caio A.; Cogley, J.G.; Coldewey-Egbers, Melanie; Colwell, Steve; Cooper, Owen R.; Copland, L.; Cosca, Catherine E.; Cross, Jessica N.; Crotwell, Molly J.; Crouch, Jake; Davis, Sean M.; De Eyto, Elvira; De Jeu, Richard A.M.; De Laat, Jos; Degasperi, Curtis L.; Degenstein, Doug; Demircan, M.; Derksen, C.; Destin, Dale; Di Girolamo, Larry; Di Giuseppe, F.; Diamond, Howard J.; Dlugokencky, Ed J.; Dohan, Kathleen; Dokulil, Martin T.; Dolgov, A. V.; Dolman, A. Johannes; Domingues, Catia M.; Donat, Markus G.; Dong, Shenfu; Dorigo, Wouter A.; Dortch, Quay; Doucette, Greg; Drozdov, Dmitry S.; Ducklow, Hugh; Dunn, Robert J.H.; Durán-Quesada, Ana M.; Dutton, Geoff S.; Ebrahim, A.; Elkharrim, M.; Elkins, James W.; Espinoza, Jhan C.; Etienne-Leblanc, Sheryl; Evans, Thomas E.; Famiglietti, James S.; Farrell, S.A.; Fateh, S.; Fausto, Robert S.; Fedaeff, Nava; Feely, Richard A.; Feng, Z.; Fenimore, Chris; Fettweis, Xavier; Fioletov, Vitali E.; Flemming, Johannes; Fogarty, Chris T.; Fogt, Ryan L.; Folland, Chris; Fonseca, C.; Fossheim, M.; Foster, Michael J.; Fountain, Andrew; Francis, S. D.; Franz, Bryan A.; Frey, Richard A.; Frith, Stacey M.; Froidevaux, Lucien; Ganter, Catherine; Garzoli, Silvia; Gerland, S.; Gobron, Nadine; Goldenberg, Stanley B.; Gomez, R. Sorbonne; Goni, Gustavo J.; Goto, A.; Grooß, J. U.; Gruber, Alexander; Guard, Charles Chip; Gugliemin, Mauro; Gupta, S. K.; Gutiérrez, J. M.; Hagos, S.; Hahn, Sebastian; Haimberger, Leo; Hakkarainen, J.; Hall, Brad D.; Halpert, Michael S.; Hamlington, Benjamin D.; Hanna, E.Y.; Hansen, K.; Hanssen-Bauer, I.; Harris, Ian A; Heidinger, Andrew K.; Heikkilä, A.; Heil, A.; Heim, Richard R., Jr.; Hendricks, S.; Hernández, Marieta; Hidalgo, Hugo G.; Hilburn, Kyle; Ho, Shu Peng Ben; Holmes, R. Max; Hu, Zeng Zhen; Huang, Boyin; Huelsing, Hannah K.; Huffman, George J.; Hughes, N.C.; Hurst, Dale F.; Ialongo, I.; Ijampy, J. A.; Ingvaldsen, R. B.; Inness, Antje; Isaksen, K.; Ishii, Masayoshi; Jevrejeva, Svetlana; Jiménez, C.; Jin, Xiangze; Johannesen, E.; John, Viju; Borch-Johnsen, K.; Johnson, Bryan; Johnson, Gregory C.; Jones, Philip D.; Joseph, Annie C.; Jumaux, Guillaume; Kabidi, Khadija; Kaiser, Johannes W.; Kato, Seiji; Kazemi, A.; Keller, Linda M.; Kendon, Mike; Kennedy, John J.; Kerr, Kenneth; Kholodov, A. L.; Khoshkam, Mahbobeh; Killick, Rachel; Kim, Hyungjun; Kim, S. J.; Kimberlain, Todd B.; Klotzbach, Philip J.; Knaff, John A.; Kobayashi, Shinya; Kohler, J.; Korhonen, Johanna; Korshunova, Natalia N.; Kovacs, K.M.; Kramarova, Natalya; Kratz, David P.; Kruger, Andries; Kruk, Michael C.; Kudela, Raphael; Kumar, Arun; Lakatos, M.; Lakkala, K.; Lander, Mark A.; Landsea, Chris W.; Lankhorst, Matthias; Lantz, Kathleen; Lazzara, Matthew A.; Lemons, P.; Leuliette, Eric; L’Heureux, Michelle; Lieser, Jan L.; Lin, I. I.; Liu, Hongxing; Liu, Yinghui; Locarnini, Ricardo; Loeb, Norman G.; Lo Monaco, Claire; Long, Craig S.; López Álvarez, Luis Alfonso; Lorrey, Andrew M.; Loyola, Diego; Lumpkin, Rick; Luo, Jing-Jia; Luojus, K.; Lydersen, C.; Lyman, John M.; Maberly, Stephen C.; Maddux, Brent C.; Malheiros Ramos, Andrea; Malkova, G. V.; Manney, G.L.; Marcellin, Vernie; Marchenko, Sergey; Marengo, José A.; Marra, John J.; Marszelewski, Wlodzimierz; Martens, B.; Martínez-Güingla, Rodney; Massom, Robert A.; Mata, Mauricio M.; Mathis, Jeremy T.; May, Linda; Mayer, Michael; Mazloff, Matthew; McBride, Charlotte; McCabe, M.F.; McCarthy, M.; McClelland, J.W.; McGree, Simon; McVicar, Tim R.; Mears, Carl A.; Meier, Walt; Meinen, Christopher S.; Mekonnen, A.; Menéndez, Melisa; Mengistu Tsidu, G.; Menzel, W. Paul; Merchant, Christopher J.; Meredith, Michael P.; Merrifield, Mark A.; Metzl, N.; Minnis, Patrick; Miralles, Diego G.; Mistelbauer, T.; Mitchum, Gary T.; Monselesan, Didier; Monteiro, Pedro M S; Montzka, Stephen A.; Morice, Colin; Mote, Thomas; Mudryk, L.; Mühle, Jens; Mullan, A. Brett; Nash, Eric R.; Naveira-Garabato, Alberto C.; Nerem, Steven R.; Newman, Paul A.; Nieto, Juan José; Noetzli, Jeannette; O’Neel, S.; Osborn, Tim J.; Overland, James; Oyunjargal, Lamjav; Parinussa, Robert M.; Park, E. Hyung; Parker, David; Parrington, M.; Parsons, A. Rost; Pasch, Richard J.; Pascual-Ramírez, Reynaldo; Paterson, Andrew M.; Paulik, Christoph; Pearce, Petra R.; Pelto, Mauri S.; Peng, Liang; Perkins-Kirkpatrick, Sarah E.; Perovich, Donald; Petropavlovskikh, Irina; Pezza, Alexandre B.; Phillips, David; Pinty, Bernard; Pitts, Michael C.; Pons, M. R.; Porter, Avalon O.; Primicerio, R.; Proshutinsky, A.; Quegan, Sean; Quintana, Juan; Rahimzadeh, Fatemeh; Rajeevan, Madhavan; Randriamarolaza, L.; Razuvaev, Vyacheslav N.; Reagan, James R.; Reid, Phillip; Reimer, Christoph; Rémy, Samuel; Renwick, James A.; Revadekar, Jayashree V.; Richter-Menge, Jacqueline; Riffler, Michael; Rimmer, Alon; Rintoul, Steve; Robinson, David A.; Rodell, Matthew; Rodríguez Solís, José L.; Romanovsky, Vladimir E.; Ronchail, Josyane; Rosenlof, Karen H.; Roth, Chris; Rusak, James A.; Sabine, Christopher L.; Sallée, Jean Bapiste; Sánchez-Lugo, Ahira; Santee, Michelle L.; Sawaengphokhai, P.; Sayouri, Amal; Scambos, Ted A.; Schemm, Jae; Schladow, S. Geoffrey; Schmid, Claudia; Schmid, Martin; Schmidtko, Sunke; Schreck, Carl J.; Selkirk, H. B.; Send, Uwe; Sensoy, Serhat; Setzer, Alberto; Sharp, M.; Shaw, Adrian; Shi, Lei; Shiklomanov, A. I.; Shiklomanov, Nikolai I.; Siegel, David A.; Signorini, Sergio R.; Sima, Fatou; Simmons, Adrian J.; Smeets, C. J.P.P.; Smith, Sharon L.; Spence, Jaqueline M.; Srivastava, A. K.; Stackhouse, Paul W., Jr.; Stammerjohn, Sharon; Steinbrecht, Wolfgang; Stella, José L.; Stengel, Martin; Stennett-Brown, Roxann; Stephenson, Tannecia S.; Strahan, Susan; Streletskiy, D. A.; Sun-Mack, Sunny; Swart, Sebastiaan; Sweet, William; Talley, Lynne D.; Tamar, Gerard; Tank, S.E.; Taylor, Michael A.; Tedesco, M.; Teubner, Katrin; Thoman, R. L.; Thompson, Philip; Thomson, L.; Timmermans, M. L.; Tirnanes, Joaquin A.; Tobin, Skie; Trachte, Katja; Trainer, Vera L.; Tretiakov, M.; Trewin, Blair C.; Trotman, Adrian R.; Tschudi, M.; van As, D.; van de Wal, R.S.W.; van der A, Ronald J.; Van Der Schalie, Robin; Van Der Schrier, Gerard; Van Der Werf, Guido R.; Van Meerbeeck, Cedric J.; Velicogna, I.; Verburg, Piet; Vigneswaran, Bala; Vincent, Lucie A.; Volkov, Denis; Vose, Russell S.; Wagner, Wolfgang; Wåhlin, Anna; Wahr, John; Walsh, John; Wang, Chunzai; Wang, Junhong; Wang, Lei; Wang, M.; Wang, Sheng-Hung; Wanninkhof, Rik; Watanabe, Shohei; Weber, Mark; Weller, Robert A.; Weyhenmeyer, Gesa A.; Whitewood, Robert; Wijffels, Susan E.; Wilber, Anne C.; Wild, Jeanette D.; Willett, Kate M.; Williams, Michael J.M.; Willie, Shem; Wolken, Gabriel; Wong, Takmeng; Wood, E. F.; Woolway, R. Iestyn; Wouters, B.; Xue, Yan; Yamada, Ryuji; Yim, So Young; Yin, Xungang; Young, Steven H.; Yu, Lisan; Zahid, H.; Zambrano, Eduardo; Zhang, Peiqun; Zhao, Guanguo; Zhou, Lin; Ziemke, Jerry R.; Love-Brotak, S. Elizabeth; Gilbert, Kristin; Maycock, Tom; Osborne, Susan; Sprain, Mara; Veasey, Sara W.; Ambrose, Barbara J.; Griffin, Jessicca; Misch, Deborah J.; Riddle, Deborah B.; Young, Teresa


    In 2015, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global

  7. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980

    NARCIS (Netherlands)

    Keeling, C.D.; Whorf, T.P.; Wahlen, M.; Plicht, J. van der


    OBSERVATIONS of atmospheric CO2 concentrations at Mauna Loa, Hawaii, and at the South Pole over the past four decades show an approximate proportionality between the rising atmospheric concentrations and industrial CO2 emissions(1). This proportionality, which is most apparent during the first 20

  8. A rapid total reflection X-ray fluorescence protocol for micro analyses of ion profiles in Arabidopsis thaliana (United States)

    Höhner, Ricarda; Tabatabaei, Samaneh; Kunz, Hans-Henning; Fittschen, Ursula


    The ion homeostasis of macro and micronutrients in plant cells and tissues is a fundamental requirement for vital biochemical pathways including photosynthesis. In nature, ion homeostasis is affected mainly by three processes: 1. Environmental stress factors, 2. Developmental effects, and 3. Loss or gain-of-function mutations in the plant genome. Here we present a rapid total reflection X-ray fluorescence (TXRF) protocol that allows for simultaneous quantification of several elements such as potassium (K), calcium (Ca), sulfur (S), manganese (Mn) and strontium (Sr) in Arabidopsis thaliana leaf specimens. Our procedure is cost-efficient and enables precise, robust and highly reproducible measurements on tissue samples as small as 0.3 mg dry weight. As shown here, we apply the TXRF procedure to detect accurately the early replacement of K by Na ions in leaves of plants exposed to soil salinity, a globally increasing abiotic stress factor. Furthermore, we were able to prove the existence of a leaf development-dependent ion gradient for K, Ca, and other divalent ions in A. thaliana; i.e. old leaves contain significantly lower K but higher Ca than young leaves. Lastly, we show that our procedure can be readily applied to reveal subtle differences in tissue-specific ion contents of plant mutants. We employed independent A. thaliana kea1kea2 loss-of-function mutants that lack KEA1 and KEA2, two highly active chloroplast K exchange proteins. We found significantly increased K levels specifically in kea1kea2 mutants, i.e. 55 mg ∗ g- 1 dry weight, compared to 40 mg ∗ g- 1 dry weight in wild type plants. The TXRF procedure can be supplemented with Flame atomic absorption (FAAS) and emission spectrometry (FAES) to expand the detection range to sodium (Na) and magnesium (Mg). Because of the small sample amounts required, this method is especially suited to probe individual leaves in single plants or even specific leaf areas. Therefore, TXRF represents a powerful method to

  9. Shrinkage and swelling properties of flocculated mature fine tailings

    NARCIS (Netherlands)

    Yao, Y.; Van Tol, A.F.; Van Paassen, L.A.; Vardon, P.J.


    In the atmospheric fines drying technique, mature fine tailings (MFT) are treated with polymers and deposited in thin layers on a sloped surface for sub-aerial drying. During the whole drying period, the tailings deposits can experience rewetting during periods of rainy weather or as result of the

  10. Late Quaternary sea level and environmental changes from relic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the world oceans or continental shelf between. Mangalore-Cape Comorin (see below) which were subaerially exposed during the last glacial maxi- mum (LGM – 18,000 yr BP), the carbonate plat- form was at shallow depths or pockets of lagoons may have existed on the platform in which the dolomite crusts were formed.

  11. An equivalent fluid/equivalent medium approach for the numerical simulation of coastal landslides propagation: theory and case studies

    Directory of Open Access Journals (Sweden)

    P. Mazzanti


    Full Text Available Coastal and subaqueous landslides can be very dangerous phenomena since they are characterised by the additional risk of induced tsunamis, unlike their completely-subaerial counterparts. Numerical modelling of landslides propagation is a key step in forecasting the consequences of landslides. In this paper, a novel approach named Equivalent Fluid/Equivalent Medium (EFEM has been developed. It adapts common numerical models and software that were originally designed for subaerial landslides in order to simulate the propagation of combined subaerial-subaqueous and completely-subaqueous landslides. Drag and buoyancy forces, the loss of energy at the landslide-water impact and peculiar mechanisms like hydroplaning can be suitably simulated by this approach; furthermore, the change in properties of the landslide's mass, which is encountered at the transition from the subaerial to the submerged environment, can be taken into account. The approach has been tested by modelling two documented coastal landslides (a debris flow and a rock slide at Lake Albano using the DAN-W code. The results, which were achieved from the back-analyses, demonstrate the efficacy of the approach to simulate the propagation of different types of coastal landslides.

  12. Lithofacies and the depositional history of the Tessey Formation, Frenchman Hills, West Texas (United States)

    Haneef, Mohammad; Wardlaw, B.R.


    The Tessey Formation in the Frenchman Hills, northwest Glass Mountains, represent deposition in a basinal setting. The formation consists of at least two shallowing-upward sequences of carbonate and evaporite deposition marked by two episodes of subaerial exposure, meteoric water dissolution, and collapse brecciation.

  13. Occurrence of rhyolytic tuffs at deep sea drilling project site 219 on the Laccadive Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Sukheswala, R.N.

    most of the activity was subaqueous rather than subaerial. Similar acidic tuffs in the Deccan Traps have been reported particularly from the West Coast of India. The acidic tuffs at site 219 are of the same age as the Deccan Traps and may represent a...

