WorldWideScience

Sample records for subaerial debris flows

  1. A nonlinear model of flow in meandering submarine and subaerial channels

    Science.gov (United States)

    Imran, Jasim; Parker, Gary; Pirmez, Carlos

    1999-12-01

    A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.

  2. The physics of debris flows

    Science.gov (United States)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  3. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  4. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  5. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  6. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  7. Sedimentary gravity flows from subaerial fan-deltas in Loreto Bay, Baja California Sur, Mexico

    Science.gov (United States)

    Navarro-Lozano, José O.; Nava-Sánchez, Enrique H.; Godínez-Orta, Lucio

    2010-05-01

    Fan-deltas from Loreto Bay show recent evidences of sedimentary gravity flows as a result from catastrophic events during hurricane rainfalls. The knowledge of hydrological characteristics of these flows is important for understanding the effects of storms on fan-deltas geomorphology in this region, as well as for the urban developing planning of the city of Loreto in order to avoid hazardous zones. The analysis of precipitation and hurricane tracks data for the period 1945 to 2009 indicates that hurricanes have caused catastrophic floods every 20 years. Stratigraphy from the channel incision shows a sequence of stream flow and debris flow controlled by changes in the competence and capacity of the stream, which are associated to the gentle slope (<2 °) of the fan-deltas. However fans from the north of the bay (Arce and Gúa) show deposits of debris flows associated to catastrophic floods, which have caused the incision channel to drift towards the southern part of the fans, while flows from Las Parras fan-delta, from the middle of the bay, are dominated by stream flows. These differences in the type of the flows are controlled by lithology, shape and size of the drainage basin, and slope of the transit zone in the feeder channel.

  8. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  9. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  10. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  11. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  12. Numerical modeling of the debris flows runout

    Directory of Open Access Journals (Sweden)

    Federico Francesco

    2017-01-01

    Full Text Available Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a ‘shear layer’, typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  13. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  14. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  15. Forewarning of Debris flows using Intelligent Geophones

    Science.gov (United States)

    PK, I.; Ramesh, M. V.

    2017-12-01

    Landslides are one of the major catastrophic disasters that cause significant damage to human life and civil structures. Heavy rainfall on landslide prone areas can lead to most dangerous debris flow, where the materials such as mud, sand, soil, rock, water and air will move with greater velocity down the mountain. This sudden slope instability can lead to loss of human life and infrastructure. According to our knowledge, till now no one could identify the minutest factors that lead to initiation of the landslide. In this work, we aim to study the landslide phenomena deeply, using the landslide laboratory set up in our university. This unique mechanical simulator for landslide initiation is equipped with the capability to generate rainfall, seepage, etc., in the laboratory setup. Using this setup, we aim to study several landslide initiation scenarios generated by varying different parameters. The complete setup will be equipped with heterogeneous sensors such as rain gauge, moisture sensor, pore pressure sensor, strain gauges, tiltmeter, inclinometer, extensometer, and geophones. Our work will focus on the signals received from the intelligent geophone system for identifying the underground vibrations during a debris flow. Using the large amount of signals derived from the laboratory set up, we have performed detailed signal processing and data analysis to determine the fore warning signals captured by these heterogeneous sensors. Detailed study of these heterogeneous signals has provided the insights to forewarning the community based on the signals generated during the laboratory tests. In this work we will describe the details of the design, development, methodology, results, inferences and the suggestion for the next step to detect and forewarn the students. The response of intelligent geophone sensors at the time of failure, failure style and subsequent debris flow for heterogeneous soil layers were studied, thus helping in the development of fore warning

  16. [Research progress in post-fire debris flow].

    Science.gov (United States)

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  17. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    Science.gov (United States)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  18. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  19. The effect of debris-flow composition on runout distance

    Science.gov (United States)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  20. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    Science.gov (United States)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  1. Experimental observations of granular debris flows

    Science.gov (United States)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  2. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  3. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... a multidisciplinary study involving geomorphological fieldwork and qualitative collection of indigenous landslide knowledge, presents physical characteristics to classify debris flow phenomena into groups named with Faroese terms. The following landslide definitions are proposed. Brekku-skriðulop (English translation...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  4. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  5. An Approach to Predict Debris Flow Average Velocity

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  6. Development of a debris flow model in a geotechnical centrifuge

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  7. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  8. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  9. Rainfall characteristics and thresholds for periglacial debris flows in ...

    Indian Academy of Sciences (India)

    Mingfeng Deng

    2018-02-14

    Feb 14, 2018 ... Rainfall characteristics; runoff generated; threshold; debris flows; southeast Tibetan. Plateau. 1. ... glacier ablation water (Lu and Li 1989; Liu et al. 2013). ...... F J and Lund L J, US Department of Agriculture (River- side, CA ...

  10. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  11. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  12. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  13. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  14. Mechanics of debris flows and rock avalanches: Chapter 43

    Science.gov (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  15. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  16. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  17. Mount Baker lahars and debris flows, ancient, modern, and future

    Science.gov (United States)

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    The Middle Fork Nooksack River drains the southwestern slopes of the active Mount Baker stratovolcano in northwest Washington State. The river enters Bellingham Bay at a growing delta 98 km to the west. Various types of debris flows have descended the river, generated by volcano collapse or eruption (lahars), glacial outburst floods, and moraine landslides. Initial deposition of sediment during debris flows occurs on the order of minutes to a few hours. Long-lasting, down-valley transport of sediment, all the way to the delta, occurs over a period of decades, and affects fish habitat, flood risk, gravel mining, and drinking water.

  18. October 2005 Debris Flows at Panabaj, Guatemala:Hazard Assessment

    Science.gov (United States)

    Sheridan, M. F.; Connor, C.; Connor, L.; Stinton, A.; Galacia, O. R.; Barrios, G.

    2007-05-01

    In October, 2005, tropical storm Stan caused heavy precipitation throughout much of Guatemala. In the community of Panabaj, Santiago Atitlán, a landslide of pyroclastic material originating high on the slopes of Tolimán volcano buried much of the community, leaving approximately 400 people dead. Current estimates by the Coordinadora Nacional para la Reducción de Desastres (CONRED) suggest that at least 2,600 people from the community of Panabaj, Santiago Atitlán have been displaced by the debris flows. Because the temporary housing for people displaced by the debris flows is located in an area that is geologically and morphologically similar to the area inundated by flows in October, 2005, this area may be potentially inundated by debris flows as well. In addition to the thousands of people living in temporary shelters, many hundreds of people are currently reoccupying land adjacent to or on the October, 2005 debris flows. Thus a large fraction of the surviving Panabaj community appears to remain at risk from future debris flows. We used differential GPS (Global Positioning System) to outline the boundaries of the debris flows, to estimate variation in flow thicknesses, and to determine their volumes. Mass movement on Tolimán volcano resulted in the generation of a moderate size debris flow (360,000 m3 of sediment plus water) that descended the volcano rapidly, bifurcated into two stream valleys high on the flanks of the volcano, and continued to descend both channels until these flows reached the alluvial fan near the shores of Lago de Atitlán. After bifurcating into two flows high on the flanks of the volcano, about 65% of the flow (by volume) descended the western channel, forming the Western flow. Approximately one kilometer above the alluvial fan, this channel descends steep topography, with a slope of 11.5°. This average slope gradually decreases down the channel, reaching only 5.3° just above the alluvial fan. In contrast, average slopes on the

  19. Coarse-grained debris flow dynamics on erodible beds

    Science.gov (United States)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  20. Erosion and deposition on a debris-flow fan

    Science.gov (United States)

    Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.

    2011-12-01

    The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic

  1. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  2. Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru

    Czech Academy of Sciences Publication Activity Database

    Vilímek, V.; Klimeš, Jan; Vlčko, J.; Carreno, R.

    2006-01-01

    Roč. 50, č. 7 (2006), s. 1041-1052 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z30460519 Keywords : debris flows * Machu Picchu Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.610, year: 2006

  3. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  4. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  5. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  6. Experimental study on the rheological behaviour of debris flow

    Directory of Open Access Journals (Sweden)

    A. Scotto di Santolo

    2010-12-01

    Full Text Available A model able to describe all the processes involved in a debris flow can be very complex owing to the sudden changing of the material that turns from solid into liquid state. The two phases of the phenomenon are analysed separately referring to soil mechanics procedures with regard to the trigger phase, and to an equivalent fluid for the post-failure phase. The present paper is devoted to show the experimental results carried out to evaluate the behaviour assumed by a pyroclastic-derived soil during the flow. A traditional fluid tool has been utilized: a standard rotational rheometer equipped with two different geometries. The soils tested belong to deposits that cover the slopes of the Campania region, Italy, often affected by debris flows. The influence of solid concentration Cv and grain size distribution was tested: the soils were destructurated, sieved and mixed with water starting from the in situ porosity. All material mixtures showed a non-Newtonian fluid behaviour with a yield stress τy that increases with a solid volumetric concentration and decreases for an increase of sand fraction. The experimental data were fitted with standard model for fluids. A simple relation between Cv and τy was obtained. The yield stress seems to be a key parameter for describing and predicting the post-failure behaviour of debris flows. These results suggest that in the field a small change in solid fraction, due to rainfall, will cause a slight decrease of the static yield stress, readily inducing a rapid flow which will stop only when the dynamic yield stress is reached, namely on a much smoother slope. This can explain the in situ observed post-failure behaviour of debris flows, which are able to flow over very long distances even on smooth slopes.

  7. Effect of excess pore pressure on the long runout of debris flows over low gradient channels: A case study of the Dongyuege debris flow in Nu River, China

    Science.gov (United States)

    Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min

    2018-05-01

    Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover, small woody debris can also contribute to the slurrying of sediments and maintenance of debris flows in well vegetated mountainous areas and the boulders suspended in debris flows can elevate excess pore pressure and extend debris-flow mobility. The parameters, including Id, Kp, R and etc., are affected by the intrinsic properties of debris. They, therefore, can reflect the slurrying susceptibility of sediments, and can also be applied to the research on the occurrence mechanisms and risk assessment of other debris flows.

  8. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  9. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  10. Scaling up debris-flow experiments on a centrifuge

    Science.gov (United States)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  11. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  12. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data

    Science.gov (United States)

    Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang

    2018-05-01

    Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other

  13. PRESENT STATUS OF RESEARCH IN DEBRIS FLOW MODELING.

    Science.gov (United States)

    Chen, Cheng-lung

    1985-01-01

    A viable rheological model should consist of both a time-independent part and a time-dependent part. A generalized viscoplastic fluid model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criteria) is shown to be sufficiently accurate, yet practical, for general use in debris flow modeling. Other rheological models, such as the Bingham plastic fluid model and the so-called Coulomb-viscous model, are compared in terms of the generalized viscoplastic fluid model.

  14. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  15. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  16. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  17. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  18. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  19. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    Science.gov (United States)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  20. A combined triggering-propagation modeling approach for the assessment of rainfall induced debris flow susceptibility

    Science.gov (United States)

    Stancanelli, Laura Maria; Peres, David Johnny; Cancelliere, Antonino; Foti, Enrico

    2017-07-01

    Rainfall-induced shallow slides can evolve into debris flows that move rapidly downstream with devastating consequences. Mapping the susceptibility to debris flow is an important aid for risk mitigation. We propose a novel practical approach to derive debris flow inundation maps useful for susceptibility assessment, that is based on the integrated use of DEM-based spatially-distributed hydrological and slope stability models with debris flow propagation models. More specifically, the TRIGRS infiltration and infinite slope stability model and the FLO-2D model for the simulation of the related debris flow propagation and deposition are combined. An empirical instability-to-debris flow triggering threshold calibrated on the basis of observed events, is applied to link the two models and to accomplish the task of determining the amount of unstable mass that develops as a debris flow. Calibration of the proposed methodology is carried out based on real data of the debris flow event occurred on 1 October 2009, in the Peloritani mountains area (Italy). Model performance, assessed by receiver-operating-characteristics (ROC) indexes, evidences fairly good reproduction of the observed event. Comparison with the performance of the traditional debris flow modeling procedure, in which sediment and water hydrographs are inputed as lumped at selected points on top of the streams, is also performed, in order to assess quantitatively the limitations of such commonly applied approach. Results show that the proposed method, besides of being more process-consistent than the traditional hydrograph-based approach, can potentially provide a more accurate simulation of debris-flow phenomena, in terms of spatial patterns of erosion and deposition as well on the quantification of mobilized volumes and depths, avoiding overestimation of debris flow triggering volume and, thus, of maximum inundation flow depths.

  1. Holocene debris flows on the Colorado Plateau: The influence of clay mineralogy and chemistry

    Science.gov (United States)

    Webb, R.H.; Griffiths, P.G.; Rudd, L.P.

    2008-01-01

    Holocene debris flows do not occur uniformly on the Colorado Plateau province of North America. Debris flows occur in specific areas of the plateau, resulting in general from the combination of steep topography, intense convective precipitation, abundant poorly sorted material not stabilized by vegetation, and the exposure of certain fine-grained bedrock units in cliffs or in colluvium beneath those cliffs. In Grand and Cataract Canyons, fine-grained bedrock that produces debris flows contains primarily single-layer clays - notably illite and kaolinite - and has low multilayer clay content. This clay-mineral suite also occurs in the colluvium that produces debris flows as well as in debris-flow deposits, although unconsolidated deposits have less illite than the source bedrock. We investigate the relation between the clay mineralogy and major-cation chemistry of fine-grained bedrock units and the occurrence of debris flows on the entire Colorado Plateau. We determined that 85 mapped fine-grained bedrock units potentially could produce debris flows, and we analyzed clay mineralogy and major-cation concentration of 52 of the most widely distributed units, particularly those exposed in steep topography. Fine-grained bedrock units that produce debris flows contained an average of 71% kaolinite and illite and 5% montmorillonite and have a higher concentration of potassium and magnesium than nonproducing units, which have an average of 51% montmorillonite and a higher concentration of sodium. We used multivariate statistics to discriminate fine-grained bedrock units with the potential to produce debris flows, and we used digital-elevation models and mapped distribution of debris-flow producing units to derive a map that predicts potential occurrence of Holocene debris flows on the Colorado Plateau. ?? 2008 Geological Society of America.

  2. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.

  3. Timing of susceptibility to post-fire debris flows in the western USA

    Science.gov (United States)

    DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.

    2015-01-01

    Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.

  4. Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?

    Science.gov (United States)

    Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.

    2008-12-01

    The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a

  5. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow

    Directory of Open Access Journals (Sweden)

    An Ping Shu

    2017-04-01

    Full Text Available Non-homogeneous debris flows generally occur during the rainy seasons in Southwest China, and have received considerable attention in the literature. Regarding the complexity in debris flow dynamics, experimental approaches have proven to be effective in revealing the formative mechanism for debris flow, and quantifying the relations between the various influencing factors with debris-flow formation and subsequent transport processes. Therefore, a flume-based and experimental study was performed at the Debris Flow Observation and Research Station of Jiangjia Gully in Yunnan Province, to theoretically analyze favorable conditions for debris-flow formation and initial transport by selecting the median particle size d50, flow rate Q, vertical grading coefficient ψ, slopes S, and the initial soil water contents W as the five variables for investigation. To achieve this, an optimal combination of these variables was made through an orthogonal experimental design to determine their relative importance upon the occurrence and initial mobilization behavior of a debris flow and to further enhance our insight into debris-flow triggering and transport mechanisms.

  6. Catastrophic debris-flows: geological hazard and human influence

    Science.gov (United States)

    Del Ventisette, Chiara; Garfagnoli, Francesca; Ciampalini, Andrea; Battistini, Alessandro; Gigli, Giovanni; Moretti, Sandro; Casagli, Nicola

    2013-04-01

    Rainfall-induced landslides are widespread phenomena often affecting urbanized areas and causing intense damages and casualties. The management of the post-event phase requires a fast evaluation of the involved areas and triggering factors. The latter are fundamental to evaluate the stability of the area affected by landslides, in order to facilitate quick and safe activities of the Civil Protection Authorities during the emergency. On October 1st 2009, a prolonged and intense rainstorm triggered hundreds of landslides (predominantly debris flows) in an area of about 50 km2 in the north-eastern sector of Sicily (Italy). Debris flows swept the highest parts of many villages and passed over the SS114 state highway and the Messina-Catania railway, causing more than 30 fatalities. This work deals with the geological and hydro-geomorphological studies performed as a part of the post-disaster activities operated in collaboration with Civil Protection Authority, with the aim of examining landslides effects and mechanisms. The data were elaborated into a GIS platform, to evaluate the influence of urbanization on the drainage pattern and were correlated with the lithological and structural framework of the area. The case study of Giampilieri focuses the attention on the necessity of sustainable land use and reasonable urban management in areas characterized by a high hydrogeological hazard and on the tremendous destructive power of these phenomena, which are capable of causing a large number of victims in such small villages. Field surveys and stereo-photo geomorphological analysis revealed a significant human influence on determining landslide triggering causes, as well as the final amount of damage. In particular, destruction and injuries in the built-up area of Giampilieri were made even more severe by the main water flow lines made narrower due to building activity and enlargement of the urban area. The area maintains a high degree of hazard: deposits of poorly

  7. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    Science.gov (United States)

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  8. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China

    Science.gov (United States)

    Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang

    2018-05-01

    Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.

  9. Influence of check dams on debris-flow run-out intensity

    Directory of Open Access Journals (Sweden)

    A. Remaître

    2008-12-01

    Full Text Available Debris flows are very dangerous phenomena claiming thousands of lives and millions of Euros each year over the world. Disaster mitigation includes non-structural (hazard mapping, insurance policies, active structural (drainage systems and passive structural (check dams, stilling basins countermeasures. Since over twenty years, many efforts are devoted by the scientific and engineering communities to the design of proper devices able to capture the debris-flow volume and/or break down the energy. If considerable theoretical and numerical work has been performed on the size, the shape and structure of check dams, allowing the definition of general design criteria, it is worth noting that less research has focused on the optimal location of these dams along the debris-flow pathway.

    In this paper, a methodological framework is proposed to evaluate the influence of the number and the location of the check dams on the reduction of the debris-flow intensity (in term of flow thickness, flow velocity and volume. A debris-flow model is used to simulate the run-out of the debris flow. The model uses the Janbu force diagram to resolve the force equilibrium equations; a bingham fluid rheology is introduced and represents the resistance term. The model has been calibrated on two muddy debris-flow events that occurred in 1996 and 2003 at the Faucon watershed (South French Alps.

    Influence of the check dams on the debris-flow intensity is quantified taking into account several check dams configurations (number and location as input geometrical parameters. Results indicate that debris-flow intensity is decreasing with the distance between the source area and the first check dams. The study demonstrates that a small number of check dams located near the source area may decrease substantially the debris-flow intensity on the alluvial fans.

  10. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  11. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the

  12. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  13. Comparing two models for post-wildfire debris flow susceptibility mapping

    Science.gov (United States)

    Cramer, J.; Bursik, M. I.; Legorreta Paulin, G.

    2017-12-01

    Traditionally, probabilistic post-fire debris flow susceptibility mapping has been performed based on the typical method of failure for debris flows/landslides, where slip occurs along a basal shear zone as a result of rainfall infiltration. Recent studies have argued that post-fire debris flows are fundamentally different in their method of initiation, which is not infiltration-driven, but surface runoff-driven. We test these competing models by comparing the accuracy of the susceptibility maps produced by each initiation method. Debris flow susceptibility maps are generated according to each initiation method for a mountainous region of Southern California that recently experienced wildfire and subsequent debris flows. A multiple logistic regression (MLR), which uses the occurrence of past debris flows and the values of environmental parameters, was used to determine the probability of future debris flow occurrence. The independent variables used in the MLR are dependent on the initiation method; for example, depth to slip plane, and shear strength of soil are relevant to the infiltration initiation, but not surface runoff. A post-fire debris flow inventory serves as the standard to compare the two susceptibility maps, and was generated by LiDAR analysis and field based ground-truthing. The amount of overlap between the true locations where debris flow erosion can be documented, and where the MLR predicts high probability of debris flow initiation was statistically quantified. The Figure of Merit in Space (FMS) was used to compare the two models, and the results of the FMS comparison suggest that surface runoff-driven initiation better explains debris flow occurrence. Wildfire can breed conditions that induce debris flows in areas that normally would not be prone to them. Because of this, nearby communities at risk may not be equipped to protect themselves against debris flows. In California, there are just a few months between wildland fire season and the wet

  14. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    Science.gov (United States)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael

    2013-04-01

    The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.

  15. Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA

    Science.gov (United States)

    Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.

    2007-01-01

    From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.

  16. Influence of thermoluminescence signal for debris flow surface materials by sunlight bleaching

    International Nuclear Information System (INIS)

    Song Bo; Wei Mingjian; He Youbing; Zhou Rui; Zhao Qiuyue; Zhang Bin

    2013-01-01

    Thermoluminescence was utilized for measuring the thermoluminescence signals of the standard debris flow samples which were bleached by simulated sunlight and debris flow samples after real sunlight bleaching. The experiment results demonstrate that light bleaching phenomenon of the debris flow occurs when it experiences a period of exposure. The thermoluminescence signal of the samples weakens gradually with the increase of depth. The optical bleaching phenomenon is obvious. Within a certain depth, light bleaching phenomenon is enhanced with the increase of light intensity. The annealing depth of simulated sunlight bleaching experiment is about 1 mm, and the actual annealing depth of sunlight bleaching is about 6 mm. According to the equivalent dose variation with depth, the mud of natural debris flow can be divided into two stages. It has fundamental significance in the application of thermoluminescence dating techniques to divide the stages of debris flow sediments. (authors)

  17. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  18. Debris flows from small catchments of the Ma Ha Tuak Range, metropolitan Phoenix, Arizona

    Science.gov (United States)

    Dorn, Ronald I.

    2010-08-01

    Debris flows debauch from tiny but steep mountain catchments throughout metropolitan Phoenix, Arizona, USA. Urban growth in the past half-decade has led to home construction directly underneath hundreds of debris-flow channels, but debris flows are not recognized as a potential hazard at present. One of the first steps in a hazard assessment is to determine occurrence rates. The north flank of the Ma Ha Tuak Range, just 10 km from downtown Phoenix, was selected to determine the feasibility of using the varnish microlaminations (VML) method to date every debris-flow levee from 127 catchment areas. Only 152 of the 780 debris-flow levees yielded VML ages in a first round of sampling; this high failure rate is due to erosion of VML by microcolonial fungi. The temporal pattern of preserved debris-flow levees indicates anomalously high production of debris flows at about 8.1 ka and about 2.8 ka, corresponding to Northern Hemisphere climatic anomalies. Because many prior debris flows are obliterated by newer events, the minimum overall occurrence rates of 1.3 debris flows per century for the last 60 ka, 2.2 flows/century for the latest Pleistocene, and 5 flows/century for the last 8.1 ka has little meaning in assessment of a contemporary hazard. This is because newer debris flows have obliterated an unknown number of past deposits. More meaningful to a hazards analysis is the estimate that 56 flows have occurred in the last 100 years on the north side of the range, an estimate that is consistent with direct observations of three small debris flows resulting events from a January 18-22, 2010 storm producing 70 mm of precipitation in the Ma Ha Tuak Range, and a 500 m long debris flow in a northern metropolitan Phoenix location that received over 150 mm of precipitation in this same storm. These findings support the need for a more extensive hazard assessment of debris flows in metropolitan Phoenix.

  19. Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures

    KAUST Repository

    Bout, B.; Lombardo, Luigi; van Westen, C.J.; Jetten, V.G.

    2018-01-01

    An integrated, modeling method for shallow landslides, debris flows and catchment hydrology is developed and presented in this paper. Existing two-phase debris flow equations and an adaptation on the infinite slope method are coupled with a full

  20. Debris flow susceptibility assessment based on an empirical approach in the central region of South Korea

    Science.gov (United States)

    Kang, Sinhang; Lee, Seung-Rae

    2018-05-01

    Many debris flow spreading analyses have been conducted during recent decades to prevent damage from debris flows. An empirical approach that has been used in various studies on debris flow spreading has advantages such as simple data acquisition and good applicability for large areas. In this study, a GIS-based empirical model that was developed at the University of Lausanne (Switzerland) is used to assess the debris flow susceptibility. Study sites are classified based on the types of soil texture or geological conditions, which can indirectly consider geotechnical or rheological properties, to supplement the weaknesses of Flow-R which neglects local controlling factors. The mean travel angle for each classification is calculated from a debris flow inventory map. The debris flow susceptibility is assessed based on changes in the flow-direction algorithm, an inertial function with a 5-m DEM resolution. A simplified friction-limited model was applied to the runout distance analysis by using the appropriate travel angle for the corresponding classification with a velocity limit of 28 m/s. The most appropriate algorithm combinations that derived the highest average of efficiency and sensitivity for each classification are finally determined by applying a confusion matrix with the efficiency and the sensitivity to the results of the susceptibility assessment. The proposed schemes can be useful for debris flow susceptibility assessment in both the study area and the central region of Korea, which has similar environmental factors such as geological conditions, topography and rainfall characteristics to the study area.

  1. Empirical closures for particulate debris bed spreading induced by gas–liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S., E-mail: simoneb@kth.se; Konovalenko, A.; Kudinov, P.

    2016-02-15

    Highlights: • Experimental study of the debris bed self-leveling phenomenon. • A scaling approach and a non-dimensional model to describe particle flow rate are proposed. • The model is validated against experiments with particles of different properties and at different gas injection conditions. - Abstract: Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called “self-leveling” phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different

  2. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    P. Bertolo

    2005-01-01

    Full Text Available This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004. To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis model (Hungr, 1995 and the two-dimensional FLO-2D model (O'Brien et al., 1993 to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening.

  3. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  4. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  5. Sub-aerial tailings deposition

    International Nuclear Information System (INIS)

    Knight, R.B.; Haile, J.P.

