WorldWideScience

Sample records for sub-polar ice cap

  1. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  2. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  3. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  4. Mars polar cap: a habitat for elementary life1

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  5. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  6. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  7. Simple model for polar cap convection patterns and generation of theta auroras

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  8. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  9. Comparison of CO/sub 2/ measurements by two laboratories on air from bubbles in polar ice

    Energy Technology Data Exchange (ETDEWEB)

    Barnola, J.M.; Raynaud, D.; Neftel, A.; Oeschger, H.

    1983-06-02

    The CO/sub 2/ content of air enclosed in bubbles in polar ice has been reported by two laboratories (in Grenoble and Bern) to be representative of the atmospheric CO/sub 2/ concentration at the time the ice was formed. Such ice core studies indicate lower concentrations in ice formed at the end of the ice age, around 18,000 yr BP, and several explanations have been proposed for such a change. Both laboratories are currently measuring various ice cores in order to determine the pre-AD 1850 CO/sub 2/ level in the atmosphere, which relates to the partitioning of anthropogenic CO/sub 2/ among the atmospheric, biospheric and oceanic reservoirs. The two laboratories use different ice cores and different analytical procedures and, therefore, there is a need to know to what extent the measurements are quantitatively comparable. The results are presented of a comparison between the two laboratories based on measurements from the same ice core sections, which indicate that the measurements can be compared with great confidence. The results suggest that the mean CO/sub 2/ level recorded by Antartic ice for the period 800-2500 yr BP is about 260 p.p.m.v.

  10. Sodium, Iodine and Bromine in Polar Ice Cores

    DEFF Research Database (Denmark)

    Maffezzoli, Niccolo

    Abstract: This research focuses on sodium, bromine and iodine in polar ice cores, with the aim of reviewing and advancing their current understanding with additional measurements and records, and investigating the connections of these tracers with sea ice and their feasibility as sea ice indicators...... with a description of the main analytic al techniques used to measure ionic and elemental species in ice cores. Chapter 4 introduces sodium, bromine and iodine with a theoretical perspective and a particular focus on their connections with sea ice. Some of the physical and chemical properties that are believed...... back trajectory analyses of the past 17 years. The results identify the aerosol source area influencing the Renland ice cap, a result necessary for the interpretation of impurity records obtained from the ice core. Chapter 6 reviews the published ice/snow measurements of bromine and iodine at polar...

  11. North-Polar Martian Cap as Habitat for Elementary Life

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.

    2008-09-01

    North-polar cap over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar caps and be buried under dust deposits. Diffusive release from ground-ice (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar ice-dust deposits. When sunlit, this warmed and sublimating ice-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar cap whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar cap are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed ice sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the ice against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar ice sublimation [5] and the growth of ground-ice [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar cap Plane-parallel layers have been used to model the changing temperature

  12. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Science.gov (United States)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  13. Devon island ice cap: core stratigraphy and paleoclimate.

    Science.gov (United States)

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  14. Hyperspectral characterisation of the Martian south polar residual cap using CRISM

    Science.gov (United States)

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2017-09-01

    We present our research on hyperspectral characterization of the Martian South Polar Residual Cap (SPRC), with a focus on the detection of organic signatures within the dust content of the ice. The SPRC exhibits unique CO2 ice sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the ice in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O ice. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless ice, and there are indications of magnesium carbonate within the dark, dusty regions.

  15. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  16. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  17. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  18. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  19. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  20. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  1. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    International Nuclear Information System (INIS)

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  2. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  3. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  4. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    Directory of Open Access Journals (Sweden)

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  5. Recession of the Northern polar cap from the PFS Mars Express observations

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  6. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  7. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  8. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  9. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Science.gov (United States)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  10. H2O grain size and the amount of dust in Mars' residual North polar cap

    Science.gov (United States)

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  11. Characteristics of the polar cap at ionospheric levels and present understanding of the physical processes that give rise to these characteristics

    International Nuclear Information System (INIS)

    Brekke, A.

    1983-01-01

    This chapter discusses the relationship between the interplanetary magnetic field (IMF) and various polar cap current systems, such as the DP2-system and the S /SUB q/ P-system. The disagreements concerning these systems are examined. Topics considered include the polar cap (a result of an open magnetosphere); studies of the polar cap magnetic field variations; the DP2-current system and its relation to the IMF; the polar cap current system during a northward IMF; the azimuthal component of IMF and its influence on the polar cap magnetic field variations; the electric potential distribution on the polar cap; rocket observations of the polar cap electric field; the auroral arcs as a visible trace of the ionospheric convection; neutral wind measurements in the polar cap F-region; and further studies of polar cap dynamics. The focus is on the polar region inside the auroral oval. It is suggested that more research is needed of the polar cap current system in order to understand the magnetosphereionosphere coupling, with the polar cap ionospheric conductivity distribution being the most crucial parameter

  12. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  13. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F<sub>2sub> region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  14. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  15. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 R<sub>E>. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio E<sub>O+> / E<sub>H+>, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  16. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  17. Acoustic Monitoring of the Arctic Ice Cap

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  18. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  19. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  20. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  1. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  2. The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic

    Science.gov (United States)

    Gilbert, A.; Flowers, G. E.; Miller, G. H.; Refsnider, K. A.; Young, N. E.; Radić, V.

    2017-03-01

    As a remnant of the Laurentide Ice Sheet, Barnes Ice Cap owes its existence and present form in part to the climate of the last glacial period. The ice cap has been sustained in the present interglacial climate by its own topography through the mass balance-elevation feedback. A coupled mass balance and ice-flow model, forced by Coupled Model Intercomparison Project Phase 5 climate model output, projects that the current ice cap will likely disappear in the next 300 years. For greenhouse gas Representative Concentration Pathways of +2.6 to +8.5 Wm-2, the projected ice-cap survival times range from 150 to 530 years. Measured concentrations of cosmogenic radionuclides 10Be, 26Al, and 14C at sites exposed near the ice-cap margin suggest the pending disappearance of Barnes Ice Cap is very unusual in the last million years. The data and models together point to an exceptionally warm 21st century Arctic climate.

  3. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  4. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  5. Landscape Evolution and the Reincarnation of the Southern Residual Ice Cap

    Science.gov (United States)

    Byrne, S.; Zuber, M. T.

    2006-10-01

    Given the present rate of erosion on the southern residual ice cap, it is unlikely that any part of the cap is older than a few centuries. Unless we're lucky, why is there a residual cap present today for us to observe? We propose a solution involving constant destruction and renewal of the cap.

  6. The Gregoriev Ice Cap length changes derived by 2-D ice flow line model for harmonic climate histories

    OpenAIRE

    Konovalov, Y. V.; Nagornov, O. V.

    2009-01-01

    Different ice thickness distributions along the flow line and the flow line length changes of the Gregoriev Ice Cap, Terskey Ala-Tau, Central Asia, were obtained for some surface mass balance histories which can be considered as possible surface mass balances in the future. The ice cap modeling was performed by solving of steady state hydrodynamic equations in the case of low Reynolds number in the form of the mechanical equilibrium equation in terms of stress deviator components coupled with...

  7. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  8. Evidence that polar cap arcs occur on open field lines

    International Nuclear Information System (INIS)

    Gussenhoven, M.S.; Hardy, D.A.; Rich, F.J.; Mullen, E.G.; Redus, R.H.

    1990-01-01

    The characteristics of polar cap arc occurrence are reviewed to show that the assumption of a closed magnetospheric magnetic field topology at very high latitudes when the IMF B z is strongly northward is difficult to reconcile with a wide variety of observational and theoretical considerations. In particular, we consider the implications of observations of particle entry for high and low energy electrons, magnetic flux conservation between the near and far tail, the time sequencing in polar cap arcs events, and the hemispherical differences in polar cap arc observations. These points can be explained either by excluding the need for a major topological magnetic field change from explanations of polar cap arc dynamics, or by assuming a long-tailed magnetosphere for all IMF orientations in which magnetic field lines eventually merge with solar wind field lines in either a smooth or a patchy fashion. (author)

  9. Polar cap index as a proxy for hemispheric Joule heating

    DEFF Research Database (Denmark)

    Chun, F.K.; Knipp, D.J.; McHarg, M.G.

    1999-01-01

    The polar cap (PC) index measures the level of geomagnetic activity in the polar cap based on magnetic perturbations from overhead ionospheric currents and distant field-aligned currents on the poleward edge of the nightside auroral oval. Because PC essentially measures the main sources of energy...... input into the polar cap, we propose to use PC as a proxy for the hemispheric Joule heat production rate (JH). In this study, JH is estimated from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. We fit hourly PC values to hourly averages of JH. Using a data base approximately...

  10. Mass balance of Greenland and the Canadian Ice Caps from combined altimetry and GRACE inversion

    DEFF Research Database (Denmark)

    Forsberg, René; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    The combination of GRACE and altimetry data may yield a high resolution mass balance time series of the Greenlandice sheet, highlighting the varying individual mass loss behaviour of major glaciers. By including the Canadian arctic ice caps in the estimation, a more reliable estimate of the mass...... loss of both Greenlandand the Canadian ice caps may be obtained, minimizing the leakage errors otherwise unavoidable by GRACE. Actually, the absolute value of the Greenlandice sheet mass loss is highly dependent on methods and how the effects of Arctic Canadian ice caps are separated in the GRACE...... loss of the ice caps and ice sheet basins for the period 2003-15. This period shows a marked increase of ice sheet melt, especially in NW and NE Greenland, but also show large variability, with the melt anomaly year of 2012 showing a record mass loss, followed by 2013 with essentially no Greenland mass...

  11. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  12. delta 18O variations in snow on the Devon Island ice cap, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Koerner, R.; Russel, R.D.

    1979-01-01

    A study of delta 18 O variations of snow samples taken on traverses across the Devon Island ice cap in June 1971, 1972, and 1973 has shown a difference between the accumulation conditions on the souteast and nortwest sides of the ice cap. On the souteast side there is an increasing depletion of 18 O in the snow with increasing elevation. This pattern is attibuted to the effect of orographic uplift of air masses moving over the ice cap from the southeast, which promotes condensation and precipitation due to adiabatic cooling. On the northwest side of the ice cap there is no evidence of any further depletion of 18 O in snow, neither with increasing distance from the possible moisture source in Baffin Bay to the southeast nor with increasing elevation if the air mass comes from the northwest. In this case condensation is due to isobaric cooling so that precipitation is generally from level cloud bases. The changes inferred for the isotopic composition of the water vapour as it rises up the southeast slope are found to be consistent with its depletion through precipitation under near-equilibrium conditions. It is calculated that approximately 30% of the moisture at sea level on the southeast side of the ice cap and 8% at the top of the ice cap are of local origin. Lower temporal and aerial variability of the delta values on the southeast side of the ice cap is attributed to dominance of the Baffin Bay low on that side Effecting consistency of storm conditions there. The delta values of ice in the ablation zone on the Sverdrup Glacier show the combined effect of ice movement from the accumulation to the ablation zone and climatic change during the period of movement from cold to warm and back to cold conditions again. (auth)

  13. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  14. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...... with GPS data and calibrated laser data....

  15. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  16. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  17. Sea ice contribution to the air-sea CO{sub 2} exchange in the Arctic and Southern Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Rysgaard, Soeren (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, Univ. of Manitoba, Winnipeg (Canada)), e-mail: rysgaard@natur.gl; Bendtsen, Joergen (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Ice and Climate, Niels Bohr Inst., Univ. of Copenhagen, Copenhagen O (Denmark)); Delille, Bruno (Unit' e d' Oceanographie Chimique, Interfacultary Centre for Marine Research, Universite de Liege, Liege (Belgium)); Dieckmann, Gerhard S. (Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)); Glud, Ronnie N. (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Scottish Association of Marine Sciences, Scotland UK, Southern Danish Univ. and NordCee, Odense M (Denmark)); Kennedy, Hilary; Papadimitriou, Stathys (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom)); Mortensen, John (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark)); Thomas, David N. (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom); Finnish Environment Inst. (SYKE), Marine Research Centre, Helsinki (Finland)); Tison, Jean-Louis (Glaciology Unit, Dept. of Earth and Environmental Sciences, Universite Libre de Bruxelles, Bruxelles, (Belgium))

    2011-11-15

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO{sub 2} and the subsequent effect on air-sea CO{sub 2} exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea CO{sub 2} exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO{sub 2} uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO{sub 2} uptake in ice-free polar seas. This sea-ice driven CO{sub 2} uptake has not been considered so far in estimates of global oceanic CO{sub 2} uptake. Net CO{sub 2} uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO{sub 2}-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea CO{sub 2} exchange during winter, and (3) release of CO{sub 2}-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO{sub 2} drawdown during primary production in sea ice and surface oceanic waters

  18. /sup 56/Fe (. gamma. ,. cap alpha. /sub 0/) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tamae, T; Sugawara, M [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Tsubota, H

    1974-12-01

    The reaction cross section of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) was measured from the electron energy of 15 to 25 MeV. The measured data were compared with the calculated ones based on statistic theory. Both agreed with each other. Therefore, the affirmative result was obtained for the presumption that the reaction of (..gamma.., ..cap alpha../sub 0/) of the nuclei around these energy levels can be explained by the statistical theory. The angular distribution of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) with 17 MeV electron energy was also measured, and the E2/E1 ratio was obtained. In the measurement of the /sup 56/Fe ( Gamma , ..cap alpha../sub 0/) reaction cross section, a natural target of 2.69 mg/cm/sup 2/ was irradiated with an electron beam with energy from 15 MeV to 25 MeV at intervals of 0.5 MeV, and the emitted ..cap alpha.. particles were detected by a broad band magnetic distribution meter. The measured cross section of the (..gamma.., ..cap alpha../sub 0/) reaction agreed with the calculated one based on statistical theory. If this fact is recognized in many nuclei, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction on those nuclei has the following characteristics. When the increasing rate of the product of a complex nucleus formation cross section and ..cap alpha../sub 0/ penetration factor is larger than that of the sum of all penetration factors of possible channels, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction increases, and takes a peak value when the above two increasing rates agree with each other.