  14. Improving stream studies with a small-footprint green lidar (United States)

    Jim McKean; Dan Isaak; Wayne Wright


    Technology is changing how scientists and natural resource managers describe and study streams and rivers. A new generation of airborne aquatic-terrestrial lidars is being developed that can penetrate water and map the submerged topography inside a stream as well as the adjacent subaerial terrain and vegetation in one integrated mission. A leading example of these new...

  15. Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil

    NARCIS (Netherlands)

    Makaske, B.; Maathuis, B.H.P.; Padovani, C.R.; Stolker, C.; Mosselman, E.; Jongman, R.H.G.


    Avulsion, the natural relocation of a river, is a key process in the evolution of subaerial fans, river floodplains and deltas. The causes of avulsion are poorly understood, which is partly due to the scarcity of field studies of present avulsions. At present, two avulsions are occurring on the

  16. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion : multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    NARCIS (Netherlands)

    Pimentel, A.; Zanon, V.; de Groot, Lennart; Hipólito, A.; Di Chiara, A.; Self, S.


    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known

  17. General characteristics of quartz arenite types and their role in the recognition of sequence stratigraphic boundaries in ancient coastal and near shore sediments. A case study from Egypt and Saudi Arabia (United States)

    Khalifa, M. A.


    Quartz arenites are useful in the recognition of depositional sequences and cycle boundaries in ancient coastal and near shore facies. In this study two types of quartz arenite are recognized: 1) depositional quartz arenite (calcareous, dolomitic, ferruginous and kaolinitic quartz arenites), and 2) diagenetic quartz arenite (orthoquartzite, siliceous quartz arenite, compact quartz arenite, and dedolomitic quartz arenite). Depositional quartz arenite often occurs on the tops (upper boundaries) of the depositional sequences that are bounded by sequence boundaries (with or without evidence of subaerial exposure) or correlative conformity surfaces that mark the change from forced regression to lowstand normal regression. Therefore, depositional quartz arenite can define the upper boundaries of third and fourth-order depositional sequences, cycle bases and tops (boundaries) within lowstand, transgressive and highstand systems tracts. Diagenetic quartz arenite (orthoquartzite, siliceous quartz arenite and dedolomitic quartz arenite) usually occurs at the tops (upper boundaries) of depositional sequences that have subaerial sequence boundary and have been subjected to prolonged subaerial weathering and hence is closely associated with subaerial unconformity sequence boundary surfaces and consequently indicates a sharp drop in sea level. Thus, diagenetic quartz arenite types can be used to recognize the tops (upper boundaries) of first and second-order depositional sequences. Compact quartz arenite that is considered the fourth type of diagenetic quartz arenite consists entirely of packed quartz grains, but lacking cement, occurs at the base of each fining-upward cycle (lower boundaries) in lowstand systems tracts and may define the bases of some different-order depositional sequences.

  18. Unrewarded Object Combinations in Captive Parrots (United States)

    Auersperg, Alice Marie Isabel; Oswald, Natalie; Domanegg, Markus; Gajdon, Gyula Koppany; Bugnyar, Thomas


    In primates, complex object combinations during play are often regarded as precursors of functional behavior. Here we investigate combinatory behaviors during unrewarded object manipulation in seven parrot species, including kea, African grey parrots and Goffin cockatoos, three species previously used as model species for technical problem solving. We further examine a habitually tool using species, the black palm cockatoo. Moreover, we incorporate three neotropical species, the yellow- and the black-billed Amazon and the burrowing parakeet. Paralleling previous studies on primates and corvids, free object-object combinations and complex object-substrate combinations such as inserting objects into tubes/holes or stacking rings onto poles prevailed in the species previously linked to advanced physical cognition and tool use. In addition, free object-object combinations were intrinsically structured in Goffin cockatoos and in kea. PMID:25984564

  19. Public Engagement at Archaeology South-East

    Directory of Open Access Journals (Sweden)

    Hilary Orange


    Full Text Available Business skills are a recognised skill shortage within the archaeological profession (Aitchison and Edwards, 2008: 106. Conversely, many small and medium-sized enterprises could benefit from the specialist knowledge that recently graduated PhD students could bring to their business. Recognising this, UCL Advances (the centre for entrepreneurship and business at UCL manages a Knowledge Exchange Associate (KEA scheme whereby exiting PhD students are hosted by businesses. Each KEA acts as a conduit for the transfer of knowledge from UCL to industry, with projects tailored to meet the needs of each business. In return KEA’s are provided with challenging and creative project management experience and formal business training (UCL Advances, 2013.


    Directory of Open Access Journals (Sweden)

    Mária Mihaliková


    Full Text Available The paper deals with examination of relation between the hardness and the size of plastic zone during the tensile loading. UCI (Ultrasonic Contact Impedance micro-hardness method was used for hardness measurements. Deformation was evaluated by non-contact extensometry method – videoextensometry. The result present existence of the power lawl relation between hardness and plastic deformation: HV = HV(p+ kE^a. Hot rolled sheet and thin automotive sheet were investigated.

  1. Energetische Bewertung der Bereitstellung ausgewählter lokaler Lebensmittel am Beispiel dreier Fleischarten


    Hardtert, Bettina


    In der vorliegenden Studie erfolgt eine energetische Bewertung der Bereitstellung dreier Fleischarten als Beispiel für lokale Lebensmittel. Anwendung findet eine modifizierte Form zur Berechnung des Kumulierten Energieaufwandes (KEA). Zu diesem Zweck erfolgt die Untersuchung lokaler Bereitstellungsprozesse für Schweinefleisch, Rindfleisch und Lammfleisch sowie ungarischer Bereitstellungs-prozesse für Schweinefleisch (in Ungarn regional bereitgestellt) mittels standardisierter Fragebögen h...

  2. Final Technical Report - Kotzebue Wind Power Project - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  3. Final Technical Report - Kotzebue Wind Power Porject - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  4. ESA's XMM-Newton gains deep insights into the distant Universe (United States)


    more tightly packed. Marguerite Pierre, CEA Saclay, France, with a European and Chilean team, used this ability to search for remote clusters of galaxies and map out their distribution. The work heralds a new era of studying the distant Universe. The optical identification of clusters shows only the galaxies themselves. However, X-rays show the gas in between the galaxies - which is where most of the matter in a cluster resides. This is like going from seeing a city at night, where you only see the lighted windows, to seeing it during the daytime, when you finally get to see the buildings themselves. Tracking down the clusters is a painstaking, multi-step process. In tandem with XMM-Newton, the team uses the four-metre Canada-France-Hawaii Telescope (CFHT), on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and they represent only about 10% of the detected X-ray sources (the others are mostly distant active galaxies). When the program finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which it then superimposes on the CFHT optical image. The astronomers use this to check if anything is visible within the X-ray emission. If it is, the work then shifts to one of the world's largest telescopes, the European Southern Observatory (ESO) Very Large Telescope where the astronomers identify the individual galaxies in the cluster and take 'redshift' measurements. These give a measurement of the cluster's distance. In this way, Pierre and colleagues are mapping the distribution of galaxy clusters of the distant Universe, for the first time in astronomy. "Galaxy clusters are the largest concentrations of matter in the Universe and XMM-Newton is extremely efficient at finding them," says Pierre. Although the task is still a work in

  5. Radio Telescopes Will Add to Cassini-Huygens Discoveries (United States)


    When the European Space Agency's Huygens spacecraft makes its plunge into the atmosphere of Saturn's moon Titan on January 14, radio telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) will help international teams of scientists extract the maximum possible amount of irreplaceable information from an experiment unique in human history. Huygens is the 700-pound probe that has accompanied the larger Cassini spacecraft on a mission to thoroughly explore Saturn, its rings and its numerous moons. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten telescopes of the continent-wide Very Long Baseline Array (VLBA), located at Pie Town and Los Alamos, NM, Fort Davis, TX, North Liberty, IA, Kitt Peak, AZ, Brewster, WA, Owens Valley, CA, and Mauna Kea, HI, will directly receive the faint signal from Huygens during its descent. Along with other radio telescopes in Australia, Japan, and China, the NRAO facilities will add significantly to the information about Titan and its atmosphere that will be gained from the Huygens mission. A European-led team will use the radio telescopes to make extremely precise measurements of the probe's position during its descent, while a U.S.-led team will concentrate on gathering measurements of the probe's descent speed and the direction of its motion. The radio-telescope measurements will provide data vital to gaining a full understanding of the winds that Huygens encounters in Titan's atmosphere. Currently, scientists know little about Titan's winds. Data from the Voyager I spacecraft's 1980 flyby indicated that east-west winds may reach 225 mph or more. North-south winds and possible vertical winds, while probably much weaker, may still be significant. There are competing theoretical models of Titan's winds, and the overall picture is best summarized as

  6. Obituary: John Beverley Oke, 1928-2004 (United States)

    Hesser, James Edward


    painstaking work he enabled the advances of astronomers worldwide for subsequent generations and extending to the present day. Among his 222 refereed publications, his 1974 paper on absolute spectral-energy distributions for white dwarfs and his 1983 paper with Jim Gunn on secondary standard stars for absolute spectrophotometry led his extraordinary citations. He maintained a career-long interest in the theoretical modeling of stellar atmospheres to help him analyze his lengthy series of observational determinations of absolute stellar fluxes in variable and non-variable stars. As CCD technologies became practical for real science in the late 1970s, Bev leapt to apply them, publishing in 1977 among the first, if not the first, astronomical spectra obtained with them. Using the new detector technology, he seized the opportunity to design and build a very efficient, low-resolution, double (blue, red) spectrograph for the Cassegrain focus of the 5-m Palomar telescope. It went into operation in 1981 and was still in use (with upgraded detectors) in 2004. When the design and construction of the Keck 10-m Telescope began in the 1980s, Bev applied lessons he had learned from the experiences of the Canada-France-Hawaii Telescope to design the Keck dome, with its many innovations. With Judith Cohen he designed and built the low-resolution imaging spectrograph (LRIS) for the Keck telescopes, which contributed greatly to the impact of that observatory in its early years. LRIS was a logical continuation of the Palomar Double Spectrograph design but had even greater efficiency. They commissioned LRIS on Mauna Kea in 1993, some two years after Bev's early retirement from Cal Tech. In Fall, 1991 Bev became a visiting worker at the National Research Council Canada's Dominion Astrophysical Observatory in Victoria, B.C., where he remained active until the day of his death. During those years he used LRIS extensively to study the evolution of clusters of galaxies, and actively pursued time

  7. Detecting Extrasolar Planets With Millimeter-Wave Observatories (United States)


    . Another important advantage is that, at millimeter wavelengths, the star's brightness poses less of a problem for observers because, while it is still brighter than a planet, the difference in brightness between the two is far less. Because of the physical nature of the objects themselves, protoplanets in different stages of formation could readily be detected by advanced millimeter-wave observatories. The observatories that could provide these advantages are the Millimeter Array (MMA), a proposed 40-antenna millimeter-wave telescope that could be operational by 2005, and an upgraded version of the existing Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The MMA is a radio telescope designed to operate at wavelengths from 11.5 millimeters down to 0.5 millimeters, or frequencies from 26 to 650 GHz. It will use 40 precision antennas, each 8 meters in diameter, all operating in concert to produce extremely high- resolution images. As is done with the existing VLA and VLBA radio telescopes, the signals from all the MMA antennas will be processed in a special-purpose computer called a correlator. The processing of the signals corrects for atmospheric propagation effects and for the fact that the "synthesized telescope" is in fact made up of individual antennas. Planning for the MMA began as early as 1983, and a number of scientific workshops have allowed U.S. researchers to make known their needs for a millimeter-wave observatory to serve a wide variety of specialties. The National Science Foundation (NSF) provided initial design funding to NRAO in 1995 for MMA studies. Currently, MMA efforts are centered on selecting an appropriate site, which must be very high, dry and flat. A site at 16,500 feet elevation in northern Chile is now being tested. Hawaii's Mauna Kea is also under consideration. If funding is approved for the MMA, the instrument could be in operation by the year 2005. The MMA is expected to be an international instrument, with funding from

  8. Empirical mode decomposition and correlation properties of long daily ozone records. (United States)

    Jánosi, Imre M; Müller, Rolf


    Correlations for daily data of total ozone column are investigated by detrended fluctuation analysis (DFA). The removal of annual periodicity does not result in a background-free signal for the tropical station Mauna Loa. In order to identify the remaining quasiperiodic constituent, the relatively new method of empirical mode decomposition (EMD) is tested. We found that the so-called intrinsic mode functions do not represent real signal components of the ozone time series, their amplitude modulation is very sensitive to local changes such as random data removal or smoothing. Tests on synthetic data further corroborate the limitations of decomposing quasiperiodic signals from noise with EMD. Nevertheless the EMD algorithm helps to identify dominating frequencies in the time series, which allows to separate fluctuations from the remaining background. We demonstrate that DFA analysis for the cleaned Mauna Loa record yields scaling comparable to a mid-latitude station.

  9. Discovery of ATLAS16dvr (==AT2016iae) in NGC1532: a probably young and nearby supernova (United States)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.


    We report the following bright transient found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on

  10. State of the Climate in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Blunden, Jessica; Arndt, Derek S.


    This is the 26th edition of the annual assessment now known as State of the Climate. The year 2015 saw the toppling of several symbolic mileposts: notably, it was 1.0°C warmer than preindustrial times, and the Mauna Loa observatory recorded its first annual mean carbon dioxide concentration greater than 400 ppm. Beyond these more recognizable markers, changes seen in recent decades continued.

  11. Measuring Aerosol Optical Depth (AOD and Aerosol Profiles Simultaneously with a Camera Lidar

    Directory of Open Access Journals (Sweden)

    Barnes John


    Full Text Available CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  12. Additional Observations of Actively Forming Lava Tubes and Associated Structures, Hawaii (United States)

    Greeley, Ronald


    Extensive changes occurred after the initial observations (Greeley, 1971) of lava tube and channel formation associated with the eruption of Mauna Ulu. Individual vents, which apparently acted somewhat independently, merged by collapse of intervening sections to form an elongate trench. Lava erupted from the summit vent flowed down the trench to the lower end and drained through lava tubes into Alae lava lake. Alae lava lake is in turn drained occasionally by other lava tubes and lava tube networks.

  13. The Behavior of the Snow White Chilled-Mirror Hygrometer in Extremely Dry Conditions


    Vömel, H.; Fujiwara, M.; Shiotani, M.; Hasebe, F.; Oltmans, S. J.; Barnes, J. E.


    The Snow White hygrometer, made by Meteolabor AG, Switzerland, is a new chilled-mirror instrument using a thermoelectric Peltier cooler to measure atmospheric water vapor. Its performance under dry conditions is evaluated in simultaneous measurements using the NOAA/CMDL frost-point hygrometer at Boulder, Colorado; San Cristo´bal, Gala´pagos Islands, Ecuador; Watukosek, Indonesia; and Mauna Loa Observatory, Hawaii. The Snow White exhibits a lower detection limit of about 3%–6% rela...