    1984-01-01

    The sub-aerial technique involves the systematic deposition of tailings in thin layers and allowing each layer to settle, drain and partially air dry prior to covering with a further layer. Underdrainage produces densities in excess of those achieved by sub-aqueous deposition and any air-drying serves to preconsolidate each layer with a resulting further increase in density. The low permeability of the tailings surface resulting from this deposition technique results in high runoff coefficients and, by decanting the runoff component of direct precipitation, a net evaporation condition can be achieved even in high rainfall areas. An underdrainage system prevents the build-up of excess pore-pressures within the tailings mass and at decommissioning the tailings are fully consolidated and drained thereby eliminating the possibility of any long term seepage. This paper presents a general description of these design concepts, and details of two projects where the concepts have been applied

  6. Disaster Characteristics and Mitigation Measures of Huge Glacial Debris Flows along the Sichuan-Tibet Railway

    Science.gov (United States)

    Liu, Jinfeng; You, Yong; Zhang, Guangze; Wang, Dong; Chen, Jiangang; Chen, Huayong

    2017-04-01

    The Ranwu-Tongmai section of the Sichuan-Tibet Railway passes through the Palongzangbu River basin which locates in the southeast Qinghai-Tibetan Plateau. Due to widely distributed maritime glacier in this area, the huge glacier debris flows are very developed. Consequently, the disastrous glacier debris flows with huge scale (106-108 m3 for one debris flow event) and damage become one of the key influencing factors for the route alignment of the Sichuan-Tibet Railway. The research on disaster characteristics and mitigation measures of huge glacial debris flows in the study area were conducted by the remote sensing interpretation, field investigation, parameter calculation and numerical simulation. Firstly, the distribution of the glaciers, glacier lakes and glacier debris flows were identified and classified; and the disaster characteristics for the huge glacier debris flow were analyzed and summarized. Secondly, the dynamic parameters including the flood peak discharge, debris flow peak discharge, velocity, total volume of a single debris flow event were calculated. Based on the disaster characteristics and the spatial relation with the railway, some mitigation principles and measures were proposed. Finally, the Guxiang Gully, where a huge glacier debris flow with 2*108m3 in volume occurred in 1953, was selected as a typical case to analyze its disaster characteristics and mitigation measures. The interpretation results show that the glacier area is about 970 km2 which accounts for 19% of the total study area. 130 glacier lakes and 102 glacier debris flows were identified and classified. The Sichuan-Tibet Railway passes through 43 glacier debris flows in the study area. The specific disaster characteristics were analyzed and corresponding mitigation measures were proposed for the route selection of the railway. For the Guxiang Gully, a numerical simulation to simulate the deposition condition at the alluvial fan was conducted. the simulation results show that the

  7. Morphometric differences in debris flow and mixed flow fans in eastern Death Valley, CA

    Science.gov (United States)

    Wasklewicz, T. A.; Whitworth, J.

    2004-12-01

    Geomorphological features are best examined through direct measurement and parameterization of accurate topographic data. Fine-scale data are therefore required to produce a complete set of elevation data. Airborne Laser Swath Mapping (ALSM) data provide high-resolution data over large spatially continuous areas. The National Center for Advanced Laser Mapping (NCALM) collected ALSM data for an area along the eastern side of Death Valley extending from slightly north of Badwater to Mormon Point. The raw ALSM data were post-processed and delivered by NCALM in one-meter grid nodes that we converted to one-meter raster data sets. ALSM data are used to assess variations in the dimensions of surficial features found in 32 alluvial fans (21 debris flow and 11 mixed flow fans). Planimetric curvature of the fan surfaces is used to develop a topographic signature to distinguish debris flow from mixed flow fans. These two groups of fans are identified from field analysis of near vertical exposures along channels as well as surficial exposures at proximal, medial, and distal fan locations. One group of fans exhibited debris flow characteristics (DF), while the second group contained a mixture of fluid and debris flows (MF). Local planimetric curvature of the alluvial fan surfaces was derived from the one-meter DEM. The local curvature data were reclassified into concave and convex features. This sequence corresponds to two broad classes of fan features: channels and interfluves. Thirty random points were generated inside each fan polygon. The length of the nearest concave-convex (channel-interfluve) couplet was measured at each point and the percentage of convex and concave pixels in a 10m box centered on the random point was also recorded. Plots and statistical analyses of the data show clear indication that local planimetric curvature can be used as a topographic signature to distinguish between the varying formative processes in alluvial fans. Significant differences in the

  8. Research of thermoluminescence dating for ancient debris flow materials in Qingshui river basin of Beijing

    International Nuclear Information System (INIS)

    Liu Junxin; Wei Mingjian; Zhou Rui; Zhang Bin; Liu Tiantian

    2012-01-01

    The thermoluminescence age of the samples for ancient debris flow terraces material of Lingshan and Hongshuikou, which are in Qingshui River Basin of Beijing, was studied using the thermo luminescence technology. The age increases with the increasing depth of two ancient debris flow profile, and the deeper debris flow deposits material the more of the environmental radiation dose is. The trend with depth of U, Th and K contents and annual dose is consistency. And the change with depth of Th content is more discrete than that of U, K contents. (authors)

  9. DEBRIS FLOW ACTIVITY RECONSTRUCTION USING DENDROGEOMORPHOLOGICAL METHODS. STUDY CASE (PIULE IORGOVANU MOUNTAINS

    Directory of Open Access Journals (Sweden)

    ROXANA VĂIDEAN

    2015-10-01

    Full Text Available Debris Flow Activity Reconstruction Using Dendrogeomorphological Methods. Study Case (Piule Iorgovanu Mountains. Debris flows are one of the most destructive mass-movements that manifest in the mountainous regions around the world. As they usually occur on the steep slopes of the mountain streams where human settlements are scarce, they are hardly monitored. But when they do interact with builtup areas or transportation corridors they cause enormous damages and even casualties. The rise of human pressure in the hazardous regions has led to an increase in the severity of the negative consequences related to debris flows. Consequently, a complete database for hazard assessment of the areas which show evidence of debris flow activity is needed. Because of the lack of archival records knowledge about their frequency remains poor. One of the most precise methods used in the reconstruction of past debris flow activity are dendrogeomorphological methods. Using growth anomalies of the affected trees, a valuable event chronology can be obtained. Therefore, it is the purpose of this study to reconstruct debris flow activity on a small catchment located on the northern slope of Piule Iorgovanu Mountains. The trees growing near the channel of transport and on the debris fan, exhibit different types of disturbances. A number of 98 increment cores, 19 cross-sections and 1 semi-transversal cross-section was used. Based on the growth anomalies identified in the samples there were reconstructed a number of 19 events spanning a period of almost a century.

  10. On the evaluation of debris flows dynamics by means of mathematical models

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2003-01-01

    Full Text Available The prediction of debris flow dynamic characteristics in a debris flow prone torrent is generally made through the investigation of past events. This investigation can be carried out through a survey of the marks left by past debris flows along the channel and through a detailed analysis of the type and shape of the deposits found on the debris fan. The rheological behaviour of future debris flows can then be inferred from the results of these surveys and their dynamic characteristics can be estimated applying well known formulas proposed in literature. These latter will make use of the assumptions on the rheological behaviour previously made. This type of estimation has been performed for a debris flow occurred in an instrumented basin, on the North-Eastern Italian Alps, in 1996 and the results have been compared to those obtained by means of a mathematical simulation. For the calibration of the mathematical model the limnographs recorded by three different ultrasonic gauges installed along a torrent reach on the fan were used. The comparison evidenced the importance of time data recordings for a correct prediction of the debris flows dynamics. Without the availability of data recordings, the application of formulas based only on assumptions derived from field analysis could be misleading.

  11. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  12. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2012-03-01

    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  13. Wildfire impacts on the processes that generate debris flows in burned watersheds

    Science.gov (United States)

    Parise, M.; Cannon, S.H.

    2012-01-01

    Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However

  14. Implementation of the RAMMS DEBRIS FLOW to Italian case studies

    Science.gov (United States)

    Vennari, Carmela; Mc Ardell, Brian; Parise, Mario; Santangelo, Nicoletta; Santo, Antonio

    2016-04-01

    RAMMS (RApid Mass MovementS) Debris Flow runout model solves 2D shallow-water equation using the Voellmy friction law. The model has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), and the Swiss Federal Institute for Snow and Avalanche Research (SLF). It requires as input the following data: topography, release area or hydrograph, and the friction parameters μ and ξ. Deposition height, velocity, pressure and momentum are the most important outcomes, also in terms of Max values. The model was applied primarily in Alpine catchments to simulate debris flow runout. Beside the Alps, alluvial events are very common even in torrential catchments of the Southern Apennines of Italy, and contribute to build alluvial fans mainly located at the foothill of carbonate and volcanic mountains. During the last decades several events occurred in these areas, often highly populated, and caused serious damage to society and to people. Several case studies have been selected from a database on alluvial events in torrential catchments of Campania region, aimed at applying the RAMMS model to back-analyze the documented events, and to simulate future similar scenarios in different triggering conditions. In order to better understand the obtained data and choose the best results, field data are mandatories. For this reason we focused our attention on torrential events for which field data concerning deposition area and deposition height were available. We simulated different scenarios, with variable peak discharge and friction parameters, reproducing also the influence of anthropogenic structures. To choose the best results, observed data and predicted data were compared in an objective way, by means of a quantitative analysis. Predicted and observed deposition areas were compared in a GIS environment, and the best test was evaluated by computing several statistics accuracy derived from the confusion matrix, including the sensitivity, that

  15. Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China

    Directory of Open Access Journals (Sweden)

    Cencen Niu

    2015-11-01

    Full Text Available The outbreak of debris flows in a reservoir region can affect the stability of hydropower stations and threaten the lives of the people living downstream of dams. Therefore, determining the hazard degree of debris flows in a reservoir region is of great importance. SPOT5 remote sensing images and digital elevation models are introduced to determine the characteristics of debris-flow catchments. The information is acquired through comprehensive manual investigation and satellite image interpretation. Ten factors that influence debris flow are extracted for the hazard assessment. The weight of these factors is determined using the analytic hierarchy process method. As a multi-criterion decision analysis method, fuzzy synthetic evaluation is applied for hazard assessment.

  16. Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    M. P. Tsai

    2011-11-01

    Full Text Available Typhoon Morakot struck Taiwan in August 2009 and induced considerable disasters, including large-scale landslides and debris flows. One of these debris flows was experienced by the Daniao tribe in Taitung, Eastern Taiwan. The volume was in excess of 500 000 m3, which was substantially larger than the original design mitigation capacity. This study considered large-scale debris flow simulations in various volumes at the same area by using the DEBRIS-2D numerical program. The program uses the generalized Julien and Lan (1991 rheological model to simulate debris flows. In this paper, the sensitivity factor considered on the debris flow spreading is the amount of the debris flow initial volume. These simulated results in various amounts of debris flow initial volume demonstrated that maximal depths of debris flows were almost deposited in the same area, and also revealed that a 20% variation in estimating the amount of total volume at this particular site results in a 2.75% variation on the final front position. Because of the limited watershed terrain, the hazard zones of debris flows were not expanded. Therefore, the amount of the debris flow initial volume was not sensitive.

  17. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial

  18. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    Science.gov (United States)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  19. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  20. Response of a Brook Trout Population and Instream Habitat to a Catastrophic Flood and Debris Flow

    Science.gov (United States)

    Criag N. Roghair; C. Andrew Dolloff; Martin K. Underwood

    2002-01-01

    In June 1995, a massive flood and debris flow impacted fish and habitat along the lower 1.9 km of the Staunton River, a headwater stream located in Shenandoah National Park, Virginia. In the area affected by debris flow, the stream bed was scoured and new substrate materials were deposited, trees were removed from a 30-m-wide band in the riparian area, and all fish...

  1. A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.

    Science.gov (United States)

    Arana-Morales, A.; Baum, R. L.; Godt, J.

    2014-12-01

    Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.

  2. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km3 that devastated an approximate area of 250 km2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  3. Experimental study on slope sliding and debris flow evolution with and without barrier

    OpenAIRE

    Ji-kun Zhao; Dan Wang; Jia-hong Chen

    2015-01-01

    A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, ...

  4. Development of the Assessment Items of Debris Flow Using the Delphi Method

    Science.gov (United States)

    Byun, Yosep; Seong, Joohyun; Kim, Mingi; Park, Kyunghan; Yoon, Hyungkoo

    2016-04-01

    In recent years in Korea, Typhoon and the localized extreme rainfall caused by the abnormal climate has increased. Accordingly, debris flow is becoming one of the most dangerous natural disaster. This study aimed to develop the assessment items which can be used for conducting damage investigation of debris flow. Delphi method was applied to classify the realms of assessment items. As a result, 29 assessment items which can be classified into 6 groups were determined.

  5. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    J. C. Chen

    2013-04-01

    Full Text Available This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.

  6. The Role of Fine Sediment Content on Soil Consolidation and Debris Flows Development after Earthquake

    Science.gov (United States)

    Lyu, L.; Xu, M., III; Wang, Z.

    2017-12-01

    Fine sediment has been identified as an important factor determining the critical runoff that initiates debris flows because its contribution to shear strength through consolidation. Especially, owing to the 2008 Wenchuan earthquake in China enormous of loose sediment with different fractions of fine particles was eroded and supplied as materials for debris flows. The loose materials are gradually consolidated along with time, and therefore stronger rainfall is required to overcome the shear strength and to initiate debris flows. In this study, flume experiments were performed to explore soil consolidation and shear strength on mass failure and debris flow initiation under the conditions that different fractions of fine sediment were contained in the materials. Under the low content of fine sediment conditions (mass percentages: 0-10%), the debris flows formed with large pores and low shear strength and thus fine particles were too few to fill up the pores among the coarse particles. The consolidation rate was mostly influenced by the content of the fine particles. Consolidation of fine particles caused an increase of the shear strength and decrease of the rainfall infiltration, and therefore, debris flow initiation required stronger rainfall as the consolidation of the fine particles developed.

  7. Exploiting LSPIV to assess debris-flow velocities in the field

    Science.gov (United States)

    Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco

    2018-01-01

    The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.

  8. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  9. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.

    2016-08-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  10. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  11. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

    Science.gov (United States)

    Kean, J.W.; Staley, D.M.; Cannon, S.H.

    2011-01-01

    Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. copyright. 2011 by the American Geophysical Union.

  12. Debris-flows scale predictions based on basin spatial parameters calculated from Remote Sensing images in Wenchuan earthquake area

    International Nuclear Information System (INIS)

    Zhang, Huaizhen; Chi, Tianhe; Liu, Tianyue; Wang, Wei; Yang, Lina; Zhao, Yuan; Shao, Jing; Yao, Xiaojing; Fan, Jianrong

    2014-01-01

    Debris flow is a common hazard in the Wenchuan earthquake area. Collapse and Landslide Regions (CLR), caused by earthquakes, could be located from Remote Sensing images. CLR are the direct material source regions for debris flow. The Spatial Distribution of Collapse and Landslide Regions (SDCLR) strongly impact debris-flow formation. In order to depict SDCLR, we referred to Strahler's Hypsometric analysis method and developed 3 functional models to depict SDCLR quantitatively. These models mainly depict SDCLR relative to altitude, basin mouth and main gullies of debris flow. We used the integral of functions as the spatial parameters of SDCLR and these parameters were employed during the process of debris-flows scale predictions. Grouping-occurring debris-flows triggered by the rainstorm, which occurred on September 24th 2008 in Beichuan County, Sichuan province China, were selected to build the empirical equations for debris-flows scale predictions. Given the existing data, only debris-flows runout zone parameters (Max. runout distance L and Lateral width B) were estimated in this paper. The results indicate that the predicted results were more accurate when the spatial parameters were used. Accordingly, we suggest spatial parameters of SDCLR should be considered in the process of debris-flows scale prediction and proposed several strategies to prevent debris flow in the future

  13. LATE PLIOCENE-HOLOCENE DEBRIS FLOW DEPOSITS IN THE IONIAN SEA (EASTERN MEDITERRANEAN

    Directory of Open Access Journals (Sweden)

    GIOVANNI ALOISI DE LARDEREL

    1997-11-01

    Full Text Available Widespread coring of the Eastern Mediterranean Basin has outlined the existence of a systematic relation between lithology of debris flow deposits and physiographic setting. Whilst the topographic highs are characterized by pelagic sedimentation, the basin floors are alternatively subject to pelagic sedimentation and re-sedimentation pro cesses. Amongst the latters, turbidity flows and debris flows are the most common transport mechanisms.In this paper we present the study of the debris flow pro cess in the Ionian Sea using visual description of cores, grain size, carbonate content and smear slide analysis carried out on gravity and piston cores recovered over the past 20 years. A distinction has been made between debris flow deposits originating from the continental margins (North Africa and Malta Escarpment and those emplaced in the small basins amidst the Calabrian and Mediterranean ridges "Cobblestone Topography". As a result of the difference in setting, the former debris flow deposits include a great variety of lithologies and ages whilst the latter involve the pelagic sediments forming the typical Eastern Mediterranean Plio-Quaternary succession. A detailed study of clast and matrix structures makes it possible to describe the flows in terms of existing classifications of sediment gravity flows and to assume a clast support mechanism. Finally, biostratigraphy coupled with the presence of widespread marker beds enabled us to estimate the age of emplacement of the deposits and to hypothesize a triggering mechanism for flow initiation. Three flows are strictly related to the pelagic turbidite named homogenite, triggered by the explosive eruption of the Santorini volcano (Minoan eruption and therefore have an estimated age of 3,500 BP. The other deposits have ages ranging from 9,000 BP to about 70,000 BP and were originated by debris flows triggered by events such as earthquakes and glacial low sea level stands.    

  14. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    Science.gov (United States)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  15. An integrated study to evaluate debris flow hazard in alpine environment

    Science.gov (United States)

    Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara

    2018-05-01

    Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.

  16. An Integrated Study to Evaluate Debris Flow Hazard in Alpine Environment

    Directory of Open Access Journals (Sweden)

    Davide Tiranti

    2018-05-01

    Full Text Available Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modeled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.

  17. Debris flow run-out simulation and analysis using a dynamic model

    Science.gov (United States)

    Melo, Raquel; van Asch, Theo; Zêzere, José L.

    2018-02-01

    Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.

  18. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  19. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Directory of Open Access Journals (Sweden)

    F. Walter

    2017-06-01

    Full Text Available Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic

  20. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  1. Rainfall characteristics and thresholds for periglacial debris flows in the Parlung Zangbo Basin, southeast Tibetan Plateau

    Science.gov (United States)

    Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao

    2018-02-01

    The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.

  2. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Rev. 1

    International Nuclear Information System (INIS)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  3. Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures

    KAUST Repository

    Bout, B.

    2018-04-09

    An integrated, modeling method for shallow landslides, debris flows and catchment hydrology is developed and presented in this paper. Existing two-phase debris flow equations and an adaptation on the infinite slope method are coupled with a full hydrological catchment model. We test the approach on the 4 km2 Scaletta catchment, North-Eastern Sicily, where the 1-10-2009 convective storm caused debris flooding after 395 shallow landslides. Validation is done based on the landslide inventory and photographic evidence from the days after the event. Results show that the model can recreate the impact of both shallow landslides, debris flow runout, and debris floods with acceptable accuracy (91 percent inventory overlap with a 0.22 Cohens Kappa). General patterns in slope failure and runout are well-predicted, leading to a fully physically based prediction of rainfall induced debris flood behavior in the downstream areas, such as the creation of a debris fan at the coastal outlet.

  4. Estimation of the annual flow and stock of marine debris in South Korea for management purposes.

    Science.gov (United States)

    Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Mok, Jin Yong; Kim, Kyoung Shin; Lee, Yun Jeong; Choi, Hyun-Woo; Kang, Hongmook; Lee, Sukhui

    2014-09-15

    The annual flow and stock of marine debris in the Sea of Korea was estimated by summarizing previous survey results and integrating them with other relevant information to underpin the national marine debris management plan. The annual inflow of marine debris was estimated to be 91,195 tons [32,825 tons (36% of the total) from sources on land and 58,370 tons (64%) from ocean sources]. As of the end of 2012, the total stock of marine debris on all South Korean coasts (12,029 tons), the seabed (137,761 tons), and in the water column (2451 tons) was estimated to be 152,241 tons. In 2012, 42,595 tons of marine debris was collected from coasts, seabeds, and the water column. This is a very rare case study that estimated the amount of marine debris at a national level, the results of which provide essential information for the development of efficient marine debris management policies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A novel mechanical model for phase-separation in debris flows

    Science.gov (United States)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  6. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  7. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  8. Debris flow analysis with a one dimensional dynamic run-out model that incorporates entrained material

    Science.gov (United States)

    Luna, Byron Quan; Remaître, Alexandre; van Asch, Theo; Malet, Jean-Philippe; van Westen, Cees

    2010-05-01

    Estimating the magnitude and the intensity of rapid landslides like debris flows is fundamental to evaluate quantitatively the hazard in a specific location. Intensity varies through the travelled course of the flow and can be described by physical features such as deposited volume, velocities, height of the flow, impact forces and pressures. Dynamic run-out models are able to characterize the distribution of the material, its intensity and define the zone where the elements will experience an impact. These models can provide valuable inputs for vulnerability and risk calculations. However, most dynamic run-out models assume a constant volume during the motion of the flow, ignoring the important role of material entrained along its path. Consequently, they neglect that the increase of volume enhances the mobility of the flow and can significantly influence the size of the potential impact area. An appropriate erosion mechanism needs to be established in the analyses of debris flows that will improve the results of dynamic modeling and consequently the quantitative evaluation of risk. The objective is to present and test a simple 1D debris flow model with a material entrainment concept based on limit equilibrium considerations and the generation of excess pore water pressure through undrained loading of the in situ bed material. The debris flow propagation model is based on a one dimensional finite difference solution of a depth-averaged form of the Navier-Stokes equations of fluid motions. The flow is treated as a laminar one phase material, which behavior is controlled by a visco-plastic Coulomb-Bingham rheology. The model parameters are evaluated and the model performance is tested on a debris flow event that occurred in 2003 in the Faucon torrent (Southern French Alps).

  9. Refined model for the coolability of core debris with flow entry from the bottom

    International Nuclear Information System (INIS)

    Schulenberg, T.; Mueller, U.

    1986-01-01

    Within the context of a hypothetical severe accident in light water reactors also heat generating debris beds of a coarse particle size are discussed. A refined model for two-phase flow in particle beds is presented. Compared to previous models this model takes into account the effect of interfacial drag forces between liquid and vapor. These effects are important in coarse debris beds. The model is based on the momentum equations for separated flow, which are closed by empirical relations for the wall shear stress and the interfacial drag. When the refined model is applied to LWR severe accident scenarios an increased dryout heat flux is predicted for debris beds with flow entry from the bottom driven by a moderate downcomer head

  10. Characteristic of selected frequency luminescence for paleo-debris flow deposits in Jiangjia valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Pan Baolin; Liu Chao; Li Dongxu

    2008-01-01

    Eight paleo-debris flow samples from Nideping, Duozhao, Dawazi valley, and Jiangjia valley in Yunnan Province were tested with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of paleo-debris flow deposits from the different locations were obtained. Excited at 488 nm, the wavelengths of emission photons from all samples are 300, 310, 320, 400 and 460 nm. With green excitation (532 nm), the wavelengths of emission photons from all samples are 300, 310, 320 and 460 nm. Then it is determined that the luminescence spectrographs of Nideping are almost same in different time, however, they are different in Dawazi valley and Duozhao. Taking Nideping for example, excited at green, the debris flow substances from the upper, middle, or lower zone of this platform. Response to increasing irradiation dose at 310, 320, and 460 nm, we can define the wavelengths used for dating. (authors)

  11. Report on the 4th International Conference on monitoring, simulation, prevention and remediation of dense and debris flows - Debris Flow 2012

    Directory of Open Access Journals (Sweden)

    Daniele de Wrachien

    2012-09-01

    Full Text Available Debris and hyper-concentrated flows are amongst the most destructive of all water-related disasters. These hazards are likely to become more frequent and more important in the future due to the effects of the increase in population, urbanization, land subsidence and the impact of climate change. They affect both rural and urban environments, particularly in river basins and in mountain areas. In recent years, they have attracted more and more attention from the scientific and professional communities due to the number of lives lost, and there is growing public concern for the future. New methods and measures are required to cope with debris flow changes and to achieve a harmonious balance between the environment and economic forces.

  12. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    KAUST Repository

    Lombardo, Luigi; Bachofer, F.; Cama, M.; Mä rker, M.; Rotigliano, E.

    2016-01-01

    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  13. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    KAUST Repository

    Lombardo, Luigi

    2016-07-18

    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  14. Propagation of a channelized debris-flow: experimental investigation and parameters identification for numerical modelling

    Science.gov (United States)

    Termini, Donatella

    2013-04-01

    Recent catastrophic events due to intense rainfalls have mobilized large amount of sediments causing extensive damages in vast areas. These events have highlighted how debris-flows runout estimations are of crucial importance to delineate the potentially hazardous areas and to make reliable assessment of the level of risk of the territory. Especially in recent years, several researches have been conducted in order to define predicitive models. But, existing runout estimation methods need input parameters that can be difficult to estimate. Recent experimental researches have also allowed the assessment of the physics of the debris flows. But, the major part of the experimental studies analyze the basic kinematic conditions which determine the phenomenon evolution. Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The experiments, carried out in a laboratory flume appositely constructed, were planned in order to evaluate the influence of different geometrical parameters (such as the slope and the geometrical characteristics of the confluences to the main channel) on the propagation phenomenon of the debris flow and its deposition. Thus, the aim of the present work is to give a contribution to defining input parameters in runout estimation by numerical modeling. The propagation phenomenon is analyzed for different concentrations of solid materials. Particular attention is devoted to the identification of the stopping distance of the debris flow and of the involved parameters (volume, angle of depositions, type of material) in the empirical predictive equations available in literature (Rickenmanm, 1999; Bethurst et al. 1997). Bethurst J.C., Burton A., Ward T.J. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of hydraulic Engineering, ASCE, 123(5), 419-429 Rickenmann D. 1999. Empirical relationships

  15. Combining Spatial Models for Shallow Landslides and Debris-Flows Prediction

    Directory of Open Access Journals (Sweden)

    Eurípedes Vargas do Amaral

    2013-05-01

    Full Text Available Mass movements in Brazil are common phenomena, especially during strong rainfall events that occur frequently in the summer season. These phenomena cause losses of lives and serious damage to roads, bridges, and properties. Moreover, the illegal occupation by slums on the slopes around the cities intensifies the effect of the mass movement. This study aimed to develop a methodology that combines models of shallow landslides and debris-flows in order to create a map with landslides initiation and debris-flows volume and runout distance. The study area comprised of two catchments in Rio de Janeiro city: Quitite and Papagaio that drained side by side the west flank of the Maciço da Tijuca, with an area of 5 km2. The method included the following steps: (a location of the susceptible areas to landslides using SHALSTAB model; (b determination of rheological parameters of debris-flow from the back-analysis technique; and (c combination of SHALSTAB and FLO-2D models to delineate the areas more susceptible to mass movements. These scenarios were compared with the landslide and debris-flow event of February 1996. Many FLO-2D simulations were exhaustively made to estimate the rheological parameters from the back-analysis technique. Those rheological coefficients of single simulation were back-calculated by adjusting with area and depth of the debris-flow obtained from field data. The initial material volume in the FLO-2D simulations was estimated from SHALSTAB model. The combination of these two mathematical models, SHALSTAB and FLO-2D, was able to predict both landslides and debris-flow events. Such procedures can reduce the casualties and property damage, delineating hazard areas, to estimate hazard intensities for input into risk studies providing information for public policy and planning.