  19. Landscape Evolution and the Reincarnation of the Residual CO2 Ice Cap of Mars

    Science.gov (United States)

    Byrne, S.; Zuber, M.

    2006-12-01

    Observations of the southern residual CO2 cap of Mars reveal a wide range of landforms including flat-floored quasi-circular pits with steep walls (dubbed Swiss-cheese features). Interannual comparisons show that these depressions are expanding laterally at rates of ~2m/yr to ~4m/yr, prompting suggestions of climate change. The residual CO2 ice cap is up to 10m thick and underlain by an involatile basement, it also contains layers roughly 2m thick representing different accumulation episodes in the recent past. Changes in the appearance of the residual ice between the Mariner 9 and Viking missions indicate that the top-most layer was deposited in that time-frame, soon after the global dust storm of 1971. The spatial density of the Swiss-cheese features, and the rate at which they expand, mean that it is unlikely that any part of the residual ice cap is older than a few centuries. Given this, we may ask: how can there be a residual cap present today for us to observe? To answer this and other questions we have developed a model to examine the evolution of a CO2 ice landscape. This model reproduces the morphologies and expansion rates seen in the actual residual CO2 ice cap. Our model results indicate that the fate of CO2 ice surfaces is controlled by their surface roughness. Surface roughness always increases with time, which results in an unstable situation. When the surface roughness exceeds a critical point small pits can begin to develop. The walls of these pits rapidly steepen and begin retreating which enlarges and deepens the pit. This situation always occurs even if the surface of the CO2 slab has a high enough albedo to have a net mass gain each year. Once these pits begin expanding they quickly erode the entire ice slab. When the underlying non-CO2 material is exposed, it will not frost over again if Mars were to repeat like clockwork every year. We conclude that interannual climatic variability is actually a requirement for the continued existence of a

  20. Volcano-ice interactions on Mars

    International Nuclear Information System (INIS)

    Allen, C.C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  1. Mass balance of the Amitsulôq ice cap, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, Carl Egede; Olesen, Ole B.

    2007-01-01

    We present detailed mass balance measurements from the Amitsulôq ice cap in West Greenland spanning from 1982 to 1990. The data includes summer and winter balances from 26 stake locations distributed over five transects covering the whole ice cap. The mass balance measurements are combined...... with a recent satellite-derived digital elevation model to calculate the specific balance, which is in turn compared to discharge data from the adjacent Tasersiaq basin. The correlation between specific summer balance and discharge is R2 = 0.93 indicating that the basin discharge is dominated by glacial...... meltwater, linking the hydropower potential of the basin closely to the fate of the adjoining Greenland ice-sheet margin....

  2. /sup 15/N(p,. cap alpha. )/sup 12/C reaction with polarized protons from 0. 34 to 1. 21 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, G H; Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-03-29

    A polarized beam was used to measure angular distributions of the analyzing power of the /sup 15/N(p,..cap alpha..)/sup 12/C reaction at 0.34 MeV and at five energies from 0.92 to 1.21 MeV. The analyzing power can be fitted with associated Legendre polynomials, P/sub 1//sup 1/ and P/sub 2//sup 1/ sufficing to describe the results except near 1.2 MeV where P/sub 3//sup 1/ is also required. Polarization excitation functions were measured throughout the entire energy range at angles where the polynomials P/sub 2//sup 1/ and P/sub 3//sup 1/ are zero. A polarization contour map is given.

  3. Convection flow structure in the central polar cap

    Science.gov (United States)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  4. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  5. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B <sub>z>-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when B<sub>y>>0 (B<sub>y><0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary B<sub>z><0, B<sub>y><0 and B<sub>x>>0 in both hemispheres and convection patterns for B<sub>z><0 and B<sub>y><0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  6. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  7. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    Science.gov (United States)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  8. Barnes Ice Cap South Dome Trilateration Net Survey Data 1970-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Barnes Ice Cap data set contains survey measurements of a network of 43 stakes along a 10 km flow line on the northeast flank of the south dome of the Barnes Ice...

  9. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    Energy Technology Data Exchange (ETDEWEB)

    Stauning, P. [Danish Meteorological Institute, Copenhagen (Denmark)

    2015-07-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B{sub y}) of the interplanetary magnetic field (IMF). The added IMF B{sub y}-related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m{sup -1}). Furthermore, cases of reverse convection during strong northward IMF B{sub z} (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m{sup -1} during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  10. Implantation of energetic D{sup +} ions into carbon dioxide ices and implications for our solar system: formation of D{sub 2}O and D{sub 2}CO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States)

    2014-10-10

    Carbon dioxide (CO{sub 2}) ices were irradiated with energetic D{sup +} ions to simulate the exposure of oxygen-bearing solar system ices to energetic protons from the solar wind and magnetospheric sources. The formation of species was observed online and in situ by exploiting FTIR spectroscopy. Molecular products include ozone (O{sub 3}), carbon oxides (CO{sub 3}(C {sub 2v}, D {sub 3h}), CO{sub 4}, CO{sub 5}, CO{sub 6}), D2-water (D{sub 2}O), and D2-carbonic acid (D{sub 2}CO{sub 3}). Species released into the gas phase were sampled via a quadrupole mass spectrometer, and possible minor contributions from D2-formaldehyde (D{sub 2}CO), D4-methanol (CD{sub 3}OD), and D2-formic acid (DCOOD) were additionally identified. The feasibility of several reaction networks was investigated by determining their ability to fit the observed temporal column densities of 10 key species that were quantified during the irradiation period. Directly relevant to the CO{sub 2}-bearing ices of comets, icy satellites in the outer solar system, and the ice caps on Mars, this work illustrates for the first time that D2-water is formed as a product of the exposure of CO{sub 2} ices to D{sup +} ions. These findings provide strong support for water formation from oxygen-bearing materials via non-thermal hydrogen atoms, and predict reaction pathways that are likely to be unfolding on the surfaces of asteroids and the Moon.

  11. Involvement of prostaglandins F/sub 2. cap alpha. / and E/sub 1/ with rabbit endometrium

    Energy Technology Data Exchange (ETDEWEB)

    Orlicky, D.J.

    1985-01-01

    Several growth factors and hormones are thought to play a role in the growth control of endometrial cells. The authors have shown that prostaglandin F/sub 2..-->../ (PGF/sub 2..cap alpha../) is a growth factor for primary cultures of rabbit endometrium cultured in chemically-defined serum-free medium and that prostaglandin E/sub 1/ (PGE/sub 1/) antagonizes the PGF/sub 2..-->../ induction of growth. Both (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ bind in a time and temperature dependent, dissociable, saturable and specific manner. The binding of (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ can be both down and up regulated and is enzyme sensitive. PGE /sub 1/ stimulates intracellular cAMP synthesis and accumulation in a time and concentration dependent manner. PGF/sub 2..cap alpha../ probably exerts its effects through an amiloride-sensitive intermediate. Both PGF/sub 2..cap alpha../ and PGE/sub 1/ are constitutively synthesized by these primary cultures, and they have shown this synthesis to be both drug and hormone sensitive. They hypothesize that it is the ratio, rather than the absolute quantities, of PGF/sub 2..cap alpha../ and PGE/sub 1/ which is of more importance in the regulation of endometrial cell growth. Furthermore, they believe this regulation of endometrial growth plays a role in control of proliferation during the decidual response and that a derangement in the ratio of these prostaglandins may lead to either infertility or hyperplasia. The ability of these cultures to synthesize prostaglandins in a hormonally regulatable manner may be of importance in the study of dysmenorrhea and uterine cramping as caused by the myometrial contracting prostaglandin, PGF/sub 2..cap alpha../.

  12. Ferroelectricity in high-density H{sub 2}O ice

    Energy Technology Data Exchange (ETDEWEB)

    Caracas, Razvan, E-mail: razvan.caracas@ens-lyon.fr, E-mail: rhemley@ciw.edu [CNRS, Laboratoire de Géologie de Lyon UMR5276, Ecole Normale Supérieure de Lyon, 46, alleé d’Italie, Université Claude-Bernard Lyon 1, Université de Lyon, 69364 Lyon cedex 07 (France); Hemley, Russell J., E-mail: razvan.caracas@ens-lyon.fr, E-mail: rhemley@ciw.edu [Geophysical Laboratory, 5251 Broad Branch Road NW, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2015-04-07

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H{sub 2}O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. The presence of local electric fields triggers the preferential parallel orientation of the water molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.

  13. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  14. DMSP optical and electron measurements in the vicinity of polar cap arcs

    International Nuclear Information System (INIS)

    Hardy, D.A.; Burke, W.J.; Gussenhoven, M.S.

    1982-01-01

    We have completed an extensive analysis of the electron and optical data from the DMSP satellites for an external period of polar cap arc occurrences on December 12, 1977. The polar cap arcs are observed in three distinct intervals in a period of quieting after a time of intense substorm activity. The observation of polar cap arcs is associated with the admittance of large and variable fluxes of low-energy electrons into a major portion of both the northern and southern hemisphere polar caps. These fluxes fall into the following categories: First, nearly Maxwellian distributions of electrons with temperatures between 50 eV and 200 eV and number densities varying from 0.03/cm 3 to 4/cm 3 . The highest densities are found at the poleward boundary of the diffuse aurorae and near the visible polar cap arcs. The lowest densities are associated with the polar rain. Second, distributions of electrons peaked between 50 eV and 200 eV. These distributions result from accelertion of the cold Maxwellian distribution through a potential of 50 to 200 V without any heating of the electrons. Third, distributions of electrons displaying two populations; an intense low-energy component with a temperature of approx.20 eV and a much weaker high-energy component with a temperature of 180 eV. We interpret such distributions as evidence of direct admittance of magnetosheath electrons into the polar cap. Fourth,, distributions of electrons peaked at approx.1 keV. These distributions produce the visible arcs. They result from the acceleration of a two-component electron population with temperatures of 100 and 350 eV through a potential drop of approx.750 V

  15. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  16. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  17. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  18. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  19. Simultaneous observations of sun-aligned polar cap arcs in both hemispheres by EXOS-C and viking

    International Nuclear Information System (INIS)

    Obara, T.; Kitayama, M.; Mukai, T.; Kaya, N.; Murphree, J.S.; Cogger, L.L.

    1988-01-01

    On September 25, 1986, the EXOS-C satellite traversed an intense electron precipitation in the southern polar cap, while the Viking satellite simultaneously obtained image data of the polar cap arc in the northern hemisphere. The energy spectrum of the precipitation, measured by instrumentation aboard EXOS-C, was very similar to that of adjacent (typical) auroral arcs, and the precipitation in the southern polar cap was observed in the same local time sector in which the arc was found in the northern polar cap. Observations seem to support the view that the polar cap arc occurs on closed field lines and is conjugate in both hemispheres. copyright American Geophysical Union 1988

  20. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  1. Polar cap particle precipitation and aurora: Review and commentary

    Science.gov (United States)

    Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.

    2009-02-01

    Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically 0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the

  2. Variations in the polar cap area during two substorm cycles

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  3. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  4. Barnes Ice Cap South Dome Trilateration Net Survey Data 1970-1984, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Barnes Ice Cap data set contains survey measurements of a network of 43 stakes along a 10 km flow line on the northeast flank of the south dome of the Barnes Ice...

  5. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  6. The role of water ice clouds in the Martian hydrologic cycle

    Science.gov (United States)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  7. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  8. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  9. Comparison of Mars Northern Cap Edge Advance and Recession Rates over the Last 6 Mars Years

    Science.gov (United States)

    Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team

    2011-12-01

    The most observable parameter that describes the Mars polar seasonal caps is their size, which has been measured since the days of Herschel. The advance and retreat of the polar cap from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 cap formation. The evolution of the seasonal cap could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the ice table. Parameterizations of the seasonal cap edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the cap edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the cap edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern cap exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the cap has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal cap occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal cap occurring between 280°E and 30°E. The advance of the northern cap typically leads the advance of the edge of

  10. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  11. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Science.gov (United States)

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  12. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern

    2016-09-01

    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  13. Test of Newton's inverse-square law in the Greenland ice cap

    International Nuclear Information System (INIS)

    Ander, M.E.; Zumberge, M.A.; Lautzenhiser, T.

    1989-01-01

    An Airy-type geophysical experiment was conducted in a 2-km-deep hole in the Greenland ice cap at depths between 213 and 1673 m to test for possible violations of Newton's inverse-square law. An anomalous gravity gradient was observed. We cannot unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that it might be due to unexpected geological features in the rock below the ice

  14. Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter waveband

    International Nuclear Information System (INIS)

    Xie Xinxin; Miao Jungang

    2011-01-01

    This paper presents polarized signature due to oriented circular columnar and planar ice crystals at millimeter/submillimeter (mm/sub-mm) waveband. DDSCAT 6.1 and RT4 code package are employed for scattering properties and radiative transfer simulations, respectively, at the three estimated window frequencies (150, 220 and 340 GHz) of FengYun-4 (FY-4). We use empirical formulas to describe realistic sizes of planar and columnar particles and assume that ice particles are in Gamma-size distribution in this study. A 'resonance' feature of polarized signals as a function of median mass diameter is notably found for horizontally oriented columns and blunt plates at the frequency of 340 GHz; however, there is no promising resonance characteristic for horizontally aligned plates with empirical sizes at the three window channels of FY-4. The position of the resonance peak is related to particle aspect ratio, frequency and ice water path (IWP), and it moves to a shorter median mass diameter when the particle aspect ratio decreases or IWP in clouds increases. Considering that particle canting angle distribution (Gaussian distribution in this study), polarization difference, as well as the brightness temperature difference between clear and cloudy sky, decreases rapidly when particles gradually change from horizontally oriented to randomly oriented. The upwelling brightness temperature is insensitive to particle size and shape but sensitive to particle orientation, the difference of brightness temperature between horizontal and random orientation up to 6 K, whereas polarized signature is quite sensitive to particle microphysics as well as orientation; polarized measurements thereby could benefit retrieval of cloud microphysical parameters.