  14. Status and limiting factors of two rare plant species in dry montane communities of Hawai`i Volcanoes National Park. (United States)

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody


    Two rare plants native to montane dry forests and woodland communities of Hawai`i Volcanoes National Park (HAVO) were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, floral visitor composition, seed germination rates in the greenhouse, and survival of both natural and planted seedlings. Phyllostegia stachyoides, a shrubby Hawaiian mint (Lamiaceae) that is a species of concern, was studied within two small kīpuka at a natural population on the park’s Mauna Loa Strip, and three plantings at sites along the Mauna Loa Road were also monitored. Silene hawaiiensis, a threatened shrub species in the pink family (Caryophyllaceae), was monitored at two natural populations, one on Mauna Loa at the Three Trees Kīpuka and the second on Kīlauea Crater Rim south of Halema`uma`u. Silene hawaiiensis plantings were also made inside and outside ungulate exclosures at the park’s Kahuku Unit

  15. Influence of Late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard and the Barents Sea

    DEFF Research Database (Denmark)

    Stemmerik, Lars


    . The dominant motif is that of meters to tens of meters of exposure-capped cycles of carbonates, mixed carbonates, and siliciclastics and, in older stratigraphic levels, siliciclastics and gypsum. Halitegypsum-carbonate cycles developed in deeper, isolated basins. Individual cycles of carbonate and mixed...... carbonate-siliciclastics reflect deposition during the later stages of transgression, sea-level highstands, and high-frequency and high-amplitude glacioeustatic sea-level fluctuations. The Moscovian sections in North Greenland are composed of 43 such cycles, each of which apparently reflects sealevel...... fluctuations linked to the 100 k.y. Milankovitch cycle. The stratigraphic distribution of subaerial exposure surfaces indicates that during Late Carboniferous-Early Permian time, the northern Pangea shelf repeatedly changed from being a shallow subtropical carbonate platform to a vast subaerially exposed...

  16. On the characteristics of landslide tsunamis. (United States)

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J


    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  17. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field


    Roberto Barbieri; Barbara Cavalazzi


    Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo-) environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth—when these extreme environments had t...

  18. On the peritidal cycles and their diagenetic evolution in the Lower Jurassic carbonates of the Calcare Massiccio Formation (Central Apennines

    Directory of Open Access Journals (Sweden)

    Brandano Marco


    Full Text Available This paper shows the environmental changes and high-frequency cyclicity recorded by Lower Jurassic shallow-water carbonates known as the Calcare Massiccio Formation which crop out in the central Apennines of Italy. Three types of sedimentary cycle bounded by subaerial erosion have been recognized: Type I consists of a shallowing upward cycle with oncoidal floatstones to rudstones passing gradationally up into peloidal packstone alternating with cryptoalgal laminites and often bounded by desiccation cracks and pisolitic-peloidal wackestones indicating a period of subaerial exposure. Type II shows a symmetrical trend in terms of facies arrangement with peloidal packstones and cryptoalgal laminites present both at the base and in the upper portion of the cycle, separated by oncoidal floatstones to rudstones. Type III displays a shallowing upward trend with an initial erosion surface overlain by oncoidal floatstones to rudstones that, in turn, are capped by pisolitic-peloidal wackestones and desiccation sheet cracks. Sheet cracks at the top of cycles formed during the initial phase of subaerial exposure were successively enlarged by dissolution during prolonged subaerial exposure. The following sea-level fall produced dissolution cavities in subtidal facies, while the successive sea-level rise resulted in the precipitation of marine cements in dissolution cavities. Spectral analysis revealed six peaks, five of which are consistent with orbital cycles. While a tectonic control cannot be disregarded, the main signal recorded by the sedimentary succession points toward a main control related to orbital forcing. High frequency sea-level fluctuations also controlled diagenetic processes.

  19. Great landslide events in Italian artificial reservoirs


    Panizzo, A.; P. De Girolamo; M. Risio; Maistri, A.; Petaccia, A.


    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial...

  20. Mold attack on frescoes and stone walls of Gradac monastery


    Stupar Miloš Č.; Ljaljević-Grbić Milica V.; Vukojević Jelena B.; Jelikić Aleksa A.


    Microfungi can colonize stone surfaces and form sub-aerial biofilms which can lead to biodeterioration of historic monuments. In this investigation samples for mycological analyses were collected from stone material with visible alteration on stone walls of Gradac monastery exterior. The prevailing fungi found on stone walls were dematiaceous hyphomycetes with melanized hyphae and reproductive structures (Alternaria, Aureobasidium, Cladosporium and Epicoccum species). The frescoes insid...

  1. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes Ruptura sísmica submarina, tectónica y volcanismo activo a lo largo de la Falla Liquiñe-Ofqui e implicancias para el peligro sísmico en los Andes patagónicos


    Gabriel Vargas; Sofía Rebolledo; Sergio A Sepúlveda; Alfredo Lahsen; Ricardo Thiele; Brian Townley; Cristóbal Padilla; Rodrigo Rauld; Maria José Herrera; Marisol Lara


    The Liquiñe-Ofqui fault zone (LOFZ) in the Patagonian Andes is an active major transpressional intra-arc fault system along which Quaternary faulting and volcanism develop. Subaerial and submarine geomorphologic and structural characterization of latest Pleistocene-Holocene faults and monogenetic volcanoes allows us to assess geological cartography of active faults and the kinematic model for recent tectonics during postglacial times, since 12,000 cal. years BP. This allows increasing the bas...

  2. The landslide problem


    G. Shanmugam; Wang, Yuan


    The synonymous use of the general term “landslide”, with a built-in reference to a sliding motion, for all varieties of mass-transport deposits (MTD), which include slides, slumps, debrites, topples, creeps, debris avalanches etc. in subaerial, sublacustrine, submarine, and extraterrestrial environments has created a multitude of conceptual and nomenclatural problems. In addition, concepts of triggers and long-runout mechanisms of mass movements are loosely applied without rigor. These proble...

  3. Origen bacteriano de espelotemas tipo moonmilk en ambiente karstico (Cueva de Altamira, Cantabria, España)


    Soler, V.; Sánchez-Moral, S.; Sáiz-Jiménez, C.; Luque, L.; Lario, J.; Gonz?lez, R.; Cañaveras, C.; Cuezva, S.


    Moonmilk subaerial speleothems of Altamira Cave are constituted by a network of needle-fiber calcite crystals (NFC) and active microbial filaments. These recent deposits allow us the observation of the first evolution stages, as well as defining microclimatic and hydrochemical conditions of mineral precipitation. In previous works, the origin of the NFC has been determined being associated to fast mineral precipitation related with evaporation and criodesiccation processes. From our data, an ...

  4. New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat (United States)

    Watt, S. F. L.; Jutzeler, M.; Talling, P. J.; Carey, S. N.; Sparks, R. S. J.; Tucker, M.; Stinton, A. J.; Fisher, J. K.; Wall-Palmer, D.; Hühnerbach, V.; Moreton, S. G.


    Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5-14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ˜130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris.

  5. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves


    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony


    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore...

  6. On the occurrence of sonchuside A in Cicerbita alpina and its chemosystematic significance

    Directory of Open Access Journals (Sweden)



    Full Text Available The subaerial parts of Cicerbita alpina yielded the guaianolide 8-acetyl-15b-D-glucopyranosyllactucin (1 and the germacranolide Sonchuside A (2. The sonchuside A is reported for the first time from the genus Cicerbita. 1H-NMR and 13C NMR data of compounds 1 and 2 measured in deuterodimethyl sulfoxide and deuteromethanol, respectively, are given and the chemosystematic implications of the occurrence of sonchuside A in C. alpina are discussed briefly.

  7. Defining the ecogeomorphic succession of land building for freshwater, intertidal wetlands in Wax Lake Delta, Louisiana (United States)

    Olliver, Elizabeth A.; Edmonds, Douglas A.


    Land building in deltaic environments occurs when sediment discharged from a river mouth is deposited subaqueously and transitions to subaerial land. The transition from subaqueous deposition to subaerial land is a critical process that marks the creation of relatively stable land, yet it is unclear what controls the speed and style of this transition. We define how this transition, herein termed the land building succession, varies in time and space for the freshwater, intertidal wetlands in Wax Lake Delta, LA. Using remote sensing and field data we classify land cover into sediment, water, or vegetation classes at maximum and minimum biomass. We see two succession patterns within Wax Lake Delta. Deltaic islands near the apex are initially covered by sediment and open water. Through time, open water and sediment coverage decreases as vegetation coverage increases. On the other hand, distal islands show little sediment exposure through time. In both cases, all deltaic islands become covered with vegetation by 2015. As vegetation colonizes the island, the topography organizes into two platforms vertically separated by ∼0.35 m. The lower, intertidal platform occurs in the island interiors and is commonly inundated by water and dominated by subaqueous or floating vegetation. The upper, subaerial platform occurs along island edges and is dominated by a variety of vegetation species including Salix nigra, Colocasia esculenta, and Polygonum punctatum. It takes an average of ∼10 years for the intertidal platform to transition to the subaerial platform. These two platforms are separated by the tidal range measured in Atchafalaya Bay, and the different vegetation communities occupying each platform suggest they are a manifestation of multiple stable states and arise due to vegetation and sedimentation feedbacks.

  8. Growth History of Kaena Volcano, the Isolated, Dominantly Submarine, Precursor Volcano to Oahu, Hawaii (United States)

    Sinton, J. M.; Eason, D. E.


    The construction of O'ahu began with the recently recognized, ~3.5-4.9 Ma Ka'ena Volcano, as an isolated edifice in the Kaua'i Channel. Ka'ena remained submarine until, near the end of its lifetime as magma supply waned and the volcano transitioned to a late-shield stage of activity, it emerged to reach a maximum elevation of ~1000 m above sea level. We estimate that Ka'ena was emergent only for the last 15-25% of its lifespan, and that subaerial lavas make up < 5% of the total volume (20-27 x 103 km3). O'ahu's other volcanoes, Wai'anae (~3.9-2.85 Ma) and Ko'olau (~3.0-1.9 Ma), were built at least partly on the flanks of earlier edifices and both were active subaerial volcanoes for at least 1 Ma. The constructional history of Ka'ena contrasts with that of Wai'anae, Ko'olau, and many other Hawaiian volcanoes, which likely emerge within a few hundred kyr after inception, and with subaerial lavas comprising up to 35 volume % of the volcano. These relations suggest that volcano growth history and morphology are critically dependent on whether volcanic initiation and growth occur in the deep ocean floor (isolated), or on the flanks of pre-existing edifices. Two other volcanoes that likely formed in isolation are West Moloka'i and Kohala, both of which have long submarine rift zones, and neither attained great heights above sea level despite having substantial volume. The partitioning of volcanism between submarine and subaerial volcanism depends on the distance between volcanic centers, whether new volcanoes initiate on the flanks of earlier ones, and the time over which neighboring volcanoes are concurrently active. Ka'ena might represent an end-member in this spectrum, having initiated far from its next oldest neighbor and completed much of its evolution in isolation.

  9. High frequency peritidal cycles in the lower member of the Late Cretaceous (Turonian, Coniasian-Santonian) El Hefhuf Formation, Bahariya Oases, Western Desert, Egypt (United States)

    Khalifa, M. A.; Tanner, Lawrence H.


    Carbonate lithofacies of the lower member of the El Hefhuf Formation (Turonian, Coniasian-Santonian) in the Bahariya Oases, Western Desert of Egypt comprise dolostone, burrowed dolostone, cherty dolostone, calcareous dedolostone, dolomitic quartzose lime-mudstone, and caliche. The dolostone and cherty dolostone formed in intertidal to supratidal environments, while dedolostone and caliche were formed during subaerial exposure. The dolomitic quartzose lime-mudstone was deposited in a restricted subtidal environment. Stable isotope analyses of the dolostone lithofacies are consistent with dolomitization by normal marine to evaporatively enriched dolomitizing fluids with only slight mixing of meteoric water. Therefore, dolomitization occurred in the intertidal and supratidal environments immediately following deposition. The dolostone and cherty dolostone lithofacies display pronounced cyclicity at the sub-meter scale, with individual cycles consisting of one (monolithic), two (diad) or at most three (triad) lithofacies. Most of all cycles show evidence of subaerial exposure at the top, such as brecciations, and many cycles are capped by calcareous palaeosol layers (caliche). In the absence of evidence for cycle periods at Milankovitch-scale frequencies, we reject orbital forcing as the cause of the cyclicity and suggest instead autocyclic depositional processes in the peritidal environment as the primary control on cyclicity, possibly modified by eustatic fluctuations at periods longer than the cycles recorded here. The significance of this study is to suggest formation of dolomite cycles due to high-frequency in sea level with intermittent subaerial exposure.

  10. Comment on "Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores" by Sibrant et al. (2014) and proposal of a new model for Graciosa's geological evolution (United States)

    Quartau, R.; Hipólito, A.; Mitchell, N. C.; Gaspar, J. L.; Brandão, F.


    Volcanoes rising above sea level within extensional oceanic plate boundaries provide accessible locations with which to study the effects of plate tectonic and volcanic processes of such areas. However, relying solely on subaerial observations can lead to biased interpretations. Reconciling the information provided by multibeam echo sounders on the submarine parts of volcanic islands with geology and geomorphology observable above sea level can potentially provide more robust interpretations. In this comment of the study of Sibrant et al. (2014), which is based almost solely on subaerial observations, we show how the published multibeam sonar data around Graciosa reveals that their proposed successive phases of destruction of the volcanic edifices composing the island by massive landslides is incompatible with the high-resolution bathymetry. The data reveal no large-scale debris avalanche deposits or characteristic flank collapse scars where Sibrant et al. (2014) propose these landslides to have occurred. Instead, the data show volcanic constructional areas, some of which have simply been eroded by wave abrasion. The interpretation of collapse structures appears to have originated partly from a misreading of the volcano-stratigraphy and tectonic structures. Overall, wave erosion coupled with subaerial erosion and tectonic activity can more easily explain the onshore observations of Sibrant et al. (2014), providing a less catastrophic explanation for the evolution of Graciosa Island.

  11. The role of multigelation in the development of river banks

    Directory of Open Access Journals (Sweden)



    Full Text Available The development of river banks is conditioned by a few factors: fluvial erosion, mass movements and subaerial processes. Many researchers believe that the subaerial phenomena are more preparatory processes to actual erosion than the erosion itself. Among the subaerial phenomena, freezing and thawing play a key role. Multigelation affects the stability and sustainability of river banks, not only in the northern reaches of Eurasia andNorth Americabut also in temperate latitudes. Susceptibility to change in bank morphology, however, is extremely selective. Within the same layer, at a distance of 1 metre the intensity of frost erosion can be very different. This is the result of many factors determining the rate of bank retreat. These include: the height of the bank, its structure and texture, physical and chemical properties of the material from which it is built, environmental conditions, soil moisture, water pressure in the pore spaces, porosity and density of the soil, organic matter content in the soil, temperature, vegetation, as well as thickness and duriation of snow cover. An important objective is therefore to show the differences in the rate of retreat of the river banks, and above all characterized by varying degrees of density and grain size of the material it is build of. 

  12. Endomembrane Cation Transporters and Membrane Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Sze, Heven [Univ. of Maryland, College Park, MD (United States). Dept. of Cell Biology & Molecular Genetics


    Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that might influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H+ exchangers (CHX) and K+ efflux antiporters (KEA) that are prevalent in higher plants, but rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H+ exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting

  13. Moonshot Laboratories' Lava Relief Google Mapping Project (United States)

    Brennan, B.; Tomita, M.


    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it.