  16. Debris Flow Risk Management Framework and Risk Analysis in Taiwan, A Preliminary Study

    Science.gov (United States)

    Tsao, Ting-Chi; Hsu, Wen-Ko; Chiou, Lin-Bin; Cheng, Chin-Tung; Lo, Wen-Chun; Chen, Chen-Yu; Lai, Cheng-Nong; Ju, Jiun-Ping

    2010-05-01

    Taiwan is located on a seismically active mountain belt between the Philippine Sea plate and Eurasian plate. After 1999's Chi-Chi earthquake (Mw=7.6), landslide and debris flow occurred frequently. In Aug. 2009, Typhoon Morakot struck Taiwan and numerous landslides and debris flow events, some with tremendous fatalities, were observed. With limited resources, authorities should establish a disaster management system to cope with slope disaster risks more effectively. Since 2006, Taiwan's authority in charge of debris flow management, the Soil and Water Conservation Bureau (SWCB), completed the basic investigation and data collection of 1,503 potential debris flow creeks around Taiwan. During 2008 and 2009, a debris flow quantitative risk analysis (QRA) framework, based on landslide risk management framework of Australia, was proposed and conducted on 106 creeks of the 30 villages with debris flow hazard history. Information and value of several types of elements at risk (bridge, road, building and crop) were gathered and integrated into a GIS layer, with the vulnerability model of each elements at risk applied. Through studying the historical hazard events of the 30 villages, numerical simulations of debris flow hazards with different magnitudes (5, 10, 25, 50, 100 and 200 years return period) were conducted, the economic losses and fatalities of each scenario were calculated for each creek. When taking annual exceeding probability into account, the annual total risk of each creek was calculated, and the results displayed on a debris flow risk map. The number of fatalities and frequency were calculated, and the F-N curves of 106 creeks were provided. For F-N curves, the individual risk to life per year of 1.0E-04 and slope of 1, which matched with international standards, were considered to be an acceptable risk. Applying the results of the 106 creeks onto the F-N curve, they were divided into 3 categories: Unacceptable, ALARP (As Low As Reasonable Practicable) and

  17. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Directory of Open Access Journals (Sweden)

    C. Wang

    2008-02-01

    Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  18. Estimating construction and demolition debris generation using a materials flow analysis approach.

    Science.gov (United States)

    Cochran, K M; Townsend, T G

    2010-11-01

    The magnitude and composition of a region's construction and demolition (C&D) debris should be understood when developing rules, policies and strategies for managing this segment of the solid waste stream. In the US, several national estimates have been conducted using a weight-per-construction-area approximation; national estimates using alternative procedures such as those used for other segments of the solid waste stream have not been reported for C&D debris. This paper presents an evaluation of a materials flow analysis (MFA) approach for estimating C&D debris generation and composition for a large region (the US). The consumption of construction materials in the US and typical waste factors used for construction materials purchasing were used to estimate the mass of solid waste generated as a result of construction activities. Debris from demolition activities was predicted from various historical construction materials consumption data and estimates of average service lives of the materials. The MFA approach estimated that approximately 610-78 × 10(6)Mg of C&D debris was generated in 2002. This predicted mass exceeds previous estimates using other C&D debris predictive methodologies and reflects the large waste stream that exists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  20. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  1. Mapping debris flow susceptibility using analytical network process in Kodaikkanal Hills, Tamil Nadu (India)

    Science.gov (United States)

    Sujatha, Evangelin Ramani; Sridhar, Venkataramana

    2017-12-01

    Rapid debris flows, a mixture of unconsolidated sediments and water travelling at speeds > 10 m/s are the most destructive water related mass movements that affect hill and mountain regions. The predisposing factors setting the stage for the event are the availability of materials, type of materials, stream power, slope gradient, aspect and curvature, lithology, land use and land cover, lineament density, and drainage. Rainfall is the most common triggering factor that causes debris flow in the Palar subwatershed and seismicity is not considered as it is a stable continental region and moderate seismic zone. Also, there are no records of major seismic activities in the past. In this study, one of the less explored heuristic methods known as the analytical network process (ANP) is used to map the spatial propensity of debris flow. This method is based on top-down decision model and is a multi-criteria, decision-making tool that translates subjective assessment of relative importance to weights or scores and is implemented in the Palar subwatershed which is part of the Western Ghats in southern India. The results suggest that the factors influencing debris flow susceptibility in this region are the availability of material on the slope, peak flow, gradient of the slope, land use and land cover, and proximity to streams. Among all, peak discharge is identified as the chief factor causing debris flow. The use of micro-scale watersheds demonstrated in this study to develop the susceptibility map can be very effective for local level planning and land management.

  2. Streamside policies for headwater channels: an example considering debris flows in the Oregon coastal province.

    Science.gov (United States)

    K.M. Burnett; D.J. Miller

    2007-01-01

    Headwater streams differ in susceptibility to debris flows and thus in importance as wood and sediment sources for larger rivers. Identifying and appropriately managing the most susceptible headwater streams is of interest. We developed and illustrated a method to delineate alternative aquatic conservation emphasis zones (ACEZs) considering probabilities for traversal...

  3. Debris flows risk analysis and direct loss estimation: the case study of Valtellina di Tirano, Italy

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Glade, T.; Sterlacchini, S.

    2014-01-01

    Roč. 11, č. 2 (2014), s. 288-307 ISSN 1672-6316 Institutional support: RVO:67985891 Keywords : Debris flows * Risk analysis * Economic losses * Central Alps * Italy Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.963, year: 2014

  4. The application of numerical debris flow modelling for the generation of physical vulnerability curves

    Czech Academy of Sciences Publication Activity Database

    Quan Luna, B.; Blahůt, Jan; van Westen, C.J.; Sterlacchini, S.; van Asch, T.W.J.; Akbas, S.O.

    2011-01-01

    Roč. 11, č. 7 (2011), s. 2047-2060 ISSN 1561-8633 Institutional research plan: CEZ:AV0Z30460519 Keywords : debris flow modelling * hazard * vulnerability curves Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.983, year: 2011 http://www.nat-hazards-earth-syst-sci.net/11/2047/2011/

  5. An integrated approach to the study of catastrophic debris-flows: geological hazard and human influence

    Science.gov (United States)

    Del Ventisette, C.; Garfagnoli, F.; Ciampalini, A.; Battistini, A.; Gigli, G.; Moretti, S.; Casagli, N.

    2012-09-01

    On 1 October 2009, a prolonged and intense rainstorm triggered hundreds of landslides (predominantly debris flows) in an area of about 50 km2 in the north-eastern sector of Sicily (Italy). Debris flows swept the highest parts of many villages and passed over the SS114 state highway and the Messina-Catania railway, causing more than 30 fatalities. This region has a high relief, due to recent uplift. The peculiar geological and geomorphological framework represents one of the most common predisposing causes of rainstorm-triggered debris flows. This paper deals with the geological and hydro-geomorphological studies performed as a part of the post-disaster activities operated in collaboration with Civil Protection Authority, with the aim at examining landslides effects and mechanisms. The data were elaborated into a GIS platform, to evaluate the influence of urbanisation on the drainage pattern, and were correlated with the lithological and structural framework of the area. Our study points at the evaluation of the volume involved, the detection of triggering mechanisms and the precise reconstruction of the influence of urbanisation as fundamental tools for understanding the dynamics of catastrophic landslides. This kind of analysis, including all the desirable approaches for the correct management of debris flow should be the starting point for robust urban planning.

  6. Forecasting inundation from debris flows that grow during travel, with application to the Oregon Coast Range, USA

    Science.gov (United States)

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne

    2016-01-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  7. Sediment delivery in debris-flow torrents: two case studies in the Italian Alps

    Science.gov (United States)

    Bertoldi, Gabriele; Vincenzo, D'Agostino

    2013-04-01

    Flood-risk mitigation strategy is moving from fixed, structural and costly mitigation measures to more effective proactive solutions. This change is driven both by Flood Directive 2007/60/EC and limitations of financial resources and it requires a deep knowledge of the involved processes. In mountain catchments debris flow and debris floods are the most important sources of hazard and their impact on the fan areas is heavily conditioned by the sediment dynamics along the 'transport' reaches of the torrents. Last advances show how many cases of erosion and deposition within the transport reach greatly affect the total volume that is delivered to the fan as well the overall dynamics of the debris flow/flood event. Due to logistic and practical constraints this intermediate phase of the process has been scarcely investigated and the complex behavior of the sediment budgeting in torrent-streams is emerging. The objective of this work consists of collecting information on the evolution of the debris-flow sediment budget along Alpine torrents in order to provide novel data about erosive, depositional and recharging processes under different geological conditions. Two high frequency debris-flow catchments have been selected: the Rio Rudan basin in the geological setting of the Dolomites (near Cortina d'Ampezzo, Veneto Region, Italy) and the metamorphic dominated catchment of the Rio Gadria (near Lasa, Trentino Alto Adige, Italy), which has been recently instrumented (EU project Monitor II). Periodical field monitoring has been carried out since summer 2011. 25 cross sections have been observed in the Rio Rudan catchment along a 480 m torrent reach (slope of 36%) where additional sediment entrainment after debris-flow initiation takes place. 20 cross sections have been selected in the upper Rio Gadria basin and more precisely in two reaches close to debris-flow triggerring areas. Other 31 cross sections have been also monitored of the Rio Gadria main channel covering a

  8. An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites

    Science.gov (United States)

    Pasuto, Alessandro; Soldati, Mauro

    2004-07-01

    This paper shows the results of research on a debris flow occurring on 4 September 1997 in the territory of Cortina d'Ampezzo (Dolomites, Italy) where it caused a significant threat owing to the intense urban development, typical of several Alpine valleys. The event, which affected the talus fans at the foot of Mt. Pomagagnon near the village of Fiames, blocked the state road no. 51 "Alemagna" and, after sparing some houses, barred the course of the Torrent Boite and formed an impoundment. This debris flow aroused great concern among local authorities and the Belluno Civil Engineers Board; therefore, the construction of embankments for protecting the buildings threatened by the debris flow was started immediately. This area was studied in detail during this research in order to identify the hazard situations of the whole slope. The investigations made use of an integrated approach including historical, geomorphological, geostructural, meteorological, pedological, and forest-management aspects. Furthermore, assessments of the debris volumes potentially removable in the source area were carried out. The geomorphological evolution of the area was reconstructed, pinpointing the morphological changes occurring in the past 45 years. Taking into account the increased frequency and magnitude of recent events and considering the location of roads and buildings in the accumulation area, the risk conditions were analysed in order to identify a risk zonation and to propose mitigation measures.

  9. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  10. Potential High Priority Subaerial Environments for Mars Sample Return

    Science.gov (United States)

    iMOST Team; Bishop, J. L.; Horgan, B.; Benning, L. G.; Carrier, B. L.; Hausrath, E. M.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Herd, C. D. K.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; Mccoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    The highest priority subaerial environments for Mars Sample Return include subaerial weathering (paleosols, periglacial/glacial, and rock coatings/rinds), wetlands (mineral precipitates, redox environments, and salt ponds), or cold spring settings.

  11. An attempt of modelling debris flows characterised by strong inertial effects through Cellular Automata

    Science.gov (United States)

    Iovine, G.; D'Ambrosio, D.

    2003-04-01

    Cellular Automata models do represent a valid method for the simulation of complex phenomena, when these latter can be described in "a-centric" terms - i.e. through local interactions within a discrete time-space. In particular, flow-type landslides (such as debris flows) can be viewed as a-centric dynamical system. SCIDDICA S4b, the last release of a family of two-dimensional hexagonal Cellular Automata models, has recently been developed for simulating debris flows characterised by strong inertial effects. It has been derived by progressively enriching an initial simplified CA model, originally derived for simulating very simple cases of slow-moving flow-type landslides. In S4b, by applying an empirical strategy, the inertial characters of the flowing mass have been translated into CA terms. In the transition function of the model, the distribution of landslide debris among the cells is computed by considering the momentum of the debris which move among the cells of the neighbourhood, and privileging the flow direction. By properly setting the value of one of the global parameters of the model (the "inertial factor"), the mechanism of distribution of the landslide debris among the cells can be influenced in order to emphasise the inertial effects, according to the energy of the flowing mass. Moreover, the high complexity of both the model and of the phenomena to be simulated (e.g. debris flows characterised by severe erosion along their path, and by strong inertial effects) suggested to employ an automated technique of evaluation, for the determination of the best set of global parameters. Accordingly, the calibration of the model has been performed through Genetic Algorithms, by considering several real cases of study: these latter have been selected among the population of landslides triggered in Campania (Southern Italy) in May 1998 and December 1999. Obtained results are satisfying: errors computed by comparing the simulations with the map of the real

  12. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    Science.gov (United States)

    deWolfe, V.G.; Santi, P.M.; Ey, J.; Gartner, J.E.

    2008-01-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6??metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84??kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000??m3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm

  13. Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  14. Andic soil features and debris flows in Italy. New perspective towards prediction

    Science.gov (United States)

    Scognamiglio, Solange; Calcaterra, Domenico; Iamarino, Michela; Langella, Giuliano; Orefice, Nadia; Vingiani, Simona; Terribile, Fabio

    2016-04-01

    Debris flows are dangerous hazards causing fatalities and damage. Previous works have demonstrated that the materials involved by debris flows in Campania (southern Italy) are soils classified as Andosols. These soils have peculiar chemical and physical properties which make them fertile but also vulnerable to landslide. In Italy, andic soil properties are found both in volcanic and non-volcanic mountain ecosystems (VME and NVME). Here, we focused on the assessment of the main chemical and physical properties of the soils in the detachment areas of eight debris flows occurred in NVME of Italy in the last 70 years. Such landslides were selected by consulting the official Italian geodatabase (IFFI Project). Andic properties (by means of ammonium oxalate extractable Fe, Si and Al forms for the calculation of Alo+1/2Feo) were also evaluated and a comparison with soils of VME was performed to assess possible common features. Landslide source areas were characterised by slope gradient ranging from 25° to 50° and lithological heterogeneity of the bedrock. The soils showed similar, i.e. all were very deep, had a moderately thick topsoil with a high organic carbon (OC) content decreasing regularly with depth. The cation exchange capacity trend was generally consistent with the OC and the pH varied from extremely to slightly acid, but increased with depth. Furthermore, the soils had high water retention values both at saturation (0.63 to 0.78 cm3 cm-3) and in the dryer part of the water retention curve, and displayed a prevalent loamy texture. Such properties denote the chemical and physical fertility of the investigated ecosystems. The values of Alo+1/2Feoindicated that the soils had vitric or andic features and can be classified as Andosols. The comparison between NVME soils and those of VME showed similar depth, thickness of soil horizons, and family texture, whereas soil pH, degree of development of andic properties and allophane content were higher for VME soils. Such

  15. Coupled DEM-CFD analyses of landslide-induced debris flows

    CERN Document Server

    Zhao, Tao

    2017-01-01

    This book reflects the latest research results in computer modelling of landslide-induced debris flows. The book establishes an understanding of the initiation and propagation mechanisms of landslides by means of numerical simulations, so that mitigation strategies to reduce the long-term losses from landslide hazards can be devised. In this context, the book employs the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to investigate the mechanical and hydraulic behaviour of granular materials involved in landslides – an approach that yields meaningful insights into the flow mechanisms, concerning e.g. the mobilization of sediments, the generation and dissipation of excess pore water pressures, and the evolution of effective stresses. As such, the book provides valuable information, useful methods and robust numerical tools that can be successfully applied in the field of debris flow research.

  16. DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow

    Science.gov (United States)

    Berti, M.; Simoni, A.

    2014-06-01

    The transport and deposition mechanisms of debris flows are still poorly understood due to the complexity of the interactions governing the behavior of water-sediment mixtures. Empirical-statistical methods can therefore be used, instead of more sophisticated numerical methods, to predict the depositional behavior of these highly dangerous gravitational movements. We use widely accepted semi-empirical scaling relations and propose an automated procedure (DFLOWZ) to estimate the area potentially inundated by a debris flow event. Beside a digital elevation model (DEM), the procedure has only two input requirements: the debris flow volume and the possible flow-path. The procedure is implemented in Matlab and a Graphical User Interface helps to visualize initial conditions, flow propagation and final results. Different hypothesis about the depositional behavior of an event can be tested together with the possible effect of simple remedial measures. Uncertainties associated to scaling relations can be treated and their impact on results evaluated. Our freeware application aims to facilitate and speed up the process of susceptibility mapping. We discuss limits and advantages of the method in order to inform inexperienced users.

  17. RELATION BETWEEN PRECIPITATION AND INITIATION OF DEBRIS FLOWS IN THE JIANGJIA RAVINE,YUNNAN PROVINCE, SOUTHWEST CHINA

    Institute of Scientific and Technical Information of China (English)

    Zili FENG; Peng CUI; Xiaoqing CHEN; Jie CHEN

    2006-01-01

    In the Jiangjia Ravine, debris flows are often triggered by short-duration rainstorms frequently. To reveal the unique initiation process of debris flows, rainfall and debris flow initiation in an upstream area was continually observed. It is concluded that flash floods resulting from short-duration rainstorms play a key role in the initiation of debris flows. Surface runoff forms flash floods due to special topographic conditions. The flash floods mobilize the sediment deposits in the upper section of the branch gullies,hence, high density viscous debris flows initiate. The initiation of debris flows in the Jiangjia Ravine has a close relation with precipitation. Applying the Takahashi model of debris flow initiation, it is concluded that: to mobilize cohesive deposits in the gully bed the depth of flash floods must exceed a critical depth. This critical depth of floods makes the definition of thresholds of rainfall intensity possible. Considering the change in the initial infiltration rate at different initial water content of bank slopes, and the influence of antecedent precipitation on the initial water content, the relation between the thresholds of rainfall intensity and the antecedent precipitation show good agreement with the empirical relation established by previous research.

  18. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Science.gov (United States)

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  19. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    Science.gov (United States)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring

  20. Single-grain quartz OSL dating of debris flow deposits from Men Tou Gou, south west Beijing, China

    DEFF Research Database (Denmark)

    Zhao, Qiuyue; Thomsen, Kristina Jørkov; Murray, A. S.

    2017-01-01

    of the return frequency of these debris flows, risk assessment and climate change research. In this project, we use quartz single-grain optically stimulated luminescence (OSL) methods to determine the burial ages of five debris flow samples from the Zhai Tang region -60 km west of Beijing. OSL characteristics...... poorly bleached prior to deposition; relative over-dispersions are larger than 60%. Minimum age modelling indicates that all five samples were deposited within the past few hundred years, indicating that catastrophic debris flows are occurring under the historically-recent land-use pattern....

  1. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China

    Directory of Open Access Journals (Sweden)

    C. Tang

    2011-11-01

    Full Text Available On 7 August 2010, catastrophic debris flows were triggered by a rainstorm in the catchments of the Sanyanyu and Luojiayu torrents, Zhouqu County, Gansu Province northwestern China. These two debris flows originated shortly after a rainstorm with an intensity of 77.3 mm h−1 and transported a total volume of about 2.2 million m3, which was deposited on an existing debris fan and into a river. This catastrophic event killed 1765 people living on this densely urbanised fan. The poorly sorted sediment contains boulders up to 3–4 m in diameter. In this study, the geomorphological features of both debris flow catchment areas are analyzed based on the interpretation of high-resolution remote sensing imagery combined with field investigation. The characteristics of the triggering rainfall and the initiation of the debris flow occurrence are discussed. Using empirical equations, the peak velocities and discharges of the debris flows were estimated to be around 9.7 m s−1 and 1358 m3 s−1 for the Sanyanyu torrent and 11 m s−1 and 572 m3 s−1 for the Luojiayu torrent. The results of this study contribute to a better understanding of the conditions leading to catastrophic debris flow events.

  2. Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation

    Science.gov (United States)

    Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.

    2001-01-01

    Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.

  3. Historical analyses of debris flow disaster occurrences and of their scientific investigation in Brazil

    OpenAIRE

    Kobiyama, Masato; Michel, Gean Paulo; Engster, Elisiele Cardozo; Paixão, Maurício Andrades

    2015-01-01

    Considering the debris flow as highly-destructive flow of water and sediment mixture in a way where it is a gravity-governed continuous flow, the present paper conducted a Web survey of technical-scientific studies that treated these phenomena which occurred in Brazil during the period 1900-2014. Although the increase of occurrence from the 1990s caused the increase in the number of publication, there are still a small number of publications, especially in scientific journals. A historical an...

  4. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    Science.gov (United States)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  5. A preliminary research of characteristic of selected frequency luminescence for debris flow in Jiangjiagou valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Li Dongxu; Pan Baolin; Ge Yonggang

    2009-01-01

    Four debris flow samples were separated from Nidepin, Duozhao and Dawazigou valleys in Jiangjiagou valley area, Yunnan province. They were measured with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of samples from the different locations were obtained. The wave length of emission photons from samples of Dawazigou valley and Jiangjia valley are 300, 310, 320, 400 and 460 nm when it was using blue light (488)nm excited. When the green light (532 nm) has been used to excited, the wave length of emission photons from samples of Dawazigou valley and Duozhao valley are similar high at 310 and 320 nm. Furthermore, using the green light excited the samples from desert sand at the same lab condition; the number of absorbed photons of samples from desert sand is much higher than from debris flow. (authors)

  6. Transport of sediment through a channel network during a post-fire debris flow

    Science.gov (United States)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So

  7. Roads at risk: traffic detours from debris flows in southern Norway

    Science.gov (United States)

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2015-05-01

    Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.

  8. Rainfall thresholds for the initiation of debris flows at La Honda, California

    Science.gov (United States)

    Wilson, R.C.; Wieczorek, G.F.

    1995-01-01

    A simple numerical model, based on the physical analogy of a leaky barrel, can simulate significant features of the interaction between rainfall and shallow-hillslope pore pressures. The leaky-barrel-model threshold is consistent with, but slightly higher than, an earlier, purely empirical, threshold. The number of debris flows triggered by a storm can be related to the time and amount by which the leaky-barrel-model response exceeded the threshold during the storm. -from Authors

  9. A Debris Backwards Flow Simulation System for Malaysia Airlines Flight 370

    OpenAIRE

    Eichhorn, Mike; Haertel, Alexander

    2017-01-01

    This paper presents a system based on a Two-Way Particle-Tracking Model to analyze possible crash positions of flight MH370. The particle simulator includes a simple flow simulation of the debris based on a Lagrangian approach and a module to extract appropriated ocean current data from netCDF files. The influence of wind, waves, immersion depth and hydrodynamic behavior are not considered in the simulation.

  10. Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling

    Directory of Open Access Journals (Sweden)

    G. Delmonaco

    2003-01-01

    Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering

  11. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    Science.gov (United States)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  12. Rheological investigation and simulation of a debris-flow event in the Fella watershed

    Directory of Open Access Journals (Sweden)

    M. A. Boniello

    2010-05-01

    Full Text Available To set an approach for the future territorial planning, the Geological Survey of Friuli Venezia Giulia Region, through the researchers of Trieste University, started a program of debris-flow risk analysis using Flo-2D software as tool to delimit the hazardous areas. In the present paper, as a case study, a debris flow, called Fella sx, occurring in a torrent catchment was analyzed. The choice was due to the abundance of information about past events, inundated areas, rain fall, geology and to its representativeness. An initial back-analysis investigation identified a couple of representative rheological parameters. Riverbed samples were collected, sieve analyses were performed and rheological tests were carried out on the fraction finer than 0.063 mm using a rotationally controlled stress rehometer equipped with the serrated parallel plate geometry. The shear dependent behaviour was examined at different concentrations ranging from 33 to 48%, by weight. Viscosity data treatment was performed to determine the most suitable rheological model to provide the best approximation of the debris-flow behaviour. The rheological parameters, derived from experimental data, were used and compared with those obtained through the back-analysis and with the real inundated area. Data obtained through rheological analysis are useful in constructing scenarios of future events where no data for back-analysis are available.

  13. Experimental study on slope sliding and debris flow evolution with and without barrier

    Directory of Open Access Journals (Sweden)

    Ji-kun Zhao

    2015-01-01

    Full Text Available A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  14. Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps

    Science.gov (United States)

    Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique

    2017-08-01

    This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.

  15. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Witch Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  16. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Buckweed Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  17. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Santiago Fire, Orange County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  18. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Canyon Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  19. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Poomacha Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  20. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Rice Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  1. Emergency assessment of debris-flow hazards from basins burned by the 2007 Harris Fire, San Diego County, southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  2. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ammo Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  3. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen

    2015-08-01

    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  4. Resolved granular debris-flow simulations with a coupled SPH-DCDEM model

    Science.gov (United States)

    Birjukovs Canelas, Ricardo; Domínguez, José M.; Crespo, Alejandro J. C.; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2016-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research (Takahashi, 2007 and references therein). A complete description of the internal processes of a debris-flow is however still an elusive achievement, explained by the difficulty of accurately measuring important quantities in these flows and developing a comprehensive, generalized theoretical framework capable of describing them. This work addresses the need for a numerical model applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts. This corresponds to a brute-force approach: by applying simple interaction laws at local scales the macro-scale properties of the flow should be recovered by upscaling. This methodology effectively bypasses the complexity of modelling the intermediate scales by resolving them directly. The only caveat is the need of high performance computing, a demanding but engaging research challenge. The DualSPHysics meshless numerical implementation, based on Smoothed Particle Hydrodynamics (SPH), is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The model numerically solves the Navier-Stokes and continuity equations for the liquid phase and Newton's motion equations for solid bodies. The interactions between solids are modelled with classical DEM approaches (Kruggel-Emden et al, 2007). Among other validation tests, an experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced trough a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle undergoing tens of possible contacts, several thousand time-evolving contacts are efficiently treated

  5. Numerical simulation of the debris flow dynamics with an upwind scheme and specific friction treatment

    Science.gov (United States)

    Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier

    2014-05-01

    Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by

  6. Non-local rheology of stony debris flow propagating over a cohesionless sediment bed

    Science.gov (United States)

    Lanzoni, Stefano; Gregoretti, Carlo

    2016-04-01

    Velocity profiles of gravel-water mixtures observed in flume experiments often exhibit a double-slope behavior, with a lower narrower region where the velocity increases slowly, and an upper wider region often exhibiting a nearly linear behavior. Even though the flow can be classified within the grain-inertia regime, the overall profile seems to not conform to the power law (with exponent 1.5) distribution obtained by integrating along the normal to the flow the dispersive stresses envisaged by Bagnold (1954) in his pioneer work. Note that this formulation neglects the contribution to the velocity profile of the quasi-static (frictional) stresses that tend to dominate close to an erodible sediment bottom. The present work investigates the possibility to find out a uniformly valid distribution of shear stress from the bottom to the flow surface. To this aim we follow a heuristic coherence length approach (GDR-MIDI, 2004) similar to the mixing length procedure commonly used to study the atmospheric boundary layer over canopy (see, e.g., Harmann and Finnegan, 2007). A database built on 64 systematic debris flow experiments is used to disclose the general features of velocity profiles that establish within the body of almost steady water-sediment flows and the dependence of transport sediment volumetric concentration on the relevant parameters. The almost steady water-sediment flows considered in the study were generated by releasing a prescribed water discharge on a saturated layer of sediment (specifically, 3 mm gravel, 6 mm gravel, and 3 mm glass spheres) initially placed in a 10 m long and 0.2 m wide laboratory flume. The analysis clearly indicates that stony debris flow conditions characterized the experiments. The mixing length does not result constant, as required by a Bagnold-like profile, but varies gradually, from zero at the flow surface, to a finite value near the erodible bottom. We discuss this structure in terms of shear stress distribution along the

  7. Assessment of Debris Flow Potential Hazardous Zones Using Numerical Models in the Mountain Foothills of Santiago, Chile

    Science.gov (United States)

    Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.