  15. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    Science.gov (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  16. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  17. Modeling polar cap F-region patches using time varying convection

    International Nuclear Information System (INIS)

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  18. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  19. Glaciological and chemical studies on ice cores from Hans Tausen ice cap, Greenland

    DEFF Research Database (Denmark)

    Clausen, H.B.; Stampe, Mia; Hammer, C.U.

    2001-01-01

    The paper presents studies of various chemical and isotopical parameters from ice cores drilled in the northernmost located ice cap, Hans Tausen Iskappe, Pearyland, Greenland (HT). The 346 m main core (MC95) was drilled to bedrock in 1995 as well as a 35 m shallow core (SC95). A 60 m shallow core...... (SC75) and a 51 m shallow core (SC76) was drilled at two different positions in 1975 and 1976, respectively. A 6 m shallow core (SC94) was drilled in 1994. Continuous stable isotope records exist for all of these cores, total b-activity only from SC75 and SC76. Continuous ECM inferred acidity records...... exist along the 1995 cores (MC95 and SC95) and finally detailed records of dust and water soluble ion concentrations exist on selected parts of MC95. To determine a time scale for the ice core is an important prerequisite for the interpretation of other records. The age scale is based on acid layers...

  20. Diversity of Holocene life forms in fossil glacier ice

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Christensen, B.

    1999-01-01

    Studies of biotic remains of polar ice caps have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old ice-core samples, we obtained...

  1. Bringing Society to a Changing Polar Ocean: Polar Interdisciplinary Coordinated Education (ICE)

    Science.gov (United States)

    Schofield, O.

    2015-12-01

    Environmental changes in the Arctic and Antarctic appear to be accelerating and scientists are trying to understand both the patterns and the impacts of change. These changes will have profound impact on humanity and create a need for public education about these critical habitats. We have focused on a two-pronged strategy to increase public awareness as well as enable educators to discuss comfortably the implications of climate change. Our first focus is on entraining public support through the development of science documentaries about the science and people who conduct it. Antarctic Edge is a feature length award-winning documentary about climate change that has been released in May 2015 and has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). This broad outreach is coupled with our group's interest assisting educators formally. The majority of current polar education is focused on direct educator engagement through personal research experiences that have impact on the participating educators' classrooms. Polar Interdisciplinary Coordinated Education (ICE) proposes to improve educator and student engagement in polar sciences through exposure to scientists and polar data. Through professional development and the creation of data tools, Polar ICE will reduce the logistical costs of bringing polar science to students in grades 6-16. We will provide opportunities to: 1) build capacity of polar scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with polar scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia; and 3) evaluate the outcomes of Polar ICE and contribute to our understanding of science education practices. We will use a blended learning approach to promote partnerships and cross-disciplinary sharing. This combined multi-pronged approach

  2. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    Science.gov (United States)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  3. Effect of capping agent on the morphology, size and optical properties of In{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Latha, Ch. Kanchana; Aparna, Y. [Department of Physics, Jawaharlal Nehru Technological University Hyderabad (JNTUH), College of Engineering Hyderabad (CEH), Telangana (India); Raghasudha, Mucherla; Veerasomaiah, P., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana (India); Ramchander, M. [Department of Bio Chemistry, Mahatma Gandhi University, Nalgonda, Telangana (India); Ravinder, D. [Department of Physics, Osmania University, Hyderabad, Telangana (India); Jaipal, K. [Inorganic & Physical Chemistry Division, Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana (India); Shridhar, D. [Department of Physics, Khairatabad Government Degree College, Hyderabad, Telangana (India)

    2017-01-15

    The Indium Oxide (In{sub 2}O{sub 3}) nanoparticles were synthesized through Acacia gum mediated method with the surfactants CTAB (Cetyl Trimethyl Ammonium Bromide) and SDBS (Sodium Docecyl Benzene Sulfonate). The characterization of the synthesized In{sub 2}O{sub 3} nanoparticles was carried out by XRD, FTIR, RAMAN, TEM, SEM, EDAX, UV-Vis and PL techniques. TG-DTA analysis was performed to know the calcination temperature of In{sub 2}O{sub 3} nanoparticles. XRD analysis confirmed the crystalline nature of the synthesized In{sub 2}O{sub 3} nanoparticles. The morphology and chemical composition were characterized by TEM, SEM and EDAX respectively. It was observed that morphology and size of synthesized nanoparticles measured by TEM and SEM analysis were dependent on the type of capping agent (surfactant) used. Raman and UV-Vis spectral analysis confirmed that the band gap value of CTAB capped In{sub 2}O{sub 3} particles were larger than the SDBS capped In{sub 2}O{sub 3} particles. FTIR analysis indicated that the bands were stretched in In{sub 2}O{sub 3} particles capped by SDBS than by CTAB. From the photoluminescence studies (PL technique), a blue shift in the emission peaks of CTAB and SDBS capped In{sub 2}O{sub 3} particles was observed that indicates larger optical band gap than the bulk. (author)

  4. EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2008-02-01

    Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R<sub>E> mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during

  5. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  6. Photoluminescence of urea- and urea/rhodamine B-capped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalo-Juan, I., E-mail: gonzalo@materials.tu-darmstadt.de; Macé, L.; Tengeler, S.; Mosallem, A.; Nicoloso, N.; Riedel, R.

    2016-07-01

    Urea- and rhodamine B (RhB)-capped TiO{sub 2} nanoparticles (NPs) have been prepared by solvothermal synthesis and characterized by HRTEM, XRD, FTIR, XPS, optical absorption and photoemission. The urea and urea/RhB ligands are capped to the surface of the TiO{sub 2} NPs for the first time through carbamate bonding. The band gap of TiO{sub 2} is slightly reduced from 3.1 eV to 3.0 eV in the urea capped TiO{sub 2} NPs (TU) and 2.9 eV for the NPs capped with urea/RhB (TUR). The generation of new trapping states in TU and TUR at the conduction band edges (surface oxygen vacancies) has been confirmed by the Urbach law providing tail state energies of 180 meV and 270 meV, respectively. These tail states are considered to be responsible for the strong reduction of the photoluminescence at ≈400 nm and the increased emission at ≈600 nm in TU and TUR. The findings suggest that urea- and RhB-capped TiO{sub 2} NPs could have potential applications as photocatalysts, opto-electronic devices, sensors, biological labels and anti-bacterial agents. - Highlights: • Urea- and urea/rhodamine B (RhB)-capped TiO{sub 2} nanoparticles preparation. • Characterization of optical properties of urea- and urea/rhodamine B (RhB)-capped TiO{sub 2} nanoparticles. • The recombination of electrons and holes is significantly reduced in the capped TiO{sub 2} nanoparticles, in comparison with TiO{sub 2}.

  7. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  8. Estimation of Polar Cap Potential and the Role of PC Index

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2012-09-01

    Full Text Available Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979 is adopted. Relationships between the PC index and calculated merging electric field (E* are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (Φ* is estimated using the formula by Doyle & Burke (1983. The values are represented as 58.1 ± 26.9 kV for the full-time period and 123.7 ± 84.1 kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983 is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers

  9. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  10. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  11. Reaction /sup 56/Fe (. gamma. ,. cap alpha. /sub 0/) and /sup 56/Fe (. gamma. , p/sub 0/)

    Energy Technology Data Exchange (ETDEWEB)

    Tamae, T; Sugawara, M [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Tsubota, H

    1975-06-01

    Precise analysis was made on the cross section of the /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) reaction and the angular distribution at Esub(e) = 17 MeV, including the systematic error. The (..gamma.., ..cap alpha../sub 0/) reaction cross section was compared with a calculation using the compound nucleus model, utilizing the photon absorption cross section derived from the experimental values of /sup 56/Fe (..gamma.., n) and /sup 56/Fe (..gamma.., p) cross sections. From the (..gamma.., ..cap alpha../sub 0/) reaction cross section data of various nuclei, an empirical formula was obtained for determining the position of a peak in the (..gamma.., ..cap alpha../sub 0/) reaction cross section. The /sup 56/Fe (..gamma.., p/sub 0/) reaction cross section measured at an excitation energy in the range of 14.6--25.0 MeV was compared with the calculated one with the compound nucleus model, but the form and size differ totally.

  12. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    Science.gov (United States)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  13. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    International Nuclear Information System (INIS)

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  14. CO{sub 2} INFRARED PHONON MODES IN INTERSTELLAR ICE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Ilsa R. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-11-20

    CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{sub 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.

  15. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    International Nuclear Information System (INIS)

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  16. A one stop website for sharing sea ice, ocean and ice sheet data over the polar regions

    Science.gov (United States)

    Chen, Z.; Cheng, X.; Liu, J.; Hui, F.; Ding, Y.

    2017-12-01

    The polar regions, including the Arctic and Antarctic, are changing rapidly. Our capabilities to remotely monitor the state of the polar regions are increasing greatly. Satellite and airborne technologies have been deployed and further improvements are underway. Meanwhile, various algorithms have been developed to retrieve important parameters to maximize the effectiveness of available remote sensing data. These technologies and algorithms promise to greatly increase our understanding of variations in sea ice, ocean and ice sheet. However, so much information is scattered out there. It is challenging to find exactly what you are looking for by just searching it through the network. Therefore, we try to establish a common platform to sharing some key parameters for the polar regions. A group of scientists from Beijing Normal University and University at Albany developed a website as a "one-stop shop" for the current state of the polar regions. The website provides real-time (or near real-time) key parameters derived from a variety of operational satellites in an understandable, accessible and credible way. Three types of parameter, which are sea ice, ocean and ice sheet respectively, are shown and available to be downloaded in the website. Several individual parameters are contained in a specific type of parameter. The parameters of sea ice include sea ice concentration, sea ice thickness, melt pond, sea ice leads and sea ice drift. The ocean parameters contain sea surface temperature and sea surface wind. Ice sheet balance, ice velocity and some other parameters are classified into the type of ice sheet parameter. Some parameters are well-calibrated and available to be obtained from other websites, such as sea ice concentration, sea ice thickness sea surface temperature. Since these parameters are retrieved from different sensors, such as SSMI, AMSR2 etc., data format, spatial resolution of the parameters are not unified. We collected and reprocessed these

  17. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  18. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  19. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    Science.gov (United States)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  20. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution.

    Science.gov (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S

    2017-06-06

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  1. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    Science.gov (United States)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  2. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  3. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  4. Estimation of the polar cap dimensions from photometric data

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Vorob'ev, V.G.; Ruga, G.N.; Shchuka, T.I.; Yagodkina, O.I.

    1992-01-01

    The moment of crossing near-polar boundary of auroral oval by the is. Heis station (Φ L =74,4 deg) according to simultaneous optical and ionospheric observations during the period, dated 25.12.83-10.01.84, is investigated. It is shown that time of the station appearance in the polar cap area, characterized by decrease in luminescence intensity of the basic auroral emissions by the background one and by appearance in the UT afternoon hours of flat layers, coincide. Correlation coefficient - r=0.95

  5. A tale of two polar bear populations: Ice habitat, harvest, and body condition

    Science.gov (United States)

    Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein

    2012-01-01

    One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.

  6. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    Science.gov (United States)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  7. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al

  8. Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars

    Science.gov (United States)

    Phillips, Roger J.; Davis, Brian J.; Tanaka, Kenneth L.; Byrne, Shane; Mellon, Michael T.; Putzig, Nathaniel E.; Haberle, Robert M.; Kahre, Melinda A.; Campbell, Bruce A.; Carter, Lynn M.; Smith, Isaac B.; Holt, John W.; Smrekar, Suzanne E.; Nunes, Daniel C.; Plaut, Jeffrey J.; Egan, Anthony F.; Titus, Timothy N.; Seu, Roberto

    2011-01-01

    Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO2) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO2 volatile release. If released into the atmosphere at times of high obliquity, the CO2 reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.

  9. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  10. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  11. Sea ice classification using dual polarization SAR data

    International Nuclear Information System (INIS)

    Huiying, Liu; Huadong, Guo; Lu, Zhang

    2014-01-01

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS

  12. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    Science.gov (United States)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  13. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  14. A new field experiment in the Greenland ice cap to test Newton's inverse square law

    International Nuclear Information System (INIS)

    Ander, M.E.; Nieto, M.M.; Zumberge, M.A.; Parker, R.L.; Lautzenhiser, T.; Aiken, C.L.V.; Ferguson, J.F.; McMechan, G.A.

    1989-01-01

    Recent experimental evidence suggests that Newton's law of gravity may not be precise. There are modern theories of quantum gravity that, in their attempts to unify gravity with other forces of nature, predict non-Newtonian gravitational forces that could have ranges on the order of 10 2 --10 5 m. If they exist, these forces would be apparent as violations of Newton's inverse square law. A geophysical experiment was carried out to search for possible finite-range, non-Newtonian gravity over depths of 213--1673 m in the glacial ice of the Greenland ice cap. The principal reason for this choice of experimental site is that a hole drilled through the ice cap already existed and the uniformity of the ice eliminates one of the major sources of uncertainty arising in the first of earlier studies, namely, the heterogeneity of the rocks through which a mine shaft or drill hole passes. This paper presents observations made in the summer of 1987 at Dye 3, Greenland, in the 2033-m-deep borehole, which reached the basement rock

  15. The isotopic composition of methane in polar ice cores

    Science.gov (United States)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  16. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  17. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  18. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  19. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    Directory of Open Access Journals (Sweden)

    E. Capron

    2010-06-01

    Full Text Available Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka and characterized by short Dansgaard-Oeschger (DO events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka, a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS enabling us to highlight a sub-millennial scale climatic variability depicted by (i short-lived and abrupt warming events preceding some GIS (precursor-type events and (ii abrupt warming events at the end of some GIS (rebound-type events. The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.