  14. More than one way to see it: Individual heuristics in avian visual computation. (United States)

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M; Fitch, W Tecumseh


    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Algae to Flowering Plants

    Directory of Open Access Journals (Sweden)

    Salil eChanroj


    Full Text Available All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by cation-proton antiporters (CPA. CPA1 genes found in bacteria, fungi, metazoa and plants have been functionally-characterized; though roles of plant CPA2 genes in KEA (K+-efflux antiporter and CHX (cation/H+ exchanger families are largely unknown. Phylogenetic analysis showed that three clades of the Na+-H+ exchanger (NHX family have been conserved from single-celled alga to Arabidopsis. These are i plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, ii endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and iii a vacuolar NHX clade (AtNHX1-4 specific to plants. Early diversification of KEA genes possibly from ancestral genes of a cyanobacterium is suggested for three K+-efflux antiporter clades (KEA/Kef seen in all plants. Intriguingly, the CHX gene family blossomed from a few members in early land plants to >40 genes in legumes. Homologs from spirogyra or moss share high similarity with guard cell-specific AtCHX20, suggesting that AtCHX20 and its relatives (AtCHX16-19 are founders of the family. Evolutionary analysis suggests pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins have been localized to intracellular and plasma membrane of plants, and shown to mediate K+ transport and pH homeostasis. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in ancestral plants to handle ion homeostasis of vacuoles in all cell types. The strong presence of CHX genes in land plants, but not in metazoa or fungi, would infer a role of ion and pH homeostasis at dynamic endomembranes to support vegetative and reproductive success of flowering plants.

  16. First supernova companion star found (United States)


    years after this cataclysmic event, a European/University of Hawaii team of astronomers has now peered deep into the glowing remnants of SN 1993J using the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and the giant Keck telescope on Mauna Kea in Hawaii. They have discovered a massive star exactly at the position of the supernova that is the long sought companion to the supernova progenitor. This is the first supernova companion star ever to be detected and it represents a triumph for the theoretical models. In addition, this observation allows a detailed investigation of the stellar physics leading to supernova explosions. It is now clear that during the last 250 years before the explosion 10 solar masses of gas were torn violently from the red supergiant by its partner. By observing the companion closely in the coming years it may even be possible to detect a neutron star or black hole emerge from the remnants of the explosion ‘in real time’. Given the paucity of observations of supernova progenitor systems this result, published in Nature on 8 January 2004, is likely to “be crucial to understanding how very massive stars explode and why we see such peculiar supernovae” according to first author Justyn R. Maund from the University of Cambridge, UK. Stephen Smartt, also from the University of Cambridge, says “Supernova explosions are at the heart of our understanding of the evolution of galaxies and the formation of chemical elements in the Universe. It is essential that we know what type of stars produce them.” For the last ten years astronomers have believed that they could understand the very peculiar behaviour of 1993J by invoking the existence of a binary companion star and now this picture has proved correct. According to Rolf Kudritzki from the University of Hawaii “The combination of the outstanding spatial resolution of Hubble and the huge light gathering power of the Keck 10m telescope in Hawaii has made this fantastic

  17. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated (United States)


    /Chilean team of astronomers known as the XMM-LSS consortium [2], used the large field-of-view and the high sensitivity of ESA's X-ray observatory XMM-Newton to search for remote clusters of galaxies and map out their distribution in space. They could see back about 7,000 million years to a cosmological era when the Universe was about half its present size and age, when clusters of galaxies were more tightly packed. Tracking down the clusters is a painstaking, multi-step process, requiring both space and ground-based telescopes. Indeed, from X-ray images with XMM, it was possible to select several tens of cluster candidate objects, identified as areas of enhanced X-radiation (cf PR Photo 19b/03). But having candidates is not enough ! They must be confirmed and further studied with ground-based telescopes. In tandem with XMM-Newton, Pierre uses the very-wide-field imager attached to the 4-m Canada-France-Hawaii Telescope, on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme then combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources. The others are mostly distant active galaxies. Back to the Ground ESO PR Photo 19c/03 ESO PR Photo 19c/03 [Preview - JPEG: 400 x 481 pix - 84k [Normal - JPEG: 800 x 961 pix - 1M] ESO PR Photo 19d/03 ESO PR Photo 19d/03 [Preview - JPEG: 400 x 488 pix - 44k [Normal - JPEG: 800 x 976 pix - 520k] Captions: PR Photo 19c/03 represents the XMM-Newton X-ray contour map of the cluster's probable extent superimposed upon the CFHT I-band image. A concentration of distant galaxies is conspicuous, thus confirming the X-ray detection. The symbols indicate the galaxies which have been subject to a subsequent spectroscopic measurement and found to be cluster members (triangles flag emission line galaxies). The individual galaxies in the cluster can then be targeted for further

  18. Discovery of a Satellite around a Near-Earth Asteroid (United States)


    secure lightcurve coverage over a longer period of time than was possible from La Silla alone. As a result, a series of lightcurve measurements were performed from June 3 to 9 in close cooperation with Petr Pravec and Lenka Sarounova working at the Ondrejov Observatory, near Prague in the Czech Republic. Luckily, the weather conditions were favourable at both sites and the dips in the lightcurve were indeed observed at the predicted times. Based on the four well observed events, it was then possible to determine a period of 1.155 days for their occurence. Thus, the hypothesis of a satellite orbiting around Dionysus was confirmed. As a result, the International Astronomical Union's Minor Planet Center located in Cambridge (MA, USA) promptly gave a provisional designation to the new satellite - S/1997 (3671) 1 . How big is Dionysus? Meanwhile, in Hawaii, the world's largest infrared telescope was being trained on Dionysus to obtain information about its size and composition. Alan Harris , also a scientist from the DLR in Berlin, and John Davies from the Joint Astronomy Centre in Hilo, Hawaii, observed the thermal infrared radiation emitted by Dionysus with the 3.8-m United Kingdom Infrared Telescope (UKIRT) situated on Mauna Kea. Similar observations over a broader spectral range were also made by the European Space Agency's orbiting Infrared Space Observatory. The thermal or "heat" radiation emitted by an asteroid depends on its size and the amount of sunlight it absorbs (darker bodies being warmer). In the case of Dionysus the measured radiation was much weaker than expected, indicating that the asteroid has an intrinsically bright (reflective) surface and is only about 1 km in diameter. This is much smaller than (253) Ida, the only other asteroid known to have a moon, which is about 60 km across. Further observations Eventually it should be possible to determine the orbital radius of the satellite, its size and the inclination of its orbital plane. In order to obtain

  19. Hubble tracks down a galaxy cluster's dark matter (United States)


    total, the image measures 27 arc-minutes across, slightly smaller than the diameter of the Moon. The observed warped shapes of more than 7000 faint background galaxies have been converted into a unique map of the dark matter in the cluster. The images were taken through a red filter and have been reduced a factor of two in size. Ground-based image of the galaxy cluster C10024+1654 hi-res Size hi-res: 4699 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Ground-based image of the galaxy cluster C10024+1654 This is a colour image of the galaxy cluster C10024+1654 obtained with the CFHT12k camera at the Canada France Hawaii Telescope on Mauna Kea (Hawaii). The cluster clearly appears as a concentration of yellow galaxies in the centre of this image although cluster galaxies actually extend at least to the edge of this image. This image measures 21 x 21 arc-minutes. Clusters of galaxies are the largest stable systems in the Universe. They are like laboratories for studying the relationship between the distributions of dark and visible matter. In 1937, Fritz Zwicky realised that the visible component of a cluster (the thousands of millions of stars in each of the thousands of galaxies) represents only a tiny fraction of the total mass. About 80-85% of the matter is invisible, the so-called 'dark matter'. Although astronomers have known about the presence of dark matter for many decades, finding a technique to view its distribution is a much more recent development. Led by Drs Jean-Paul Kneib (from the Observatoire Midi-Pyrénées, France/Caltech, United States), Richard Ellis and Tommaso Treu (both Caltech, United States), the team used the NASA/ESA Hubble Space Telescope to reconstruct a unique 'mass map' of the galaxy cluster CL0024+1654. It enabled them to see for the first time on such large scales how mysterious dark matter is distributed with respect to galaxies. This comparison gives new clues on how such

  20. More Saturnian Moons (United States)


    , with the Wide Field Imager (WFI) , a 67-million pixel digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory (Chile). When analyzing the many images in a sky area near the location of the planet Saturn, Brett Gladman (who works for the "Centre National de Recherche Scientifique (CNRS)", France) realized that two faint, moving objects seen near the brilliant glare of Saturn might well be hitherto unknown satellites of that planet. Follow-up observations On September 23 and 24, Brett Gladman and his colleague JJ Kavelaars were observing at the Canada-France-Hawaii 3.5-m telescope on Mauna Kea (Hawaii, USA). In a more extensive search, they were again able to image the two objects first discovered at La Silla. They also detected two more candidates, also announced on an IAU Circular today [2]. Working as fast as the images came off the telescope, they immediately alerted other teams of astronomers about these discoveries. Additional, confirming observations soon came from (Rhiannon) Lynne Allen (University of Michigan, USA) at the 2.4-m MDM telescope (Arizona, USA), Carl W. Hergenrother and Steve Larson at the 1.5-m telescope of the Steward Observatory (Arizona, USA), as well as Alain Doressoundiram and Jorge Romon at the ESO 3.58-m New Technology Telescope (NTT) on La Silla. The orbits Orbital calculations by Brian Marsden ( IAU Minor Planet Center, Smithsonian Astrophysical Observtory, USA) proved that these objects cannot be foreground asteroids (minor planets). Although it is currently not yet possible to completely disprove that these are comets that happen to pass near Saturn, previous experience shows that this is extremely unlikely. Several months of continued observations will still be required to compute highly accurate orbits of these objects. This must be accomplished before the planet disappears behind the Sun in March 2001 (as seen from the Earth). Saturn's "irregular" moons The computations show that these moons are of

  1. a Faint and Lonely Brown Dwarf in the Solar Vicinity (United States)


    as a hydrogen line in emission. However, when the colour of this mysterious object was measured in different wavebands, it was found to be very red and quite similar to that of one of the two known Brown Dwarfs in double star systems. The presence of the lithium line in the spectrum is also an indication that it might be of that type. The astronomer now decided to give the new object the name KELU-1 ; this word means `red' in the language of the Mapuche people, the ancient population in the central part of Chile. Its visual magnitude is 22.3, i.e. more than 3 million times fainter than what can be seen with the unaided eye. In early April, additional infrared observations with the UKIRT (UK Infrared Telescope) on Mauna Kea (Hawaii) by Sandra K. Leggett (Joint Astrophysical Centre, Hilo, Hawaii, USA) confirmed the Brown Dwarf nature of KELU-1, in particular through the unambiguous detection of Methane (CH 4 ) bands in its spectrum. The nature of Brown Dwarfs Brown Dwarfs are first of all characterised by their low mass. When a body of such a small mass is formed in an interstellar cloud and subsequently begins to contract, its temperature at the centre will rise, but it will never reach a level that is sufficient to ignite the nuclear burning of hydrogen to helium, the process that it is main source of energy in the Sun and most other stars. The Brown Dwarf will just continue to contract, more and more slowly, and it will eventually fade from view. This is also the reason that some astronomers consider Brown Dwarfs in the Milky Way and other galaxies as an important component of the `dark matter' whose presence is infered from other indirect measurements but has never been directly observed. It is assumed that the mass limit that separates nuclear-burning stars and slowly contracting Brown Dwarfs is at about 90 times the mass of the giant planet Jupiter, or 8 percent of that of the Sun. KELU-1: a great opportunity for Brown Dwarf studies Assuming that KELU-1 is

  2. Enhancing the view of a million galaxies (United States)


    expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. More information on XMM-Newton can be found at: More about the Subaru Telescope Subaru is an optical-infrared telescope at the 4200m summit of Mauna Kea on the island of Hawaii operated by the National Astronomical Observatory of Japan. Subaru has one of the world's largest single piece primary mirrors with an effective aperture of 8.2 metres, and uses various revolutionary technologies to achieve superb image quality. An active support system that maintains an unprecedentedly high mirror surface accuracy, a new dome design to suppress local atmospheric turbulence, an extremely accurate tracking mechanism using magnetic driving systems, seven observational instruments installed at four foci, and an auto-exchanger system to use the observational instruments effectively are just some of the unique features of this telescope.

  3. Unique oestrogen receptor ligand-binding domain sequence of native parrots: a possible link between phytoestrogens and breeding success. (United States)

    Davis, Catherine E J; Bibby, Adrian H; Buckley, Kevin M; McNatty, Kenneth P; Pitman, Janet L


    The New Zealand (NZ) native parrots kākāpō, kākā and kea are classified as critically endangered, endangered and vulnerable respectively. Successful reproduction of kākāpō and kākā is linked to years of high levels of fruiting in native flora (mast years). To assess a possible hormonal link between native plants and reproductive success in these parrots in mast years, we examined the ligand-binding domains (LBD) of the progesterone receptor (PR), androgen receptor (AR), estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2) in NZ native (kākāpō, kākā, kea and kākāriki) and non-native (Australian cockatiel) parrots and compared them with those in the chicken. The amino acid sequences for PR, AR, ESR1 and ESR2 shared >90% homology among the NZ parrots, the cockatiel and, in most cases, the chicken. The exception was for the ESR1 LBD, which contained an extra eight amino acids at the C-terminal in all the parrots compared with the chicken and with published sequences of non-parrot species. These results support the notion that the ESR1 LBD of parrots responds differently to putative oestrogenic compounds in native trees in NZ during times of intermittent masting. In turn, this may provide important information for generating parrot-specific bioassays and linkages to steroidogenic activity in native plants.

  4. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate (United States)

    Jones, T. D.; Davies, D. R.; Campbell, I. H.; Iaffaldano, G.; Yaxley, G.; Kramer, S. C.; Wilson, C. R.


    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth’s core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent azimuthal change in Pacific plate motion exposes high- and low-pressure melt products as geographically distinct volcanoes, explaining the simultaneous emergence of double-track volcanism across the Pacific; and finally, secondary pyroxenite, which is formed as eclogite melt reacts with peridotite, dominates the low-pressure melt region beneath Loa-track volcanism, yielding the systematic geochemical differences observed between Loa- and Kea-type lavas. Our results imply that the formation of double-track volcanism is transitory and can be used to identify and place temporal bounds on plate-motion changes.

  5. Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: A randomized controlled trial. (United States)

    Sharma, Saurab; Balthillaya, Ganesh; Rao, Roopa; Mani, Ramakrishnan


    To investigate the added benefit of nerve-biased interventions over static stretching in hamstring flexibility and to compare the effectiveness of two types of nerve-biased interventions over a week. Three-arm assessor-blinded randomized controlled trial. University Laboratory. Sixty healthy individuals (mean age = 22 ± 2.4 years) with reduced hamstring flexibility were randomized to three groups who received static stretching and neurodynamic sliders (NS-SS); static stretching with neurodynamic tensioner (NT-SS) and static stretching (SS) alone. Knee extension angle (KEA) in degrees. Baseline characteristics including demographic, anthropomorphic and KEA between groups were comparable. A significant interaction was observed between group (intervention) and time, [F (2,114) = 3.595; p = 0.031]. Post-hoc pairwise comparisons analyses revealed significant differences at post-intervention measurement time point between NS-SS and SS (mean difference: -6.8; 95%CI = -12, -1.5; p = 0.011) and NT-SS and SS (mean difference: -11.6; 95%CI = -16.7, -6.3; p tensioners are both effective in increasing hamstring flexibility as an adjunct to static hamstring stretching when compared to static stretching alone. No neural mobilization technique proved to be superior over another. This clinical trial is registered in Clinical Trials Registry- India (CTRI) with registration number CTRI/2012/05/002619. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The effect of kinesio tape application on hamstring and gastrocnemius muscles in healthy young adults. (United States)

    Lumbroso, Dedi; Ziv, Elad; Vered, Elisha; Kalichman, Leonid


    Scarce evidence exists about effectiveness and mechanisms of action of Kinesio tape (KT) application. To evaluate the effect of KT application over the gastrocnemius or hamstring on range of motion and peak force. Thirty-six physical therapy students participated (18 per group). KT was applied with 30% tension for 48 h to: Group 1 - the gastrocnemius; Group 2 - the hamstrings. The straight leg raise (SLR), knee extension angle (KEA), weight bearing ankle dorsiflexion, gastrocnemius, quadriceps and hamstrings peak forces were evaluated prior to application, 15 min and 48 h after. A significant increase of peak force in the gastrocnemius group appeared immediately and two days later; no immediate change of peak force in the hamstrings group, however, two days later, peak force significantly increased. SLR and ankle dorsiflexion increased immediately in the gastrocnemius group; KEA improved significantly only after two days. It is possible that certain muscles react differently when KT is applied, and the effect may be subsequently detected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S.; Shirazi, M.