    2017-12-01

    Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.

  8. Debris flows on forested cones – reconstruction and comparison of frequencies in two catchments in Val Ferret, Switzerland

    Directory of Open Access Journals (Sweden)

    M. Bollschweiler

    2007-01-01

    Full Text Available Debris flows represent a major threat to infrastructure in many regions of the Alps. Since systematic acquisition of data on debris-flow events in Switzerland only started after the events of 1987, there is a lack of historical knowledge on earlier debris-flow events for most torrents. It is therefore the aim of this study to reconstruct the debris-flow activity for the Reuse de Saleinaz and the La Fouly torrents in Val Ferret (Valais, Switzerland. In total, 556 increment cores from 278 heavily affected Larix decidua Mill., Picea abies (L. Karst. and Pinus sylvestris L. trees were sampled. Trees on the cone of Reuse de Saleinaz show an average age of 123 years at sampling height, with the oldest tree aged 325 years. Two periods of intense colonization (the 1850s–1880s and the 1930s–1950s are observed, probably following high-magnitude events that would have eliminated the former forest stand. Trees on the cone of Torrent de la Fouly indicate an average age of 119 years. As a whole, tree-ring analyses allowed assessment of 333 growth disturbances belonging to 69 debris-flow events. While the frequency for the Reuse de Saleinaz study site comprises 39 events between AD 1743 and 2003, 30 events could be reconstructed at the Torrent de la Fouly for the period 1862–2003. Even though the two study sites evince considerably different characteristics in geology, debris-flow material and catchment morphology, they apparently produce debris flows at similar recurrence intervals. We suppose that, in the study region, the triggering and occurrence of events is transport-limited rather than weathering-limited.

  9. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    Science.gov (United States)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  10. Rheological analysis of fine-grained natural debris-flow material

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; ,

    1990-01-01

    Experiments were conducted on large samples of fine-grained material (???2mm) from a natural debris flow using a wide-gap concentric-cylinder viscometer. The rheological behavior of this material is compatible with a Bingham model at shear rates in excess of 5 sec. At lesser shear rates, rheological behavior of the material deviates from the Bingham model, and when sand concentration of the slurry exceeds 20 percent by volume, particle interaction between sand grains dominates the mechanical behavior. Yield strength and plastic viscosity are extremely sensitive to sediment concentration.

  11. Idealized debris flow in flume with bed driven by a conveyor belt

    Science.gov (United States)

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  12. Community Based Warning and Evacuation System against Debris Flow in the Upper Jeneberang River, Gowa, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Sutikno Hardjosuwarno

    2008-07-01

    Full Text Available Gigantic collapse of the Caldera wall of Mt. Bawakaraeng (2,830 m in March 2004 had supplied the sediment volume of 230 million to the most upper stream of Jeneberang River, which flowed down to the lower reach in the form of debris flow which is triggered by rainfall. The purpose of the research is to provide a system which is able to forecast the occurrence of debris flow, to identify the weak points along the river course, to identify the hazard areas and how to inform effectively and efficiently the warning messages to the inhabitants in the dangerous area by using the existing modern equipment combined with the traditional one. The standard rainfall which is used to judge the occurrence of debris flow was established by Yano method. It is based on the historical data of rainfall that trigger and not trigger to the occurrence of debris flow which is widely used in Japan so far. The hazard area was estimated by Two-Dimensional Simulation Model for debris flow, the debris flow arrival time at each point in the river were estimated by dividing their distance from reference point by debris flow velocity, where the check dam no. 7-1 in Manimbahoi was designated as reference point. The existing evacuation routes were checked by field survey, the strength and coverage of sound for kentongan and manual siren were examined using sound pressure level at the location of the existing monitoring post and the effectiveness of warning and evacuation were evaluated by comparing the warning and evacuation time against the debris flow arrival time. It was resulted that debris flow occurrence was triggered by short duration of high rainfall intensity, long duration of low rainfall intensity and the outbreak of natural dam which is formed by land slide or bank collapses. The hazard area of upper Jeneberang River are mostly located on the river terraces where the local inhabitants earn their living through cultivating the river terraces as paddy fields, dry

  13. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy

    Science.gov (United States)

    Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.

    2001-02-01

    In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.

  14. A Study on the Priority Selection of Sediment-related Desaster Evacuation Using Debris Flow Combination Degree of Risk

    Science.gov (United States)

    Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.

    2017-12-01

    As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered

  15. Upper Carboniferous retroarc volcanism with submarine and subaerial facies at the western Gondwana margin of Argentina

    Science.gov (United States)

    Koukharsky, M.; Kleiman, L.; Etcheverría, M.; Quenardelle, S.; Bercowski, F.

    2009-04-01

    During Late Carboniferous times a continental magmatic arc developed at the western margin of Gondwana in South America, as several marine sedimentary basins were formed at the same time in the retroarc region. North of 33°S, at Cordón Agua del Jagüel, Precordillera of Mendoza, Argentina, a volcanic sequence crops out which was emplaced in a submarine environment with some subaerial exposures, and it is intercalated in marine sediments of Agua del Jagüel Formation, which fills of one of these retroarc basins. This paper presents, for the first time, a facies analyses together with geochemical and isotopic data of this volcanic suite, suggesting its deposition in an ensialic retroarc marine basin. The volcanic succession comprises debris flows with either sedimentary or volcanic fragments, base surge, resedimented massive and laminated dacitic-andesitic hyaloclastite, pillow lava, basic hyaloclastite and dacitic-andesitic lavas and hyaloclastite facies. Its composition is bimodal, either basaltic or dacitic-andesitic. The geochemistry data indicate a subalkaline, low K calk-alkaline and metaluminous affinity. The geochemistry of the basalts points to an origin of the magmas from a depleted mantle source with some crustal contamination. Conversely, the geochemistry of the dacites-andesites shows an important participation of both crustal components and subduction related fluids. A different magmatic source for the basalts than for the dacites-andesites is also supported by Sr and Nd isotopic initial ratios and Nd model ages. The characteristics of this magmatic suite suggest its emplacement in an extensional setting probably associated with the presence of a steepened subduction zone at this latitude during Upper Carboniferous times.

  16. A finite volume solver for three dimensional debris flow simulations based on a single calibration parameter

    Science.gov (United States)

    von Boetticher, Albrecht; Turowski, Jens M.; McArdell, Brian; Rickenmann, Dieter

    2016-04-01

    Debris flows are frequent natural hazards that cause massive damage. A wide range of debris flow models try to cover the complex flow behavior that arises from the inhomogeneous material mixture of water with clay, silt, sand, and gravel. The energy dissipation between moving grains depends on grain collisions and tangential friction, and the viscosity of the interstitial fine material suspension depends on the shear gradient. Thus a rheology description needs to be sensitive to the local pressure and shear rate, making the three-dimensional flow structure a key issue for flows in complex terrain. Furthermore, the momentum exchange between the granular and fluid phases should account for the presence of larger particles. We model the fine material suspension with a Herschel-Bulkley rheology law, and represent the gravel with the Coulomb-viscoplastic rheology of Domnik & Pudasaini (Domnik et al. 2013). Both composites are described by two phases that can mix; a third phase accounting for the air is kept separate to account for the free surface. The fluid dynamics are solved in three dimensions using the finite volume open-source code OpenFOAM. Computational costs are kept reasonable by using the Volume of Fluid method to solve only one phase-averaged system of Navier-Stokes equations. The Herschel-Bulkley parameters are modeled as a function of water content, volumetric solid concentration of the mixture, clay content and its mineral composition (Coussot et al. 1989, Yu et al. 2013). The gravel phase properties needed for the Coulomb-viscoplastic rheology are defined by the angle of repose of the gravel. In addition to this basic setup, larger grains and the corresponding grain collisions can be introduced by a coupled Lagrangian particle simulation. Based on the local Savage number a diffusive term in the gravel phase can activate phase separation. The resulting model can reproduce the sensitivity of the debris flow to water content and channel bed roughness, as

  17. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  18. Applications of simulation technique on debris-flow hazard zone delineation: a case study in Hualien County, Taiwan

    Directory of Open Access Journals (Sweden)

    S. M. Hsu

    2010-03-01

    Full Text Available Debris flows pose severe hazards to communities in mountainous areas, often resulting in the loss of life and property. Helping debris-flow-prone communities delineate potential hazard zones provides local authorities with useful information for developing emergency plans and disaster management policies. In 2003, the Soil and Water Conservation Bureau of Taiwan proposed an empirical model to delineate hazard zones for all creeks (1420 in total with potential of debris flows and utilized the model to help establish a hazard prevention system. However, the model does not fully consider hydrologic and physiographical conditions for a given creek in simulation. The objective of this study is to propose new approaches that can improve hazard zone delineation accuracy and simulate hazard zones in response to different rainfall intensity. In this study, a two-dimensional commercial model FLO-2D, physically based and taking into account the momentum and energy conservation of flow, was used to simulate debris-flow inundated areas.

    Sensitivity analysis with the model was conducted to determine the main influence parameters which affect debris flow simulation. Results indicate that the roughness coefficient, yield stress and volumetric sediment concentration dominate the computed results. To improve accuracy of the model, the study examined the performance of the rainfall-runoff model of FLO-2D as compared with that of the HSPF (Hydrological Simulation Program Fortran model, and then the proper values of the significant parameters were evaluated through the calibration process. Results reveal that the HSPF model has a better performance than the FLO-2D model at peak flow and flow recession period, and the volumetric sediment concentration and yield stress can be estimated by the channel slope. The validation of the model for simulating debris-flow hazard zones has been confirmed by a comparison of field evidence from historical debris-flow

  19. A hacker's guide to catching a debris flow: Lessons learned from four years of chasing mud in Colorado and southern California

    Science.gov (United States)

    Kean, J. W.; McCoy, S. W.; Staley, D. M.; Coe, J.; Leeper, R.; Tucker, G. E.

    2012-12-01

    Direct measurements of natural debris flows provide valuable insights into debris-flow processes and hazards. Yet debris flows are difficult to "catch" because they live in rugged terrain, appear infrequently, and have an appetite for destroying monitoring equipment. We present an overview of some successful (and failed) techniques we have used over the past four years to obtain direct measurements of 40+ debris flows in Colorado and southern California. Following the "MacGyver" theme of the session, we focus on the improvised equipment and methods we use in our hunt for quality data. These include an inexpensive erosion sensor to measure rates of debris-flow entrainment, a custom load cell enclosure for measuring debris-flow normal force, tracer rocks implanted with passive integrated transponders, basic pressure transducers to measure debris-flow timing, and standard digital cameras adapted to obtain high-resolution (1936 x 1288 pixels) video footage of debris flows. These techniques are also suitable for catching data on elusive flash floods. In addition, we also share some practical solutions to the logistical problems associated with installing monitoring equipment in rugged debris-flow terrain, such as suspension of non-contact stage gages high above channels.

  20. Elementary theory of bed-sediment entrainment by debris flows and avalanches

    Science.gov (United States)

    Iverson, Richard M.

    2012-01-01

    Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

  1. Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

    Science.gov (United States)

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya

  2. Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.

    2012-01-01

    In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow

  3. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  4. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    Science.gov (United States)

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of

  5. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    Science.gov (United States)

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity

  6. Rheological characteristics of waste rock materials in abandoned mine deposit and debris flow hazards

    Science.gov (United States)

    Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin

    2015-04-01

    In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.

  7. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  8. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  9. Investigation of flow regime in debris bed formation behavior with nonspherical particles

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2018-02-01

    Full Text Available It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.

  10. Swarm slide - debris flow disaster induced by extreme rainfall in Hiroshima, August 2014 and lessons learnt in urban designing

    Science.gov (United States)

    Fukuoka, H.; Wang, C.

    2015-12-01

    Hiroshima city was hit by swarm debris flows along a narrow, and linear-shaped rain band of 2 km x 10 km which appeared in the early morning of August 20, 2014. Most of the flows were induced by shallow slide in the upstream. This disaster claimed 74 death, although this city experienced very similar disaster in 1999, claiming more than 30 residents lives. In the most severely affected debris flow torrent, more than 50 residents were killed. Most of the casualties arose in the wooden, vulnerable houses constructed in front of the exit of torrents. Points and lessons learnt from the disaster are as follows:1. Authors collected two types of sands from the source scar of the initial debris slides which induced debris flows. Tested by the ring shear apparatus under pore-pressure control condition, clear "Sliding surface liquefaction" was confirmed for both samples even under small normal stress, representing the small thickness of the slides. These results shows even instant excess pore pressure could initiate the slides and trigger slide-induced debris flow byundrained loading onto the torrent deposits.2. Apparently long-term land-use change since 1945 affected and raised the vulnerability of the community. Residential area had expanded into hill-slope (mountainous / semi-mountainous area) especially along the torrents. Those communities were developed on the past debris flow fan.3. As the devastated area is very close to downtown of Hiroshima city, it gave large societal impact to the Japanese citizens. After 1999 Hiroshima debris flow disaster, the Landslide disaster reduction law which intends to promote designation of landslide potential risk zones, was adopted in 2000. Immediately after 2014 disaster, national diet approved revision of the bill to promote rapid completion of the designation over the national territory. MLIT (Ministry of Land, Infrastructure, Tranportation and Tourism) decided to install X-band rain radars at more sites to cover whole city zones

  11. "State of the Art" of technical protection measures in Austria and the effectiveness documented during bedload and debris flow events

    Science.gov (United States)

    Moser, Markus; Mehlhorn, Susanne; Rudolf-Miklau, Florian; Suda, Jürgen

    2017-04-01

    Since the beginning of systematic torrent control in Austria 130 years ago, barriers are constructed for protection purposes. Until the end of the 1960s, solid barriers were built at the exits of depositional areas to prevent dangerous debris flows from reaching high consequence areas. The development of solid barriers with large slots or slits to regulate sediment transport began with the use of reinforced concrete during the 1970s (Rudolf-Miklau, Suda 2011). In order to dissipate the energy of debris flows debris flow breakers have been designed since the 1980s. By slowing and depositing the surge front of the debris flow, downstream reaches of the stream channel and settlement areas should be exposed to considerably lower dynamic impact. In the past, the technological development of these constructions was only steered by the experiences of the engineering practice while an institutionalized process of standardization comparable to other engineering branches was not existent. In future all structures have to be designed and dimensioned according to the EUROCODE standards. This was the reason to establish an interdisciplinary working group (ON-K 256) at the Austrian Standards Institute (ASI), which has managed to developed comprehensive new technical standards for torrent control engineering, including load models, design, dimensioning and life cycle assessment of torrent control works (technical standard ONR 24800 - series). Extreme torrential events comprise four definable displacement processes floods; fluvial solid transport; hyper-concentrated solid transport (debris floods) and debris flow (stony debris flow or mud-earth flow). As a rule, the design of the torrential barriers has to follow its function (Kettl, 1984). Modern protection concepts in torrent control are scenario-oriented and try to optimize different functions in a chain of protections structures (function chain). More or less the first step for the designing the optimal construction type is

  12. Unsaturated Zone Effects in Predicting Landslide and Debris-Flow Initiation

    Science.gov (United States)

    Baum, R. L.; Godt, J. W.; Savage, W. Z.

    2006-12-01

    Many destructive debris flows begin as shallow landslides induced by direct infiltration of intense rainfall and storm runoff into hillside materials. Predicting the timing and location of debris-flow initiation is needed to assess the debris-flow hazard of an area. Theoretical models and real-time monitoring of rainfall infiltration into unsaturated hillside materials provide useful insights into the mechanisms and timing of rainfall-induced landslides. We modeled the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone, and then implemented this model in a GIS framework. The model couples analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil- water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in slope-stability computations to estimate the timing and locations of slope failures. Preliminary model results indicate that the unsaturated layer attenuates and delays the rainfall-induced pore- pressure response at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation reduces the area of false-positive predictions (when compared with results of linear models for suction-saturated initial conditions) in distributed application of the model over an area. Modeling indicates that initial wetness of the hillside materials affects the intensity and duration of rainfall required to trigger shallow landslides and consequently the timing of their occurrence, a result that is also consistent with observations of

  13. A numerical modeling investigation of erosion and debris flows following the 2016 Fish Fire in the San Gabriel Mountains, CA, USA

    Science.gov (United States)

    Tang, H.; McGuire, L.; Rengers, F. K.; Kean, J. W.; Staley, D. M.

    2017-12-01

    Wildfire significantly changes the hydrological characteristics of soil for a period of several years and increases the likelihood of flooding and debris flows during high-intensity rainfall in steep watersheds. Hazards related to post-fire flooding and debris flows increase as populations expand into mountainous areas that are susceptible to wildfire, post-wildfire flooding, and debris flows. However, our understanding of post-wildfire debris flows is limited due to a paucity of direct observations and measurements, partially due to the remote locations where debris flows tend to initiate. In these situations, numerical modeling becomes a very useful tool for studying post-wildfire debris flows. Research based on numerical modeling improves our understanding of the physical mechanisms responsible for the increase in erosion and consequent formation of debris flows in burned areas. In this contribution, we study changes in sediment transport efficiency with time since burning by combining terrestrial laser scanning (TLS) surveys of a hillslope burned during the 2016 Fish Fire with numerical modeling of overland flow and sediment transport. We also combine the numerical model with measurements of debris flow timing to explore relationships between post-wildfire rainfall characteristics, soil infiltration capacity, hillslope erosion, and debris flow initiation at the drainage basin scale. Field data show that an initial rill network developed on the hillslope, and became more efficient over time as the overall rill density decreased. Preliminary model results suggest that this can be achieved when flow driven detachment mechanisms dominate and raindrop-driven detachment is minimized. Results also provide insight into the hydrologic and geomorphic conditions that lead to debris flow initiation within recently burned areas.

  14. THRESH—Software for tracking rainfall thresholds for landslide and debris-flow occurrence, user manual

    Science.gov (United States)

    Baum, Rex L.; Fischer, Sarah J.; Vigil, Jacob C.

    2018-02-28

    Precipitation thresholds are used in many areas to provide early warning of precipitation-induced landslides and debris flows, and the software distribution THRESH is designed for automated tracking of precipitation, including precipitation forecasts, relative to thresholds for landslide occurrence. This software is also useful for analyzing multiyear precipitation records to compare timing of threshold exceedance with dates and times of historical landslides. This distribution includes the main program THRESH for comparing precipitation to several kinds of thresholds, two utility programs, and a small collection of Python and shell scripts to aid the automated collection and formatting of input data and the graphing and further analysis of output results. The software programs can be deployed on computing platforms that support Fortran 95, Python 2, and certain Unix commands. The software handles rainfall intensity-duration thresholds, cumulative recent-antecedent precipitation thresholds, and peak intensity thresholds as well as various measures of antecedent precipitation. Users should have predefined rainfall thresholds before running THRESH.

  15. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    Science.gov (United States)

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  16. A comparative analysis of hazard models for predicting debris flows in Madison County, VA

    Science.gov (United States)

    Morrissey, Meghan M.; Wieczorek, Gerald F.; Morgan, Benjamin A.

    2001-01-01

    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a sixteen-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, Virginia. Field studies showed that the majority (70%) of these debris flows initiated with a thickness of 0.5 to 3.0 m in colluvium on slopes from 17 o to 41 o (Wieczorek et al., 2000). This paper evaluated and compared the approaches of SINMAP, LISA, and Iverson's (2000) transient response model for slope stability analysis by applying each model to the landslide data from Madison County. Of these three stability models, only Iverson's transient response model evaluated stability conditions as a function of time and depth. Iverson?s model would be the preferred method of the three models to evaluate landslide hazards on a regional scale in areas prone to rain-induced landslides as it considers both the transient and spatial response of pore pressure in its calculation of slope stability. The stability calculation used in SINMAP and LISA is similar and utilizes probability distribution functions for certain parameters. Unlike SINMAP that only considers soil cohesion, internal friction angle and rainfall-rate distributions, LISA allows the use of distributed data for all parameters, so it is the preferred model to evaluate slope stability over SINMAP. Results from all three models suggested similar soil and hydrologic properties for triggering the landslides that occurred during the 1995 storm in Madison County, Virginia. The colluvium probably had cohesion of less than 2KPa. The root-soil system is above the failure plane and consequently root strength and tree surcharge had negligible effect on slope stability. The result that the final location of the water table was near the ground surface is supported by the water budget analysis of the rainstorm conducted by Smith et al. (1996).

  17. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington

    Science.gov (United States)

    Denlinger, Roger P.

    2012-01-01

    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage

  18. Constraining the Timing of Lobate Debris Apron Emplacement at Martian Mid-Latitudes Using a Numerical Model of Ice Flow

    Science.gov (United States)

    Parsons, R. A.; Nimmo, F.

    2010-03-01

    SHARAD observations constrain the thickness and dust content of lobate debris aprons (LDAs). Simulations of dust-free ice-sheet flow over a flat surface at 205 K for 10-100 m.y. give LDA lengths and thicknesses that are consistent with observations.

  19. The Muralla Pircada: an ancient Andean debris flow retention dam, Santa Rita B archaeological site, Chao Valley, Northern Peru

    Science.gov (United States)

    Brooks, William E.; Willett, Jason C.; Kent, Jonathan D.; Vasquez, Victor; Rosales, Teresa

    2005-01-01

    Debris flows caused by El Niño events, earthquakes, and glacial releases have affected northern Perú for centuries. The Muralla Pircada, a northeast-trending, 2.5 km long stone wall east of the Santa Rita B archaeological site (Moche-Chimú) in the Chao Valley, is field evidence that ancient Andeans recognized and, more importantly, attempted to mitigate the effects of debris flows. The Muralla is upstream from the site and is perpendicular to local drainages. It is 1–2 m high, up to 5 m wide, and is comprised of intentionally-placed, well-sorted, well-rounded, 20–30 cm cobbles and boulders from nearby streams. Long axes of the stones are gently inclined and parallel local drainage. Case-and-fill construction was used with smaller cobbles and pebbles used as fill. Pre-Muralla debris flows are indicated by meter-sized, angular boulders that were incorporated in-place into construction of the dam and are now exposed in breeches in the dam. Post-Muralla debris flows in the Chao Valley are indicated by meter-sized, angular boulders that now abut the retention dam.

  20. Life, death and revival of debris-flow fans on Earth and Mars : fan dynamics and climatic inferences

    NARCIS (Netherlands)

    de Haas, T.|info:eu-repo/dai/nl/374023190

    2016-01-01

    Alluvial fans are ubiquitous landforms in high-relief regions on Earth and Mars. They have a semi-conical shape and are located at the transition between highlands and adjacent basins. Alluvial fans can form by a range of processes including debris flows, which are water-laden masses of soil and

  1. Physically based dynamic run-out modelling for quantitative debris flow risk assessment: a case study in Tresenda, northern Italy

    Czech Academy of Sciences Publication Activity Database

    Quan Luna, B.; Blahůt, Jan; Camera, C.; Van Westen, C.; Apuani, T.; Jetten, V.; Sterlacchini, S.

    2014-01-01

    Roč. 72, č. 3 (2014), s. 645-661 ISSN 1866-6280 Institutional support: RVO:67985891 Keywords : debris flow * FLO-2D * run-out * quantitative hazard and risk assessment * vulnerability * numerical modelling Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.765, year: 2014

  2. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    Science.gov (United States)

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  3. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  4. Two-Phase Flow Effect on the Ex-Vessel Corium Debris Bed Formation in Severe Accident

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Kim, Moo Hwan; Park, Hyun Sun; Ma, Weimin; Bechta, Sevostian V.

    2014-01-01

    In Korean IVR-ERVC(In-Vessel Retention of molten corium through External Reactor Vessel Cooling) strategy, if the situation degenerates into insufficient external vessel cooling, the molten core mixture can directly erupt into the flooded cavity pool from the weakest point of the vessel. Then, FCI (molten Fuel Coolant Interaction) will fragment the corium jet into small particulates settling down to make porous debris bed on the cavity basemat. To secure the containment integrity against the MCCI (Molten Core - Concrete Interaction), cooling of the heat generating porous corium debris bed is essential and it depends on the characteristics of the bed itself. For the characteristics of corium debris bed, many previous experimental studies with simulant melts reported the heap-like shape mostly. There were also following experiments to develop the correlation for the heap-like shaped debris bed. However, recent studies started to consider the effect of the decay heat and reported some noticeable results with the two-phase flow effect on the debris bed formation. The Kyushu University and JAEA group reported the experimental studies on the 'self-leveling' effect which is the flattening effect of the particulate bed by the inside gas generation. The DECOSIM simulation study of RIT (Royal Institute of Technology, Sweden) with Russian researchers showed the 'large cavity pool convection' effect, which is driven by the up-rising gas bubble flow from the pre-settled debris bed, on the particle settling trajectories and ultimately final bed shape. The objective of this study is verification of the two-phase flow effect on the ex-vessel corium debris bed formation in the severe accident. From the analysis on the test movie and resultant particle beds, the two-phase flow effect on the debris bed formation, which has been reported in the previous studies, was verified and the additional findings were also suggested. For the first, in quiescent pool the

  5. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy)

    KAUST Repository

    Cama, M.

    2017-03-30

    Debris flows can be described as rapid gravity-induced mass movements controlled by topography that are usually triggered as a consequence of storm rainfalls. One of the problems when dealing with debris flow recognition is that the eroded surface is usually very shallow and it can be masked by vegetation or fast weathering as early as one-two years after a landslide has occurred. For this reason, even areas that are highly susceptible to debris flow might suffer of a lack of reliable landslide inventories. However, these inventories are necessary for susceptibility assessment. Model transferability, which is based on calibrating a susceptibility model in a training area in order to predict the distribution of debris flows in a target area, might provide an efficient solution to dealing with this limit. However, when applying a transferability procedure, a key point is the optimal selection of the predictors to be included for calibrating the model in the source area. In this paper, the issue of optimal factor selection is analysed by comparing the predictive performances obtained following three different factor selection criteria. The study includes: i) a test of the similarity between the source and the target areas; ii) the calibration of the susceptibility model in the (training) source area, using different criteria for the selection of the predictors; iii) the validation of the models, both at the source (self-validation, through random partition) and at the target (transferring, through spatial partition) areas. The debris flow susceptibility is evaluated here using binary logistic regression through a R-scripted based procedure.Two separate study areas were selected in the Messina province (southern Italy) in its Ionian (Itala catchment) and Tyrrhenian sides (Saponara catchment), each hit by a severe debris flow event (in 2009 and 2011, respectively).The investigation attested that the best fitting model in the calibration areas resulted poorly performing

  6. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. physical basis

    Science.gov (United States)

    Iverson, Richard M.; George, David L.

    2014-01-01

    To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.