  20. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  1. Basal friction evolution and crevasse distribution during the surge of Basin 3, Austfonna ice-cap - offline coupling between a continuum ice dynamic model and a discrete element model

    Science.gov (United States)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John

    2017-04-01

    The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.

  2. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    Science.gov (United States)

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Polar cap deflation during magnetospheric substorms

    Science.gov (United States)

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  4. Mars seasonal polar caps as a test of the equivalence principle

    International Nuclear Information System (INIS)

    Rubincam, David Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eoetvoes test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  5. Polar bear and walrus response to the rapid decline in Arctic sea ice

    Science.gov (United States)

    Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  6. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Gardner, Alex S; Moholdt, Geir; Wouters, Bert; Wolken, Gabriel J; Burgess, David O; Sharp, Martin J; Cogley, J Graham; Braun, Carsten; Labine, Claude

    2011-05-19

    Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

  7. Invariant polar bear habitat selection during a period of sea ice loss.

    Science.gov (United States)

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  8. Invariant polar bear habitat selection during a period of sea ice loss

    Science.gov (United States)

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  9. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  10. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  11. White-beaked dolphins trapped in the ice and eaten by polar bears

    Directory of Open Access Journals (Sweden)

    Jon Aars

    2015-06-01

    Full Text Available Polar bears (Ursus maritimus depend on sea ice, where they hunt ice-associated seals. However, they are opportunistic predators and scavengers with a long list of known prey species. Here we report from a small fjord in Svalbard, Norwegian High Arctic, a sighting of an adult male polar bear preying on two white-beaked dolphins (Lagenorhynchus albirostris on 23 April 2014. This is the first record of this species as polar bear prey. White-beaked dolphins are frequent visitors to Svalbard waters in summer, but have not previously been reported this far north in early spring. We suggest they were trapped in the ice after strong northerly winds the days before, and possibly killed when forced to surface for air at a small opening in the ice. The bear had consumed most parts of one dolphin. When observed he was in the process of covering the mostly intact second dolphin with snow. Such caching behaviour is generally considered untypical of polar bears. During the following ice-free summer and autumn, at least seven different white-beaked dolphin carcasses were observed in or near the same area. We suggest, based on the area and the degree to which these dolphins had decayed, that they were likely from the same pod and also suffered death due to entrapment in the ice in April. At least six different polar bears were seen scavenging on the carcasses.

  12. 110 years of local glacier and ice cap changes in Central- and North East Greenland

    Science.gov (United States)

    Bjork, A. A.; Aagaard, S.; Kjaer, K. H.; Khan, S. A.; Box, J.

    2014-12-01

    The local glaciers and ice caps of Greenland are becoming more apparent players in global sea-level rise, and their contribution to future changes is significant. Very little information on their historical fluctuations exists as much of the focus has been on the Greenland Ice Sheet. Now, we can for the first time present historic data that spans 110 years for more than 200 of the local glaciers and ice caps covering this large and important region of the Arctic. The central- and north eastern part of Greenland is of particular interest as these areas are predicted to exhibit a more active behavior with higher mass loss in the future - simultaneously with an increase in precipitation. Our results show that the glaciers and ice caps in the region are responding very rapidly to changes in temperature and precipitation. The present retreat is the fastest observed within the last eight decades, only surpassed by the rapid post LIA retreat. The 1930s was the golden era for scientific exploration in Central- and North East Greenland as several large expeditions visited the area and photographed from land, sea and air. We use historic recordings from Danish and Norwegian aerial missions and terrestrial recordings from the renowned American Explorer Louise Boyd. These unique pictures from the early 1930s form the backbone of the study and are supplemented the more recent aerial photographs the 1940s and onwards and satellite imagery from the mid-1960s and up until present. From high resolution aerial photographs we are able to map the maximum extent of the glaciers during the LIA (Little Ice Age), from which retreat in this area is estimated to commence in 1900. Using a new SMB (Surface Mass Balance) model and its components covering the entire observational period along with high resolution DEMs and historic sea-ice records we are now able to extract valuable information on the past and present triggers of glacial change.

  13. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms

    Directory of Open Access Journals (Sweden)

    XIE Qiang

    2017-01-01

    Full Text Available The polar regions present adverse circumstances of high humidity and strong air-sea exchange. As such, the surfaces of ships and platforms (oil exploiting and drilling platforms serving in polar regions can easily be frozen by ice accretion, which not only affects the operation of the equipment but also threatens safety. This paper summarizes the status of the anti-icing/deicing technologies of both China and abroad for polar ships and offshore platforms, and introduces the various effects of ice accretion on polar ships and offshore platforms, and the resulting safety impacts. It then reviews existing anti-icing/deicing technologies and methods of both China and abroad, including such active deicing methods as electric heating, infrared heating and ultrasonic guided wave deicing, as well as such passive deicing methods as super hydrophobic coating, sacrificial coating, aqueous lubricating layer coating and low cross-link density (with interfacial slippage coating, summarizes their applicability to polar ships and offshore platforms, and finally discusses their advantages/disadvantages.

  14. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice.

    Science.gov (United States)

    Regehr, Eric V; Hunter, Christine M; Caswell, Hal; Amstrup, Steven C; Stirling, Ian

    2010-01-01

    1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0.96-0.99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0.73-0.79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings therefore are

  15. Mars Seasonal Polar Caps as a Test of the Equivalence Principle

    Science.gov (United States)

    Rubincam, Daivd Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial to gravitational masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor E6tv6s test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  16. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    Science.gov (United States)

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate-change-induced reduction of their sea-ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea-ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutritional needs of polar bears as well as the physiological and environmental constraints that shape their use of terrestrial ecosystems. Only small numbers of polar bears have been documented consuming terrestrial foods even in modest quantities. Over much of the polar bear's range, limited terrestrial food availability supports only low densities of much smaller, resident brown bears (Ursus arctos), which use low-quality resources more efficiently and may compete with polar bears in these areas. Where consumption of terrestrial foods has been documented, polar bear body condition and survival rates have declined even as land use has increased. Thus far, observed consumption of terrestrial food by polar bears has been insufficient to offset lost ice-based hunting opportunities but can have ecological consequences for other species. Warming-induced loss of sea ice remains the primary threat faced by polar bears.

  17. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets

    Science.gov (United States)

    Wittlinger, Gérard; Farra, Véronique

    2015-03-01

    We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.

  18. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  19. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice

    Science.gov (United States)

    Regehr, E.V.; Hunter, C.M.; Caswell, H.; Amstrup, Steven C.; Stirling, I.

    2010-01-01

    1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0 ∙ 96-0 ∙ 99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0 ∙ 73-0 ∙ 79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings

  20. Microstructural Location and Composition of Impurities in Polar Ice Cores, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland...

  1. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  2. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  3. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    with a regulation of pH and salt concentrations e.g. the MOD systems and could be installed on a planetary probe melting its way down the Martian ice caps e.g. the NASA Cryobot. JAWS can be used for detection of remains of ancient life preserved in the Martian ice as well as for detection of contamination brought...... to the planet from Earth....

  4. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    Science.gov (United States)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  5. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Science.gov (United States)

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  6. How reversible is sea ice loss?

    Directory of Open Access Journals (Sweden)

    J. K. Ridley

    2012-02-01

    Full Text Available It is well accepted that increasing atmospheric CO<sub>2sub> results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3 is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO<sub>2sub> is first ramped up to four times pre-industrial levels (4 × CO<sub>2sub>, then ramped down to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO<sub>2sub> prior to ramping CO<sub>2sub> down to pre-industrial levels. Against global mean temperature, Arctic sea ice area is reversible, while the Antarctic sea ice shows some asymmetric behaviour – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the asymmetric behaviour is driven by hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.

  7. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    Science.gov (United States)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  8. Optically stimulated luminescence study on gamma-irradiated ice frozen from H sub 2 O and D sub 2 O

    CERN Document Server

    Yada, T; Hirai, M; Yamanaka, C; Ikeya, M

    2002-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) for gamma-irradiated ice samples have been investigated as future dating techniques for icy bodies in the solar system. The OSL around 400nm lasted more than 600s for gamma-irradiated H sub 2 O ice and D sub 2 O ice under 623-nm-light stimulation at 90 K; the latter was used to study the migration of hydrogen atoms. A defect containing trapped electrons is the most suitable explanation of the OSL emissions. The intensity of the TL peak at 120 K increased linearly with gamma-dosage increasing up to 15 kGy for both D sub 2 O ice and H sub 2 O ice. Intensities of both OSL and TL for D sub 2 O ice were larger than those for H sub 2 O ice. The TL peak related to H sub 2 O was observed but its thermal characteristics did not agree with those of OH and HO sub 2 radicals measured by ESR. The OSL method should be employed in future surveys in the solar system.

  9. Measurement of K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/ in polarized np → polarized pn at 800 MeV in the CEX region

    International Nuclear Information System (INIS)

    Ransome, R.D.; Hollas, C.L.; Riley, P.J.

    1980-01-01

    The spin transfer parameters K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/ have been measured for np elastic scattering at 800 MeV between 165 0 and 180 0 c.m. The parameters K/sub NN/ and K/sub LL/ are in good agreement with the quasi-free reaction polarized pd → polarized npp at 180 0

  10. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  11. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  12. Snow and Ice Applications of AVHRR in Polar Regions: Report of a Workshop

    Science.gov (United States)

    Steffen, K.; Bindschadler, R.; Casassa, G.; Comiso, J.; Eppler, D.; Fetterer, F.; Hawkins, J.; Key, J.; Rothrock, D.; Thomas, R.; hide

    1993-01-01

    The third symposium on Remote Sensing of Snow and Ice, organized by the International Glaciological Society, took place in Boulder, Colorado, 17-22 May 1992. As part of this meeting a total of 21 papers was presented on snow and ice applications of Advanced Very High Resolution Radiometer (AVHRR) satellite data in polar regions. Also during this meeting a NASA sponsored Workshop was held to review the status of polar surface measurements from AVHRR. In the following we have summarized the ideas and recommendations from the workshop, and the conclusions of relevant papers given during the regular symposium sessions. The seven topics discussed include cloud masking, ice surface temperature, narrow-band albedo, ice concentration, lead statistics, sea-ice motion and ice-sheet studies with specifics on applications, algorithms and accuracy, following recommendations for future improvements. In general, we can affirm the strong potential of AVHRR for studying sea ice and snow covered surfaces, and we highly recommend this satellite data set for long-term monitoring of polar process studies. However, progress is needed to reduce the uncertainty of the retrieved parameters for all of the above mentioned topics to make this data set useful for direct climate applications such as heat balance studies and others. Further, the acquisition and processing of polar AVHRR data must become better coordinated between receiving stations, data centers and funding agencies to guarantee a long-term commitment to the collection and distribution of high quality data.

  13. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    Science.gov (United States)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.

  14. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Regehr, Eric V.; Laidre, Kristin L.; Akçakaya, H. Resit; Amstrup, Steven C.; Atwood, Todd C.; Lunn, Nicholas J.; Obbard, Martyn E.; Stern, Harry; Thiemann, Gregory W.; Wiig, Øystein

    2016-01-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year−1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.

  15. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines.

    Science.gov (United States)

    Regehr, Eric V; Laidre, Kristin L; Akçakaya, H Resit; Amstrup, Steven C; Atwood, Todd C; Lunn, Nicholas J; Obbard, Martyn; Stern, Harry; Thiemann, Gregory W; Wiig, Øystein

    2016-12-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year -1 ). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions. © 2016 The Authors.

  16. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Laidre, K. L.; Regehr, E. V.; Akcakaya, H. R.; Amstrup, S. C.; Atwood, T.; Lunn, N.; Obbard, M.; Stern, H. L., III; Thiemann, G.; Wiig, O.

    2016-12-01

    Loss of Arctic sea ice due to climate change is the most serious threat to polar bears (Ursus maritimus) throughout their circumpolar range. We performed a data-based sensitivity analysis with respect to this threat by evaluating the potential response of the global polar bear population to projected sea-ice conditions. We conducted 1) an assessment of generation length for polar bears, 2) developed of a standardized sea-ice metric representing important habitat characteristics for the species; and 3) performed population projections over three generations, using computer simulation and statistical models representing alternative relationships between sea ice and polar bear abundance. Using three separate approaches, the median percent change in mean global population size for polar bears between 2015 and 2050 ranged from -4% (95% CI = -62%, 50%) to -43% (95% CI = -76%, -20%). Results highlight the potential for large reductions in the global population if sea-ice loss continues. They also highlight the large amount of uncertainty in statistical projections of polar bear abundance and the sensitivity of projections to plausible alternative assumptions. The median probability of a reduction in the mean global population size of polar bears greater than 30% over three generations was approximately 0.71 (range 0.20-0.95. The median probability of a reduction greater than 50% was approximately 0.07 (range 0-0.35), and the probability of a reduction greater than 80% was negligible.

  17. Beta-decay asymmetries in polarized /sup 12/B and /sup 12/N and the G-parity non-conservation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    1976-07-01

    The decay asymmetries (A) in polarized /sup 12/B and /sup 12/N have been measured as a function of ..beta..-ray energies (E). The coefficients ..cap alpha..sub(-+) in A = -+ P(p/E) (1 + ..cap alpha..sub(-+)E)) have been determined to be ..cap alpha..sub(-) (/sup 12/B) = +(0.31+-0.06)%/MeV and ..cap alpha..sub(+) (/sup 12/N) = -(0.21+-0.07)%/MeV. The experimental value, ..cap alpha..sub(-) - ..cap alpha..sub (+) = (0.52+-0.09)%/MeV, is larger than the prediction according to conservation of vector current which includes no second-class current, (..cap alpha..sub(-) - ..cap alpha..sub(+) CVC approximately equal to 0.27%/MeV, and indicates the existence of the second-class induced-tensor current.