    To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

  8. Positive emotional contagion in a New Zealand parrot. (United States)

    Schwing, Raoul; Nelson, Ximena J; Wein, Amelia; Parsons, Stuart


    Positive emotional contagions are outwardly emotive actions that spread from one individual to another, such as glee in preschool children [1] or laughter in humans of all ages [2]. The play vocalizations of some animals may also act as emotional contagions. For example, artificially deafened rats are less likely to play than their non-hearing-impaired conspecifics, while no such effect is found for blinded rats [3]. As rat play vocalizations are also produced in anticipation of play, they, rather than the play itself, may act as a contagion, leading to a hypothesis of evolutionary parallels between rat play vocalizations and human laughter [4]. The kea parrot (Nestor notabilis) has complex play behaviour and a distinct play vocalization [5]. We used acoustic playback to investigate the effect of play calls on wild kea, finding that play vocalizations increase the amount of play among both juveniles and adults, likely by acting as a positive emotional contagion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland (United States)

    Wilson, Robert M.


    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  10. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii (United States)

    Phillips, Erin H.; Sims, Kenneth W. W.; Sherrod, David R.; Salters, Vincent J. M.; Blusztajn, Jurek; Dulai, Henrietta


    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U-230Th-226Ra and 235U-231Pa-227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  11. Sixth International Conference on Precipitation: Predictability of Rainfall at the Various Scales. Abstracts

    Energy Technology Data Exchange (ETDEWEB)



    This volume contains abstracts of the papers presented at the Sixth International Conference on Precipitation: Predictability of Rainfall at the various scales, held at the Mauna Lani Bay and Bungalows, Hawaii, June 29 - July 1, 1998. The main goal of the conference was to bring together meteorologists, hydrologists, mathematicians, physicists, statisticians, and all others who are interested in fundamental principles governing the physical processes of precipitation. The results of the previous conferences have been published in issues of the Journal of Geophysical Research and Journal of Applied Meteorology. A similar format is planned for papers of this conference.

  12. Tracking near-surface atmospheric conditions using an infrasound network. (United States)

    Marcillo, O; Johnson, J B


    Continuous volcanic infrasound signal was recorded on a three-microphone network at Kilauea in July 2008 and inverted for near-surface horizontal winds. Inter-station phase delays, determined by signal cross-correlation, vary by up to 4% and are attributable to variable atmospheric conditions. The results suggest two predominant weather regimes during the study period: (1) 6-9 m/s easterly trade winds and (2) lower-intensity 2-5 m/s mountain breezes from Mauna Loa. The results demonstrate the potential of using infrasound for tracking local averaged meteorological conditions, which has implications for modeling plume dispersal and quantifying gas flux.

  13. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)


    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  14. Strong signature of the active Sun in 100 years of terrestrial insolation data

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W. [Institut fuer Physik, TU Dortmund (Germany)


    Terrestrial solar irradiance data of the Smithsonian Astrophysical Observatory from 1905 to 1954 and of Mauna Loa Observatory from 1958 to 2008 are analyzed. The analysis shows that, with changing solar activity, the atmosphere modifies the solar irradiance on the percentage level, in all likelihood via cosmic ray intensity variations produced by the active sun. The analysis strongly suggests that cosmic rays cause a large part of the atmospheric aerosols. These aerosols show specific absorption and scattering properties due to an inner structure of hydrated ionic centers, most probably of O{sub 2}{sup -} and O{sub 2}{sup +} produced by the cosmic rays. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. A Climate Transect through Tropical Montane Rain Forest in Hawaii. (United States)

    Juvik, James O.; Nullet, Dennis


    Two years of climate data from a transect of three surface meteorological stations on the windward slopes of Mauna Loa, Hawaii, are analyzed. The stations constitute a transect between 700 and 1640 m through the wet, montane rain forest zone below the trade-wind inversion. Data are compared with previous short-term measurements for the area, and previously unreported climate elements such as photosynthetically active radiation and soil temperature are presented. While absolute values vary between the sites, annual and diurnal climate patterns for the sites are remarkably similar, despite the altitudinal range involved and the close proximity of the trade-wind inversion level to the upper station.

  16. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size (United States)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie


    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5

  17. Paleointensity study on obsidians of Pleistocene Age from Armenia (United States)

    Frank, Sandra; Ferk, Annika; Kirscher, Uwe; Leonhardt, Roman; Meliksetian, Khachatur; Hess, Kai-Uwe; Dingwell, Donald; Bachtadse, Valerian


    Volcanic glass is often considered an ideal recording material for paleointensities. Experiments to determine the ancient field intensity are time consuming and mostly have low success rates. Studies have shown that the usage of glassy samples can increase success rates very much as the remanence carriers are in or close to the single domain range. However, it was found that hydration and/or devitrification may falsify the results and maybe hard to identify. Here we investigate up to ~6 myr old subaerial obsidians of rhyolitic composition from Armenia to examine time dependencies in such processes and to obtain high quality field records. We present data from 60 subaerial obsidian samples from nine volcanic structures of Armenia. Almost all samples show a linear directional component which trends towards the origin of projection in both thermal and alternating field demagnetization experiments. The 1.75 and ~6myr old glasses are inversely magnetized while all other samples show normal polarity. Titanomagnetites with varying titanium content and Curie temperatures at 190 to 270°C and 530° to 570°C, respectively, were revealed to be the remanence carriers. Almost all thermomagnetic curves are reversible underlining the thermal stability of the material. Thellier-type experiments with alteration and tail checks were used to determine paleointensities. Virtual axial dipole moments of 4.6*1022 Am2 (0.5Ma), 8.6*1022 Am2 (0.65Ma), 9.4*1022 Am2 (1.5Ma), 6.9*1022 Am2 and 7.3*1022 Am2 (~6 Ma) were found which agrees well with published reference data (Channell et al., 2009). The thermal stability, low alteration and good accordance with other data support the suitability of glassy materials for geomagnetic field studies and also shows the potential of subaerial obsidian to identify the source areas of prehistoric obsidian artefacts.

  18. A giant mass failure in the northern flank of the Kueishantao Island off northeastern Taiwan: debris avalanches and related structures in the offshore downslope (United States)

    Huang, P. C.; Hsu, S. K.; Tsai, C. H.; Chen, S. C.


    Based on the ignimbrite layers, previous studies have shown that Kueishantao volcanic island has probably erupted four times in 7000 years. Strong smell of sulfur can easily detect at east of the island with some plumes from the seabed. In May 2016, an earthquake with magnitude 5 occurred to northeast of the island which has triggered small collapse events in the eastern subaerial part. Recent geophysical surveys have also revealed the distribution of submarine debris avalanches in the north, south and east part off Kueishantao volcanic island. With high-resolution swath bathymetric data, we can observe some debris avalanches distributed with hummocky relief around the island. In this study, we present the marine geophysical data in order to have better understanding of the landslide mechanism from the offshore data of the Kueishantao island, especially with the multi-beam bathymetric data, acoustic backscatter analysis, subbottom profile, sidescan sonar and 3.5kHz echo-sounder. At the north of the island, large-scale debris avalanches extend around 4 km northward with the several blocks height up to more than twenty meters; and, the offshore area of deposit is about 5 km2 of hummocky topography distribution. The scale of debris avalanches may be related to the horseshoe scar of subaerial flank and also submarine flank collapsed events. Nevertheless, to identify the landslide history, we need to analyze the related core data in the future. By analyzing the high-resolution geophysical data, we will discuss the possible mechanism or factors that trigger subaerial flank collapse events and also the transportation of the debris avalanches to the submarine basin. The large-scale collapse events may produce tsunamis and directly affect the coast of northeastern Taiwan.

  19. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic (United States)

    Ramalho, Ricardo; da Silveira, António Brum; Fonseca, Paulo; Madeira, Jose; Cosca, Michael A.; Cachão, Mário; Fonseca, Maria M.; Prada, Susana


    The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and 40Ar/39Ar geochronology in order to document the mode, timing, and duration of edifice emergence above sea level. Our study confirms that Madeira's subaerial shield volcano was built upon the eroded remains of an uplifted seamount, with shallow marine sediments found between the two eruptive sequences and presently located at 320–430 m above sea level. This study reveals that Madeira emerged around 7.0–5.6 Ma essentially through an uplift process and before volcanic activity resumed to form the subaerial shield volcano. Basal intrusions are a likely uplift mechanism, and their emplacement is possibly enhanced by the slow motion of the Nubian plate relative to the source of partial melting. Alternating uplift and subsidence episodes suggest that island edifice growth may be governed by competing dominantly volcanic and dominantly intrusive processes.

  20. Isolated Star-Forming Cloud Discovered in Intracluster Space (United States)


    with the Wide Field Imager (WFI) at the La Silla Observatory (exposure 6 x 5 min; red R-band; seeing 1.3 arcsec). The large elliptical galaxy at the centre is Messier 84; the elongated image of NGC 4388 (an active spiral galaxy, seen from the side) is in the lower left corner. The field measures 16.9 x 15.7 arcmin2. PR Photo 04b/03 shows a larger region of the Virgo cluster, with the galaxies Messier 86 (at the upper edge of the field, to the left of the centre), as well as Messier 84 (upper right) and NGC 4388 (just below the centre) that are also seen in PR Photo 04a/03. It is reproduced from a long-exposure Subaru Suprime-Cam image, obtained in the red light of ionized hydrogen (the H-alpha spectral line at wavelength 656.2 nm). In order to show the faintest possible hydrogen emitting objects embedded in the outskirts of bright galaxies, their smooth envelopes have been "subtracted" during the image processing. The field measures 34 x 27 arcmin2. Part of this sky field is shown in colour in PR Photo 04c/03. The galaxies in the Universe are rarely isolated - they prefer company. Many are found within dense structures, referred to as galaxy clusters, cf. e.g., ESO PR Photo 16a/99. The galaxy cluster nearest to us is seen in the direction of the zodiacal constellation Virgo (The Virgin), at a distance of approximately 50 million light-years. PR Photo 04a/03 (from the Wide Field Imager camera at the ESO La Silla Observatory) shows a small sky region near the centre of this cluster with some of the brighter cluster galaxies. PR Photo 04b/03 displays an image of a larger field (partially overlapping Photo 04a/03) in the light of ionized hydrogen - it was obtained by the Japanese 8.2-m Subaru telescope on Mauna Kea (Hawaii, USA). The field includes some of the large galaxies in this cluster, e.g., Messier 86, Messier 84 and NGC 4388. In order to show the faintest possible hydrogen emitting objects embedded in the outskirts of bright galaxies, their smooth envelopes have

  1. Mold attack on frescoes and stone walls of Gradac monastery

    Directory of Open Access Journals (Sweden)

    Stupar Miloš Č.


    Full Text Available Microfungi can colonize stone surfaces and form sub-aerial biofilms which can lead to biodeterioration of historic monuments. In this investigation samples for mycological analyses were collected from stone material with visible alteration on stone walls of Gradac monastery exterior. The prevailing fungi found on stone walls were dematiaceous hyphomycetes with melanized hyphae and reproductive structures (Alternaria, Aureobasidium, Cladosporium and Epicoccum species. The frescoes inside the monastery building were also analyzed for the presence of mycobiota. The predominant fungi found on frescoes were osmophilic species from genera Aspergillus and Penicillium. The significant result is identification of human pathogen species Aspergillus fumigatus on frescoes.

  2. Geomorphological evidence for jökulhlaups from Kverkfjöll volcano, Iceland (United States)

    Carrivick, Jonathan L.; Russell, Andrew J.; Tweed, Fiona S.


    Jökulhlaups (glacial outburst floods) are known to have drained along the Jökulsá á Fjöllum river in Iceland during the Holocene. However, little is known about their number, age, source, and flow characteristics. This paper provides detailed geomorphological evidence for jökulhlaups that have routed from the Kverkfjöll ice margin and hence into the Jökulsá á Fjöllum. Erosional evidence of jökulhlaups from Kverkfjöll includes gorges, cataracts, spillways, subaerial lava steps, and valley-wide scoured surfaces. Depositional evidence includes wash limits, boulder bars, cataract-fill mounds, terraces, slackwater deposits, and outwash fans. Some of these landforms have been documented previously in association with jökulhlaups. However, subaerial lava surfaces that have been scoured of the upper clinker, gorges within pillow-hyaloclastite ridges, gorges between pillow-hyaloclastite ridges and subaerial lava flows, subaerial lava lobe steps, cataract-fill mounds, and boulder run-ups are previously undocumented in the literature. These landforms may therefore be diagnostic of jökulhlaups within an active volcanic rifting landscape. The nature and spatial distribution of these landforms and their stratigraphic association with other landforms suggest that there have been at least two jökulhlaups through Kverkfjallarani. The Biskupsfell eruption occurred between these two jökulhlaups. Kverkfjallarani jökulhlaups were very strongly influenced by topography, geology, and interevent processes that together determined the quantity and nature of sediment availability. Such controls have resulted in jökulhlaups that were probably fluidal, turbulent, and supercritical over large areas of the anastomosing channel bed. Kverkfjallarani jökulhlaups would have had highly variable hydraulic properties, both spatially and temporally. The knowledge of flow characteristics that can be gained from jökulhlaup impacts has implications for recognising jökulhlaups in the

  3. Evidence for Holocenic uplift at Somma-Vesuvius (United States)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Grifa, Celestino; Morra, Vincenzo; Berg, Ria; Varone, Antonio


    Detailed stratigraphical, archaeological, micropalaeontological, archaeometrical and petrochemical analyses of samples from trenches and boreholes at insula of Casti Amanti, in Pompeii, allowed a faithful reconstruction of the recent environmental evolution of the site. The present data clearly indicate the alternation of both subaerial and shallow marine conditions during Holocene times. Taking into account the relative local sea level variations, a ~ 30 m ground uplift event in the last 6 kyr (with an average vertical uplift rate of ~ 5 mm/yr) was inferred for the first time.

  4. ESR analyses for teeth from the open-air site at Attirampakkam, India: Clues to complex U uptake and paleoenvironmental change

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, Bonnie A.B. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); RFK Science Research Institute, Glenwood Landing, NY 11547 (United States)], E-mail:; Montoya, Andres [RFK Science Research Institute, Glenwood Landing, NY 11547 (United States); Blickstein, Joel I.B. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); RFK Science Research Institute, Glenwood Landing, NY 11547 (United States); Skinner, Anne R. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); RFK Science Research Institute, Glenwood Landing, NY 11547 (United States)], E-mail:; Pappu, Shanti [Sharma Centre for Heritage Education, Chennai 60004, Tamil Nadu (India)], E-mail:; Gunnell, Yanni [Departement de Geographie, Universite Denis-Diderot Paris 7, and CNRS-UMR 8591, 75251 Paris (France); Taieb, Maurice [CNRS-CEREGE, Aix-en-Provence (France); Kumar, Akhilesh [Sharma Centre for Heritage Education, Chennai 60004, Tamil Nadu (India); Lundberg, Joyce A. [Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6 (Canada)], E-mail:


    In open-air sites, diagenetic alteration makes teeth difficult to analyze with electron spin resonance (ESR). Despite strong diagenetic alteration, three ungulate teeth from Pleistocene fluvial sediment in the open-air Paleolithic site at Attirampakkam, Tamil Nadu, India, were analyzed using standard and isochron ESR. Diagenetic alteration features in two teeth indicated rapid submergence in quiet saline to hypersaline water, following a short subaerial exposure, while the third remained constantly buried under reducing conditions. Geochemical signatures and ESR data all indicate that the teeth experienced at least three independent U uptake events during diagenesis, including two that occurred long after burial.