  7. Evaluation on the Implementation of Early Warning System for Debris Flow in Merapi Area (Case Study at Boyong River

    Directory of Open Access Journals (Sweden)

    Ali Cahyadi Achmad

    2015-09-01

    Full Text Available One of disasters caused by volcanic activity of Mount Merapi is secondary disaster. The disaster usually occurs after eruption and this volcanic activity produces volcanic and pyroclastic material deposit around the top of the mountain as a result of previous eruption. This material might collapse downward in the form of debris flow as it is affected by natural event such as high intensity rainfall. Therefore, a research is needed to analyze whether existing forecasting and early warning system are capable to provide information for the people living in hazardous area before the debris flood occur. This research was carried out using field survey, observation and interview method. Data analysis used qualitative descriptive method by making description of actual condition of the researched location general condition and qualitative analysis of telemetry system installed on Mount Merapi. The qualitative analysis of telemetry system covers network, hardware, software, power supply, security system, operation and maintenance, also human resources. Research analysis used primary and secondary data. Research results revealed that mean rainfall intensity above of 60 mm/hour might trigger debris flood. Early warning should be given at the rainfall intensity level of 50-55 mm/hour, and debris flood time travel from the upstream to the observed location in Pulowatu Village is 45 minute. Based on the analysis of the present forecasting and early warning system, it is known that some of the equipment is not well functioned, so that debris flow cannot be predicted and detected. This is caused by the lack of human resource quality of the officers in operating and maintaining the equipment. Concerning that matter, it is necessary to conduct some improvement to achieve better forecasting and early warning system in order to give information regarding occurrence of debris flow.

  8. The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow

    Science.gov (United States)

    Vallance, J.W.; Scott, K.M.

    1997-01-01

    The 3.8 km3 Osceola Mudflow began as a water-saturated avalanche during phreatomagmatic eruptions at the summit of Mount Rainier about 5600 years ago. It filled valleys of the White River system north and northeast of Mount Rainier to depths of more than 100 m, flowed northward and westward more than 120 km, covered more than 200 km2 of the Puget Sound lowland, and extended into Puget Sound. The lahar had a velocity of ???19 m/s and peak discharge of ???2.5 ?? 106 m3/s, 40 to 50 km downstream, and was hydraulically dammed behind a constriction. It was coeval with the Paradise lahar, which flowed down the south side of Mount Rainier, and was probably related to it genetically. Osceola Mudflow deposits comprise three facies. The axial facies forms normally graded deposits 1.5 to 25 m thick in lowlands and valley bottoms and thinner ungraded deposits in lowlands; the valley-side facies forms ungraded deposits 0.3 to 2 m thick that drape valley slopes; and the hummocky facies, interpreted before as a separate (Greenwater) lahar, forms 2-10-m-thick deposits dotted with numerous hummocks up to 20 m high and 60 m in plan. Deposits show progressive downstream improvement in sorting, increase in sand and gravel, and decrease in clay. These downstream progressions are caused by incorporation (bulking) of better sorted gravel and sand. Normally graded axial deposits show similar trends from top to bottom because of bulking. The coarse-grained basal deposits in valley bottoms are similar to deposits near inundation limits. Normal grading in deposits is best explained by incremental aggradation of a flow wave, coarser grained at its front than at its tail. The Osceola Mudflow transformed completely from debris avalanche to clay-rich (cohesive) lahar within 2 km of its source because of the presence within the preavalanche mass of large volumes of pore water and abundant weak hydrothermally altered rock. A survey of cohesive lahars suggests that the amount of hydrothermally

  9. Evaluation of the potential for debris and hyperconcentrated flows in Capulin Canyon as a result of the 1996 Dome fire, Bandelier National Monument, New Mexico

    Science.gov (United States)

    Cannon, Susan H.

    1997-01-01

    The Dome fire of April 1996 burned 6684 ha in Bandelier National Monument and the adjacent Sante Fe National Forest. The potential for significant debris- and hyperconcentrated-flow activity in Capulin Canyon is evaluated through 1) a systematic consideration of geologic and geomorphic factors that characterize the condition of the hillslope materials and channels following the fire, 2) examination of sedimentologic evidence for past debris-flow activity in the canyon, and 3) evaluation of the response of the watershed through the 1996 summer monsoon season. The lack of accumulations of dry-ravel material on the hillslopes or in channels, the absence of a continuous hydrophobic layer, the relatively intact condition of the riparian vegetation and of the fibrous root mat on the hillslopes, and the lack of evidence of widespread past debris- and hyperconcentrated-flow activity, even with evidence of past fires, indicate a low potential for debris-flow activity in Capulin Canyon. In addition, thunderstorms during the summer monsoon of 1996 resulted in abundant surface overland flow on the hillslopes which transported low-density pumice, charcoal, ash and some mineral soil downslope as small-scale and non-erosive debris flows. In some places cobble- and boulder-sized material was moved short distances. A moderate potential for debris- and hyperconcentrated-flow activity is identified for the two major tributary canyons to Capulin Canyon based on evidence of both summer of 1996 and possible historic significant debris-flow activity.

  10. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  11. Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis

    Directory of Open Access Journals (Sweden)

    L. Canelli

    2012-05-01

    Full Text Available The impact of a debris flow on a structure can have disastrous effects because of the enormous destructive potential of this type of phenomenon. Although the introduction of risk mitigation structures such as the Sabo Dam, the filter dam and more recently flexible barriers is usual, there are very few methods that are universally recognized for the safe design of such structures. This study presents the results of experimental tests, conducted with the use of a specifically created flume, in order to obtain detailed knowledge of the mechanical aspects, and to analyze the dynamics of the impact of a debris flow on different types of structures. The analyses of the tests, together with the calculation of the thrust caused by the flow, have made it possible to analyze the dynamics of the impact, which has shown differing effects, on the basis of the type of barrier that has been installed.

  12. DEBRIS FLOW DISASTER MITIGATION THROUGH COMMUNITY-BASED INTEGRATED SEDIMENT MANAGEMENT (BEST PRACTICE IN MT. MERAPI AREA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kazuhiko Otani

    2015-02-01

    Full Text Available Mt. Merapi is one of many active volcanoes in Indonesia which erupts frequently. The small eruption occurred nearly every year, whereas the big ones occurred at approximately once every five years. The eruption often produces impacts at both positive and negative view points, such as production of sediment as construction material and damage on infrastructures due to debris flow occurrences respectively. The eruption produces two types of disasters, i.e. primary disaster (such as ash fall, pyroclastic flow, and lava flow, and secondary disaster such as debris flow. This paper presents the long term effort on the development of community participation in the sand mining management as one of strategic disaster mitigation activities. The raising awareness of the community on the necessity of conducting proper sand mining management and its effect on reducing the risk due to debris flow disaster has shown the effectives of the approach being introduced. The local government acceptance on the presence of the community participation in the whole system of sediment management may involve further collaboration between the local government authority and community society in the future.

  13. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    International Nuclear Information System (INIS)

    Ballesteros Cánovas, J.A.; Stoffel, M.; Corona, C.; Schraml, K.; Gobiet, A.; Tani, S.; Sinabell, F.; Fuchs, S.; Kaitna, R.

    2016-01-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  14. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Cánovas, J.A., E-mail: juan.ballesteros@dendrolab.ch [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Stoffel, M. [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, CH-1205 Geneva (Switzerland); Corona, C. [Centre National de la Recherche Scientifique (CNRS) UMR6042 Geolab, 4 rue Ledru, F-63057 Clermont-Ferrand Cedex (France); Schraml, K. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria); Gobiet, A. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Central Office for Meteorology and Geodynamics (ZAMG), A-1190 Vienna (Austria); Tani, S. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Sinabell, F. [Austrian Institute of Economic Research, A-1030 Vienna (Austria); Fuchs, S.; Kaitna, R. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria)

    2016-07-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  15. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale

    Directory of Open Access Journals (Sweden)

    P. Horton

    2013-04-01

    Full Text Available The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM. The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time

  16. Influential factors on debris flow events and hillslope-channel connectivity in Alpine regions: case studies from two Alpine regions in Styria, Austria

    Science.gov (United States)

    Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver

    2016-04-01

    In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle

  17. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    Science.gov (United States)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  18. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data

    Science.gov (United States)

    Crowley, J.K.; Hubbard, B.E.; Mars, J.C.

    2003-01-01

    Remote sensing data from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the first spaceborne imaging spectrometer, Hyperion, show hydrothermally altered rocks mainly composed of natroalunite, kaolinite, cristobalite, and gypsum on both the Mount Shasta and Shastina cones. Field observations indicate that much of the visible altered rock consists of talus material derived from fractured rock zones within and adjacent to dacitic domes and nearby lava flows. Digital elevation data were utilized to distinguish steeply sloping altered bedrock from more gently sloping talus materials. Volume modeling based on the imagery and digital elevation data indicate that Mount Shasta drainage systems contain moderate volumes of altered rock, a result that is consistent with Mount Shasta's Holocene record of mostly small to moderate debris flows. Similar modeling for selected areas at Mount Rainier and Mount Adams, Washington, indicates larger altered rock volumes consistent with the occurrence of much larger Holocene debris flows at those volcanoes. The availability of digital elevation and spectral data from spaceborne sensors, such as Hyperion and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), greatly expands opportunities for studying potential debris flow source characteristics at stratovolcanoes around the world. ?? 2003 Elsevier Inc. All rights reserved.

  19. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    Highlights: • Single-phase pressure drops versus flow rates in particle beds are measured. • Conditions are representative of the reflooding of a nuclear fuel debris bed. • Darcy, weak inertial, strong inertial and weak turbulent regimes are observed. • A Darcy–Forchheimer law is found to be a good approximation in this domain. • A predictive correlation is derived from new experimental data. - Abstract: During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes. The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a

  20. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)

    Science.gov (United States)

    Bernhardt, H.; Reiss, D.; Hiesinger, H.; Hauber, E.; Johnsson, A.

    2017-11-01

    Fan-shaped accumulations of debris flow deposits are common landforms in polar regions such as Svalbard. Although depositional processes in these environments are of high interest to climate as well as Mars-analog research, several parameters, e.g., debris flow recurrence periods, remain poorly constrained. Here, we present an investigation based on remote sensing as well as in situ data of a 0.4 km2 large colluvial fan in Hanaskogdalen, central Spitsbergen. We analyzed high resolution satellite and aerial images covering five decades from 1961 to 2014 and correlated them with lichenometric dating as well as meteorological data. Image analyses and lichenometry deliver consistent results and show that the recurrence period of large debris flows (≥ 400 m3) is about 5 to 10 years, with smaller flows averaging at two per year in the period from 2008 to 2013. While this is up to two orders of magnitude shorter than previous estimates for Svalbard (80 to 500 years), we found the average volume of 220 m3 per individual flow to be similar to previous estimates for the region. Image data also reveal that an avulsion took place between 1961 and 1976, when the active part of the fan moved from its eastern to its western portion. A case study of the effects of a light rain event ( 5 mm/day) in the rainy summer of 2013, which triggered a large debris flow, further shows that even light precipitation can trigger major flows. This is made possible by multiple light rain events or gradual snow melt pre-saturating the permafrost ground and has to be taken into account when predicting the likelihood of potentially hazardous mass wasting in polar regions. Furthermore, our findings imply a current net deposition rate on the colluvial fan of 480 m3/year, which is slightly less than the integrated net deposition rate of 576 to 720 m3/year resulting from the current fan volume divided by the 12,500 to 10,000 years since the onset of fan build-up after the area's deglaciation. However

  1. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  2. ANALYSIS OF DEBRIS FLOW DISASTER DUE TO HEAVY RAIN BY X-BAND MP RADAR DATA

    Directory of Open Access Journals (Sweden)

    M. Nishio

    2016-06-01

    Full Text Available On August 20 of 2014, Hiroshima City (Japan was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains is usually observed by the Automated Meteorological Data Acquisition System (AMeDAS operated by the Japan Meteorological Agency (JMA and by the C-band radar operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT of Japan, with spatial resolutions of 2.5 km and 1 km, respectively. The new X-band MP radar system enables more detailed rainfall observations than the C-band radar. In fact, this radar can observe local rainfall throughout Japan in near-real time over a minimum mesh size of 250 m. A fine-scale accumulated rainfall monitoring system is crucial for disaster prevention, and potential disasters can be alerted by the hazard levels of the accumulated rainfall.

  3. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    Science.gov (United States)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  4. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    Science.gov (United States)

    Or, D.; von Ruette, J.; Lehmann, P.

    2017-12-01

    Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.

  5. Operation of a real-time warning system for debris flows in the San Francisco bay area, California

    Science.gov (United States)

    Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,

    1993-01-01

    The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.

  6. DEBRIS FLOW DISASTER MITIGATION THROUGH COMMUNITY-BASED INTEGRATED SEDIMENT MANAGEMENT (BEST PRACTICE IN MT. MERAPI AREA, INDONESIA)

    OpenAIRE

    Otani, Kazuhiko; Suharyanto, Suharyanto

    2015-01-01

    Mt. Merapi is one of many active volcanoes in Indonesia which erupts frequently. The small eruption occurred nearly every year, whereas the big ones occurred at approximately once every five years. The eruption often produces impacts at both positive and negative view points, such as production of sediment as construction material and damage on infrastructures due to debris flow occurrences respectively. The eruption produces two types of disasters, i.e. primary disaster (such as ash fall, py...

  7. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    Directory of Open Access Journals (Sweden)

    H. Y. Hussin

    2012-10-01

    Full Text Available The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10–50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps. The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  8. Coronation Hill U-Au mine, South Alligator Valley, Northern Territory: an epigenetic sandstone-type deposit hosted by debris-flow conglomerate

    International Nuclear Information System (INIS)

    Needham, R.S.; Stuart-Smith, P.G.

    1987-01-01

    The host rock at the Coronation Hill U-Au mine is a debris flow conglomerate, developed in a high-energy fluvial environment during deposition of the Coronation Sandstone of the El Sherana Group. Mineralisation took place by movement of low-temperature fluids from the U-enriched volcanics into the conduit sandstone and eventually into the reduced debris flow conglomerate and carbonaceous shale

  9. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ranch Fire, Ventura and Los Angeles Counties, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  10. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  11. Testing the use of OSL from quartz grains for dating debris flows in Miyun, northeast Beijing, China

    DEFF Research Database (Denmark)

    Zhao, Qiuyue; Thomsen, Kristina Jørkov; Murray, Andrew

    2015-01-01

    Extreme seasonal summer rain storms are common in the mountains to the north east of Beijing and these often result in mass movement of sediment slurries transported for up to a few km. These debris flows can be deadly and are very destructive to infrastructure and agriculture. This project tests...... the application of luminescence dating to determining the return frequency of such extreme events. The high sediment concentration and the very short flow duration gives very little opportunity for daylight resetting during transport and only a small fraction of the total mass is likely to be reset before...

  12. Constraints on martian lobate debris apron evolution and rheology from numerical modeling of ice flow

    Science.gov (United States)

    Parsons, Reid A.; Nimmo, Francis; Miyamoto, Hideaki

    2011-07-01

    Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ˜100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (⩽4 vol%), coarse (⩾1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.

  13. Rainfall thresholds and susceptibility mapping for shallow landslides and debris flows in Scotland

    Science.gov (United States)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2017-04-01

    Shallow translational slides and debris flows (hereafter 'landslides') pose a significant threat to life and cause significant annual economic impacts (e.g. by damage and disruption of infrastructure). The focus of this research is on the definition of objective rainfall thresholds using a weather radar system and landslide susceptibility mapping. In the study area Scotland, an inventory of 75 known landslides was used for the period 2003 to 2016. First, the effect of using different rain records (i.e. time series length) on two threshold selection techniques in receiver operating characteristic (ROC) analysis was evaluated. The results show that thresholds selected by 'Threat Score' (minimising false alarms) are sensitive to rain record length and which is not routinely considered, whereas thresholds selected using 'Optimal Point' (minimising failed alarms) are not; therefore these may be suited to establishing lower limit thresholds and be of interest to those developing early warning systems. Robust thresholds are found for combinations of normalised rain duration and accumulation at 1 and 12 day's antecedence respectively; these are normalised using the rainy-day normal and an equivalent measure for rain intensity. This research indicates that, in Scotland, rain accumulation provides a better indicator than rain intensity and that landslides may be generated by threshold conditions lower than previously thought. Second, a landslide susceptibility map is constructed using a cross-validated logistic regression model. A novel element of the approach is that landslide susceptibility is calculated for individual hillslope sections. The developed thresholds and susceptibility map are combined to assess potential hazards and impacts posed to the national highway network in Scotland.

  14. Potential postwildfire debris-flow hazards: a prewildfire evaluation for the Sandia and Manzano Mountains and surrounding areas, central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Haas, Jessica R.; Miller, Lara W.; Scott, Joe H.; Thompson, Matthew P.

    2014-01-01

    Wildfire can drastically increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although there is no way to know the exact location, extent, and severity of wildfire, or the subsequent rainfall intensity and duration before it happens, probabilities of fire and debris-flow occurrence for different locations can be estimated with geospatial analysis and modeling efforts. The purpose of this report is to provide information on which watersheds might constitute the most serious, potential, debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall in the Sandia and Manzano Mountains. Potential probabilities and estimated volumes of postwildfire debris flows in the unburned Sandia and Manzano Mountains and surrounding areas were estimated using empirical debris-flow models developed by the U.S. Geological Survey in combination with fire behavior and burn probability models developed by the U.S. Department of Agriculture Forest Service. The locations of the greatest debris-flow hazards correlate with the areas of steepest slopes and simulated crown-fire behavior. The four subbasins with the highest computed debris-flow probabilities (greater than 98 percent) were all in the Manzano Mountains, two flowing east and two flowing west. Volumes in sixteen subbasins were greater than 50,000 square meters and most of these were in the central Manzanos and the western facing slopes of the Sandias. Five subbasins on the west-facing slopes of the Sandia Mountains, four of which have downstream reaches that lead into the outskirts of the City of Albuquerque, are among subbasins in the 98th percentile of integrated relative debris-flow hazard rankings. The bulk of the remaining subbasins in the 98th percentile of integrated relative debris-flow hazard rankings are located along the highest and steepest slopes of the Manzano Mountains. One

  15. Morphometric Analysis and Delineation of Debris Flow Susceptible Alluvial Fans in the Philippines after the 2015 Koppu and Melor Typhoon Events

    Science.gov (United States)

    Llanes, F.; Rodolfo, K. S.; Lagmay, A. M. A.

    2017-12-01

    On 17 October 2015, Typhoon Koppu brought heavy rains that generated debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province. Roughly two months later on 15 December, Typhoon Melor made landfall in the province of Oriental Mindoro, bringing heavy rains that also generated debris flows in multiple watersheds in the municipality of Baco. Despite not being in the direct path of the typhoon, debris flows were triggered in Bongabon, Gabaldon, and Laur, whereas old debris-flow deposits were remobilized in Dingalan, a coastal town in Aurora province adjacent to Gabaldon. During the onslaught of Typhoons Koppu and Melor, landslides of rock, soil, and debris converged in the mountain stream networks where they were remobilized into debris flows that destroyed numerous houses and structures situated on alluvial fans. Satellite images before and after the two typhoons were compared to calculate the deposit extents on the fans and to determine the number and extent of landslides on each watershed. The affected alluvial fans were investigated in the field to determine whether they are debris flow or flood-prone, using a set of established geomorphic and sedimentary characteristics that differentiate deposits of the two processes. Melton ratio, watershed length, and other significant morphometric indices were calculated and analyzed for the affected watersheds using geographic information system (GIS) and high-resolution digital terrain models. A GIS model that can delineate debris flow susceptible alluvial fans in the Philippines was derived and developed from the analysis. Limitations of the model are discussed, as well as recommendations to improve and refine it.

  16. The FlatModel: a 2D numerical code to evaluate debris flow dynamics. Eastern Pyrenees basins application.

    Science.gov (United States)

    Bateman, A.; Medina, V.; Hürlimann, M.

    2009-04-01

    Debris flows are present in every country where a combination of high mountains and flash floods exists. In the northern part of the Iberian Peninsula, at the Pyrenees, sporadic debris events occur. We selected two different events. The first one was triggered at La Guingueta by the big exceptional flood event that produced many debris flows in 1982 which were spread all over the Catalonian Pyrenees. The second, more local event occurred in 2000 at the mountain Montserrat at the Pre-litoral mountain chain. We present here some results of the FLATModel, entirely developed at the Research Group in Sediment Transport of the Hydraulic, Marine and Environmental Engineering Department (GITS-UPC). The 2D FLATModel is a Finite Volume method that uses the Godunov scheme. Some numerical arranges have been made to analyze the entrainment process during the events, the Stop & Go phenomena and the final deposit of the material. The material rheology implemented is the Voellmy approach, because it acts very well evaluating the frictional and turbulent behavior. The FLATModel uses a GIS environment that facilitates the data analysis as the comparison between field and numerical data. The two events present two different characteristics, one is practically a one dimensional problem of 1400 m in length and the other has a more two dimensional behavior that forms a big fan.

  17. Postwildfire preliminary debris flow hazard assessment for the area burned by the 2011 Las Conchas Fire in north-central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two

  18. Stratigraphic reconstruction of the 13 ka BP debris avalanche deposit at Colima volcano (Mexico): effect of climatic conditions on the flow mobility

    Science.gov (United States)

    Roverato, M.; Capra, L.

    2010-12-01

    Colima volcano is an andesitic stratovolcano located in the western part of the Trans-Mexican Volcanic Belt (TMVB) and at the southern end of the N-S trending Colima graben, about 70 km from the Pacific Ocean coast. It is probably the most active Mexican volcano in historic time and one of the most active of North America. Colima volcano yielded numerous partial edifice collapses with emplacement of debris avalanche deposits (DADs) of contrasting volume, morphology, texture and origin. This work has the aim to provide the evidences of how the climatic condition during the 13 ka flank collapse of the Colima volcano affected the textural characteristic and the mobility of the debris avalanche and debris flow originated from this event that occurred just after the Last Glacial Maximum in Mexico (18.4-14.5 ka 14C BP with snow line at 3600 m a.s.l. up to 13 ka BP). The 13,000 yrs old debris avalanche deposit, here named Tonila (TDAD) presents the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) but at approximately 13 km from the source, the deposit transforms to an hybrid phase with debris avalanche fragments imbedded in a finer, homogenous and indurated matrix more similar to a debris flow deposit. The debris avalanche deposit is directly overly by debris flows, often more than 10 m thick that contains large amount of logs from pine tree, mostly accumulated toward the base and imbricated down flow. Fluvial deposits also occur throughout all successions, representing periods of stream and river reworking highly localized and re-establishment. All these evidences point to the presence of water in the mass previous to the failure. The event here described represent an anomalous event between the previously described deposit associated to volcanic complex, and evidence as climatic condition can alter and modifies the depositional sequences incrementing the hazard.

  19. Constraints on Lobate Debris Apron Evolution and Rheology from Numerical Modeling of Ice Flow

    Science.gov (United States)

    Parsons, R.; Nimmo, F.

    2010-12-01

    Recent radar observations of mid-latitude lobate debris aprons (LDAs) have confirmed the presence of ice within these deposits. Radar observations in Deuteronilus Mensae have constrained the concentration of dust found within the ice deposits to <30% by volume based on the strength of the returned signal. In addition to constraining the dust fraction, these radar observations can measure the ice thickness - providing an opportunity to more accurately estimate the flow behavior of ice responsible for the formation of LDAs. In order to further constrain the age and rheology of LDA ice, we developed a numerical model simulating ice flow under Martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. This finite difference model calculates the LDA profile shape as it flows over time assuming no basal slip. In our model, the ice rheology is determined by the concentration of dust which influences the ice grain size by pinning the ice grain boundaries and halting ice grain growth. By varying the dust fraction (and therefore the ice grain size), the ice temperature, the subsurface slope, and the initial ice volume we are able to determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to crater age dates of LDA surfaces (90 - 300 My, see figure). Based on simulations using different combinations of ice temperature, ice grain size, and basal slope, we find that an ice temperature of 205 K, a dust volume fraction of 0.5% (resulting in an ice grain size of 5 mm), and a flat subsurface slope give reasonable model LDA ages for many LDAs in the northern mid-latitudes of Mars. However, we find that there is no single combination of dust fraction, temperature, and subsurface slope which can give realistic ages for all LDAs suggesting that all or some of these

  20. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    Science.gov (United States)

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  1. Postwildfire debris-flow hazard assessment of the area burned by the 2012 Little Bear Fire, south-central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Matherne, Anne Marie

    2013-01-01

    A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in

  2. Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, in-situ measurements of flow dynamics, tracer particle movement and video imagery from the summer of 2009

    Science.gov (United States)

    McCoy, Scott W.; Coe, Jeffrey A.; Kean, Jason W.; Tucker, Greg E.; Staley, Dennis M.; Wasklewicz, Thad A.

    2011-01-01

    Debris flows initiated by surface-water runoff during short duration, moderate- to high-intensity rainfall are common in steep, rocky, and sparsely vegetated terrain. Yet large uncertainties remain about the potential for a flow to grow through entrainment of loose debris, which make formulation of accurate mechanical models of debris-flow routing difficult. Using a combination of in situ measurements of debris flow dynamics, video imagery, tracer rocks implanted with passive integrated transponders (PIT) and pre- and post-flow 2-cm resolution digital terrain models (terrain data presented in a companion paper by STALEY et alii, 2011), we investigated the entrainment and transport response of debris flows at Chalk Cliffs, CO, USA. Four monitored events during the summer of 2009 all initiated from surface-water runoff, generally less than an hour after the first measurable rain. Despite reach-scale morphology that remained relatively constant, the four flow events displayed a range of responses, from long-runout flows that entrained significant amounts of channel sediment and dammed the main-stem river, to smaller, short-runout flows that were primarily depositional in the upper basin. Tracer-rock travel-distance distributions for these events were bimodal; particles either remained immobile or they travelled the entire length of the catchment. The long-runout, large-entrainment flow differed from the other smaller flows by the following controlling factors: peak 10-minute rain intensity; duration of significant flow in the channel; and to a lesser extent, peak surge depth and velocity. Our growing database of natural debris-flow events can be used to develop linkages between observed debris-flow transport and entrainment responses and the controlling rainstorm characteristics and flow properties.

  3. Monitoring and modelling of landslide and debris flow impact on transport and building infrasructure in the Carpathians

    Science.gov (United States)

    Ivanik, Olena; Shevchuk, Viktor; Yahno, Evgen

    2016-04-01

    Mechanisms and factors of formation of landslide and debris flow processes are examined in terms of model objects in the Carpathians. The study area is within Eastern Carpathians and Transcarpathian depression (Tisa river basin). There were investigated more than 220 stabilized and active landslides. The analysis of water-gravitational processes in this region with complex heterogeneous geological structure confirmed the priority nature of occurrence of structural landslides in rheologically different geological environments, and made it possible to create a new classification of structural landslides and conditions of their formation with the decisive influence of destructive zones. This classification is the basis for constructing geological, physical and mathematical models of landslide slopes, and subsequent modeling of the landslide hazard based on the determination of the stress-strain state of slopes. Under the proposed mathematical model, the examined phenomenon is described as thermoelastic-plastic equilibrium of the isotropic matrix under effect of applied mass (gravitational field of the Earth) and surface efforts, inhomogeneous stationary temperature field. In addition, it is assumed that the Young modulus at each point of the matrix depends on the water saturation. Debris and mudflows in the Carpathians have a stage character, non-stationary and avalanche movements. The territory is prone to be affected by debris and mudflows, due to the geological, geomorphological and climatic conditions. Therefore the main conditions of the mudflow formation are as follows: the presence of the rock destruction products which could be a solid phase of debris mudflow; presence of the enough quantity of the rainfall runoff for the unconsolidated material removal; ruggedness of relief that provides simultaneous movement of the big values of the water-soil mass with the big velocities. The algorithm calculating the mudflow impact on infrastructure objects in Carpathians

  4. Roads at risk - the impact of debris flows on road network reliability and vulnerability in southern Norway

    Science.gov (United States)

    Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver

    2014-05-01

    Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.