  18. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  19. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands

    Science.gov (United States)

    Dutton, Andrea; Webster, Jody M.; Zwartz, Dan; Lambeck, Kurt; Wohlfarth, Barbara

    2015-01-01

    In the search for a record of eustatic sea level change on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its location with respect to the former margins of Northern Hemisphere ice sheets that wax and wane on orbital cycles, the local-or relative-sea level history is predicted to lie within a few meters of the globally averaged eustatic signal during the Last Interglacial period. We have surveyed and dated Last Interglacial fossil corals to ascertain peak sea level and hence infer maximum retreat of polar ice sheets during this time interval. We observe a pattern of gradually rising sea level in the Seychelles between ˜129 and 125 thousand years ago (ka), with peak eustatic sea level attained after 125 ka at 7.6 ± 1.7 m higher than present. After accounting for thermal expansion and loss of mountain glaciers, this sea-level budget would require ˜5-8 m of polar ice sheet contribution, relative to today's volume, of which only ˜2 m came from the Greenland ice sheet. This result clearly identifies the Antarctic ice sheet as a significant source of melt water, most likely derived from one of the unstable, marine-based sectors in the West and/or East Antarctic ice sheet. Furthermore, the establishment of a +5.9 ± 1.7 m eustatic sea level position by 128.6 ± 0.8 ka would require that partial AIS collapse was coincident with the onset of the sea level highstand.

  20. Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO<sub>2sub> Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James [Utah State Univ., Logan, UT (United States)

    2016-08-01

    This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO<sub>2sub>. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments were carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO<sub>2sub> reacted systems to non-CO<sub>2sub> reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.

  1. Variability of Seasonal CO2 Ice Caps on Mars for Mars Years 26 through 29

    Science.gov (United States)

    Feldman, W. C.; Maurice, S.; Prettyman, T. H.

    2011-12-01

    the top of the south-polar CO2/water-ice residual cap at about +4.2 km to the surrounding plains at about +2.5 km. Algorithms developed previously to convert counting rates to CO2 and noncondensable gas column abundance will be applied to interpret the data.

  2. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Directory of Open Access Journals (Sweden)

    Karyn D Rode

    Full Text Available Recent observations suggest that polar bears (Ursus maritimus are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013 when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia, highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  3. Impact of capping layer type on emission of InAs quantum dots embedded in InGaAs/In{sub x}Al{sub y}Ga{sub z}As/GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T. V., E-mail: ttorch@esfm.ipn.mx; Casas Espinola, J. L. [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Stintz, A. [Center of High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-01-07

    The optical and structural properties of In{sub 0.15}Ga{sub 0.85}As/In{sub x}Al{sub y}Ga{sub z}As/GaAs quantum wells with embedded InAs quantum dots (QDs) were investigated by the photoluminescence (PL), its temperature dependence, X-ray diffraction (XRD), and high resolution (HR-XRD) methods in dependence on the composition of capping In{sub x}Al{sub y}Ga{sub z}As layers. Three types of capping layers (Al{sub 0.3}Ga{sub 0.7}As, Al{sub 0.10}Ga{sub 0.75}In{sub 0.15}As, and Al{sub 0.40}Ga{sub 0.45}In{sub 0.15}As) have been used and their impact on PL parameters has been compared. Temperature dependences of PL peak positions in QDs have been analyzed in the range of 10–500 K and to compare with the temperature shrinkage of band gap in the bulk InAs crystal. This permits to investigate the QD material composition and the efficiency of Ga(Al)/In inter diffusion in dependence on the type of In{sub x}Al{sub y}Ga{sub z}As capping layers. XRD and HR-XRD used to control the composition of quantum well layers. It is shown that QD material composition is closer to InAs in the structure with the Al{sub 0.40}Ga{sub 0.45}In{sub 0.15}As capping layer and for this structure the emission 1.3 μm is detected at 300 K. The thermal decay of the integrated PL intensity has been studied as well. It is revealed the fast 10{sup 2}-fold thermal decay of the integrated PL intensity in the structure with the Al{sub 0.10}Ga{sub 0.75}In{sub 0.15}As capping layer in comparison with 10-fold decay in other structures. Finally, the reasons of PL spectrum transformation and the mechanism of PL thermal decay for different capping layers have been analyzed and discussed.

  4. SOFT X-RAY IRRADIATION OF H{sub 2}S ICE AND THE PRESENCE OF S{sub 2} IN COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Ciaravella, A.; Candia, R.; Micela, G. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Cecchi-Pestellini, C., E-mail: munozcg@cab.inta-csic.es [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Canada) (Italy)

    2012-06-01

    Little is known about the effects of X-rays in interstellar ices. To understand the sulfur depletion in dense clouds and the presence of S{sub 2} in comets, we simulated experimentally the soft X-ray processing (0.3 keV) of H{sub 2}S ice for the first time. Experiments were performed under ultrahigh vacuum conditions at 8 K using infrared and quadrupole mass spectrometry to monitor the solid and gas phases, respectively. A UV irradiation experiment using a similar dose was made for comparison. After X-ray irradiation, an infrared absorption appears near 4.0 {mu}m which is attributed to H{sub 2}S{sub 2} formation in the ice. This identification is also supported by the desorption at 133 K of m/z 66, 65, 64, corresponding to the mass fragments of H{sub 2}S{sub 2}. The H{sub 2}S{sub 2} species is expected to be present in interstellar and cometary ices that were processed by X-rays. Further irradiation leads to dissociation of this molecule forming S{sub 2} and larger S-molecules up to S{sub 8}, which may explain the depletion of sulfur in dense clouds. CS{sub 2} was so far the parent molecule proposed for S{sub 2} formation in comets. But the abundance of H{sub 2}S{sub 2}, formed by irradiation of pure H{sub 2}S or H{sub 2}S in an H{sub 2}O-ice matrix, should be larger than that of CS{sub 2} in the ice, the latter requiring a carbon source for its formation. Based on our experimental results, we propose that S{sub 2} in comets could be formed by dissociation of H{sub 2}S{sub 2} in the ice.

  5. DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations in polar stereographic projection currently include Defense Meteorological Satellite...

  6. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-10-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau. This study presents a geodetic mass balance estimate of the Purogangri Ice Cap, Tibet's largest ice field between 2000 and 2012. We utilized data from the actual TerraSAR-X mission and its add-on for digital elevation measurements and compared it with elevation data from the Shuttle Radar Topography Mission. The employed data sets are ideal for this approach as both data sets were acquired at X-band at nearly the same time of the year and are available at a fine grid spacing. In order to derive surface elevation changes we employed two different methods. The first method is based on differential synthetic radar interferometry while the second method uses common DEM differencing. Both approaches revealed a slightly negative mass budget of −44 ± 15 and −38 ± 23 mm w.eq. a−1 (millimeter water equivalent respectively. A slightly negative trend of −0.15 ± 0.01 km2 a−1 in glacier extent was found for the same time period employing a time series of Landsat data. Overall, our results show an almost balanced mass budget for the studied time period. Additionally, we detected one continuously advancing glacier tongue in the eastern part of the ice cap.

  7. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  8. Parameterizing the Magnetopause Reconnection Rate from Observations of the Expanding Polar Cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-04-01

    We determine an expression for the magnetopause reconnection rate in terms of upstream interplanetary parameters. We quantify the dayside reconnection rate from observations of the expanding polar cap when the nightside reconnection rate is assumed to be zero. The polar cap open flux is calculated from auroral images collected by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet camera (FUV), and its rate of increase is correlated with upstream solar wind and interplanetary magnetic field measurements from the OMNI data-set. We find that the reconnection rate is successfully reproduced by considering the magnetic flux transport within a 4 Re-wide channel within the solar wind (with an additional small correction for the solar wind velocity) and an IMF clock angle dependence with an exponent of 9/2. Contrary to several previous studies we do not find a dependence of the reconnection rate on solar wind density. We discuss our findings in the context of previous studies and solar wind-magnetosphere coupling models.

  9. Solid and gaseous inclusions in the EDML deep ice core: origins and implications for the physical properties of polar ice

    Science.gov (United States)

    Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.

    2010-12-01

    The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.

  10. Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds

    Directory of Open Access Journals (Sweden)

    T. J. Fortin

    2003-01-01

    Full Text Available The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT. Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of S*ice = 1.3 to 1.02 over the temperature range 169.8-194.5 K. This corresponds to a necessary supercooling of 0.1-1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g., 10-3 cm-3 result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.

  11. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  12. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  13. Phase-Separated, Epitaxial, Nanostructured LaMnO<sub>3sub>+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa<sub>2sub>Cu>3sub>O>7-xsub> Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  14. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    Science.gov (United States)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  15. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    International Nuclear Information System (INIS)

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  16. Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory

    Science.gov (United States)

    Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.

    2017-11-01

    Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (˜ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters - most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10-12 m2 s-1 values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records

  17. Peruvian Tropical Glacier May Survive Longer Than Previously Thought: Landsat Image Analysis of Nevado Coropuna Ice Cap, Peru

    Science.gov (United States)

    Kochtitzky, W. H.; Edwards, B. R.; Marino, J.; Manrique, N.

    2015-12-01

    Nevado Coropuna is a large volcanic complex in southern Peru (15.56°S, 72.62°N; 6,425 m). The complex is approximately 12 km east-west and 8 km north-south with elevation from ~4,500 m at the base to over 6,000 m at the highest points. This ice cap is the largest hosted by a volcano in the tropics, and one of the ten biggest ice masses in the tropics. Previous workers have predicted that the Coropuna ice cap will completely melt by 2050. We present a new analysis of historic satellite imagery to test this hypothesis. In this study, ice and snow are classified based on unique spectral signatures including spectral band thresholds, Normalized Difference Snow Index, and Band 4/5 ratio. Landsat scenes (L2, 4, 5, 7, and 8) from 1975 to present in addition to one SPOT scene (2013) are used. Previous workers used images from June and July, which are peak snow periods in southern Peru, leading to overestimates of ice area. This study uses November and December images when snow is at an annual minimum. Annual equilibrium line altitudes are calculated for each end of year image (November/December). The glaciers of Nevado Coropuna were found to be shrinking at ~0.5 km2/yr, which is ~1/3 the rate previously published. In this study, SPOT (1.5 m resolution) and Landsat 7 ETM scenes from November 23 and 26, 2013 respectively were used to calibrate the spectral band threshold classification. While this study suggests that the ice cap of Coropuna will persist until 2100 given current rates, water quantity and security remains a concern for Peruvian agriculture. Coropuna is an active volcano, so it poses great risk to surrounding inhabitants from lahars, flooding, and debris avalanches. Our new data suggest that these will continue to be risks late into this century.

  18. Composition controlled spin polarization in Co{sub 1-x}Fe{sub x}S{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, C [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Manno, M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Cady, A [Advanced Photon Source, Argonne National Laboratory (United States); Freeland, J W [Advanced Photon Source, Argonne National Laboratory (United States); Wang, L [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Umemoto, K [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Wentzcovitch, R M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Chen, T Y [Department of Physics and Astronomy, Johns Hopkins University (United States); Chien, C L [Department of Physics and Astronomy, Johns Hopkins University (United States); Kuhns, P L [National High Magnetic Field Laboratory, Florida State University (United States); Hoch, M J R [National High Magnetic Field Laboratory, Florida State University (United States); Reyes, A P [National High Magnetic Field Laboratory, Florida State University (United States); Moulton, W G [National High Magnetic Field Laboratory, Florida State University (United States); Dahlberg, E D [School of Physics and Astronomy, University of Minnesota (United States); Checkelsky, J [Physics Department, Harvey Mudd College (United States); Eckert, J [Physics Department, Harvey Mudd College (United States)

    2007-08-08

    The transition metal (TM) chalcogenides of the form TMX{sub 2} (X = S or Se) have been studied for decades due to their interesting electronic and magnetic properties such as metamagnetism and metal-insulator transitions. In particular, the Co{sub 1-x}Fe{sub x}S{sub 2} alloys were the subject of investigation in the 1970s due to general interest in itinerant ferromagnetism. In recent years (2000-present) it has been shown, both by electronic structure calculations and detailed experimental investigations, that Co{sub 1-x}Fe{sub x}S{sub 2} is a model system for the investigation of highly spin polarized ferromagnetism. The radically different electronic properties of the two endpoint compounds (CoS{sub 2} is a narrow bandwidth ferromagnetic metal, while FeS{sub 2} is a diamagnetic semiconductor), in a system forming a substitutional solid solution allows for composition control of the Fermi level relative to the spin split bands, and therefore composition-controlled conduction electron spin polarization. In essence, the recent work has shown that the concept of 'band engineering' can be applied to half-metallic ferromagnets and that high spin polarization can be deliberately engineered. Experiments reveal tunability in both sign and magnitude of the spin polarization at the Fermi level, with maximum values obtained to date of 85% at low temperatures. In this paper we review the properties of Co{sub 1-x}Fe{sub x}S{sub 2} alloys, with an emphasis on properties of relevance to half-metallicity. Crystal structure, electronic structure, synthesis, magnetic properties, transport properties, direct probes of the spin polarization, and measurements of the total density of states at the Fermi level are all discussed. We conclude with a discussion of the factors that influence, or even limit, the spin polarization, along with a discussion of opportunities and problems for future investigation, particularly with regard to fundamental studies of spintronic devices.

  19. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    International Nuclear Information System (INIS)

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  20. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  1. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ⊕} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  2. Earth's Climate History from Glaciers and Ice Cores

    Science.gov (United States)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  3. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-03-01

    Many studies have attempted to quantify the coupling of energy from the solar wind into the magnetosphere. In this paper we parameterize the dependence of the magnetopause reconnection rate on interplanetary parameters from the OMNI data set. The reconnection rate is measured as the rate of expansion of the polar cap during periods when the nightside reconnection rate is thought to be low, determined from observations by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet (FUV) imager. Our fitting suggests that the reconnection rate is determined by the magnetic flux transport in the solar wind across a channel approximately 4 RE in width, with a small correction dependent on the solar wind speed, and a clock angle dependence. The reconnection rate is not found to be significantly dependent on the solar wind density. Comparison of the modeled reconnection rate with SuperDARN measurements of the cross-polar cap potential provides broad support for the magnitude of the predictions. In the course of the paper we discuss the relationship between the dayside reconnection rate and the cross-polar cap potential.