  5. Global Carbon Dioxide Mid-Tropospheric Growth Rate Measurements using the AIRS Sensor on AQUA (United States)

    Strow, L. L.; Desousa Machado, S.; Hannon, S.


    The AIRS hyperspectral infrared sensor on AQUA has been operating for more than 4-years, and has numerous channels sensitive to carbon dioxide. We have collected a subset of clear, ocean-only AIRS observations for a 3-year period and compared the variability of the AIRS channel radiances to ECMWF temperature fields. The deviations between the observed and computed biases corresponds very closely to the mid-tropospheric record of carbon dioxide during the same time period measure at Mauna Loa by NOAA/CMDL. These measurements show excellent agreement using both channels in the 4.3 and 13 micron regions, which have significantly different sensitivities to the ECMWF temperature profile. These results show that the AIRS sensor is extremely stable radiometrically, allowing the measurement of small climate-level changes. We have established the stability of AIRS for carbon dioxide measurments for the latitude range of Mauna Loa which allows us to extend these measurements to mid-tropospheric carbon dioxide at other latitudes.

  6. Decadal Time Series of UV Irradiances at two NDSC Sites (United States)

    McKenzie, R. L.; Johnston, P. V.; Kotkamp, M.; O'Neill, M.; Hofmann, D. J.


    The Network for the Detection of Stratospheric Change (NDSC) comprises a small number of well-instrumented unpolluted measurement sites, selected to represent large geographical areas. Its aim is to better understand the causes and effects of long term changes in atmospheric composition. In order to monitor long term ozone change and its effects, UV spectrometers were installed at the mid-latitude southern hemisphere NDSC site (Lauder New Zealand), and the tropical NDSC site (Mauna Loa Observatory, Hawaii). At NIWA's Lauder site, measurements began in December 1989; while at NOAA's Mauna Loa Observatory, measurements began in June 1995. Since deployment, data have been obtained with a high success rate. The instrumentation and data-processing are similar at both sites, and comply with the exacting standards required by the NDSC. Here we present time series of data products from these spectrometers (e.g., erythemally-weighted UV irradiance) to compare and contrast the results from each site and to illustrate the causes for variabilities, and their influences on validation of radiative transfer models and satellite data products.

  7. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults (United States)

    Karson, J. A.


    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  8. Prodigious submarine landslides during the inception and early growth of volcanic islands. (United States)

    Hunt, James E; Jarvis, Ian


    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth's surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard.

  9. Lithofacies and biofacies of mid-paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.R. [Macquarie Univ. (Australia); Desmarais, D.; Farmer, J.C. [NASA Ames Research Center, Moffett Field, CA (United States); Hinman, N.W. [Univ. of Montana, Missoula, MT (United States)


    The Devonian to Carboniferous sinters of the Drummond Basin, Australia, are among the oldest well established examples of fossil subaerial hot springs. Numerous subaerial and subaqueous spring deposits are known from the geological record as a result of the occurrence of economic mineral deposits in many of them. Some are reported to contain fossils, but very few have been studied by paleobiologists; they represent an untapped source of paleobiological information on the history of hydrothermal ecosystems. Such systems are of special interest, given the molecular biological evidence that thermophilic bacteria lie near the root of the tree of extant life. The Drummond Basin sinters are very closely comparable with modern examples in Yellowstone National Park and elsewhere. Thirteen microfacies are recognisable in the field, ranging from high temperature apparently abiotic geyserite through various forms of stromatolitic sinter probably of cyanobacterial origin to ambient temperature marsh deposits. Microfossils in the stromatolites are interpreted as cyanobacterial sheaths. Herbaceous lycopsids occur in the lower temperature deposits. 56 refs., 23 figs., 1 tab.

  10. Does elevation matter? Living foraminiferal distribution in a hyper tidal salt marsh (Canche Estuary, Northern France) (United States)

    Francescangeli, F.; Bouchet, V. M. P.; Trentesaux, A.; Armynot du Chatelet, E.


    In the present study we investigate the ecology and distribution of living benthic foraminifera to test the effect of hyper tidal exposure and their suitability as sea level indicators. Within a salt marsh area along the Canche Estuary (northern France), four transects were sampled to see the effects of maximal tidal constraints (shore transects) and minimal tidal constraints (alongshore transects). Multivariate analyses have been performed to determine the correlations between biotic (foraminiferal absolute abundances) and abiotic factors (elevation, grain-size, TOC and total sulphur). For each of the principal benthic foraminiferal species the tolerance to subaerial exposure have been estimated as well. Two distinctive foraminiferal zones have been identified along the vertical tidal gradient: a zone I in the higher part of the salt marsh dominated by agglutinated and porcelaneous taxa, and a zone II in the lower one dominated by hyaline specimens. Hyper tidal exposure constraints the foraminiferal vertical zonation in accordance with the tidal frame. However it does not constitute a threshold parameter able by itself to explain all the faunal variations in the Canche Estuary. For sea level indicators, foraminifera should be considered relative to tidal subaerial exposure rather than to absolute altitude.

  11. A review of mechanisms and modelling procedures for landslide tsunamis (United States)

    Løvholt, Finn; Harbitz, Carl B.; Glimsdal, Sylfest


    Landslides, including volcano flank collapses or volcanically induced flows, constitute the second-most important cause of tsunamis after earthquakes. Compared to earthquakes, landslides are more diverse with respect to how they generation tsunamis. Here, we give an overview over the main tsunami generation mechanisms for landslide tsunamis. In the presentation, a mix of results using analytical models, numerical models, laboratory experiments, and case studies are used to illustrate the diversity, but also to point out some common characteristics. Different numerical modelling techniques for the landslide evolution, and the tsunami generation and propagation, as well as the effect of frequency dispersion, are also briefly discussed. Basic tsunami generation mechanisms for different types of landslides, including large submarine translational landslide, to impulsive submarine slumps, and violent subaerial landslides and volcano flank collapses, are reviewed. The importance of the landslide kinematics is given attention, including the interplay between landslide acceleration, landslide velocity to depth ratio (Froude number) and dimensions. Using numerical simulations, we demonstrate how landslide deformation and retrogressive failure development influence tsunamigenesis. Generation mechanisms for subaerial landslides, are reviewed by means of scaling relations from laboratory experiments and numerical modelling. Finally, it is demonstrated how the different degree of complexity in the landslide tsunamigenesis needs to be reflected by increased sophistication in numerical models.

  12. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera (United States)

    Sweet, M. J.; Brown, B. E.; Dunne, R. P.; Singleton, I.; Bulling, M.


    Shifts in the microbiome of the intertidal coral Coelastrea aspera (formally known as Goniastrea aspera) from Phuket, Thailand, were noted over the course of a 4-d period of spring tides. During this time, corals were naturally exposed to high temperatures, intense solar radiation, sub-aerial exposure and tidally induced water fluxes. Analysis of the 16S microbiome highlighted that the corals harbored both `core or stable' communities and those which appeared to be more `transient or sporadic.' Only relatively few microbial associates were classified as core microbes; the majority were transient or sporadic. Such transient associates were likely to have been governed by tidally induced variations in mucus thickness and water fluxes. Here we report strong shifts in the bacterial community of C. aspera over a short temporal scale. However, we also show significant differences in the timing of shifts between the two age groups of corals studied. More rapid changes (within 2 d of sub-aerial exposure) occurred within the 4-yr-old colonies, but a slightly delayed response was observed in the 10-yr-old colonies, whereby the microbial associates only changed after 4 d. We hypothesize that these shifts are age related and could be influenced by the observed baseline differences in the microbiome of the 4- and 10-yr-old corals, bacteria-bacteria interactions, and/or host energetics.

  13. Solution pans and linear sand bedforms on the bare-rock limestone shelf of the Campeche Bank, Yucatán Peninsula, Mexico (United States)

    Goff, John A.; Gulick, Sean P. S.; Cruz, Ligia Perez; Stewart, Heather A.; Davis, Marcy; Duncan, Dan; Saustrup, Steffen; Sanford, Jason; Fucugauchi, Jaime Urrutia


    A high-resolution, near-surface geophysical survey was conducted in 2013 on the Campeche Bank, a carbonate platform offshore of Yucatán, Mexico, to provide a hazard assessment for future scientific drilling into the Chicxulub impact crater. It also provided an opportunity to obtain detailed information on the seafloor morphology and shallow stratigraphy of this understudied region. The seafloor exhibited two morphologies: (1) small-scale (<2 m) bare-rock karstic features, and (2) thin (<1 m) linear sand accumulations overlying the bedrock. Solution pans, circular to oblong depressions featured flat bottoms and steep sides, were the dominant karstic features; they are known to form subaerially by the pooling of rainwater and dissolution of carbonate. Observed pans were 10-50 cm deep and generally 1-8 m wide, but occasionally reach 15 m, significantly larger than any solution pan observed on land (maximum 6 m). These features likely grew over the course of many 10's of thousands of years in an arid environment while subaerially exposed during lowered sea levels. Surface sands are organized into linear bedforms oriented NE-SW, 10's to 100's meters wide, and kilometers long. These features are identified as sand ribbons (longitudinal bedforms), and contained asymmetric secondary transverse bedforms that indicate NE-directed flow. This orientation is incompatible with the prevalent westward current direction; we hypothesize that these features are storm-generated.

  14. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). (United States)

    Škaloud, Pavel; Rindi, Fabio


    Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro-repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well-defined cryptic species is enabled by the mechanism of selective sweep. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  15. Reconstructing the History of Lake of the Woods, Minnesota, a Remnant of Lake Agassiz (United States)

    Hougardy, D.; Wattrus, N. J.; Colman, S. M.; Edlund, M.


    Seismic-reflection data collected from Lake of the Woods (LOW), Minnesota, reveal a detailed sequence of stratigraphy penetrating to depths of as much as 18 m below the present day lake floor. Initial analysis suggests three main seismic sequences, corresponding to (1) 3-4 m of massive Holocene LOW sediment overlying (2) 10-15 m of highly laminated Lake Agassiz sediment which is draped over (3) highly irregular glacial deposits. The stratigraphic changes are likely due to large changes in the water storage after the Last Glacial Maximum, and the following scenario is hypothesized. Irregular deposition of glacial materials represents the retreat of the Laurentide Ice Sheet (LIS) from this location ~12 cal ka BP. The various ridges observed may represent calving margins of the retreating ice-sheet that deposited large quantities of poorly sorted till and outwash. Upon the retreat of the LIS, the proglacial Lake Agassiz formed in front of the ice-sheet, its location and size constrained by the location of the ice margin and the elevation of available outlets. Following the final drainage of Lake Agassiz (~8.2 cal ka BP), the southern basin of LOW became subaerially exposed, forming paleosols in the sediment record. Differential isostatic rebound following deglaciation resulted in the newly isolated LOW transgressing southward, inundating the subaerially exposed lakebed and eventually reaching its present day position.

  16. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. (United States)

    Mergelov, Nikita; Mueller, Carsten W; Prater, Isabel; Shorkunov, Ilya; Dolgikh, Andrey; Zazovskaya, Elya; Shishkov, Vasily; Krupskaya, Victoria; Abrosimov, Konstantin; Cherkinsky, Alexander; Goryachkin, Sergey


    Subaerial endolithic systems of the current extreme environments on Earth provide exclusive insight into emergence and development of soils in the Precambrian when due to various stresses on the surfaces of hard rocks the cryptic niches inside them were much more plausible habitats for organisms than epilithic ones. Using an actualistic approach we demonstrate that transformation of silicate rocks by endolithic organisms is one of the possible pathways for the beginning of soils on Earth. This process led to the formation of soil-like bodies on rocks in situ and contributed to the raise of complexity in subaerial geosystems. Endolithic systems of East Antarctica lack the noise from vascular plants and are among the best available natural models to explore organo-mineral interactions of a very old "phylogenetic age" (cyanobacteria-to-mineral, fungi-to-mineral, lichen-to-mineral). On the basis of our case study from East Antarctica we demonstrate that relatively simple endolithic systems of microbial and/or cryptogamic origin that exist and replicate on Earth over geological time scales employ the principles of organic matter stabilization strikingly similar to those known for modern full-scale soils of various climates.

  17. Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta). (United States)

    Rindi, Fabio; Lam, Daryl W; López-Bautista, Juan M


    Subaerial green microalgae represent a polyphyletic complex of organisms, whose genetic diversity is much higher than their simple morphologies suggest. The order Trentepohliales is the only species-rich group of subaerial algae belonging to the class Ulvophyceae and represents an ideal model taxon to investigate evolutionary patterns of these organisms. We studied phylogenetic relationships in two common genera of Trentepohliales (Trentepohlia and Printzina) by separate and combined analyses of the rbcL and 18S rRNA genes. Trentepohlia and Printzina were not resolved as monophyletic groups. Three main clades were recovered in all analyses, but none corresponded to any trentepohlialean genus as defined based on morphological grounds. The rbcL and 18S rRNA datasets provided congruent phylogenetic signals and similar topologies were recovered in single-gene analyses. Analyses performed on the combined 2-gene dataset inferred generally higher nodal support. The results clarified several taxonomic problems and showed that the evolution of these algae has been characterized by considerable morphological convergence. Trentepohlia abietina and T. flava were shown to be separate species from T. aurea; Printzina lagenifera, T. arborum and T. umbrina were resolved as polyphyletic taxa, whose vegetative morphology appears to have evolved independently in separate lineages. Incongruence between phylogenetic relationships and traditional morphological classification was demonstrated, showing that the morphological characters commonly used in the taxonomy of the Trentepohliales are phylogenetically irrelevant.

  18. AcEST: DK951360 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 8. 5' end sequence. DK951360 CL1166Contig1 Show DK951360 Clone id TST38A01NGRL0011_D08 Library TST38 Length ...669 Definition Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0011_D08. 5' end sequence. Accession DK951360...LAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25:3389-3402. Query= DK951360...-9 3-methyltransferase ... 32 2.3 sp|Q3SXM5|HSDL1_HUMAN Hydroxysteroid dehydrogenase-like protein ... 32 3.0 sp|P360...RFDAVAKEASKECKQYLVRATKYQAGQNCKTWIIGKWAGYHAQQ 360 LCR+ V+VLMLT S ERF + KEA E + LV+

  19. Tosanoides obama (United States)

    Pyle, Richard L; Greene, Brian D; Kosaki, Randall K


    The new species Tosanoides obama is described from two specimens collected at a depth of 90-92 m off Kure Atoll and Pearl and Hermes Atoll, Northwestern Hawaiian Islands. It differs from the other two species of this genus in life color and in certain morphological characters, such as number of pored lateral-line scales, pectoral-fin rays, snout length, anterior three dorsal-fin spine lengths, dorsal-fin profile, and other characters. There are also substantial genetic differences from the other two species of Tosanoides (d ≈ 0.10 in mtDNA cytochrome oxidase I). The species is presently known only from the Northwestern Hawaiian Islands within the Papahānaumokuākea Marine National Monument.