  5. Rockfall-induced impact force causing a debris flow on a volcanoclastic soil slope: a case study in southern Italy

    Science.gov (United States)

    Budetta, P.

    2010-09-01

    On 10 January 2003, a rockfall of approximately 10 m3 affected a cliff some 25 m high located along the northern slopes of Mt. St. Angelo (Nocera Inferiore, province of Salerno) in the southern Italian region of Campania. The impact of boulders on the lower sector of the slope, along which detrital-pyroclastic soils outcrop, triggered a small channelled debris flow of about 500 m3. Fortunately, no damage nor victims resulted from the landslide. Several marks of the impacts were observed at the cliff toe and outside the collapsed area, and the volumes of some fallen boulders were subsequently measured. By means of in-situ surveys, it was possible to reconstruct the cliff's geo-structural layout in detail. A rockfall back-analysis was subsequently performed along seven critical profiles of the entire slope (surface area of about 4000 m2). The results of this numerical modelling using the lumped-mass method were then used to map the kinetic iso-energy curves. In the triggering area of the debris flow, for a falling boulder of 1 m3, the mean kinetic energy was estimated at 120 kJ, this value being equivalent to an impact force, on an inclined surface, of some 800 kN. After landing, due to the locally high slope gradient (about 45°), and low angle of trajectory at impact (about 23°), some boulders slid down the slope as far as the endpoints. The maximum depth of penetration into the ground by a sliding block was estimated at about 16 cm. Very likely, owing to the high impact force of boulders on the saturated soil slope outcropping at the cliff base, the debris flow was triggered under undrained loading conditions. Initial failure was characterized by a translational slide involving a limited, almost elliptical area where the pyroclastic cover shows greater thickness in comparison with the surrounding areas.

  6. Proposal for a model to assess the effect of seismic activity on the triggering of debris flows

    Science.gov (United States)

    Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Luna, Byron Quan; Nadim, Farrokh

    2013-04-01

    Landslide triggered by earthquakes is a serious threat for many communities around the world, and in some cases is known to have caused 25-50% of the earthquake fatalities. Seismic shaking can contribute to the triggering of debris flows either during the seismic event or indirectly by increasing the susceptibility of the slope to debris flow during intense rainfall in a period after the seismic event. The paper proposes a model to quantify both these effects. The model is based on an infinite slope formulation where precipitation and earthquakes influence the slope stability as follows: (1) During the shaking, the factor of safety is reduced due to cyclic pore pressure build-up where the cyclic pore pressure is modelled as a function of earthquake duration and intensity (measured as number of equivalent shear stress cycles and cyclic shear stress magnitude) and in-situ soil conditions (measured as average normalised shear stress). The model is calibrated using cyclic triaxial and direct simple shear (DSS) test data on clay and sand. (2) After the shaking, the factor of safety is modified using a combined empirical and analytical model that links observed earthquake induced changes in rainfall thresholds for triggering of debris flow to an equivalent reduction in soil shear strength. The empirical part uses data from past earthquakes to propose a conceptual model linking a site-specific reduction factor for rainfall intensity threshold (needed to trigger debris flows) to earthquake magnitude, distance from the epicentre and time period after the earthquake. The analytical part is a hydrological model for transient rainfall infiltration into an infinite slope in order to translate the change in rainfall intensity threshold into an equivalent reduction in soil shear strength. This is generalised into a functional form giving a site-specific shear strength reduction factor as function of earthquake history and soil conditions. The model is suitable for hazard and risk

  7. Debris flow from 2012 failure of moraine-dammed lake, Three Fingered Jack volcano, Mount Jefferson Wilderness, Oregon

    Science.gov (United States)

    Sherrod, David R.; Wills, Barton B.

    2014-01-01

    In the late spring or early summer of 2012, a flood emanated from a small moraine-dammed lake on the northeast flank of Three Fingered Jack in the Mount Jefferson Wilderness. Channel erosion or slope collapse breached the natural dam of the lake, leading to a sudden lowering of lake level by 2.8 m and discharge of 12,700 cubic meters (m3) of water. The resulting debris flow formed a bouldery deposit extending about 0.35 km downslope.

  8. Using geophysics on a terminal moraine damming a glacial lake: the Flatbre debris flow case, Western Norway

    Directory of Open Access Journals (Sweden)

    I. Lecomte

    2008-04-01

    Full Text Available A debris flow occurred on 8 May 2004, in Fjǽrland, Western Norway, due to a Glacial Lake Outburst Flood and a natural terminal moraine failure. The site was investigated in 2004 and 2005, using pre- and post-flow aerial photos, airborne laser scanning, and extensive field work investigations, resulting in a good understanding of the mechanics of the debris flow, with quantification of the entrainment and determination of the final volume involved. However, though the moraine had a clear weak point, with lower elevation and erosion due to overflowing in the melting season, the sudden rupture of the moraine still needs to be explained. As moraines often contain an ice core, a possible cause could be the melting of the ice, inducing a progressive weakening of the structure. Geophysical investigations were therefore carried out in September 2006, including seismic refraction, GPR and resistivity. All methods worked well, but none revealed the presence of ice, though the depth to bedrock was determined. On the contrary, the moraine appeared to be highly saturated in water, especially in one area, away from the actual breach and corresponding to observed water seepage at the foot of the moraine. To estimate future hazard, water circulation through the moraine should be monitored over time.

  9. Investigation of the peeks creek debris flow of September 2004 and its relationship to landslide hazard mapping in Macon County, North Carolina

    Science.gov (United States)

    Rebecca Latham; Rick Wooten; Anne Witt; Ken Gillon; Tommy Douglas; Stephen Fuemmeler; Jennifer Bauer; Scott Brame

    2007-01-01

    On September 16,2004 the remnants of Hurricane Ivan dumped heavy rain on Macon County, North Carolina, triggering a debris slide near the top of Fishhawk Mountain (figure 1) at an elevation of 4,420 ft around 10: 10 PM. This slide quickly mobilized into a debris flow that traveled approximately 2.25 miles and dropped 2,000 ft colliding with the Peeks Creek community...

  10. Development of a method for detecting nuclear fuel debris and water leaks at a nuclear reactor/containment vessel by flow visualization

    International Nuclear Information System (INIS)

    Umezawa, Shuichi; Tanaka, Katsuhiko

    2013-01-01

    It is the important issue to fill up each nuclear reactor/containment vessel with water and to take out debris of damaged fuel from them for decommissioning of Fukushima Daiichi nuclear power plants. It is necessary to detect the debris and water leaks at a nuclear reactor/containment vessel for the purpose. However, the method is not completely developed in the present stage. Accordingly, we have developed a method for detecting debris and water leaks at a nuclear reactor/containment vessel by flow visualization. Experiments of the flow visualization were conducted using two types of water tanks. An optical fiber and a collimator lens were employed for modifying a straight laser beam into a sheet projection. Some visualized images were obtained through the experiments. Particle Image Velocimetry, i.e. PIV, analysis was applied to the images for quantitative flow rate analysis. Consequently, it is considered that the flow visualization method has a possibility for the practical use. (author)

  11. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    Science.gov (United States)

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range

  12. Debris flow impact assessment along the Al-Raith Road, Kingdom of Saudi Arabia, using remote sensing data and field investigations

    Directory of Open Access Journals (Sweden)

    Ahmed M. Youssef

    2016-03-01

    Full Text Available Jizan mountainous areas in Kingdom of Saudi Arabia are suffering from a variety of slope failures. Most of these failures happen due to heavy rainfalls from time to time. These landslides include rock topples, rockslides, debris flow, and some combination of these which affected many roads, highways, and buildings. The Al-Raith Road is one of these roads connecting Red Sea coast cities with Asir and Al-Hasher areas. The length of this road reaches about 45 km and it has been exposed to landslides during each heavy rain storm. One of these events happened in 24 August 2013, which caused huge debris flows that cut and damaged the road. The current research aims to evaluate the debris flow assessment along this highway using remote sensing data and field studies. According to the detailed analysis of geological and geomorphological maps, as well as field investigation, it is evident that the debris flow materials are mainly related to the different types of landslides. These landslides included rock topples which are frequently observed along the side walls of the channels (flexture which occur in foliated rocks and block which occurs in massive rocks, rock sliding (planner failures where many rock joints and shear zones dip towards the channel, and rockfalls. Debris range in their size from up to 2 m in diameter to fine materials less than 2 mm. These materials can be easily moved with water causing a risk to vehicles, roads, and housing in the area. Field study indicated that these debris channels especially at the lower part have been reactivated several times in the past. Finally, suitable solutions have been suggested to these critical sites to minimize and/or avoid the debris flow hazards in the future.

  13. Assessment and management of debris-flow risk in a tropical high-mountain catchment in Santa Teresa, Peru

    Science.gov (United States)

    Frey, Holger; Buis, Daniel; Huggel, Christian; Bühler, Yves; Choquevilca, Walter; Fernandez, Felipe; García, Javier; Giráldez, Claudia; Loarte, Edwin; Masias, Paul; Portocarreo, César; Price, Karen; Walser, Marco

    2015-04-01

    The local center of Santa Teresa (Cusco Region, Peru, 7 km northwest of the ruins of Machu Picchu) has been affected by several large debris-flow events in the recent past. In January and February 1998, three events of extreme magnitudes with estimated total volumes of several tens of millions cubic meters each, caused the destruction of most parts of the municipality and resulted in a resettlement of the town on higher grounds. Additionally, several settlements further upstream, as well valuable infrastructure such as bridges, a railway, and a hydropower plant, were destroyed. Some events were related to large-scale slope instabilities and landslide processes in glacial sediments that transformed into highly mobile debris flows. However, the exact trigger mechanisms are still not entirely clear, and the potential role of glacial lakes for past and future mass flows remains to be analyzed. Here we applied RAMMS (RApid Mass Movement System), a physically based dynamic model, to reconstruct one of the 1998 events in the Sacsara catchment using the ASTER Global Digital Elevation Model (ASTER GDEM) with 30 m spatial resolution and a photogrammetric DEM compiled from ALOS PRISM data with 6 m spatial resolution. A sensitivity analysis for various model parameters such as friction and starting conditions was performed, along with an assessment of potential trigger factors. Based on these results, further potential debris-flows for this catchment were modeled, including outburst scenarios of several glacial lakes. In combination with a vulnerability analysis, these hazard scenarios were then incorporated in a qualitative risk analysis. To further reduce the risk for the local communities, technical risk sheets were elaborated for each of the 17 local settlements in the catchment. Furthermore an Early Warning System (EWS) has been designed. The modular structure of the EWS aims at a first step to install an inexpensive but efficient system to detect debris-flow type mass

  14. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    Science.gov (United States)

    George, D. L.; Iverson, R. M.

    2012-12-01

    Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and

  15. Benefits and limitations of using the weather radar for the definition of rainfall thresholds for debris flows. Case study from Catalonia (Spain).

    Science.gov (United States)

    Abancó, C.; Hürlimann, M.; Sempere, D.; Berenguer, M.

    2012-04-01

    Torrential processes such as debris flows or hyperconcentrated flows are fast movements formed by a mix of water and different amounts of unsorted solid material. They occur in steep torrents and suppose a high risk for the human settlements. Rainfall is the most common triggering factor for debris flows. The rainfall threshold defines the rainfall conditions that, when reached or exceeded, are likely to provoke one or more events. Many different types of empirical rainfall thresholds for landslide triggering have been defined. Direct measurements of rainfall data are normally not available from a point next to or in the surroundings of the initiation area of the landslide. For this reason, most of the thresholds published for debris flows have been established by data measured at the nearest rain gauges (often located several km far from the landslide). Only in very few cases, the rainfall data to analyse the triggering conditions of the debris flows have been obtained by weather (Doppler) radar. Radar devices present certain limitations in mountainous regions due to undesired reboots, but their main advantage is that radar data can be obtained for any point of the territory. The objective of this work was to test the use of the weather radar data for the definition of rainfall thresholds for debris-flow triggering. Thus, rainfall data obtained from 3 to 5 rain gauges and from radar were compared for a dataset of events occurred in Catalonia (Spain). The goal was to determine in which cases the description of the rainfall episode (in particular the maximum intensity) had been more accurate. The analysed dataset consists of: 1) three events occurred in the Rebaixader debris-flow monitoring station (Axial Pyrenees) including two hyperconcentrated flows and one debris flow; 2) one debris-flow event occurred in the Port Ainé ski resort (Axial Pyrenees); 3) one debris-flow event in Montserrat (Mediterranean Coastal range). The comparison of the hyetographs from the

  16. Hydrologic conditions and terrestrial laser scanning of post-fire debris flows in the San Gabriel Mountains, CA, U.S.A.

    Science.gov (United States)

    Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.

    2011-01-01

    To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.

  17. Persistent effects of wildfire and debris flows on the invertebrate prey base of rainbow trout in Idaho streams

    Science.gov (United States)

    Rosenberger, A.E.; Dunham, J.B.; Buffington, J.M.; Wipfli, M.S.

    2011-01-01

    Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in Idaho headwater streams a decade after wildfire. Three stream types with different disturbance histories were examined: 1) unburned, 2) burned, and 3) burned followed by debris flows that reset channel morphology and riparian vegetation. The quantity of macroinvertebrate drift (biomass density) was more variable within than among disturbance categories. Average body weight and taxonomic richness of drift were significantly related to water temperature and influenced by disturbance history. During the autumn sampling period, the amount of terrestrial insects in rainbow trout diets varied with disturbance history and the amount of overhead canopy along the stream banks. Results indicate that there are detectable changes to macroinvertebrate drift and trout diet a decade after wildfire, and that these responses are better correlated with specific characteristics of the stream (water temperature, canopy cover) than with broad disturbance classes.

  18. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    Science.gov (United States)

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  19. GIS-based debris flow source and runout susceptibility assessment from DEM data – a case study in NW Nicaragua

    Directory of Open Access Journals (Sweden)

    J. M. Vilaplana

    2007-11-01

    Full Text Available In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk

  20. Debris-flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data

    Directory of Open Access Journals (Sweden)

    J. Lopez Saez

    2011-05-01

    Full Text Available Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps. A Light Detecting and Ranging (LiDAR generated Digital Elevation Model (DEM was used to identify five abandoned channels and related depositional forms (lobes, lateral levees in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L. with clear signs of debris flow events was analyzed and growth disturbances (GD assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931–2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.

  1. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  2. DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 2: Model validation with experiments

    Directory of Open Access Journals (Sweden)

    A. von Boetticher

    2017-11-01

    Full Text Available Here, we present validation tests of the fluid dynamic solver presented in von Boetticher et al. (2016, simulating both laboratory-scale and large-scale debris-flow experiments. The new solver combines a Coulomb viscoplastic rheological model with a Herschel–Bulkley model based on material properties and rheological characteristics of the analyzed debris flow. For the selected experiments in this study, all necessary material properties were known – the content of sand, clay (including its mineral composition and gravel as well as the water content and the angle of repose of the gravel. Given these properties, two model parameters are sufficient for calibration, and a range of experiments with different material compositions can be reproduced by the model without recalibration. One calibration parameter, the Herschel–Bulkley exponent, was kept constant for all simulations. The model validation focuses on different case studies illustrating the sensitivity of debris flows to water and clay content, channel curvature, channel roughness and the angle of repose. We characterize the accuracy of the model using experimental observations of flow head positions, front velocities, run-out patterns and basal pressures.

  3. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  4. The rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at Nevado de Colima Volcano, Mexico

    Science.gov (United States)

    Saucedo, R.; Macías, J. L.; Sarocchi, D.; Bursik, M.; Rupp, B.

    2008-06-01

    On October 16, 1955, at 10:45 a.m. (local time), after three days of intense rain (140 mm) that was twice the monthly average precipitation, a devastating flood surge formed a volcaniclastic debris flow on the eastern slopes of Nevado de Colima Volcano. Nearly simultaneous flood surges formed in the Arroyo Seco, Los Platanos, and Dos Volcanes ravines that coalesced with the larger flow in the Atenquique ravine. At each confluence with a tributary, the flow was diluted. The texture and structure of the preserved 1955 deposits near high water marks indicate that the downstream flow was mainly in the lower range of debris flow concentration (60% sediment concentration by weight). Downstream the tributaries, the flood encountered a ˜ 0.06 × 10 6 m 3 water reservoir that failed, significantly increasing the surge volume. Additional entrained sediment also increased the flow volume. Downstream, the flood wave reached the town of Atenquique as an 8-9 m catastrophic wave causing the death of more than 23 people, the partial destruction of the town, and losses of ˜ 13,000,000 pesos (˜ 1 million US dollars today) to a paper mill and company facilities. According to eyewitness accounts the flood wave had a peak discharge that lasted ca. 10 to 15 minutes at Atenquique. Deposits at the site and the high-water marks observed from photographs of the town's church indicate that sediment concentration was ca. 60 wt.%. The flood continued for about 1 km to its junction with the Tuxpan River where it was diluted by mixing with normal flood flow. The deposits covered an area of ˜ 1.2 km 2 and had a minimum volume of ˜ 3.2 × 10 6 m 3. The main deposit consists of a single unit, averaging 4 m in thickness, with weak textural variations that suggest surging within the flood wave. The deposit is heterolithologic and consists of boulders set in a matrix of sand-size sediment, with polymodal or bimodal distributions and normal grading varying with distance from source. The town of

  5. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects

    Science.gov (United States)

    Iovine, G.; D'Ambrosio, D.; Di Gregorio, S.

    2005-03-01

    In modelling complex a-centric phenomena which evolve through local interactions within a discrete time-space, cellular automata (CA) represent a valid alternative to standard solution methods based on differential equations. Flow-type phenomena (such as lava flows, pyroclastic flows, earth flows, and debris flows) can be viewed as a-centric dynamical systems, and they can therefore be properly investigated in CA terms. SCIDDICA S 4a is the last release of a two-dimensional hexagonal CA model for simulating debris flows characterised by strong inertial effects. S 4a has been obtained by progressively enriching an initial simplified model, originally derived for simulating very simple cases of slow-moving flow-type landslides. Using an empirical strategy, in S 4a, the inertial character of the flowing mass is translated into CA terms by means of local rules. In particular, in the transition function of the model, the distribution of landslide debris among the cells is obtained through a double cycle of computation. In the first phase, the inertial character of the landslide debris is taken into account by considering indicators of momentum. In the second phase, any remaining debris in the central cell is distributed among the adjacent cells, according to the principle of maximum possible equilibrium. The complexities of the model and of the phenomena to be simulated suggested the need for an automated technique of evaluation for the determination of the best set of global parameters. Accordingly, the model is calibrated using a genetic algorithm and by considering the May 1998 Curti-Sarno (Southern Italy) debris flow. The boundaries of the area affected by the debris flow are simulated well with the model. Errors computed by comparing the simulations with the mapped areal extent of the actual landslide are smaller than those previously obtained without genetic algorithms. As the experiments have been realised in a sequential computing environment, they could be

  6. Rockfall-induced impact force causing a debris flow on a volcanoclastic soil slope: a case study in southern Italy

    Directory of Open Access Journals (Sweden)

    P. Budetta

    2010-09-01

    Full Text Available On 10 January 2003, a rockfall of approximately 10 m3 affected a cliff some 25 m high located along the northern slopes of Mt. St. Angelo (Nocera Inferiore, province of Salerno in the southern Italian region of Campania. The impact of boulders on the lower sector of the slope, along which detrital-pyroclastic soils outcrop, triggered a small channelled debris flow of about 500 m3. Fortunately, no damage nor victims resulted from the landslide. Several marks of the impacts were observed at the cliff toe and outside the collapsed area, and the volumes of some fallen boulders were subsequently measured. By means of in-situ surveys, it was possible to reconstruct the cliff's geo-structural layout in detail. A rockfall back-analysis was subsequently performed along seven critical profiles of the entire slope (surface area of about 4000 m2. The results of this numerical modelling using the lumped-mass method were then used to map the kinetic iso-energy curves. In the triggering area of the debris flow, for a falling boulder of 1 m3, the mean kinetic energy was estimated at 120 kJ, this value being equivalent to an impact force, on an inclined surface, of some 800 kN. After landing, due to the locally high slope gradient (about 45°, and low angle of trajectory at impact (about 23°, some boulders slid down the slope as far as the endpoints. The maximum depth of penetration into the ground by a sliding block was estimated at about 16 cm. Very likely, owing to the high impact force of boulders on the saturated soil slope outcropping at the cliff base, the debris flow was triggered under undrained loading conditions. Initial failure was characterized by a translational slide involving a limited, almost elliptical area where the pyroclastic cover shows greater thickness in comparison with the surrounding areas.

  7. Debris Flows and Water Tracks in Continental Antarctica: Water as a geomorphic agent in a hyperarid polar desert

    Science.gov (United States)

    Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.

    2017-09-01

    Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.

  8. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.

    Science.gov (United States)

    Costard, F; Forget, F; Mangold, N; Peulvast, J P

    2002-01-04

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  9. Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards

    Science.gov (United States)

    Papathoma-Köhle, Maria

    2016-08-01

    The assessment of the physical vulnerability of elements at risk as part of the risk analysis is an essential aspect for the development of strategies and structural measures for risk reduction. Understanding, analysing and, if possible, quantifying physical vulnerability is a prerequisite for designing strategies and adopting tools for its reduction. The most common methods for assessing physical vulnerability are vulnerability matrices, vulnerability curves and vulnerability indicators; however, in most of the cases, these methods are used in a conflicting way rather than in combination. The article focuses on two of these methods: vulnerability curves and vulnerability indicators. Vulnerability curves express physical vulnerability as a function of the intensity of the process and the degree of loss, considering, in individual cases only, some structural characteristics of the affected buildings. However, a considerable amount of studies argue that vulnerability assessment should focus on the identification of these variables that influence the vulnerability of an element at risk (vulnerability indicators). In this study, an indicator-based methodology (IBM) for mountain hazards including debris flow (Kappes et al., 2012) is applied to a case study for debris flows in South Tyrol, where in the past a vulnerability curve has been developed. The relatively "new" indicator-based method is being scrutinised and recommendations for its improvement are outlined. The comparison of the two methodological approaches and their results is challenging since both methodological approaches deal with vulnerability in a different way. However, it is still possible to highlight their weaknesses and strengths, show clearly that both methodologies are necessary for the assessment of physical vulnerability and provide a preliminary "holistic methodological framework" for physical vulnerability assessment showing how the two approaches may be used in combination in the future.

  10. Analysis of Debris Flow Kuranji River in Padang City Using Rainfall Data, Remote Sensing and Geographic Information System

    International Nuclear Information System (INIS)

    Umar, Z; Wan Mohd Akib, W A A; Ahmad, A

    2014-01-01

    Flash flood is the most common environmental hazard worldwide. This phenomenon is usually occurs due to intense and prolonged rainfall spells on saturated ground. When there is a rapid rise in water levels and high flow-velocities of the stream occur, the channel overflows and the result is a flash flood. Flash floods normally cause a dangerous wall of roaring water carrying rocks, mud and other debris. On Tuesday, July 24, 2012 at 18:00 pm, a flash flood (debris flow) struck Kuranji River whereby 19 urban villages in seven (7) sub-districts in the city of Padang were affected by this flood disaster. The temporary loss estimated is 40 Billion US Dollar reported by the West Sumatra Provincial Government due to many damages of the built environment infrastructures. This include damaged houses of 878 units, mosque 15 units, irrigation damaged 12 units, bridges 6 units, schools 2 units and health posts 1 unit. Generally, widely used methods for making a landslide study are Geographic Information System (GIS) and Remote Sensing techniques. The landslide information extracted from remotely sensed products is mainly related to morphology, vegetation and hydrologic conditions of a slope. While GIS is used to create a database, data management, data display and to analyze data such as thematic maps of land use/land cover, normalized difference vegetation index (NDVI), rainfall data and soil texture. This paper highlights the analysis of the condition of the Watershed Kuranji River experiencing flash floods, using remote sensing satellite image of Landsat ETM 7 in 2009 and 2012 and Geographic Information System (GIS). Furthermore, the data was analyzed to determine whether this flash flood occurred due to extreme rain or collapse of existing natural dams in the upstream of the Kuranji River

  11. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    Science.gov (United States)

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  12. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events

    Science.gov (United States)

    Frodella, William; Salvatici, Teresa; Pazzi, Veronica; Morelli, Stefano; Fanti, Riccardo

    2017-10-01

    Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy) between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD), located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010-December 2012) and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.

  13. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events

    Directory of Open Access Journals (Sweden)

    W. Frodella

    2017-10-01

    Full Text Available Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD, located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR, was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010–December 2012 and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.

  14. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  15. Potential postwildfire debris-flow hazards - a prewildfire evaluation for the Sandia and Manzano Mountains and surrounding areas, central New Mexico

    Science.gov (United States)

    Anne C. Tillery; Jessica R. Haas; Lara W. Miller; Joe H. Scott; Matthew P. Thompson

    2014-01-01

    Wildfire can drastically increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although there is no way to know the exact location, extent, and severity of wildfire, or the subsequent rainfall intensity and duration before it happens, probabilities...

  16. Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Smolíková, J.; Blahůt, Jan; Vilímek, V.

    2016-01-01

    Roč. 13, č. 4 (2016), s. 683-696 ISSN 1612-510X Institutional support: RVO:67985891 Keywords : debris flow * rainfall pattern * rainfall thresholds * Jizerské hory Mts. * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.657, year: 2016

  17. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    Science.gov (United States)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention

  18. Thresholds of motion of shell debris under unidirectional flow: influence of faunal composition

    Science.gov (United States)

    Rieux, A.; Weill, P.; Mouazé, D.; Poirier, C.; Tessier, B.