  4. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (D<sub>st><−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (B<sub>z>>25 nT with a strong duskward component (B<sub>y>>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a B<sub>y> induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  5. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains

    Science.gov (United States)

    Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.

    2018-05-01

    Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.

  6. Polarization fluctuation behavior of lanthanum substituted Bi{sub 4}Ti{sub 3}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ni; Xiang, Ping-Hua, E-mail: phxiang@ee.ecnu.edu.cn; Zhang, Yuan-Yuan; Wu, Xing; Tang, Xiao-Dong; Yang, Ping-Xiong; Duan, Chun-Gang; Chu, Jun-Hao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2015-09-14

    Polarization fluctuation behavior of lanthanum substituted Bi{sub 4}Ti{sub 3}O{sub 12} (Bi{sub 4−x}La{sub x}Ti{sub 3}O{sub 12}, BLT) ferroelectric thin films has been examined. Remnant polarization exhibits an initial increase (P{sub up}, 1–10{sup 6} cycles) and a subsequent decrease (P{sub down}, 10{sup 6}–10{sup 9} cycles) with switching cycles, whereas the dielectric constant exhibits a continuous decrease. By careful investigations on the effect of switching frequency and annealing atmosphere on the polarization fluctuation characteristics, we propose that this polarization fluctuation characteristic of BLT films is attributed to the competition between domain pinning and passive layer growing effect, due to the redistribution of oxygen vacancy related defect under external applied field. P{sub up} behavior is dominated by the unpinning of pinned domain, while P{sub down} behavior is dominated by the reduction of applied field on BLT bulk layer, due to the growing of the passive layer between BLT and Pt electrode. By assuming the dielectric constant and initial thickness of passive layer, the passive layer was estimated to be about 2–5 times thicker than the initial state after 10{sup 9} cycling.

  7. Following the south polar cap recession as viewed by OMEGA/MEX using automatic detection of H2O and CO2 ices.

    Science.gov (United States)

    Schmidt, F.; Doute, S.; Schmitt, B.

    In order to understand Mars' current climate it is necessary to detect, characterize and monitor CO2 and H2O at the surface (permanent and seasonal icy deposits) and in the atmosphere (vapor and clouds). Here we will focus on the South Seasonal Polar Cap (SSPC) whose recession was previously observed with different techniques : from earth in the visible range with HST [James 1996], or from MGS spacecraft with MOC images [Benson 2005], in the thermal IR range by the TES [Kieffer 2000], in the near infrared by OMEGA/MEX [Langevin submitted]. The time and space evolutions of the SSPC is a major annual climatic signal both at the global and the regional scales. In particular the measurement of the temporal and spatial distributions of CO2 constrains exchange processes between both surface and atmosphere. This exchange may involve preponderant species : H2O, CO2 and dust. In this work we will apply a new detection technique : "wavanglet" in order to follow the recession of the SSPC thanks to OMEGA/MEX observations. This method was especially developed in the goal to classify a huge dataset, such OMEGA ones. We propose to use "wavanglet" as a supervised automatic classification method that identifies spectral features and classifies the image in spectrally homogeneous units. Additionally we will evaluate quantitative detection limits of "wavanglet" based on synthetic dataset simulating OMEGA spectra in typical situation of the SSPC. This detection limit will be discussed in terms of abundance for H2O and CO2 ices in order to improve the interpretation of the classification. Finally we will present the recession of the SSPC using "wavanglet" and we will compare the results with those of earlier investigation. An interpretation of the similarities and disagreements between those maps will be done.

  8. Effect of dietary protein on the excretion of. cap alpha. /sub 2u/, the sex-dependent protein of the adult male rat

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, O W; Flory, W

    1975-01-01

    Adult male rates were maintained on normal (20 percent casein), protein-free (0 percent casein), high protein (50 percent casein), deficient protein (20 percent zein), and a supplemented, deficient protein (20 percent zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg ..cap alpha../sub 2u//24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on the normal diet showed a rapid restoration of the normal ..cap alpha../sub 2u/ excretion as well as total urinary proteins. Accumulation of ..cap alpha../sub 2u/ in the blood serum was measured in nephrectomized rats. Rats on the protein free diet accumulated only 30 percent of the ..cap alpha../sub 2u/ compared to normals. On a 50 precent casein diet, rats excreted 30-50 mg ..cap alpha../sub 2u//24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate ..cap alpha../sub 2u/ synthesis but probably increased the renal loss of all urinary proteins. The excretion of ..cap alpha../sub 2u/ on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate ..cap alpha../sub 2u/ to near normal levels. Accumulation of ..cap alpha../sub 2u/ in the serum of nephrectomized rats kept on the zein diets showed that the effect was to suppress the synthesis of the ..cap alpha../sub 2u/. Supplementation restored the biosynthesis of ..cap alpha../sub 2u/. It is concluded that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in a large part by an influence on the hepatic biosynthesis of ..cap alpha../sub 2u/. The biosynthesis of this protein, which represents approximately 30 percent of the total urinary proteins, is dependent on an adequate supply of dietary protein.

  9. Co-distribution of seabirds and their polar cod prey near the ice edge in southern Baffin Bay

    DEFF Research Database (Denmark)

    LeBlanc, Mathieu; Gauthier, S; Mosbech, Anders

    species, and age-1 polar cod found in bird stomachs were likely individuals associated to ice. At a large scale of hundreds of kilometers, seabirds and age-0 polar cod were more abundant in ice-covered habitats (30 to 100% ice concentration). At medium and small scale of 12.5 and 1 km respectively...

  10. Polar Sea Ice Monitoring Using HY-2A Scatterometer Measurements

    Directory of Open Access Journals (Sweden)

    Mingming Li

    2016-08-01

    Full Text Available A sea ice detection algorithm based on Fisher’s linear discriminant analysis is developed to segment sea ice and open water for the Ku-band scatterometer onboard the China’s Hai Yang 2A Satellite (HY-2A/SCAT. Residual classification errors are reduced through image erosion/dilation techniques and sea ice growth/retreat constraint methods. The arctic sea-ice-type classification is estimated via a time-dependent threshold derived from the annual backscatter trends based on previous HY-2A/SCAT derived sea ice extent. The extent and edge of the sea ice obtained in this study is compared with the Special Sensor Microwave Imager/Sounder (SSMIS sea ice concentration data and the Sentinel-1 SAR imagery for verification, respectively. Meanwhile, the classified sea ice type is compared with a multi-sensor sea ice type product based on data from the Advanced Scatterometer (ASCAT and SSMIS. Results show that HY-2A/SCAT is powerful in providing sea ice extent and type information, while differences in the sensitivities of active/passive products are found. In addition, HY-2A/SCAT derived sea ice products are also proved to be valuable complements for existing polar sea ice data products.

  11. Charged-Higgs on R{sub D}{sup {sub (}{sub *}{sub )}}, τ polarization, and FBA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan-Hung [National Cheng-Kung University, Department of Physics, Tainan (China); Nomura, Takaaki [KIAS, School of Physics, Seoul (Korea, Republic of)

    2017-09-15

    We study the influence of a charged-Higgs on the excess of branching fraction ratio, R{sub M} = BR(anti B → Mτ anti ν{sub τ})/BR(anti B → Ml anti ν{sub l}) (M = D, D*), in a generic two-Higgs-doublet model. In order to investigate the lepton polarization, the detailed decay amplitudes with lepton helicity are given. When the charged-Higgs is used to resolve excesses, it is found that two independent Yukawa couplings are needed to explain the R{sub D} and R{sub D*} anomalies. We show that when the upper limit of BR(B{sub c} → τ anti ν{sub τ}) < 30% is included, R{sub D} can be significantly enhanced while R{sub D*} < 0.27. With the BR(B{sub c} → τ anti ν{sub τ}) constraint, we find that the τ-lepton polarizations can be still affected by the charged-Higgs effects, where the standard model (SM) predictions are obtained: P{sup τ}{sub D} ∼ 0.324 and P{sup τ}{sub D*} ∼ -0.500, and they can be enhanced to be P{sup τ}{sub D} ∼ 0.5 and P{sup τ}{sub D*} ∼ -0.41 by the charged-Higgs. The integrated lepton forward-backward asymmetry (FBA) is also studied, where the SM result is anti A{sup D{sup ({sup *{sup ),τ}{sub FB}}}} ∼ -0.359(0.064), and they can be enhanced (decreased) to be anti A{sup D{sup ({sup *{sup ),τ}{sub FB}}}} ∼ -0.33(0.02). (orig.)

  12. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    Science.gov (United States)

    Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.

  13. Reconstruction of spin-tensor of 4. 43 MeV state density matrix of the /sup 12/C nucleus in the /sup 12/C(. cap alpha. ,. cap alpha. sub(1). gamma. sub(4,43))/sup 12/C reaction at Esub(. cap alpha. )=25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G.S.; Lebedev, V.M.; Orlova, N.V.; Spasskij, A.V.; Teplov, I.B.; Shakhvorostova, G.V.; Belkina, M.R. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1984-01-01

    The results of measuring double differential cross sections of the reaction of inelastic scattering 24.8 MeV ..cap alpha..-particles sup(12)C(..cap alpha.., ..cap alpha..sub(1)..gamma..sub(4.43))sup(12)C in different planes of ..gamma..-quantum escape relatively to the plane of the reaction phisub(..gamma..)=30, 60 and 90 deg are presented. Non-monochromaticity of the beam made up 1%. Functions of angular correlation of the reaction are measured for four angles THETAsub(..cap alpha..)=21, 39, 59 and 135 deg corresponding to maxima of differential cross section in angular distribution of inelastically scattered ..cap alpha..-particles and for THETAsub(..cap alpha..)=89 deg corresponding to the minimum of angular distribution. The results of measurements permit to reconstruct all the components of irreducible spin-tensors of the matrix of state density 4.43 MeV (2/sup +/) formed in this reaction. The values of populations of substates by the projection of the spin of this state are obtained. The analysis of the obtained results testify to the fact that mechanism of inelastic scattering is not reduced to impulse approximation and mechanisms associated with delay in interaction do not make noticeable contribution for the given angles of ..cap alpha..-particle escape.

  14. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century.

    Science.gov (United States)

    Castro de la Guardia, Laura; Derocher, Andrew E; Myers, Paul G; Terwisscha van Scheltinga, Arjen D; Lunn, Nick J

    2013-09-01

    The primary habitat of polar bears is sea ice, but in Western Hudson Bay (WH), the seasonal ice cycle forces polar bears ashore each summer. Survival of bears on land in WH is correlated with breakup and the ice-free season length, and studies suggest that exceeding thresholds in these variables will lead to large declines in the WH population. To estimate when anthropogenic warming may have progressed sufficiently to threaten the persistence of polar bears in WH, we predict changes in the ice cycle and the sea ice concentration (SIC) in spring (the primary feeding period of polar bears) with a high-resolution sea ice-ocean model and warming forced with 21st century IPCC greenhouse gas (GHG) emission scenarios: B1 (low), A1B (medium), and A2 (high). We define critical years for polar bears based on proposed thresholds in breakup and ice-free season and we assess when ice-cycle conditions cross these thresholds. In the three scenarios, critical years occur more commonly after 2050. From 2001 to 2050, 2 critical years occur under B1 and A2, and 4 under A1B; from 2051 to 2100, 8 critical years occur under B1, 35 under A1B and 41 under A2. Spring SIC in WH is high (>90%) in all three scenarios between 2001 and 2050, but declines rapidly after 2050 in A1B and A2. From 2090 to 2100, the mean spring SIC is 84 (±7)% in B1, 56 (±26)% in A1B and 20 (±13)% in A2. Our predictions suggest that the habitat of polar bears in WH will deteriorate in the 21st century. Ice predictions in A1B and A2 suggest that the polar bear population may struggle to persist after ca. 2050. Predictions under B1 suggest that reducing GHG emissions could allow polar bears to persist in WH throughout the 21st century. © 2013 John Wiley & Sons Ltd.

  15. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov [Science Division, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and

  16. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    OpenAIRE

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate‐change‐induced reduction of their sea‐ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea‐ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutriti...

  17. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    Energy Technology Data Exchange (ETDEWEB)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2015-10-20

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  18. Movement of a female polar bear (Ursus maritimus) in the Kara Sea during the summer sea-ice break-up.

    Science.gov (United States)

    Rozhnov, V V; Platonov, N G; Naidenko, S V; Mordvintsev, I N; Ivanov, E A

    2017-01-01

    The polar bear movement trajectory in relation to onset date of the sea-ice break-up was studied in the coastal zone of the Taimyr Peninsula, eastern part of the Kara Sea, using as an example a female polar bear tagged by a radio collar with an Argos satellite transmitter. Analysis of the long-term pattern of ice melting and tracking, by means of satellite telemetry, of the female polar bear who followed the ice-edge outgoing in the north-eastern direction (in summer 2012) suggests that direction of the polar bear movement depends precisely on the direction of the sea-ice cover break-up.