  20. Eco-balance of a vacuum insulation panel (VIP); Oekobilanz eines Vakuum-Isolations-Paneels (VIP)

    Energy Technology Data Exchange (ETDEWEB)

    Schonhardt, U.; Binz, A.; Wohler, M.; Dott, R. [Institut fuer Energie - Fachhochschule beider Basel, Muttenz (Switzerland); Frischknecht, R. [ESU-services, Uster (Switzerland)


    This report for the Swiss Federal Office of Energy (SFOE) made by the Institute for Energy at the University of Applied Sciences in Muttenz and ESU Services in Uster, Switzerland, presents the results of an eco-balance made on the ecological impact of vacuum insulation panels. These panels are being used more and more instead of bulky, traditional insulation materials. The three eco-balance models used - Eco-Indicator 99, Ecological Scarcity UBP 97 and Cumulative Energy Use KEA - are introduced. Comparisons were made between vacuum insulation systems and glass-fibre and polystyrene insulation materials. The methods used are described and the results of the eco-balance analyses made are presented for the three types of insulation. In an appendix to the report, the influence of power generation methods and transport services on the eco-balance is discussed.

  1. Core and shell song systems unique to the parrot brain

    DEFF Research Database (Denmark)

    Chakraborty, Mukta; Harpøth, Solveig Walløe; Nedergaard, Signe


    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning...... systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences...... contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living...

  2. Tosanoides obama, a new basslet (Perciformes, Percoidei, Serranidae from deep coral reefs in the Northwestern Hawaiian Islands

    Directory of Open Access Journals (Sweden)

    Richard L. Pyle


    Full Text Available The new species Tosanoides obama is described from two specimens collected at a depth of 90–92 m off Kure Atoll and Pearl and Hermes Atoll, Northwestern Hawaiian Islands. It differs from the other two species of this genus in life color and in certain morphological characters, such as number of pored lateral-line scales, pectoral-fin rays, snout length, anterior three dorsal-fin spine lengths, dorsal-fin profile, and other characters. There are also substantial genetic differences from the other two species of Tosanoides (d ≈ 0.10 in mtDNA cytochrome oxidase I. The species is presently known only from the Northwestern Hawaiian Islands within the Papahānaumokuākea Marine National Monument.

  3. Use of multivariate control charts to assess the status of reef fish assemblages in the Northwestern Hawaiian Islands

    Directory of Open Access Journals (Sweden)

    Atsuko Fukunaga


    Full Text Available A distance-based multivariate control chart is a useful tool for ecological monitoring to detect changes in biological community resulting from natural or anthropogenic disturbances at permanent monitoring sites. It is based on a matrix of any distances or dissimilarities among observations obtained from species composition and abundance data, and bootstrapping techniques are used to set upper confidence bounds that trigger an alarm for further investigations. We extended the use of multivariate control charts to stratified random sampling and analyzed reef fish monitoring data collected annually on shallow (≤30 m reefs across the Northwestern Hawaiian Islands (NWHI, part of the Papahānaumokuākea Marine National Monument. Fish assemblages in the NWHI were mostly stable, with exceptions in the south region (Nihoa, Mokumanamana and French Frigate Shoals in 2012 and 2015 where changes in the assemblage structure exceeded the upper confidence bounds of multivariate control charts. However, these were due to changes in relative abundances of native species, and potentially related to the small numbers of survey sites and relatively low coral covers at the sites, particularly in 2015. The present study showed that multivariate control charts can be used to evaluate the status of biological communities in a very large protected area. Future monitoring of fish assemblages in the Papahānaumokuākea Marine National Monument should be accompanied by specific habitat or environmental variables that are related to potential threats to its shallow-water ecosystems. This should allow for more detailed investigations into potential causes and mechanisms of changes in fish assemblages when a multivariate control chart triggers an alarm.

  4. Mesoscale Modeling of LX-17 Under Isentropic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R


    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.


    Directory of Open Access Journals (Sweden)

    Laily Agustina Rahmawati


    Full Text Available ABSTRAK Rumah tangga dengan segala aktifitasnya turut menyumbang emisi CO2 yang memicu pemanasan global. Oleh karena itu, berdasarkan prinsip pencemar membayar (pollutant pay principle, rumah tangga dapat dikenai tanggung jawab atas emisi yang dihasilkan dalam bentuk konservasi lahan. Penelitian bertujuan menganalisis rata-rata emisi dan rata-rata sequestrasi, untuk menetukan luas minimum lahan yang harus dikonservasi masing-masing kelompok rumah tangga Kelas Ekonomi Atas (KEA- Daya ≥ 1300 VA, Kelas Ekonomi Menengah (KEM- Daya 900 VA, Kelas Ekonomi Bawah (KEA- Daya 450 VA di Desa Sinduadi, Kecamatan Mlati, Kabupaten Sleman, D. I. Yogyakarta. Emisi CO2 dihitung berdasarkan aktifitas rumah tangga terkait konsumsi listrik, konsumsi bahan bakar untuk transportasi, konsumsi bahan bakar untuk memasak, produksi sampah, serta konsumsi air PDAM, didapat dari hasil questioner yang selanjutnya dikalikan dengan nilai konversi emisi CO2 yang tersesedia. Sequestrasi CO2 dihitung berdasarkan biomassa yang dipertahankan oleh rumah tangga pada lahan bervegetasi mereka (pekarangan, sawah, kebun. Pendugaan biomassa diperoleh melalui metode Brown (1997 dan Hairiah (2007, dengan melakukan nested qudrat sampling pada masing-masing jenis lahan bervegetasi yang dimiliki rumah tangga. Luas minimum dan optimalisasi lahan, dihitung berdasarkan jumlah emisi CO2 rumah tangga dan biomassa per m2 lahan. Berdasarkan hasil penelitian diketahui, rumah tangga Sinduadi memiliki rata-rata emisi dan sequestrasi, serta luas minimum lahan secara berturut-turut sebesar: 7098,98 kgCO2/th, 267,34 kgCO2/th, dan 178,11 m2 dengan tingkat optimalisasi lahan sangat optimal (tutupan vegetasi 90% pada lahan pekarangan untuk rumah tangga KEA; 3785,9 kgCO2/th, 632,61 kgCO2/th, dan 1551,37 m2 lahan pekarangan dengan dengan tingkat optimalisasi lahan sangat optimal (tutupan vegetasi 90% pada lahan pekarangan untuk rumah tangga KEM; 1973,3 kgCO2/th, 780,21 kgCO2/th, dan 898,91 m2 dengan tingkat

  6. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii (United States)

    Phillips, Erin H.; Sims, K.W.W.; Sherrod, David R.; Salters, Vincent; Blusztajn, Jurek; Dulaiova, Henrieta


    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U–230Th–226Ra and 235U–231Pa–227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  7. Volcano Flank Structures on Earth and Mars (United States)

    van Wyk de Vries, B.; Byrne, P. K.; Mathieu, L.; Murray, J. B.; Troll, V. R.


    Shield volcanoes on Earth and Mars share common features, including calderas and pit crater chains. A set of structures present on the sides of several of the large shields on Mars are not regarded as having Earth analogues, however. Flank terraces are topographically subtle structures, characterised by a gentle convex profile and a distinctive "fish scale" imbricate distribution pattern. Magma chamber inflation, lithospheric flexure, flank relaxation, or gravitational slumping have been suggested as terrace formation mechanisms. Terraces on both Mars and Earth are clearly visible only in slope maps, and may thus escape visual detection in the field. We show that both Mauna Loa (Hawaii) and Etna (Sicily) display the same characteristic "fish scale" terrace pattern. This pattern delineates structures that we contend are terrestrial flank terraces. Heterogeneities in volcano geometry, due to buttressing or extension, result in terrace distributions that are not as evenly circumferential as those on Mars. Plan and cross-sectional profiles, however, parallel those of the Martian structures. These structures may also be present on Alayta (Ethiopia), Santa Cruz (Galapagos), and Tendürek Dagi (Turkey). Another type of structure, larger and steeper than flank terraces but sharing a similar plan-view morphology, is also present on Mauna Lau and Etna. These "flank bulges" appear to correlate with structures on Piton de la Fournaise (La Réunion), Cosiguina (Nicaragua), and Karthala (Comoros) on Earth, and Apollinaris Patera and Tharsis Tholus on Mars. Elsewhere (Paul K. Byrne et al., this volume) we argue that lithospheric flexure is a likely formation mechanism for Martian terraces. Flexure is active beneath Mauna Loa, and possibly under Etna, and so may also be responsible for terrestrial flank terraces. Scaled analogue models suggest that the larger flank bulges are due to magma intrusions derived from large chambers within these edifices. There is thus a strong

  8. Double Planet Meets Triple Star (United States)


    site "missed" the upper layers of Pluto's atmosphere by a mere 200 km or so - this is equivalent to no more than one hundredth of an arcsec as projected on the sky. More information A full report on the NACO observations and other results by the present group of astronomers, also from the subsequent occultation of another star on August 21, 2002, that was extensively observed with the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea (Hawaii, USA), is available at this URL: Other sharp NACO images have been published recently, e.g. ESO PR 25/01 , ESO PR Photos 04a-c/02 and ESO PR Photos 19a-c/02. Note [1]: The group from the Observatoire de Paris and other observatories is lead by Bruno Sicardy and also includes François Colas, Thomas Widemann, Françoise Roques, Christian Veillet, Jean-Charles Cuillandre, Wolfgang Beisker, Cyril Birnbaum, Kate Brooks, Audrey Delsanti, Pierre Drossart, Agnès Fienga, Eric Gendron, Mike Kretlow, Anne-Marie Lagrange, Jean Lecacheux, Emmanuel Lellouch, Cédric Leyrat, Alain Maury, Elisabeth Raynaud, Michel Rapaport, Stefan Renner and Mathias Schultheis . From ESO participated Nancy Ageorges, Olivier Hainaut, Chris Lidman and Jason Spyromilio . Contact Bruno Sicardy LESIA - Observatoire de Paris France Phone: +33-1-45 07 71 15 email: Appendix: Stellar occultations and Pluto's atmosphere Stellar occultations are presently the only way to probe Pluto's tenuous atmosphere . When the star moves behind the planet, the stellar rays suffer minute deviations as they are refracted (i.e., bent and defocussed) by the planet's atmospheric layers. This effect, together with the large distance to the planet, manifests itself as a gradual decline of observed intensity of the stellar light, rather than an abrupt drop as this would be the case if the planet had no atmosphere. Pluto's atmosphere was first detected on August 19, 1985, during a stellar occultation observed from Israel

  9. Slope failures induced by the December 2002 eruption at Stromboli Volcano (United States)

    Tommasi, Paolo; Baldi, Paolo; Chiocci, Francesco Latino; Coltelli, Mauro; Marsella, Maria; Romagnoli, Claudia

    We reconstruct the sequence of landslides that occurred soon after the beginning of the December 2002 eruption on the NW flank of Stromboli volcano. Landslides involved the northeastern part of the Sciara del Fuoco (SdF) slope, an old collapse scar filled by products of volcanic activity, producing tsunami waves that severely damaged the coast of the island of Stromboli. Volumes of the mass detached from the subaerial and submarine slope were quantified by comparing preslide and postslide slope surfaces obtained by aerophotogrammetric and bathymetric data, which also allowed, in conjunction with field observations and helicopter surveys, the reconstruction of geometry and kinematics of landslides. According to the reconstructed sequence, 2 days after the beginning of the eruption, the upper part of the NE sector of the SdF slope experienced major displacements (few tens of meters). Movements propagated downslope and affected the nearshore portion of the submerged slope without a rapid sliding of the displaced mass into the sea. The following hours were characterized by a progressive increase of deformations, localized along shear zones extending over two thirds of the subaerial slope. This phase proceeded until a submarine slide about 6 × 106 m3 in volume occurred, causing a first tsunami wave. The subaerial mass delimited by the shear zones and unbuttressed at its foot, then slipped into the sea producing a second tsunami wave. The main landslide event (and the minor slumps which followed) removed a volume of about 10 × 106 m3 of the infilling deposit, to a thickness of at least 65 m. Hypotheses were formulated on the mechanisms that controlled the different phases of the instability sequence. Since hydraulic and stress/strain conditions progressively changed during the slope evolution, the formulated mechanisms are also based on geotechnical analyses and considerations on the mechanical behavior of volcaniclastic materials. The process that led to the landslide

  10. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models (United States)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.


    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  11. Sedimentology and paleoenvironments of the Las Chacritas carbonate paleolake, Cañadón Asfalto Formation (Jurassic), Patagonia, Argentina (United States)

    Cabaleri, Nora G.; Benavente, Cecilia A.


    The Las Chacritas Member is the lower part of the Cañadón Asfalto Formation (Jurassic). The unit is a completely continental limestone succession with volcanic contributions that were deposited during the development of the Cañadón Asfalto Rift Basin (Chubut province, Patagonia, Argentina). A detailed sedimentological analysis was performed in the Fossati depocenter to determine the paleoenvironments that developed in the context of this rift. The Las Chacritas Member represents a carbonate paleolake system with ramp-shaped margins associated with wetlands that were eventually affected by subaerial exposure and pedogenesis. This process is represented by three main subenvironments: a) a lacustrine setting sensu stricto (lacustrine limestone facies association), represented by Mudstones/Wackestones containing porifera spicules (F1), Intraclastic packstones (F6) and Tabular stromatolites (F10) in which deposition and diagenesis were entirely subaqueous; b) a palustrine setting (palustrine limestone facies association) containing Microbial Mudstones (F2), Intraclastic sandy packstone with ostracode remains (F3), Oncolitic packstone (F5), Brecciated limestone (F7) and Nodular-Mottled limestone (F8) representing shallow marginal areas affected by groundwater fluctuations and minor subaerial exposure; and c) a pedogenic paleoenvironment (pedogenic limestone facies association) including Intraclastic limestone (F4) and Packstones containing Microcodium (F9) facies displaying the major features of subaerial exposure, pedogenic diagenesis and the development of paleosols. The fluvial-palustrine-lacustrine succession shows a general shallow upward trend in which contraction-expansion cycles are represented (delimited by exposure and surface erosion). The variations in the successive formations reflect the responses to fluctuations in a combination of two major controls, the tectonic and local climatic variables. The predominance of the palustrine facies associations was

  12. Effect of environmental change on the morphology of tidally influenced deltas over multi-decadal timescale (United States)

    Angamuthu, Balaji; Darby, Stephen; Nicholls, Robert


    An understanding of the geomorphological processes affecting deltas is essential to improve our understanding of the risks that deltas face, especially as human impacts are likely to intensify in the future. Unfortunately, there is limited reliable data on river deltas, meaning that the task of demonstrating the links between morphodynamic and environmental change is challenging. This presentation aims to answer the questions of how delta morphology evolves over multi-decadal timescales under multiple drivers, focussing on tidally-influenced deltas, as some of these, such as the Ganges-Brahmaputra-Meghna (GBM) delta are heavily populated. A series of idealised model simulations over 102 years were used to explore the influence of three key drivers on delta morphodynamics, both individually and together: (i) varying combinations of water and sediment discharges from the upstream catchment, (ii) varying rates of relative sea-level rise (RSLR), and (iii) selected human interventions within the delta, such as polders, cross-dams and changing land cover. Model simulations revealed that delta progradation rates are more sensitive to variations in water discharge than variations in fluvial sediment supply. Unlike mere aggradation during RSLR, the delta front experienced aggradational progradation due to tides. As expected, the area of the simulated sub-aerial delta increases with increasing sediment discharge, but decreases with increasing water discharge. But, human modifications are important. For example, the sub-aerial delta shrinks with increasing RSLR, but it does not when the sub-aerial delta is polderised, provided the polders are restricted from erosion. However, the polders are vulnerable to flooding as they lose relative elevation and can make the delta building process unsustainable. Cross-dams built to steer zones of land accretion within the delta accomplish their local goal, but may not result in net land gain at the scale of the delta. Applying these

  13. Monitoring and Modelling the Evolution of the Hunga Tonga Hunga Ha'apai (Kingdom of Tonga) Volcanic Island by means of Satellite Remote Sensing (United States)

    Slayback, D. A.; Garvin, J. B.; Asrar, G.; Ferrini, V. L.; Giguere, C.