    2017-12-01

    Quantifying bottom sediment erodibility is necessary to refine understanding of coastal processes and fossil records. Coastal sediments are partly composed of biogenic particles, which shape and density differ from rounded quartz grain and vary between species. Numerous studies have investigated the hydrodynamic behaviour of bioclastic sediments derived from reef-dwelling organisms, but research focusing on "cool-water carbonate" bioclastic particles (i.e. mollusc shell debris, calcareous algae, …) are rare. The present study aims in characterizing the influence of faunal composition on the entrainment threshold of mollusc shell debris from temperate regions. Shells have been sampled on shelly ridges in the southern coast of the Mont-Saint-Michel bay (NW France), before being ground and separated into individual sieve fractions. Eight species, representative of the local faunal composition, have been studied: four wild (cockle, furrow shell, saddle oyster, flat oyster), three reared (japanese oyster, mussel, manila clam) and one introduced (slipper limpet) species. Experiments for defining the threshold of motion of all samples were conducted in a small recirculating flume, under unidirectional current, and using an Acoustic Doppler Velocimeter Profiler. Critical bed shear stress values (τcr) were derived from velocity profiles in the boundary layer, by a logarithmic regression of the "law of the wall". Depending on the species, the evolution of τcr with increasing grain diameters follows either an asymptotic or a more linear trend. Differences between species can be discerned: saddle oyster, japanese oyster and flat oyster show the smallest τcr, slipper limpet, furrow shell and mussel have an intermediate τcr and cockle and manila clam the highest τcr. For the 2-3.15 mm fraction, τcr ranges from 0.38 N.m-2 (saddle oyster) to 2.13 N.m-2 (cockle). Oyster shells (japanese and flat oysters) are composed of foliated sheets of calcite, interbedded with soft

  19. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  20. COOLOCE debris bed experiments and simulations investigating the coolability of cylindrical beds with different materials and flow modes

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, E.; Kinnunen, T.; Holmstroem, S.; Lehtikuusi, T. [VTT Technical Research Centre of Finland (Finland)

    2013-07-15

    The COOLOCE experiments aim at investigating the coolability of debris beds of different geometries, flow modes and materials. A debris bed may be formed of solidified corium as a result of a severe accident in a nuclear power reactor. The COOLOCE-8 test series consisted of experiments with a top-flooded test bed with irregular gravel as the simulant material. The objective was to produce comparison data useful in estimating the effects of different particle materials and the possible effect of the test arrangement on the results. It was found that the dryout heat flux (DHF) measured for the gravel was lower compared to previous experiments with spherical beads, and somewhat lower compared to the early STYX experiments. The difference between the beads and gravel is at least partially explained by the smaller average size of the gravel particles. The COOLOCE-9 test series included scoping experiments examining the effect of subcooling of the water pool in which the debris bed is immersed. The experiments with initially subcooled pool suggest that the subcooling may increase DHF and increase coolability. The aim of the COOLOCE-10 experiments was to investigate the effect of lateral flooding on the DHF a cylindrical test bed. The top of the test cylinder and its sidewall were open to water infiltration. It was found that the DHF is increased compared to a top-flooded cylinder by more than 50%. This suggests that coolability is notably improved. 2D simulations of the top-flooded test beds have been run with the MEWA code. Prior to the simulations, the effective particle diameter for the spherical beads and the irregular gravel was estimated by single-phase pressure loss measurements performed at KTH in Sweden. Parameter variations were done for particle size and porosity used as input in the models. It was found that with the measured effective particle diameter and porosity, the simulation models predict DHF with a relatively good accuracy in the case of spherical

  1. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    Science.gov (United States)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    . Optimized pit filling techniques use both cut and fill operations to minimize modifications of the original DEM. Satellite image interpretation and field surveying provide the baseline upon which to test the accuracy of each model simulation. By outlining areas that could potentially be inundated by debris flows, these efforts can be used to more accurately identify the places and assets immediately exposed to landslide hazards. We contextualize the results of the previous and ongoing efforts into how they may be incorporated into decision support systems. We also discuss if and how these analyses would have provided additional knowledge in the past, and identify specific recommendations as to how they could contribute to a more robust decision support system in the future.

  2. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  3. Study of ice-related flow features around Tanaica Montes, Mars: Implications for late amazonian debris-covered glaciation

    Science.gov (United States)

    Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.

    2017-11-01

    Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface

  4. Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austira)

    Science.gov (United States)

    Janu, Stefan; Mehlhorn, Susanne; Moser, Markus

    2013-04-01

    Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austria) Authors: Stefan Janu, Susanne Mehlhorn, Markus Moser The village of St. Lorenzen, in the Styrian Palten valley is situated on the banks of the Lorenz torrent, in which a debris flow event occurred in the early morning hours of the 21st of July 2012, causing catastrophic damage to residential buildings and other infrastructural facilities. In the ministry-approved hazard zone map of 2009, the flood water discharge and bedload volume associated with a 150-year event was estimated at 34 m³/s and 25,000 m³ respectively for the 5.84 km² catchment area. The bedload transport capacity of the torrent was classified as ranging from 'heavy' to 'capable of producing debris flows'. The dominant process type of the mass movement event may be described as a fine-grained debris flow. The damage in the residential area of St.Lorenzen was caused by a debris flow pulse in the lower reach of the Lorenz torrent. This debris flow pulse was in turn caused by numerous landslides along the middle reaches of the torrent, some of which caused blockages, ultimately leading to an outburst event in the main torrent. Discharge cross-sections ranging from 65 - 90 m², and over 100 m² in a few instances, were measured upstream of the St. Lorenzen residential area. Back-calculations of velocities yielded an average debris flow velocity along the middle reaches of the torrent between 11 and 16 m/s. An average velocity of 9 m/s was calculated for the debris flow at the neck of the alluvial fan directly behind the center of the village. Due to both the high discharge values as well as to the height of the mass movement deposits, the natural hazard event of 21 July 2012 in St. Lorenzen is clearly to be described as having had an extreme intensity. A total of 67 buildings were damaged along the Lorenz torrent, 7 of were completely destroyed. According to the Austrian Service for

  5. Debris-flow susceptibility assessment through cellular automata modeling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy

    Directory of Open Access Journals (Sweden)

    G. Iovine

    2003-01-01

    Full Text Available On 15–16 December 1999, heavy rainfall severely stroke Campania region (southern Italy, triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope eroding the soil cover and increasing their original volume. At the base of the slopes, debris flows impacted on the urban areas, causing victims and severe destruction (Vittori et al., 2000. Starting from a recent study on landslide risk conditions in Campania, carried out by the Regional Authority (PAI –Hydrogeological setting plan, in press, an evaluation of the debris-flow susceptibility has been performed for selected areas of the above mentioned villages. According to that study, such zones would be in fact characterised by the highest risk levels within the administrative boundaries of the same villages ("HR-zones". Our susceptibility analysis has been performed by applying SCIDDICA S3–hex – a hexagonal Cellular Automata model (von Neumann, 1966, specifically developed for simulating the spatial evolution of debris flows (Iovine et al., 2002. In order to apply the model to a given study area, detailed topographic data and a map of the erodable soil cover overlying the bedrock of the massif must be provided (as input matrices; moreover, extent and location of landslide source must also be given. Real landslides, selected among those triggered on winter 1999, have first been utilised for calibrating SCIDDICA S3–hex and for defining "optimal" values for parameters. Calibration has been carried out with a GIS tool, by quantitatively comparing simulations with actual cases: optimal values correspond to best simulations. Through geological evaluations, source locations of new phenomena have then been hypothesised within the HR-zones. Initial

  6. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania

    Science.gov (United States)

    Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin

    2018-02-01

    Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.

  7. Sem Analysis of particles from the 28, 000 B.P El Zaguan debris avalanche deposit, Nevado de Toluca volcano, Central Mexico: evidences of flow behavior during emplacement

    Science.gov (United States)

    Caballero, L.; Capra, L.

    2008-12-01

    The Zaguan deposit originated at 28, 000 yr. B.P from the flank collapse of the Nevado de Toluca volcano, a dacitic stratovolcano of the Transmexican Volcanic Belt. A Scanning Electron Microprobe analysis (SEM) was made to some clasts of this deposit to observe microtextures produced during transport and emplacement of the debris avalanche flow. Particles from 2, 0 and -2 Φ granulometric classes were randomly selected and their surface textures were described. The textures observed were divided in two groups, collision and shear structures indicating different clast interaction. Shear textures were observed predominantly on the basal part of the deposit and consisted of parallel ridges, parallel grooves, scratches and lips. Collision textures were mainly present in the upper part of the deposit and consisted of fractures, percussion marks, and broken or grinded crystals. These characteristics, coupled with field observation, like the presence of clast dikes and deformed lacustrine megaclasts, indicate that the basal part of the debris avalanche was moving in a partially liquefied state, were particles were not able to move freely because of the confinement exerted by the upper part of the flow, so shear stresses dominated. On the contrary, the particles in the upper part were able to move freely so the principal mechanism of interaction between particles was collision. These microscopic textures are in agreement with previously described behavior of emplacement of debris avalanches of volcanic origin, that suggest a stratified flow dominated by different transport and depositional mechanism depending on flow depth and possible fluid content at their base.

  8. Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria

    2011-01-01

    High‐resolution helicopter magnetic and electromagnetic (HEM) data flown over the rugged, ice‐covered Mt. Adams, Mt. Baker and Mt. Rainier volcanoes (Washington), reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water‐saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Alteration at Mount Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The EM data identified water‐saturated rocks from the surface to the detection limit (100–200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. The best estimates for ice thickness are obtained over relatively low resistivity (<800 ohm‐m) ground for the main ice cap on Mt. Adams and over most of the summit of Mt. Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration‐related debris flows, including the Sunset Amphitheater region at Mt. Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams and eastern flanks of Mt. Baker.

  9. Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning

    International Nuclear Information System (INIS)

    Sättele, Martina; Bründl, Michael; Straub, Daniel

    2015-01-01

    Early Warning Systems (EWS) are increasingly applied to mitigate the risks posed by natural hazards. To compare the effect of EWS with alternative risk reduction measures and to optimize their design and operation, their reliability and effectiveness must be quantified. In the present contribution, a framework approach to the evaluation of threshold-based EWS for natural hazards is presented. The system reliability is classically represented by the Probability of Detection (POD) and Probability of False Alarms (PFA). We demonstrate how the EWS effectiveness, which is a measure of risk reduction, can be formulated as a function of POD and PFA. To model the EWS and compute the reliability, we develop a framework based on Bayesian Networks, which is further extended to a decision graph, facilitating the optimization of the warning system. In a case study, the framework is applied to the assessment of an existing debris flow EWS. The application demonstrates the potential of the framework for identifying the important factors influencing the effectiveness of the EWS and determining optimal warning strategies and system configurations. - Highlights: • Warning systems are increasingly applied measures to reduce natural hazard risks. • Bayesian Networks (BN) are powerful tools to quantify warning system's reliability. • The effectiveness is defined to assess the optimality of warning systems. • By extending BNs to decision graphs, the optimal warning strategy is identified. • Sensors positioning significantly influence the effectiveness of warning systems

  10. Textural analysis of particles from El Zaguán debris avalanche deposit, Nevado de Toluca volcano, Mexico: Evidence of flow behavior during emplacement

    Science.gov (United States)

    Caballero, Lizeth; Capra, Lucia

    2011-02-01

    El Zaguán deposit originated at 28,000 yrs. B.P. from the flank collapse of Nevado de Toluca, a dacitic stratovolcano of the Transmexican Volcanic Belt. Scanning Electron Microprobe analyses (SEM) were performed on some particles from this deposit to observe microtextures produced during transport and emplacement of the debris avalanche flow. Particles from 2ϕ (250 μm), 0ϕ (1 mm) and - 2ϕ (4 mm) granulometric classes were randomly selected at different outcrops, and their surface textures were described. The observed textures are divided in two groups, Basal and Upper textures, each one indicating different clast interactions. Basal textures are observed predominantly in the lower part of the deposit and consist of parallel ridges, parallel grooves, scratches and lips. Upper textures are mainly present in the upper part of the deposit and consisted of fractures, percussion marks, and broken or grinded crystals. These characteristics, coupled with field observations such as the presence of clastic dikes and deformed lacustrine mega-blocks, indicate that the basal part of the debris avalanche was moving in a partially liquefied state. By contrast, the particles in the upper part were able to move freely, interacting by collision. These microscopic textures are in agreement with previously described emplacement behaviors in debris avalanches of volcanic origin, suggesting a stratified flow dominated by different transport and depositional mechanisms depending upon flow depth and possible fluid content at their base.

  11. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  12. Lessons learnt from past Flash Floods and Debris Flow events to propose future strategies on risk management

    Science.gov (United States)

    Cabello, Angels; Velasco, Marc; Escaler, Isabel

    2010-05-01

    Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk

  13. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    Science.gov (United States)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  14. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    Science.gov (United States)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  15. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  16. Debris flows of the mountain massif of Hjorthfjellet and Adventtoppen, Svalbard: Implications for gullies on mountains in the Argyre basin, Mars

    Science.gov (United States)

    Reiss, D.; Hiesinger, H.; Zanetti, M.; Hauber, E.; Johnsson, A.; Carlsson, E.; Raack, J.; Olvmo, M.; Johansson, H. A. B.; Johansson, L.; Fredriksson, S.; Schmidt, H. T.; McDaniel, S.; Heldmann, J. L.; McKay, C. P.

    2008-09-01

    Martian gullies resemble terrestrial features formed by mass-wasting processes of a flowing mixture of clastic debris and water (debris flows). Their existence on Mars is interpreted to indicate liquid water in the recent past because of their pristine appearance, their stratigraphic relationships to young surface features, their lack of superimposed impact craters, and their distinct albedo relative to the surroundings, indicating limited dust cover [1]. The global distribution of gullies is limited to midand high-latitudes poleward of 30° in both hemispheres, with the highest frequency in the 30°- 50° latitude bands [1, 2]. Gullies occur preferentially on poleward-facing slopes [1, 2, 3, 4]. The most likely and physically most plausible medium to explain the gully morphology is liquid water [e.g., 1, 5]. Two main theories exist for the water source. One holds that water was released from the subsurface [1]. The other proposes that water is deposited as nearsurface ice or snow from the atmosphere and is subsequently melted by insolation [6, 7]. Debris flows found in Arctic climates on Earth could be an equitable analog for the Martian gullies. A comparative analysis might help to understand their formation mechanisms and the latitude-dependent, but clustered distribution as well as their specific orientations. The comparative analysis in the Arctic environment of Svalbard will be carried out in July/August of 2008. First results of the analog study of gullies will be presented at the conference. Debris flows on Svalbard Svalbard is located at 76°-81°N and 10°-35°E (Fig. 1), in the discontinuous zone of permafrost. Because the landscape of Svalbard is under the influence of the polar desert climate, it is a good analog for comparative Martian studies. These were performed in the last two years in the valley of Longyearbyen and on costal slopes of Isfjorden [8]. This study is complementary to the one described by Carlsson et al., 2008, this issue). Here we

  17. Constraints on the formation and properties of a Martian lobate debris apron: Insights from high-resolution topography, SHARAD radar data, and a numerical ice flow model

    Science.gov (United States)

    Parsons, Reid; Holt, John

    2016-03-01

    Lobate debris aprons (LDAs) are midlatitude deposits of debris-covered ice formed during one or more periods of glaciation during the Amazonian period. However, little is known about the climate conditions that led to LDA formation. We explore a hypothesis in which a single, extended period of precipitation of ice on the steep slopes of Euripus Mons (45°S, 105°E—east of the Hellas Basin) produced a flowing ice deposit which was protected from subsequent ablation to produce the LDA found at this location. We test this hypothesis with a numerical ice flow model using an ice rheology based on low-temperature ice deformation experiments. The model simulates ice accumulation and flow for the northern and southern lobes of the Euripus Mons LDA using basal topography constrained by data from the Shallow Radar (SHARAD) and a range of ice viscosities (determined by ice temperature and ice grain size). Simulations for the northern lobe of the Euripus LDA produce good fits to the surface topography. Assuming an LDA age of ˜60 Myr and an expected temperature range of 200 to 204 K (for various obliquities) gives an ice grain size of ≈2 mm. Simulations of the southern section produce poor fits to surface topography and result in much faster flow timescales unless multiple ice deposition events or higher ice viscosities are considered.

  18. Radar-based quantitative precipitation estimation for the identification of debris flow occurrence over earthquake-affected regions in Sichuan, China

    Science.gov (United States)

    Shi, Zhao; Wei, Fangqiang; Chandrasekar, Venkatachalam

    2018-03-01

    Both Ms 8.0 Wenchuan earthquake on 12 May 2008 and Ms 7.0 Lushan earthquake on 20 April 2013 occurred in the province of Sichuan, China. In the earthquake-affected mountainous area, a large amount of loose material caused a high occurrence of debris flow during the rainy season. In order to evaluate the rainfall intensity-duration (I-D) threshold of the debris flow in the earthquake-affected area, and to fill up the observational gaps caused by the relatively scarce and low-altitude deployment of rain gauges in this area, raw data from two S-band China New Generation Doppler Weather Radar (CINRAD) were captured for six rainfall events that triggered 519 debris flows between 2012 and 2014. Due to the challenges of radar quantitative precipitation estimation (QPE) over mountainous areas, a series of improvement measures are considered: a hybrid scan mode, a vertical reflectivity profile (VPR) correction, a mosaic of reflectivity, a merged rainfall-reflectivity (R - Z) relationship for convective and stratiform rainfall, and rainfall bias adjustment with Kalman filter (KF). For validating rainfall accumulation over complex terrains, the study areas are divided into two kinds of regions by the height threshold of 1.5 km from the ground. Three kinds of radar rainfall estimates are compared with rain gauge measurements. It is observed that the normalized mean bias (NMB) is decreased by 39 % and the fitted linear ratio between radar and rain gauge observation reaches at 0.98. Furthermore, the radar-based I-D threshold derived by the frequentist method is I = 10.1D-0.52 and is underestimated by uncorrected raw radar data. In order to verify the impacts on observations due to spatial variation, I-D thresholds are identified from the nearest rain gauge observations and radar observations at the rain gauge locations. It is found that both kinds of observations have similar I-D thresholds and likewise underestimate I-D thresholds due to undershooting at the core of convective

  19. 梳子坝对土石流之防治效率%The Controlling Efficiency of Slit Dam for Debris Flow Disaster

    Institute of Scientific and Technical Information of China (English)

    连惠邦; 柴钫武; 柯志宗

    2001-01-01

    Using mass conservation law of debris flow which passing through a slit dam and laboratory experiments, this paper has established three primary efficiency parameters: the sediment flow-out ratio, sediment concentration ratio, and sediment storage rate behind the slit dam. These efficiency parameters are developed to evaluate the effectiveness of the slit dam in retarding the debris flow and to design the height and spacing of posts and the location of a slit dam or a series of slit dams.%梳子坝是一种透过性坝体,可以有效地防止土石流之危害。因此,本研究经由土石流通过梳子坝的质量守恒定律和渠槽试验,分别建立土砂流出率、泥砂体积浓度比及贮砂率等三种主要的效率参数,作为评估梳子坝防治土石流之效率,并据以发展出一种简单的设计模式,可以用来设计单一梳子坝的高度、开口间距及总开口宽度等坝体几何因子。

  20. Mathematical modelling of the transport of a poorly sorted granular mixture as a debris-flow. The case of Madeira Island torrential floods in 2010

    Science.gov (United States)

    Ferreira, Rui M. L.; Oliveira, Rodrigo P.; Conde, Daniel

    2016-04-01

    On the 20th February 2010, heavy rainfall was registered at Madeira Island, North Atlantic. Stony debris flows, mudflows and mudslides ensued causing severe property loss, 1.5 m thick sediment deposits at downtown Funchal including 16th century monuments, and a death toll of 47 lives. Debris-flow fronts propagated downstream while carrying very high concentrations of solid material. These two-phase solid-fluid flows were responsible for most of the infrastructural damage across the island, due to their significantly increased mass and momentum. The objective of the present modelling work is to validate a 2DH model for torrential flows featuring the transport and interaction of several size fractions of a poorly-sorted granular mixture typical of stony debris flow in Madeira. The module for the transport of poorly-sorted material was included in STAV-2D (CERIS-IST), a shallow-water and morphology solver based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe-Riemann solver, with appropriate source-term formulations to ensure full conservativeness. STAV-2D also includes formulations of flow resistance and bedload transport adequate for debris-flows with natural mobile beds (Ferreira et al., 2009) and has been validated with both theoretical solutions and laboratory data (Soares-Frazão et al., 2012; Canelas et al., 2013). The modelling of the existing natural and built environment is fully explicit. All buildings, streets and channels are accurately represented within the mesh geometry. Such detail is relevant for the reliability of the validation using field data, since the major sedimentary deposits within the urban meshwork of Funchal were identified and characterized in terms of volume and grain size distribution during the aftermath of the 20th February of 2010 event. Indeed, the measure of the quality of the numerical results is the agreement between simulated and estimated volume of deposited sediment and between estimated and

  1. Risk management on an alluvial fan: a case study of the 2008 debris-flow event at Villar Pellice (Piedmont, N-W Italy

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2010-05-01

    Full Text Available In the Piedmont Region (North-Western Italy, the regional authorities manage debris flow risk by following the ideal sequence of steps that are generally pursued in land planning and civil protection activities. Complex procedures and methods are elaborated and widely discussed with politicians, economists and the general public. On the contrary, in emergency situations, civil protection agencies generally prefer the adoption of simple and flexible criteria. In this paper, a catastrophic debris flow event, that occurred in 2008 in Villar Pellice, is described in this perspective, after an analysis of the triggering rainfalls and of the effects on human life and properties. The availability of a series of personal accounts coming from people who witnessed the occurrences before, during and after the event has allowed us to analyse, in detail, the dynamics of the event. Thanks to these accounts, it has been possible to propose new guidelines for the planning of the emergency activities in areas that are potentially prone to similar impulsive phenomena.

  2. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    Science.gov (United States)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  3. High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments

    Directory of Open Access Journals (Sweden)

    Ryodo Hemmi

    2018-04-01

    Full Text Available A northern ocean of Mars is still debated and, if it existed, it may have accompanied valley networks and/or outflow channels, which may have led to the emplacement of a large amount of water to the northern lowlands during the Noachian and/or Hesperian times. However, it is unclear how and under what conditions (submarine or subaerial geologic features such as mounds and giant polygons formed in the northern lowlands. The densely-distributed mounds in Chryse and Acidalia Planitia, >1000 km-wide basins of the northern plains, were suggested to be ancient mud volcanoes formed in an aqueous setting, which is controversial (i.e., mud vs. igneous and submarine vs. subaerial. However, these mounds have not been quantitatively well characterized, particularly with respect to their detailed topography. Here we generated forty digital elevation models (DEMs with resolution of up to 1 m/pixel from High Resolution Imaging Science Experiment (HiRISE stereo image pairs, and we accurately measured the morphometric parameters of ~1300 mounds within the southern part of the Acidalia basin. Their heights and diameters resulted in good accordance with those of mud and igneous volcanoes in submarine/subaerial settings on Earth. Maximum depths of their source reservoirs vary from ~30 to ~450 m for a subaqueous setting and from ~110 to ~860 m for a subaerial setting, both of which are consistent with fluid expulsion from the ~100–4500 m-thick flood deposits (Vastitas Borealis Formation, VBF. On the basis of the morphometric values, we estimated rheological properties of materials forming the mounds and found them consistent with a mud flow origin, which does not rule out an igneous origin. The conditions of possible submarine mud or igneous volcanoes may have harbored less hazardous environments for past life on Mars than those on an ocean-free surface.

  4. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  5. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  6. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    Science.gov (United States)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  7. Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management

    Directory of Open Access Journals (Sweden)

    H. Staffler

    2008-06-01

    Full Text Available The main goals of this study were to identify the alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied.

    The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.

  8. The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment

    Directory of Open Access Journals (Sweden)

    R. H. Guthrie

    2012-05-01

    Full Text Available A large rock avalanche occurred at 03:27:30 PDT, 6 August 2010, in the Mount Meager Volcanic Complex southwest British Columbia. The landslide initiated as a rock slide in Pleistocene rhyodacitic volcanic rock with the collapse of the secondary peak of Mount Meager. The detached rock mass impacted the volcano's weathered and saturated flanks, creating a visible seismic signature on nearby seismographs. Undrained loading of the sloping flank caused the immediate and extremely rapid evacuation of the entire flank with a strong horizontal force, as the rock slide transformed into a debris flow. The disintegrating mass travelled down Capricorn Creek at an average velocity of 64 m s−1, exhibiting dramatic super-elevation in bends to the intersection of Meager Creek, 7.8 km from the source. At Meager Creek the debris impacted the south side of Meager valley, causing a runup of 270 m above the valley floor and the deflection of the landslide debris both upstream (for 3.7 km and downstream into the Lillooet River valley (for 4.9 km, where it blocked the Lillooet River river for a couple of hours, approximately 10 km from the landslide source. Deposition at the Capricorn–Meager confluence also dammed Meager Creek for about 19 h creating a lake 1.5 km long. The overtopping of the dam and the predicted outburst flood was the basis for a night time evacuation of 1500 residents in the town of Pemberton, 65 km downstream. High-resolution GeoEye satellite imagery obtained on 16 October 2010 was used to create a post-event digital elevation model. Comparing pre- and post-event topography we estimate the volume of the initial displaced mass from the flank of Mount Meager to be 48.5 × 106 m3, the height of the path (H to be 2183 m and the total length of the path (L to be 12.7 km. This yields H/L = 0.172 and a fahrböschung (travel angle of 9.75°. The movement was recorded on seismographs in British

  9. Magnitude-frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; Jensen, Niels H.; Veihe, Anita

    2013-01-01

    The Faroe Islands in the North Atlantic Ocean are highly susceptible to debris-avalanches and debris-flows originating from debris-slide activity in shallow colluvial soils. To provide data for hazard and risk assessment of debris-avalanches and debris-flows, this study aims at quantifying the ma...

  10. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    Science.gov (United States)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  11. Flash floods and debris flow: how the risk could can be better managed? The case of the events in Sicily on October 2009

    Science.gov (United States)

    Aronica, Giuseppe T.; Brigandi', Giuseppina

    2010-05-01

    Flash floods are phenomena in which the important hydrologic processes are occurring on the same spatial and temporal scales as the intense precipitation. Most of the catchments of the Messina area in the North-East part of Sicily (Italy), are prone to flash flood formation. They are, in fact, small, with a steep slope, and characterised by short concentration times. Moreover, those catchments are predominantly rural in the upper mountainous part, while the areas next to the outlet are highly urbanized with areas that cover not only the floodplain but also the river bed itself as the main roads were previously part of the torrent. This situation involve an high risk of economic losses and human life in case of flash flood in these areas. In the last years the area around Messina has been interested by severe flash floods and debris flow. The events occurred on 25th October 2007 in the Mastroguglielmo torrent and 1st October 2009 on Racinazzi and Gianpilieri torrents are an example of flash floods and debris flow events that caused not only significant economic damages to property, buildings, roads and bridges but also, for this that concern the 1st October 2009 flash flood, loss of human life. The main focus of this work is, basing on the post event analysis of the 2009 flash flood event, to try to understand which could be the better preventive measures and mitigation strategies that can be provided for a better risk management in these areas too many times affected by devastating events. Flood management can be controlled by either structural or non-structural measures. Adoption of a certain measure depends critically on the hydrological and hydraulic characteristics of the river system and the region. Flash flood management includes a number of phases that should be included in any management strategy like prevention, mitigation, preparedness, response and recovery. Forecasting based on hydrological precursors based on the soil moisture condition at the

  12. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  13. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  14. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    Science.gov (United States)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  15. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into

  16. Mass wasting and subaerial weathering in guyot formation: the Hawaiian and Canary Ridges as examples

    Science.gov (United States)

    Christian Smoot, N.