  19. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  20. Estimation of Melt Pond Fractions on First Year Sea Ice Using Compact Polarization SAR

    Science.gov (United States)

    Li, Haiyan; Perrie, William; Li, Qun; Hou, Yijun

    2017-10-01

    Melt ponds are a common feature on Arctic sea ice. They are linked to the sea ice surface albedo and transmittance of energy to the ocean from the atmosphere and thus constitute an important process to parameterize in Arctic climate models and simulations. This paper presents a first attempt to retrieve the melt pond fraction from hybrid-polarized compact polarization (CP) SAR imagery, which has wider swath and shorter revisit time than the quad-polarization systems, e.g., from RADARSAT-2 (RS-2). The co-polarization (co-pol) ratio has been verified to provide estimates of melt pond fractions. However, it is a challenge to link CP parameters and the co-pol ratio. The theoretical possibility is presented, for making this linkage with the CP parameter C22/C11 (the ratio between the elements of the coherence matrix of CP SAR) for melt pond detection and monitoring with the tilted-Bragg scattering model for the ocean surface. The empirical transformed formulation, denoted as the "compact polarization and quad-pol" ("CPQP") model, is proposed, based on 2062 RS-2 quad-pol SAR images, collocated with in situ measurements. We compared the retrieved melt pond fraction with CP parameters simulated from quad-pol SAR data with results retrieved from the co-pol ratio from quad-pol SAR observations acquired during the Arctic-Ice (Arctic-Ice Covered Ecosystem in a Rapidly Changing Environment) field project. The results are shown to be comparable for observed melt pond measurements in spatial and temporal distributions. Thus, the utility of CP mode SAR for melt pond fraction estimation on first year level ice is presented.

  1. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  2. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jeong; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400 Austin, TX 78712-1205 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Pontoppidan, Klaus M., E-mail: hyojeong@astro.as.utexas.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  3. PHOTOMETRIC MEASUREMENTS OF H{sub 2}O ICE CRYSTALLINITY ON TRANS-NEPTUNIAN OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Tsuyoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A‘ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo-cho, Sayo-gun, Hyogo 679-5313 (Japan); Oasa, Yumiko [Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570 (Japan); Furusho, Reiko; Watanabe, Junichi, E-mail: tsuyoshi.terai@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-10

    We present a measurement of H{sub 2}O ice crystallinity on the surface of trans-neptunian objects with near-infrared narrow-band imaging. The newly developed photometric technique allows us to efficiently determine the strength of a 1.65 μ m absorption feature in crystalline H{sub 2}O ice. Our data for three large objects—Haumea, Quaoar, and Orcus—which are known to contain crystalline H{sub 2}O ice on the surfaces, show a reasonable result with high fractions of the crystalline phase. It can also be pointed out that if the grain size of H{sub 2}O ice is larger than ∼20 μ m, the crystallinities of these objects are obviously below 1.0, which suggests the presence of the amorphous phase. In particular, Orcus exhibits a high abundance of amorphous H{sub 2}O ice compared to Haumea and Quaoar, possibly indicating a correlation between the bulk density of the bodies and the degree of surface crystallization. We also found the presence of crystalline H{sub 2}O ice on Typhon and 2008 AP{sub 129}, both of which are smaller than the minimum size limit for inducing cryovolcanism as well as a transition from amorphous to crystalline phase through thermal evolution due to the decay of long-lived isotopes.

  4. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard).

    Science.gov (United States)

    Möller, Marco; Schneider, Christoph

    2015-01-28

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.

  5. The response of ionospheric convection in the polar cap to substorm activity

    Directory of Open Access Journals (Sweden)

    M. Lester

    Full Text Available We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°λ-78°λ. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF. We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71°λ by the time of the expansion phase onset. A westward electrojet, centred at 65.4°λ, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1°λ at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the "distant" neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap

  6. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  7. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2004-04-01

    Full Text Available Polar cap absorption (PCA events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica, and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd, the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field.

    Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November and by 4.2–14.5MeV (23 November. Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E<sub>0sub>=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances can contribute to the ionospheric absorption.

    Key words. Ionosphere (Polar Ionosphere, Particle precipitation – Solar physics (Flares and mass ejections

  8. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  9. Integrated Data Collection Analysis (IDCA) Program — KClO<sub>3sub> (as received)/Icing Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Sorenson, Daniel N. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL/RXQL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Inc., Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-23

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO<sub>3sub> as received from the manufacturer mixed with icing sugar, sized through a 100-mesh sieve—KClO<sub>3sub>/icing sugar (AR) mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solid materials. The mixture was found to: 1) be more sensitive to impact than RDX, similar to PETN, 2) be the same or less sensitive to friction than PETN, and 3) to be less sensitive to spark than RDX. The thermal analysis showed that the mixture has thermally stability similar to RDX and is perhaps more energetic upon decomposition but variable results indicate sampling issues. Compared to the 100-mesh sieved counter part, the KClO<sub>3sub>/icing sugar (-100) mixture, the AR mixture was found to be about the same sensitivity towards impact, friction and ESD.

  10. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  11. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  12. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  13. Ap/sub 4/A interactions with a multiprotein form of DNA polymerase. cap alpha. - primase from HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Baril, E F; Owen, M W; Vishwanatha, J K; Zamecnik, P C

    1984-06-01

    In previous studies, it was shown that Ap/sub 4/A can function as a primer for in vitro DNA synthesis by the multiprotein form of DNA polymerase ..cap alpha.. with single-stranded DNA and an octadecamer double-stranded DNA template. In these studies, the authors show that Ap/sub 4/A that is greater than 99% pure by high performance liquid chromatography also stimulates the incorporation of (..cap alpha../sup 32/P)ATP into the 10-15 oligoribonucleotide primer with poly(dT) template by the primase that is resolved from the polymerase ..cap alpha.. core enzyme. Other dinucleotides or dinucleotide polyphosphates (e.g. ApA, Ap/sub 2/A or Ap/sub 3/A) do not enhance the incorporation of (..cap alpha../sup 32/P)ATP in this reaction. The results from phosphate transfer experiments demonstrate a covalent linkage between (/sup 3/H)Ap/sub 4/A and the /sup 32/P-labeled oligoriboadenylate that is synthesized by the primase.

  14. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)

    2015-02-15

    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.

  15. Electronic reconstruction at the interface between the Mott insulator LaVO{sub 3} and the band insulator SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Stuebinger, Martin; Gabel, Judith; Gagel, Philipp; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Akin to the well known oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) the formation of a conducting interface is found between the strongly correlated, polar Mott insulator LaV{sup 3+}O{sub 3} (LVO) and the non-polar band insulator STO. Since LaV{sup 3+}O{sub 3} tends to overoxidize to the thermodynamically more favourable LaV{sup 5+}O{sub 4} phase when exposed to air, a suitable passivation is required. Therefore, we have employed pulsed laser deposition thin film growth of LVO films with a crystalline LAO capping layer. In situ photoemission measurements of samples before and after being exposed to air show that the V oxidation state can indeed be stabilized by the LAO capping layer. By transport measurements, we identify an insulator-to-metal transition at a combined LAO/LVO overlayer thickness of 4 to 5 unit cells. With LVO being a Mott insulator, passivation by the LAO capping opens the opportunity to study a band-filling controlled Mott insulator to metal transition induced by a purely electrostatic mechanism without interfering overoxidation of the LVO film.

  16. Movements of female polar bears (Usrus maritimus) in the East Greenland pack ice

    DEFF Research Database (Denmark)

    Wiig, Øystein; Born, Erik W.; Pedersen, Leif Toudal

    2003-01-01

    The movements of two adult female polar bears (Ursus maritimus) in East Greenland and the Greenland Sea area were studied by use of satellite telemetry between the fall of 1994 and the summer of 1998. One female was tracked for 621 days, the other for 1,415 days. During this time the females used...... for a closer monitoring of the effects of this change on the East Greenland polar bear population....... movement rates varied between 0.32 and 0.76km/h. Both bears had very large home ranges (242,000 and 468,000 km(2)) within the dynamic pack ice of the Greenland Sea. The facts that the bears made extensive use of the offshore sea ice and that there is a marked reduction of the Greenland Sea ice call...

  17. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay

    Science.gov (United States)

    Regehr, E.V.; Lunn, N.J.; Amstrup, Steven C.; Stirling, I.

    2007-01-01

    Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5-19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as

  18. ICESat's First Year of Measurements Over the Polar Ice Sheets

    Science.gov (United States)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  19. Integrated Data Collection Analysis (IDCA) Program - NaClO<sub>3sub>/Icing Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall Air Force Base, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall Air Force Base, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-02-11

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of NaClO<sub>3sub> and icing sugar—NaClO<sub>3sub>/icing sugar mixture. The mixture was found to: be more sensitive than RDX but less sensitive than PETN in impact testing (180-grit sandpaper); be more sensitive than RDX and about the same sensitivity as PETN in BAM fiction testing; be less sensitive than RDX and PETN except for one participant found the mixture more sensitive than PETN in ABL ESD testing; and to have one to three exothermic features with the lowest temperature event occurring at ~ 160°C always observed in thermal testing. Variations in testing parameters also affected the sensitivity.

  20. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  1. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions.

  2. Ross Ice Shelf airstream driven by polar vortex cyclone

    Science.gov (United States)

    Schultz, Colin

    2012-07-01

    The powerful air and ocean currents that flow in and above the Southern Ocean, circling in the Southern Hemisphere's high latitudes, form a barrier to mixing between Antarctica and the rest of the planet. Particularly during the austral winter, strong westerly winds isolate the Antarctic continent from heat, energy, and mass exchange, bolstering the scale of the annual polar ozone depletion and driving the continent's record-breaking low temperatures. Pushing through this wall of high winds, the Ross Ice Shelf airstream (RAS) is responsible for a sizable amount of mass and energy exchange from the Antarctic inland areas to lower latitudes. Sitting due south of New Zealand, the roughly 470,000-square-kilometer Ross Ice Shelf is the continent's largest ice shelf and a hub of activity for Antarctic research. A highly variable lower atmospheric air current, RAS draws air from the inland Antarctic Plateau over the Ross Ice Shelf and past the Ross Sea. Drawing on modeled wind patterns for 2001-2005, Seefeldt and Cassano identify the primary drivers of RAS.

  3. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  4. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  5. Modelling the future of the arctic sea ice cover

    OpenAIRE

    Myklebust, Erik Bryhn

    2017-01-01

    Record lows in sea ice cover have recently sparked new interest in the small ice cap instability. The change in albedo when sea ice becomes open water introduces a nonlinearity called the ice-albedo feedback. Forcing a joint energy- balance and sea ice model can lead to unstable ice caps in certain parameter regimes. When the ice caps are unstable, a small perturbation will initiate a tipping point in the sea ice cover. For tipping points in general, a number of studies have pointed out that ...

  6. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    Science.gov (United States)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  7. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    Science.gov (United States)

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.

  8. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline.

    Science.gov (United States)

    Bromaghin, Jeffrey F; Mcdonald, Trent L; Stirling, Ian; Derocher, Andrew E; Richardson, Evan S; Regehr, Eric V; Douglas, David C; Durner, George M; Atwood, Todd; Amstrup, Steven C

    2015-04-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  9. O+ trough zones in the polar cap ionosphere-magnetosphere coupling region

    Science.gov (United States)

    Horwitz, James; Zeng, Wen; Jaafari, Fajer

    Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.

  10. Stability of Sulphur Dimers (S{sub 2}) in Cometary Ices

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, O.; Ronnet, T. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Ozgurel, O.; Pauzat, F.; Markovits, A.; Ellinger, Y. [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7616, F-75252 Paris CEDEX 05 (France); Lunine, J. I. [Department of Astronomy and Carl Sagan Institute, Space Sciences Building Cornell University, Ithaca, NY 14853 (United States); Luspay-Kuti, A., E-mail: olivier.mousis@lam.fr [Department of Space Research, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228 (United States)

    2017-02-01

    S{sub 2} has been observed for decades in comets, including comet 67P/Churyumov–Gerasimenko. Despite the fact that this molecule appears ubiquitous in these bodies, the nature of its source remains unknown. In this study, we assume that S{sub 2} is formed by irradiation (photolysis and/or radiolysis) of S-bearing molecules embedded in the icy grain precursors of comets and that the cosmic ray flux simultaneously creates voids in ices within which the produced molecules can accumulate. We investigate the stability of S{sub 2} molecules in such cavities, assuming that the surrounding ice is made of H{sub 2}S or H{sub 2}O. We show that the stabilization energy of S{sub 2} molecules in such voids is close to that of the H{sub 2}O ice binding energy, implying that they can only leave the icy matrix when this latter sublimates. Because S{sub 2} has a short lifetime in the vapor phase, we derive that its formation in grains via irradiation must occur only in low-density environments such as the ISM or the upper layers of the protosolar nebula, where the local temperature is extremely low. In the first case, comets would have agglomerated from icy grains that remained pristine when entering the nebula. In the second case, comets would have agglomerated from icy grains condensed in the protosolar nebula and that would have been efficiently irradiated during their turbulent transport toward the upper layers of the disk. Both scenarios are found consistent with the presence of molecular oxygen in comets.

  11. Drifting field-aligned density structures in the night-side polar cap

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Persoon, A. M.; Gurnett, D. A.; Décréau, P. M. E.; Pickett, J. S.; Maršálek, O.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2005-01-01

    Roč. 32, - (2005), L06106-1 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA202/03/0832; GA MŠk ME 650; GA MŠk 1P05ME811 Grant - others: NASA (US) NAG5-9974; NASA (US) NNG04GB98G; NSF(US) 0307319; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric Physics * Plasma convection * Plasma waves and instabilities * Polar cap phenomena * Magnetospheric configuration and dynamics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  12. The formation of multiple layers of ice particles in the polar summer mesopause region

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-01-01

    Full Text Available This paper presents a two-dimensional theoretical model to study the formation process of multiple layers of small ice particles in the polar summer mesosphere as measured by rockets and associated with polar mesosphere summer echoes (PMSE. The proposed mechanism primarily takes into account the transport processes induced by gravity waves through collision coupling between the neutral atmosphere and the ice particles. Numerical solutions of the model indicate that the dynamic influence of wind variation induced by gravity waves can make a significant contribution to the vertical and horizontal transport of ice particles and ultimately transform them into thin multiple layers. Additionally, the pattern of the multiple layers at least partially depends on the vertical wavelength of the gravity wave, the ice particle size and the wind velocity. The results presented in this paper will be helpful to better understand the occurrence of multiple layers of PMSE as well as its variation process.