    The surtseyan eruption that formed the Hunga Tonga Hunga Ha'apai (HTHH) volcanic island in the Kingdom of Tonga between late Dec 2014 and the end of Jan 2015 produced a 133m tall tephra cone with flanking pyroclastic flows with a land area similar to that of Surtsey (Iceland). With the advent of sub-meter resolution satellite imaging systems employing both optical and microwave (radar) wavelengths, we have quantitatively documented the post-eruptive evolution of the new island on a monthly basis since Feb 2015 via DigitalGlobe WorldView and Canadian Space Agency Radarsat-2 satellites, resulting in an unprecedented time-series of measurements of the island's surface area, volume, and landscapes. Our results have documented the rapid subaerial evolution of the new island, with a current mean loss of island volume of 12.2% per year. On the basis of the time series of visible images from WorldView and the C-band Spotlight SAR images from Radarsat-2, we developed a first-order evolutionary model for the apparently-tephra dominated island, and compared this to the 53 year evolution of Surtsey. Because the HTHH island is adjacent to two pre-existing islands that form part of the rim of a submarine caldera, the loss of land from the southern coast over its first 5 months resulted in the development of an accretionay spit that connected it to the Hunga Tonga island to the NE, limiting the overall pace of subaerial coastline loss. With marine abrasion accentuated on the southern side of the island, and breaching of the interior crater (lake) of the primary tephra cone, the projected lifetime of the island is likely to be far less than Surtsey, which is protected by palagonitized tephra. From our volume and coast-line measurements, the projected lifetime of the island is likely to fall between 7.5 yrs (shortest) and 70 years, dependent on whether any of the interior deposits forming the primary edifice have been palagoinitized to resist marine abrasion and mass wasting. This

  14. Groundwater flow in a relatively old oceanic volcanic island: The Betancuria area, Fuerteventura Island, Canary Islands, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: [Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia (UPC), Barcelona (Spain)


    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 g m{sup −2} year{sup −1} of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may

  15. Tidewater terminus tug-of-war (United States)

    Bartholomaus, T. C.; Larsen, C. F.; O'Neel, S.; West, M. E.


    When a glacier terminus recedes, not only does the glacier lose the ice between the former and present terminus, but the terminal reach of the glacier can steepen, causing ice flow out of the glacier interior increases. The increased flow will continue, thinning the glacier, until the glacier geometry and ice flow reach a new equilibrium. Yahtse Glacier is an advancing tidewater glacier on the Gulf of Alaska coast. To better understand the controls on its terminus position, we use a suite of seismic, geodetic and oceanographic data. Both calving and submarine melt contribute to frontal ablation, however, at Yahtse Glacier the ice is too fractured to support undercutting below the water line, nor does a persistent submarine toe develop. Thus the terminus retreats as fast as subaerial calving occurs. Previous work at Yahtse Glacier demonstrated that locally recorded seismic events between 1 and 5 Hz are predominantly the result of subaerial iceberg calving. Therefore, we use seismicity as a proxy for the frontal ablation rate. We measure the near-terminus glacier velocity with oblique photogrammetry, calibrated with ~10 day intervals of surveyed ice velocity. These methods reveal an annually-averaged terminus velocity of 6.9 km/yr. The frontal ablation rate and the terminus ice velocity are nearly in phase and reach maximum values twice per year: in the spring and fall. Integrating the difference between frontal ablation rate and terminus ice velocity reveals a pattern of terminus positions with a single annual cycle, quite similar to that which we observe in the field. GPS measurements 10 km from the terminus indicate that ice velocities peak in May and decrease through the summer. Oceanographic measurements show that near-shore surface water temperatures in the Gulf of Alaska are greatest in the fall. We suggest that the spring peak in terminus velocity is set by higher rates of ice delivery from up-glacier; calving rate increases in a compensatory way, to nearly

  16. A distinctive type of ascending prominence - 'Fountain' (United States)

    Tandberg-Hanssen, E.; Hansen, R. T.; Riddle, A. C.


    Cinematographic observations of solar prominences made at Mauna Loa, Hawaii, during the past few years suggest that there is a well-defined subclass of ascending prominences characterized by closed-system transference of chromospheric material along an arch or loop (up one leg and down the other). While this occurs, the entire prominence envelope steadily rises upward and expands through the corona. These prominences are denoted as 'fountains'. Several examples are described. Fountains appear to be well contained by coronal magnetic fields. Their total kinetic energy is of the order of 10 to the 30th power erg, but dissipation is typically quite slow (over time periods of 100 min or so), so that the correlative disturbances (radio bursts, coronal transients, chromospheric brightenings) are generally not spectacular or nonexistent.

  17. ATLAS: Finding the Nearest Asteroids (United States)

    Heinze, Aren; Tonry, John L.; Denneau, Larry; Stalder, Brian


    The Asteroid Terrestrial-impact Last Alert System (ATLAS) became fully operational in June 2017. Our two robotic, 0.5 meter telescopes survey the whole accessible sky every two nights from the Hawaiian mountains of Haleakala and Mauna Loa. With sensitivity to magnitude 19.5 over a field of 30 square degrees, we discover several bright near-Earth objects every month - particularly fast moving asteroids, which can slip by other surveys that scan the sky more slowly. Several important developments in 2017 have enhanced our sensitivity to small, nearby asteroids and potential impactors. We report on these developments - including optical adjustments, automated screening of detections, closer temporal spacing of images, and tolerance for large deviations from Great Circle motion on the sky - and we describe their effect in terms of measuring and discovering real objects.

  18. Flow properties of the solar wind obtained from white light data, Ulysses observations and a two-fluid model (United States)

    Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard


    Using the empirical constraints provided by observations in the inner corona and in interplanetary space. we derive the flow properties of the solar wind using a two fluid model. Density and scale height temperatures are derived from White Light coronagraph observations on SPARTAN 201-1 and at Mauna Loa, from 1.16 to 5.5 R, in the two polar coronal holes on 11-12 Apr. 1993. Interplanetary measurements of the flow speed and proton mass flux are taken from the Ulysses south polar passage. By comparing the results of the model computations that fit the empirical constraints in the two coronal hole regions, we show how the effects of the line of sight influence the empirical inferences and subsequently the corresponding numerical results.

  19. Kilauea volcano eruption seen from orbit (United States)


    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  20. Recent changes in stratospheric aerosol budget from ground-based and satellite observations (United States)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry


    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background

  1. Shallow Subsurface transport and eruption of basaltic foam (United States)

    Parcheta, C. E.; Mitchell, K. L.


    Volcanic fissure vents are difficult to quantify, and details of eruptive behavior are elusive even though it is the most common eruption mechanism on Earth and across the solar system. A fissure's surface expression is typically concealed, but when a fissure remains exposed, its subsurface conduit can be mapped post-eruptively with VolcanoBot. The robot uses a NIR structured light sensor that reproduces a 3D surface model to cm-scale accuracy, documenting the shallow conduit. VolcanoBot3 has probed >1000m3 of volcanic fissure vents at the Mauna Ulu fissure system on Kilauea. Here we present the new 3D model of a flared vent on the Mauna Ulu fissure system. We see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are typically 1 m across, protrude 30 cm horizontally into the drained fissure, and have a vertical spacing of 2-3 m. However, irregularity size is variable and distinct with depth, potentially reflecting stratigraphy in the wall rock. Where piercing points are present, we infer the dike broke the wall rock in order to propagate upwards; where they are not, we infer that syn-eruptive mechanical erosion has taken place. One mechanism for mechanical erosion is supersonic shocks, which may occur in Hawaiian fountains. We are calculating the speed of sound in 64% basaltic foam, which appears to be the same velocity (or slightly slower) than inferred eruption velocities. Irregularities are larger than the maximum 10% wall roughness used in engineering fluid dynamic studies, indicating that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. We are currently using the mapped conduit geometries and derived speed of sound for basaltic foam in fluid dynamical modeling of fissure-fed lava fountains.

  2. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field (United States)

    Barbieri, Roberto; Cavalazzi, Barbara


    Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo-) environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth - when these extreme environments had to be common - probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  3. Shoreface response and recovery to Hurricane Sandy: Fire Island, NY (United States)

    Nelson, Timothy R.; Hapke, Cheryl J.; Wang, Ping; Rosati, Julie D.; Cheng, Jun


    The shoreface of Fire Island was extensively modified by Hurricane Sandy and subsequent storms in the following winter months. The changes were evaluated using various morphometrics of the shoreface from four bathymetric surveys, one prior to Hurricane Sandy, and three over the course of twenty months following Sandy. The datasets show that the nearshore bar system moved offshore to deeper water depths following Hurricane Sandy with volume lost from the subaerial beach and surfzone. Following the offshore shift, the nearshore bar system increased in size, the trough deepened, and there has been gradual landward movement of the nearshore bar. The steepening of the upper shoreface, landward translation of the profile, and loss of sediment is indicative of barrier island transgression.

  4. Cretaceous Small Scavengers: Feeding Traces in Tetrapod Bones from Patagonia, Argentina (United States)

    de Valais, Silvina; Apesteguía, Sebastián; Garrido, Alberto C.


    Ecological relationships among fossil vertebrate groups are interpreted based on evidence of modification features and paleopathologies on fossil bones. Here we describe an ichnological assemblage composed of trace fossils on reptile bones, mainly sphenodontids, crocodyliforms and maniraptoran theropods. They all come from La Buitrera, an early Late Cretaceous locality in the Candeleros Formation of northwestern Patagonia, Argentina. This locality is significant because of the abundance of small to medium-sized vertebrates. The abundant ichnological record includes traces on bones, most of them attributable to tetrapods. These latter traces include tooth marks that provde evidence of feeding activities made during the sub-aerial exposure of tetrapod carcasses. Other traces are attributable to arthropods or roots. The totality of evidence provides an uncommon insight into paleoecological aspects of a Late Cretaceous southern ecosystem. PMID:22253800

  5. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Boldreel, Lars O.


    Full Text Available The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units and the others pahoehoe flows (12% of the flow units.The log pattern of the flow units (crust, core and basal zone is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has

  6. Great landslide events in Italian artificial reservoirs

    Directory of Open Access Journals (Sweden)

    A. Panizzo


    Full Text Available The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe, are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy, generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.  

  7. Great landslide events in Italian artificial reservoirs (United States)

    Panizzo, A.; de Girolamo, P.; di Risio, M.; Maistri, A.; Petaccia, A.


    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy), generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.

  8. Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand (United States)

    Houghton, Bruce F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.


    Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.

  9. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA). (United States)

    Farke, Andrew A; Phillips, George E


    Ceratopsids ("horned dinosaurs") are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  10. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    Directory of Open Access Journals (Sweden)

    Roberto Barbieri


    Full Text Available Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo- environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth—when these extreme environments had to be common—probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  11. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA (United States)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David


    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  12. Sequential development of platform to off-platform facies of the great American carbonate bank in the central Appalachians: chapter 15 (United States)

    Brezinski, David K.; Taylor, John F.; Repetski, John E.


    In the central Appalachians, carbonate deposition of the great American carbonate bank began during the Early Cambrian with the creation of initial ramp facies of the Vintage Formation and lower members of the Tomstown Formation. Vertical stacking of bioturbated subtidal ramp deposits (Bolivar Heights Member) and dolomitized microbial boundtsone (Fort Duncan Member) preceded the initiation of platform sedimentation and creation of sand shoal facies (Benevola Member) that was followed by the development of peritidal cyclicity (Daragan Member). Initiation of peritidal deposition coincided with the development of a rimmed platform that would persist throughout much of the Cambrian and Early Odrovician. At the end of deposition of the Waynesboro Formation, the platform became subaerially exposed because of the Hawke Bay regression, bringing the Sauk I supersequence to and end. In the Conestoga Valley of eastern Pennsylvania, Early Cambrian ramp deposition was succeeded by deposition of platform-margin and periplatfrom facies of the Kinzers Formation.

  13. Bathymetry data collected in October 2014 from Fire Island, New York—The wilderness breach, shoreface, and bay (United States)

    Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.


    Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), flood shoals, and shallow channels within the wilderness breach and adjacent shoreface.

  14. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles) (United States)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.


    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (1 km) to outcrop (models and the texture-mapped imagery, which have better resolution than any available acoustic systems (behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  15. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide


    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  16. Linking shoreline displacement to environmental conditions in the Wax Lake Delta, USA (United States)

    Geleynse, N.; Hiatt, M. R.; Sangireddy, H.; Passalacqua, P.


    The dynamics of river deltas are not well-understood in part because of scarcity of historical data that document the growth or retreat of their channel networks, islands and shorelines. In particular, the mapping of deltaic shorelines is not trivial, however recent developments allow for their extraction from satellite and aerial imagery. Here, we present an analysis of environmental data and Landsat imagery of the Wax Lake Delta, a naturally-developing river delta in the shallow Atchafalaya Basin, Gulf of Mexico, USA. The image-based shoreline corresponds to the hydrodynamic shoreline, that is, the boundary of the subaerial and subaqueous portions of the delta, however, can be related to a morphodynamically-relevant shoreline by application of our method [Geleynse et al., 2012] to bathymetric-topographic data. Moreover, the effect of tides, river floods, wind, and vegetation cover on the extracted shorelines of the Wax Lake Delta can be identified.

  17. Earthquake mechanism and seafloor deformation for tsunami generation (United States)

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan


    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  18. Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole, Broward County, Florida (United States)

    Cunningham, Kevin J.; Robinson, Edward


    Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

  19. Thermal impact of magmatism in subduction zones (United States)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.


    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  20. Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka (United States)

    Paris, Raphaël; Bravo, Juan J. Coello; González, María E. Martín; Kelfoun, Karim; Nauret, François


    Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.

  1. Deltaic Morphology and Sedimentology, with Special Reference to the Indus River Delta. (United States)


    energy ranking of fourth highest, an order of macrotide-range deltas such as the Ord River magnitude less than the Senegal and Magdalena delta , and a...I E (K NG -- &0W 0" 3# / DANU BE o 1000 MAGDALENA 0 __ ___ - [, 103 104 105 Subaerial delta area m2 ) Figure 9. Plot of subaqueous delta area (beky...D -R I B S 1 9 8 D E L T I C M O R P H O L O G Y A N D S E D I E N T O L O G Y N I T H S P E C I LREFERENCE TO THE INDUS RIVER DELTA (U) LOUISIANA

  2. Calving rates at tidewater glaciers vary strongly with ocean temperature. (United States)

    Luckman, Adrian; Benn, Douglas I; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark


    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing.

  3. Experiments on bedforms created by gravity flows (United States)

    Fedele, Juan; Hoyal, David; Barnaal, Zachary; Awalt, Shane


    We report experimental results that show a rich variety of equilibrium bedforms developed under dilute density and turbidity currents. More than 500 gravity flows were run aimed at testing the stability regions of bedforms using saline density currents or diluted sediment-laden currents running over low-density plastic sediment (SG~1.5), confined in a 7-m long and 15-cm wide flume submerged in a large fresh-water tank. Experimental currents spanned a wide range of conditions with water discharges ranging 0.2-1.2 l/s (3-18 gpm) and initial slopes ranging 1o-10o, producing subcritical, critical, and supercritical flows (Fr=0.67-2.3). Results confirm some similarities between subaerial and gravity flow bedforms both in process and product, but also reveal some interesting differences. For example, ripples and dunes form under both sub and supercritical density currents while supercritical currents yield both small and long wavelength antidunes (when wavelength is scaled with current thickness), where the latter may transition to cyclic steps. Ripples developed in flows with low bed shear stress, and therefore minimal bedload transport, and small sediment sizes. Like their