    1995-10-01

    By using a combination of bathymetry and topography in the computerized GRASS 3D package, guyot evolution has been determined on the fast-moving Pacific plate for the subaerial, low sloped Hawaiian Island chain. On the slow-moving African plate, the timing of guyot formation has been determined for the subaerial, steeper sloped Canary Islands chain. In the Hawaiian chain, the Niihau Island platform was already essentially formed, although there is a platform at the 180 m elevation on Kauai Island if the remaining peaks are discounted. By Fuerteventura Island in the Canary chain the seamount/island has already been flattened. Both of these platforms are far above the influence of wave cutting. The causal agent of flattening is primarily mass wasting by landsliding, caused in part by earthquake activity on the moving plates. This disproves the subsidence and wavecut theory of guyot formational processes in that the guyot is already formed before it subsides. The islands lie in the tropical coral zone, yet coral formation has little effect on the flattening process. This may be because the turbidity from slumps kills the coral. This exercise also gives a time limit for the reduction of pristine volcanic slopes to the typical guyot surface, that time being between one and four million years. It is apparent that wave cutting merely polishes the stone, applying the finishing patina.

  17. Exotic clasts, debris flow deposits and their significance for reconstruction of the Istebna Formation (Late Cretaceous - Paleocene, Silesian Basin, Outer Carpathians)

    Science.gov (United States)

    Strzeboński, Piotr; Kowal-Kasprzyk, Justyna; Olszewska, Barbara

    2017-08-01

    The different types of calcareous exotic clasts (fragments of pre-existing rocks), embedded in the Paleocene siliciclastic deposits of the Istebna Formation from the Beskid Mały Mountains (Silesian Unit, Western Outer Carpathians), were studied and differentiated through microfacies-biostratigraphical analysis. Calcareous exotics of the Oxfordian- Kimmeridgian age prevail, representing a type of sedimentation comparable to that one documented for the northern Tethyan margin. The Tithonian exotic clasts (Štramberk-type limestones), which are much less common, were formed on a carbonate platform and related slope. The sedimentary paleotransport directions indicate the Silesian Ridge as a main source area for all exotics, which were emplaced in the depositional setting of the flysch deposits. The exotics constitute a relatively rare local component of some debrites. Proceedings of the sedimentological facies analysis indicate that these mass transport deposits were accumulated en-masse by debris flows in a deep-water depositional system in the form of a slope apron. Exotics prove that clasts of the crystalline basement and, less common, fragments of the sedimentary cover, originated from long-lasting tectonic activity and intense uplift of the source area. Mass transport processes and mass accumulation of significant amounts of the coarse-grained detrital material in the south facial zone of the Silesian Basin during the Early Paleogene was due to reactivation of the Silesian Ridge and its increased denudation. Relative regression and erosion of the emerged older flysch deposits were also forced by this uplift. These processes were connected with the renewed diastrophic activity in the Alpine Tethys.

  18. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  19. The RHYTMME system: an operational real-time warning and mapping system for flash floods, debris flows, landslide and rock falls in Southeastern France.

    Science.gov (United States)

    Fouchier, Catherine; Mériaux, Patrice; Atger, Frédéric; Ecrepont, Stéphane; Liébault, Frédéric; Bertrand, Mélanie; Bel, Coraline; Batista, Dominique; Azemard, Pierre; Saint-Martin, Clotilde; Javelle, Pierre

    2016-04-01

    Almost all municipalities of Southeastern France are concerned by natural hazards triggered by heavy rainfalls such as floods, debris flows, landslides and rock falls. Although some tools exist to forecast and monitor heavy rains and floods in France, their spatial resolution sometimes does not meet the needs of local risk managers who have to monitor events at a small spatial scale. In order to improve the risk management in the mountainous and Mediterranean areas of Southeastern France, Irstea and Météo-France have led the RHYTMME project. The goal of this project is to improve the ability to forecast and localize high-risk rainfall-induced hazards in the Provence-Alpes-Côte d'Azur administrative area. This goal is currently under achievement thanks to the implementation of a real-time warning and mapping system for rainfall induced natural hazards, fed by radar data and whose outputs are made available via the Internet to operators in charge of risk management (local and regional authorities, emergency and rescue services, road and rail networks managers, ...). This system provides maps which display in real-time: - the radar estimations of rainfall for different rain durations and at the spatial resolution of 1 km² (Westrelin et al., 2013), - the estimation of the scarcity of these rainfall estimations, also at the spatial resolution of 1 km², thanks to a comparison with threshold values provided by a regionalized stochastic hourly point rainfall generator (Arnaud et al., 2007), - an anticipation of the rivers discharges, computed at the outlet of 1700 watersheds of Southeastern France thanks to the AIGA warning system which combines a rainfall runoff model and an estimation of the scarcity of the discharges thanks to a comparison with threshold values (Javelle et al., 2014). Maps of susceptibility to debris flow, landslide and rock falls can also be displayed in the RHYTMME warning system along with the real time maps of rainfall hazard (Batista, 2013a

  20. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  1. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  2. Public perception and stakeholder involvement in the crisis management of sediment-related disasters and their mitigation: the case of the Stože debris flow in NW Slovenia.

    Science.gov (United States)

    Mikoš, Matjaz

    2011-04-01

    Sediments can pose a threat to humans not only when these deposits are polluted but also due to their large quantities. This physical aspect of sediments as a risk will be shown on a case study of a sediment-related disaster that occurred in the mountainous part of Slovenia, Central Europe in 2000. In November 2000, after a long wet period a large debris landslide had been triggered on the Stože slope and stopped in the channel of the Mangart creek. Such an event took the majority of local inhabitants and emergency staff by surprise. Nevertheless, they had just organized the first mitigation measures when, after 35 hours, they were surprised by an even larger debrisflowinitiated as the second phase of the same mass movement event. Within a few minutes, the wet debris flow had devastated the alpine valley of the Koritnica River and killed 7 people in the village of Log pod Mangartom. This paper deals with crisis management and first mitigation measures under this very tense situation of searching for dead bodies. The uncertainty about possible new debris flows drove all inhabitants out of the village by a decision of the civil protection unit, and also other activities of the emergency relief units were overshadowed by the 7 victims. One of the main problems and challenges at the same time was the over 700,000 m³ of wet debris flow deposits in the area of the village of Log pod Mangartom within the Triglav National park, which posed a direct threat of flooding during the first heavy rainfalls in spring 2001, and which were about to be removed to make place for future debris flows. The understanding about what really happened or about the immediate triggering factors was different among the professionals in charge for relief action and for preparing a final remediation plan. The first phase during and immediately after the disaster (relief intervention of emergency units especially those for civil protection) can be described as Concern-Driven Crisis Management or

  3. Geomorphological Characterization of Atenquique Basin in the Eastern Sector of the Volcan-Nevado-Colima, Jalisco, Mexico, As an Input to the Risk Assessment of Debris Flows.

    Science.gov (United States)

    Flores-Pena, S.; Suarez-Plascencia, C.

    2014-12-01

    The Atenquique river basin drains the eastern sector of the Volcanic Complex (VC) Volcan-Nevado de Colima, located on the border of the states of Jalisco and Colima. To use the digital geomorphological analysis 1:50000 scale mapping provided by INEGI and Landsat images, manipulating it in ArcGIS 10.2 developing the DEM that was the basis for morphometric characterization. The results show that the basin is divided into five sub-basins, with the main Atenquique (SAT) and Arroyo Seco (SAS), calculating the compactness coefficient (Kc) and the coefficient of sinuosity indicate that SAT is the most prone to floods due to straight and slightly sinuous channels. However, the density of dissection shows a more developed drainage network on the SAT, with slopes up to 84° and 600 m deep. The drainage basin has its source at an altitude of 4260 m and its mouth is in the Tuxpan River at 1040 m, which has a relative height of 2800 m; has a funnel-shaped elongated west-east, its outstanding average in the sector are Mountain 44° and 10° the piedmont. The SAT has a total area of 81.8 km2, with a dendritic river network, where the first order streams reach an 82.99%, and second order streams are the 13.4% of the total, these values show that most of the slopes of the basin have incipient development valleys and steep slopes. The basin has had 3 debris flows in recent 58 years; these are formed by large volumes of rock and mud that covered the town of Atenquique and paper mill located at the mouth of the Tuxpan River, caused deaths and significant economic damage. Its genesis is associated with the end of the summer rainy season, so he also worked in the hydrological analysis in order to determine the volume of runoff in the basin. The results of this work are used as input for the determining the risk levels in the study area, and may also be used by the municipality of Tuxpan, in order to define policies to manage risk and reduce future risks to the industrial town of

  4. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  5. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  6. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  7. Geophysical characterization of subaerial hydrothermal manifestations in Punta Banda, Baja California, Mexico.

    Science.gov (United States)

    Flores-Marquez, L.; Prol-Ledesma, R. M.; Arango, C.; Canet, C.

    2009-04-01

    Important growth of population in Baja California Peninsula has triggered the need for energy and fresh water. The most sustainable possibility for increasing the availability of fresh water is the use of renewable energy sources in desalination plants. The abundance of geothermal manifestations in the peninsula provides a reliable energy source for desalination purposes. Geothermal development of the Baja California Peninsula dates from the 70's, when the Cerro Prieto geothermal field started producing electricity. Two important cities, Tijuana and Ensenada, are located in the north-western area of Baja California. The city of Ensenada has a desalination plant that is due to be replaced and the geothermal resources of the area could be an option for the new desalination plant. Punta Banda, a region near Ensenada, was specially investigated to determine its geothermal potential. Subaerial springs and the submarine vents were sampled and studied in this work, also geological and geochemical studies were performed, moreover geoelectrical surveys were accomplished to characterize the hydrothermal system at depth. Even though saline intrusion is a severe problem in Ensenada (TDS higher than 3000), thermal springs away from the coast and coastal springs have salinities lower than sea water. According to the geoelectrical models obtained from profiles, the inferred conductive features can be related to thermal anomalies. The existence of hot springs located along a trend suggests that the dynamic of the thermal fluid is restricted by secondary faults.

  8. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  9. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    Science.gov (United States)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  10. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  11. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  12. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation FR-om nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  13. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  14. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    Science.gov (United States)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  15. Disaster Debris Recovery Database - Landfills

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  16. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  17. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  18. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  19. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  20. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  1. The 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México

    Science.gov (United States)

    Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna

    2017-03-01

    The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the

  2. Wholesale debris removal from LEO

    Science.gov (United States)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  3. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  4. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  5. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  6. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  7. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago.

    Science.gov (United States)

    Bindeman, I N; Zakharov, D O; Palandri, J; Greber, N D; Dauphas, N; Retallack, G J; Hofmann, A; Lackey, J S; Bekker, A

    2018-05-01

    The history of the growth of continental crust is uncertain, and several different models that involve a gradual, decelerating, or stepwise process have been proposed 1-4 . Even more uncertain is the timing and the secular trend of the emergence of most landmasses above the sea (subaerial landmasses), with estimates ranging from about one billion to three billion years ago 5-7 . The area of emerged crust influences global climate feedbacks and the supply of nutrients to the oceans 8 , and therefore connects Earth's crustal evolution to surface environmental conditions 9-11 . Here we use the triple-oxygen-isotope composition of shales from all continents, spanning 3.7 billion years, to provide constraints on the emergence of continents over time. Our measurements show a stepwise total decrease of 0.08 per mille in the average triple-oxygen-isotope value of shales across the Archaean-Proterozoic boundary. We suggest that our data are best explained by a shift in the nature of water-rock interactions, from near-coastal in the Archaean era to predominantly continental in the Proterozoic, accompanied by a decrease in average surface temperatures. We propose that this shift may have coincided with the onset of a modern hydrological cycle owing to the rapid emergence of continental crust with near-modern average elevation and aerial extent roughly 2.5 billion years ago.

  8. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    Science.gov (United States)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of particles.

  9. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  10. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  11. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  12. Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam

    Directory of Open Access Journals (Sweden)

    Vladimir S. Aslanov

    2017-01-01

    Full Text Available The paper is devoted to the problem of space debris mitigation. Contactless method of the space debris deorbiting is considered. It is assumed that ion thrusters on the active spacecraft create the ion flow, which blows the debris and slows it down. The objectives of this work are the development of mathematical models and the research of space debris motion under the action of the ion flow. It is supposed that the space debris is a rigid body of a cylindrical shape. Calculation of ion beam force and torque was performed for a self-similar model of plasma plume expansion using the hypothesis of ion fully diffused reflection from a surface. A mathematical model describing plane motions of the cylindrical space debris under the influence of gravity gradient torque and the ion flux was constructed. It was shown that motion of the space debris around its center of mass has a significant effect on its removal time. Phase portraits, describing the motion of the space debris relative to its center of mass, were constructed. Comparison of the descent times in different motion modes was carried out. The results can be used to create new effective systems of large space debris removal.

  13. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  14. TMI-2 core debris analysis

    International Nuclear Information System (INIS)

    Cook, B.A.; Carlson, E.R.

    1985-01-01

    One of the ongoing examination tasks for the damaged TMI-2 reactor is analysis of samples of debris obtained from the debris bed presently at the top of the core. This paper summarizes the results reported in the TMI-2 Core Debris Grab Sample Examination and Analysis Report, which will be available early in 1986. The sampling and analysis procedures are presented, and information is provided on the key results as they relate to the present core condition, peak temperatures during the transient, temperature history, chemical interactions, and core relocation. The results are then summarized

  15. Space Debris Mitigation CONOPS Development

    Science.gov (United States)

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  16. Debris filtering efficiency and its effect on long term cooling capability

    International Nuclear Information System (INIS)

    Jung, Min-Su; Kim, Kyu-Tae

    2013-01-01

    Highlights: • Debris filtering efficiencies for two debris filter designs used in PWRs are provided. • Various debris used in the tests are selected to simulate actual debris found in PWRs. • Debris filter efficiency is explained by flow-hole size and grid strap height. • The effect of debris filters on flow blockage during LTC after a LOCA is described. -- Abstract: A cutting-edge debris-filter designs, Protective Grid (P-grid) and Guardian Grid (G-grid) attached to the upper part of bottom nozzle, have been employed for the PWRs in Korea since 2000s to protect the fuel from debris-induced fuel failures. The debris-filter efficiency of the P-grid and G-grid designs is improved by relatively smaller flow areas formed by the grid straps and dimples. The debris-filter efficiency of the P-grid design is further improved by the relatively smaller flow-hole bottom nozzle. The debris-filter flow tests employing eighteen debris types showed that the debris-filter efficiencies of the P-grid and G-grid designs are 91 and 96%, respectively, while that of the SYS80 fuel design having only the standard flow-hole bottom nozzle is 26%. The slightly better debris-filter efficiency of the G-grid design against the P-grid design may be explained by relatively smaller flow areas at the G-grid dimple region as well as by the relatively longer solid end plug and the higher G-grid strap. The P-grid design may capture circular shapes of debris larger than 3.44 mm in diameter at the flow holes formed by the P-grid dimples, whereas the G-grid design may capture circular shapes of debris larger than 2.54 mm in diameter at the flow holes formed by the G-grid dimples. The aforementioned difference in the debris-filter efficiency between the P-grid and G-grid designs may be predicted by the solid modeling technique generating three-dimensional flow paths. Using the minimum flow-hole areas generated by the P-grid and G-grid designs, on the other hand, the effect of debris injected from

  17. Development of built-in debris-filter bottom nozzle for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Juntaro Shimizu; Kazuki Monaka; Masaji Mori; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has worked to improve the capability of anti debris bottom nozzle for a PWR fuel assembly. The Current debris filter bottom nozzle (DFBN) having 4mm diameter flow holes can capture the larger size of debris than the flow hole inner diameter. MHI has completed the development of the built-in debris filter bottom nozzle, which is the new idea of the debris-filter for high burnup (55GWd/t assembly average burnup). Built-in debris filter bottom nozzle consists of the blades and nozzle body. The blades made from inconel strip are embedded and welded on the grooved top surface of the bottom nozzle adapter plate. A flow hole is divided by the blade and the trap size of the debris is reduced. Because the blades block the coolant flow, it was anticipated to increase the pressure loss of the nozzle, however, adjusting the relation between blade and taper shape of the flow hole, the pressure loss has been successfully maintained the satisfactory level. Grooves are cut on the nozzle plate; nevertheless, the additional skirts on the four sides of the nozzle compensate the structural strength. (authors)

  18. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  19. DebriSat Laboratory Analyses

    Science.gov (United States)

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  20. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  1. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  2. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  3. 2D model for melt progression through rods and debris

    International Nuclear Information System (INIS)

    Fichot, F.

    2001-01-01

    During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)

  4. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1990-01-01

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  5. Removing metal debris from thermosetting EMC powders by Nd-Fe-B permanent magnets

    Directory of Open Access Journals (Sweden)

    Liaw Yowching

    2017-01-01

    Full Text Available During the preparation of thermosetting encapsulation molding compounds (EMCs for semiconductor packaging, metal debris are always present in the EMC powders due to the hard silica fillers in the compound. These metal debris in the EMC powders will cause circuit shortage and therefore have to be removed before molding. In this study, Nd-Fe-B permanent magnets are used to remove these debris. The results show that the metal debris can be removed effectively as the rate of accumulation of the metal debris increases as time proceeds in the removing operation. The removal effectiveness of the debris is affected by both the magnetic flux density and the flow around the magnet. The wake flow behind the magnet is a relatively low speed recirculation region which facilities the attraction of metal debris in the powders. Thus, the largest amount of the accumulated EMC powders occurs downstream of the magnet. Hence, this low speed recirculation region should be better utilized to enhance the removal efficiency of the metal debris.

  6. Experimental investigation of particulate debris spreading in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, A., E-mail: kono@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Basso, S., E-mail: simoneb@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Kudinov, P., E-mail: pkudinov@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Yakush, S.E., E-mail: yakush@ipmnet.ru [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation)

    2016-02-15

    Termination of severe accident progression by core debris cooling in a deep pool of water under reactor vessel is considered in several designs of light water reactors. However, success of this accident mitigation strategy is contingent upon the effectiveness of heat removal by natural circulation from the debris bed. It is assumed that a porous bed will be formed in the pool in the process of core melt fragmentation and quenching. Debris bed coolability depends on its properties and system conditions. The properties of the bed, including its geometry are the outcomes of the debris bed formation process. Spreading of the debris particles in the pool by two-phase turbulent flows induced by the heat generated in the bed can affect the shape of the bed and thus influence its coolability. The goal of this work is to provide experimental data on spreading of solid particles in the pool by large-scale two-phase flow. The aim is to provide data necessary for understanding of separate effects and for development and validation of models and codes. Validated codes can be then used for prediction of debris bed formation under prototypic severe accident conditions. In PDS-P (Particulate Debris Spreading in the Pool) experiments, air injection at the bottom of the test section is employed as a means to create large-scale flow in the pool in isothermal conditions. The test section is a rectangular tank with a 2D slice geometry, it has fixed width (72 mm), adjustable length (up to 1.5 m) and allows water filling to the depth of up to 1 m. Variable pool length and depth allows studying two-phase circulating flows of different characteristic sizes and patterns. The average void fraction in the pool is determined by video recording and subsequent image processing. Particles are supplied from the top of the facility above the water surface. Results of several series of PDS-P experiments are reported in this paper. The influence of the gas flow rate, pool dimensions, particle density

  7. The Relationship Between Debris and Grain Growth in Polycrystalline Ice

    Science.gov (United States)

    Rivera, A.; McCarthy, C.

    2017-12-01

    An understanding of the mechanisms of ice flow, as well as the factors that affect it, must be improved in order to make more accurate predictions of glacial melting rates, and hence, sea level rise. Both field and laboratory studies have made an association between smaller grain sizes of ice and more rapid deformation. Therefore, it is essential to understand the different factors that affect grain size. Observations from ice cores have shown a correlation between debris content in layers of ice with smaller grain sizes, whereas layers with very little debris have larger grain sizes. Static grain growth rates for both pure ice and ice containing bubbles are well constrained, but the effect of small rock/dust particles has received less attention. We tested the relationship between debris and grain growth in polycrystalline ice with controlled annealing at -5°C and microstructural characterization. Three samples, two containing fine rock powder and one without, were fabricated, annealed, and imaged over time. The samples containing powder had different initial grain sizes due to solidification temperature during fabrication. Microstructural analysis was done on all samples after initial fabrication and at various times during the anneal using a light microscope housed in a cold room. Microstructural images were analyzed by the linear-intercept method. When comparing average grain size over time between pure ice and ice with debris, it was found that the rate of growth for the pure ice was larger than the rate of growth for the ice with debris at both initial grain sizes. These results confirm the observations seen in nature, and suggest that small grain size is indeed influenced by debris content. By understanding this, scientists could gain a more in-depth understanding of internal ice deformation and the mechanisms of ice flow. This, in turn, helps improve the accuracy of glacial melting predictions, and sea level rise in the future.

  8. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  9. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  10. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  11. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  12. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  13. Space Debris Elimination (SpaDE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  14. DebriSat Project Update and Planning

    Science.gov (United States)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  15. SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head

    International Nuclear Information System (INIS)

    Siefken, L. J.

    1998-01-01

    Designs are described for implementing models for calculating the movement of melted material through the interstices in a matrix of porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head during a severe accident in a Light Water Reactor. Currently, the COUPLE model has no capability to model the movement of material that melts within a matrix of porous material. The COUPLE model also does not have the capability to model the movement of liquefied core plate material that slumps onto a porous debris bed in the lower head. In order to advance beyond the assumption the liquefied material always remains stationary, designs are developed for calculations of the movement of liquefied material through the interstices in a matrix of porous material. Correlations are identified for calculating the permeability of the porous debris and for calculating the rate of flow of liquefied material through the interstices in the debris bed. Correlations are also identified for calculating the relocation of solid debris that has a large amount of cavities due to the flowing away of melted material. Equations are defined for calculating the effect on the temperature distribution in the debris bed of heat transported by moving material and for changes in effective thermal conductivity and heat capacity due to the movement of material. The implementation of these models is expected to improve the calculation of the material distribution and temperature distribution of debris in the lower head for cases in which the debris is porous and liquefied material is present within the porous debris

  16. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    public release; distribution unlimited.  Targets: Scaled Multishock Shield, DebrisLV, and DebriSat  500-600 g hollow aluminum and nylon projectile... insulation . DebriSat’s internal components were structurally similar to real flight hardware but were nonfunctional. AEDC-TR-15-S-2 6...structures with an AL 5052 honeycomb core and M55J carbon fiber face sheets. The basic system characteristics of the DebriSat are given in Table 1

  17. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  18. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  19. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  20. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  1. The influence of selected containment structures on debris dispersal and transport following high pressure melt ejection from the reactor vessel

    International Nuclear Information System (INIS)

    Pilch, M.; Tarbell, W.W.; Brockmann, J.E.

    1988-09-01

    High pressure expulsion of molten core debris from the reactor pressure vessel may result in dispersal of the debris from the reactor cavity. In most plants, the cavity exits into the containment such that the debris impinges on structures. Retention of the debris on the structures may affect the further transport of the debris throughout the containment. Two tests were done with scaled structural shapes placed at the exit of 1:10 linear scale models of the Zion cavity. The results show that the debris does not adhere significantly to structures. The lack of retention is attributed to splashing from the surface and reentrainment in the gas flowing over the surface. These processes are shown to be applicable to reactor scale. A third experiment was done to simulate the annular gap between the reactor vessel and cavity wall. Debris collection showed that the fraction of debris exiting through the gap was greater than the gap-to-total flow area ratio. Film records indicate that dispersal was primarily by entrainment of the molten debris in the cavity. 29 refs., 36 figs., 11 tabs

  2. BIO-SEDIMENTARY SIGNATURES OF HIGH-FREQUENCY SALINITY/SUBAERIAL EXPOSURE CHANGES: EXAMPLES FROM THE OXFORDIAN OF PORTUGAL (CABAÇOS FORMATION

    Directory of Open Access Journals (Sweden)

    ANA C. AZERÊDO

    2004-03-01

    Full Text Available The detailed sedimentary and micropalaeontological analysis of a complex association of continental to marginal-marine deposits from the Oxfordian of Portugal (Cabaços Formation has allowed the recognition of high-frequency, subtle changes in the environmental conditions. The main factors controlling the palaeobiological responses to such minor-scale fluctuations were also identified. Two factors have shown to be especially significant: subaerial exposure duration and frequency (estimated by assigning type of features to the exposure index and salinity trends, as suggested by the sedimentary and fossil records. In the west of the basin, salinity fluctuations were much stronger and more frequent (fresh- brackish-restricted marine-hypersaline, and subaerial exposure more marked for longer periods, than in the east of the basin. The microfossil assemblages, as a whole, but in particular the ostracod faunas, show differences in abundance, diversity, dominant species, degree of intrageneric and intraspecific variations, both along the successions and between west and east. The western populations seem to have been much less stable, which suggests that high-frequency changes in salinity (more than its absolute values and degree of exposure were the most important controls on the palaeobiota. PDF

  3. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  4. The fast debris evolution model

    Science.gov (United States)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  5. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  6. Warm Debris Disks from WISE

    Science.gov (United States)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  7. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  8. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  9. Hypsometric Analysis of Glacial Features: A Survey of Lobate Debris Apron Populations in Eastern Hellas Basin and Deuteronilus Mensae, Mars

    Science.gov (United States)

    Rutledge, A. M.; Christensen, P. R.

    2014-07-01

    Hypsometric curves of lobate debris apron populations in Hellas Basin and Deuteronilus Mensae were evaluated and compared with respect to inferred ice accumulation and flow. Curve types are elevation-dependent, indicating a past shift in climate.

  10. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    Science.gov (United States)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  11. Field and flume investigations of the effects of logjams and woody debris on streambed morphology

    Science.gov (United States)

    Leung, V.; Montgomery, D. R.; McHenry, M. L.

    2014-12-01

    Interactions among wood debris, fluid flow and sediment transport in rivers are first-order controls on channel morphodynamics, affecting streambed morphology, sediment transport, sediment storage and aquatic habitat. Woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments on flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of fieldwork and sediment transport experiments of streambed morphology around stationary woody debris. Field surveys on the Hoh River and the Elwha River, WA, measure the local streambed morphology around logjams and individual pieces of woody debris. We quantified the amount of local scour and dam-removal related fine sediment deposition around natural and engineered logjams of varying sizes and construction styles, located in different geomorphic settings. We also quantified the amount of local scour around individual pieces of woody debris of varying sizes, geometries and orientations relative to flow. The flume experiments tested the effects of root geometry and log orientation of individual stationary trees on streambed morphology. The flume contained a deformable sediment bed of medium sand. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the wood debris cross