  13. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  14. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    Science.gov (United States)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  15. Dayside and nightside contributions to the cross polar cap potential: placing an upper limit on a viscous-like interaction

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2004-11-01

    Full Text Available Observations of changes in size of the ionospheric polar cap allow the dayside and nightside reconnection rates to be quantified. From these it is straightforward to estimate the rate of antisunward transport of magnetic flux across the polar regions, quantified by the cross polar cap potential ΦPC. When correlated with upstream measurements of the north-south component of the IMF, ΦPC is found to increase for more negative Bz, as expected. However, we also find that ΦPC does not, on average, decrease to zero, even for strongly northward IMF. In the past this has been interpreted as evidence for a viscous interaction between the magnetosheath flow and the outer boundaries of the magnetosphere. In contrast, we show that this is the consequence of flows excited by tail reconnection, which is inherently uncorrelated with IMF Bz.

  16. Mapping of the solar wind electric field to the Earth's polar caps

    International Nuclear Information System (INIS)

    Toffoletto, F.R.; Hill, T.W.

    1989-01-01

    In this paper we describe a quantitative model of a magnetically interconnected (open) magnetosphere, developed as a perturbation to Voigt's closed magnetosphere model with a given magnetopause shape. The ''interconnection'' (perturbation) field is obtained as a solution to a Neumann boundary value problem, with the magnetopause normal component distribution as a boundary condition. The normal component at the magnetopause is required to be time independent and is specified in accordance with one of two hypotheses: the subsolar point merging hypothesis and Crooker's antiparallel merging hypothesis. The resulting open magnetospheric configuration is used to map the magnetopause electric field down to the polar cap ionosphere. We present ionospheric convection patterns derived from three representative interplanetary magnetic field (IMF) orientations for each of the two dayside merging geometries. Both merging geometries reproduce the observed convergence of convection streamlines near noon in a convection ''throat,'' and the east-west deflection of these streamlines in response to the east-west IMF component. The major difference between the two dayside merging geometries occurs for nonsouthward IMF, and consists of a Sun-aligned convection gap that bifurcates the polar cap in the case of the antiparallel merging geometry but not in the subsolar point merging geometry. This convection gap may plausibly be associated with the ''theta aurora'' structure observed when the IMF has a northward component. copyright American Geophysical Union 1989

  17. The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling

    OpenAIRE

    Taurisano, Andrea; Schuler, Thomas V.; Hagen, Jon Ove; Eiken, Trond; Loe, Even; Melvold, Kjetil; Kohler, Jack

    2007-01-01

    We present an analysis of the spatial variability in the snow accumulation on the Austfonna ice cap in Svalbard, Norway, based on the results of field investigations conducted in the spring of 1999, 2004 and 2005. During the campaigns ground penetrating radar measurements at 500 and 800 MHz were collected along profiles, along with additional manual snow sounding and pit stratigraphy work. The analysis of the data reveals a consistent pattern in the spatial distribution of the snow accumulati...

  18. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  19. Past climate changes derived from isotope measurements in polar ice cores

    International Nuclear Information System (INIS)

    Beer, J.; Muscheler, R.; Wagner, G.; Kubik, P.K.

    2002-01-01

    Measurements of stable and radioactive isotopes in polar ice cores provide a wealth of information on the climate conditions of the past. Stable isotopes (δ 18 O, δD) reflect mainly the temperature, whereas δ 18 O of oxygen in air bubbles reveals predominantly the global ice volume and the biospheric activity. Cosmic ray produced radioisotopes (cosmogenic nuclides) such as 10 Be and 36 Cl record information on the solar variability and possibly also on the solar irradiance. If the flux of a cosmogenic nuclide into the ice is known the accumulation rate can be derived from the measured concentration. The comparison of 10 Be from ice with 14 C from tree rings allows deciding whether observed 14 C variations are caused by production or system effects. Finally, isotope measurements are very useful for establishing and improving time scales. The 10 Be/ 36 Cl ratio changes with an apparent half-life of 376,000 years and is therefore well suited to date old ice. Significant abrupt changes in the records of 10 Be, 36 Cl from ice and of δ 18 O from atmospheric oxygen representing global signals can be used to synchronize ice and sediment cores. (author)

  20. Crystal structure of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O with isolated boron triangles

    Energy Technology Data Exchange (ETDEWEB)

    Topnikova, A. P.; Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.; Volkov, A. S. [Moscow State University, Faculty of Geology (Russian Federation)

    2016-11-15

    Crystals of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O were prepared by hydrothermal synthesis. The crystals are orthorhombic, a = 7.2295(7) Å, b = 11.2523(8) Å, c = 5.1285(6) Å, Z = 2, sp. gr. C2mm (Amm2), R = 0.0253. The formula of the compound was derived from the structure determination. The Ce and Na atoms are coordinated by nine and six O atoms, respectively. The Ce position is split, and a small amount of Ce is incorporated into the Na1 site with the isomorphous substitution for Na. The anionic moieties exist as isolated BO{sub 3} and BO{sub 2}(OH) triangles. The planes of the BO{sub 2}(OH) triangles with mm2 symmetry are parallel to the ab plane. The planes of the BO{sub 3} triangles with m symmetry are perpendicular to the ab plane and are rotated in a diagonal way. The splitting of the Ce positions and the polar arrangement of the BO{sub 2}(OH) triangles, water molecules, and Na atoms are observed along the polar a axis. The new structure is most similar to the new borate NaCa{sub 4}[BO{sub 3}]{sub 3} (sp. gr. Ama2), in which triangles of one type are arranged in a polar fashion along the c axis. Weak nonlinear-optical properties of both polar borates are attributed to the quenching of the second-harmonic generation due to the mutually opposite orientation of two-thirds of B triangles in the unit cell.

  1. Climate Changes Documented in Ice Core Records from Third Pole Glaciers, with Emphasis on the Guliya Ice Cap in the Western Kunlun Mountains over the Last 100 Years

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2016-12-01

    The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal

  2. Measurement of the ν{sub μ} energy spectrum with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van [DESY, Zeuthen (Germany); Adams, J.; Bagherpour, H. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P. [TU Dortmund University, Department of Physics, Dortmund (Germany); Collaboration: IceCube Collaboration; and others

    2017-10-15

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν{sub μ} energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E{sub ν}-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies E{sub ν} ≥ 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos. (orig.)

  3. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline

    Science.gov (United States)

    Bromaghin, Jeffrey F.; McDonald, Trent L.; Stirling, Ian; Derocher, Andrew E.; Richardson, Evan S.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Atwood, Todd C.; Amstrup, Steven C.

    2015-01-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark–recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25–50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606–1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  4. IceCube Polar Virtual Reality exhibit: immersive learning for learners of all ages

    Science.gov (United States)

    Madsen, J.; Bravo Gallart, S.; Chase, A.; Dougherty, P.; Gagnon, D.; Pronto, K.; Rush, M.; Tredinnick, R.

    2017-12-01

    The IceCube Polar Virtual Reality project is an innovative, interactive exhibit that explains the operation and science of a flagship experiment in polar research, the IceCube Neutrino Observatory. The exhibit allows users to travel from the South Pole, where the detector is located, to the furthest reaches of the universe, learning how the detection of high-energy neutrinos has opened a new view to the universe. This novel exhibit combines a multitouch tabletop display system and commercially available virtual reality (VR) head-mounted displays to enable informal STEM learning of polar research. The exhibit, launched in early November 2017 during the Wisconsin Science Festival in Madison, WI, will study how immersive VR can enhance informal STEM learning. The foundation of this project is built upon a strong collaborative effort between the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Field Day Laboratory groups from the University of Wisconsin-Madison campus. The project is funded through an NSF Advancing Informal STEM Learning (AISL) grant, under a special call for engaging students and the public in polar research. This exploratory pathways project seeks to build expertise to allow future extensions. The plan is to submit a subsequent AISL Broad Implementation proposal to add more 3D environments for other Antarctic research topics and locations in the future. We will describe the current implementation of the project and discuss the challenges and opportunities of working with an interdisciplinary team of scientists and technology and education researchers. We will also present preliminary assessment results, which seek to answer questions such as: Did users gain a better understanding of IceCube research from interacting with the exhibit? Do both technologies (touch table and VR headset) provide the same level of engagement? Is one technology better suited for specific learning outcomes?

  5. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  6. FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES

    Energy Technology Data Exchange (ETDEWEB)

    Gerakines, Perry A.; Hudson, Reggie L., E-mail: Reggie.Hudson@NASA.gov [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-08-01

    Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.

  7. The Big Science Questions About Mercury's Ice-Bearing Polar Deposits After MESSENGER

    Science.gov (United States)

    Chabot, N. L.; Lawrence, D. J.

    2018-05-01

    Mercury’s polar deposits provide many well-characterized locations that are known to have large expanses of exposed water ice and/or other volatile materials — presenting unique opportunities to address fundamental science questions.

  8. KETENE FORMATION IN INTERSTELLAR ICES: A LABORATORY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Reggie L.; Loeffler, Mark J., E-mail: Reggie.Hudson@NASA.gov [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-08-20

    The formation of ketene (H{sub 2}CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UV photolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidence was obtained for ketene synthesis in H{sub 2}O-rich and CO{sub 2}-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  9. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  10. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    Science.gov (United States)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  11. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    Science.gov (United States)

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  12. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  13. Design and Operation of Automated Ice-Tethered Profilers for Real-Time Seawater Observations in the Polar Oceans

    National Research Council Canada - National Science Library

    Toole, J; Proshutinsky, A; Krishfield, R; Doherty, K; Frye, Daniel E; Hammar, T; Kemp, J; Peters, D; Heydt, K. von der

    2006-01-01

    An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons...

  14. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  15. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  16. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3

    Science.gov (United States)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.

    2000-01-01

    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  17. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  18. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  19. Breaking the Ice: Strategies for Future European Research in the Polar Oceans - The AURORA BOREALIS Concept

    Science.gov (United States)

    Lembke-Jene, L.; Biebow, N.; Wolff-Boenisch, B.; Thiede, J.; European Research Icebreaker Consortium

    2011-12-01

    Research vessels dedicated to work in polar ice-covered waters have only rarely been built. Their history began with Fritjof Nansen's FRAM, which he used for his famous first crossing of the Arctic Ocean 1893-1896. She served as example for the first generation of polar research vessels, at their time being modern instruments planned with foresight. Ice breaker technology has developed substantially since then. However, it took almost 80 years until this technical advance also reached polar research, when the Russian AKADEMIK FEDEROV, the German POLARSTERN, the Swedish ODEN and the USCG Cutter HEALY were built. All of these house modern laboratories, are ice-breakers capable to move into the deep-Arctic during the summer time and represent the second generation of dedicated polar research vessels. Still, the increasing demand in polar marine research capacities by societies that call for action to better understand climate change, especially in the high latitudes is not matched by adequate facilities and resources. Today, no icebreaker platform exists that is permanently available to the international science community for year-round expeditions into the central Arctic Ocean or heavily ice-infested waters of the polar Southern Ocean around Antarctica. The AURORA BOREALIS concept plans for a heavy research icebreaker, which will enable polar scientists around the world to launch international research expeditions into the central Arctic Ocean and the Antarctic continental shelf seas autonomously during all seasons of the year. The European Research Icebreaker Consortium - AURORA BOREALIS (ERICON-AB) was established in 2008 to plan the scientific, governance, financial, and legal frameworks needed for the construction and operation of this first multi-nationally owned and operated research icebreaker and polar scientific drilling platform. By collaborating together and sharing common infrastructures it is envisioned that European nations make a major contribution to

  20. In search of in-situ radiocarbon in Law Dome ice and firn

    CERN Document Server

    Smith, A M; Etheridge, D M; Lowe, D C; Hua, Q; Trudinger, C M; Zoppi, U; El-Cheikh, A

    2000-01-01

    Results of AMS radiocarbon measurements on CO and CO sub 2 separated from firn air directly pumped from the ice sheet, and on CO sub 2 separated from air extracted from ice cores by a dry grating technique, are presented. The firn air samples and ice cores used in this study were collected from the region of Law Dome, Antarctica. No evidence of in-situ sup 1 sup 4 CO sub 2 was found in the firn air samples or the ice core air samples from one site although a slight enhancement of sup 1 sup 4 CO above expected polar atmospheric concentrations was observed for some firn air samples. A clear in-situ sup 1 sup 4 CO sub 2 signal for ice pre-dating the radiocarbon bomb pulse was found, however, in air samples extracted from an ice core from a second site. We compare these results and propose an hypothesis to explain this apparent contradiction. The degree to which in-situ sup 1 sup 4 C is released from the ice crystals during trapping and bubble formation is considered and discussed. The selectivity of the dry grat...

  1. Properties of horizontally oriented ice crystals observed by polarization lidar over summit, Greenland

    Directory of Open Access Journals (Sweden)

    Neely Ryan R.

    2018-01-01

    Full Text Available A source of error in microphysical retrievals and model simulations is the assumption that clouds are composed of only randomly oriented ice crystals. This assumption is frequently not true, as evidenced by optical phenomena such as parhelia. Here, observations from the Cloud, Aerosol and Polarization Backscatter Lidar at Summit, Greenland are utilized along with other sensors and beam imaging to examine the properties of horizontally oriented ice crystals and the environment conditions in which they occur.

  2. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  3. Measurements of acetylene in air extracted from polar ice cores

    Science.gov (United States)

    Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.

    2016-12-01

    Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.

  4. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    Science.gov (United States)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  5. Mass balance of Mars' residual south polar cap from CTX images and other data

    Science.gov (United States)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  6. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss.

    Science.gov (United States)

    Dey, Cody J; Richardson, Evan; McGeachy, David; Iverson, Samuel A; Gilchrist, Hugh G; Semeniuk, Christina A D

    2017-05-01

    Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to

  7. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    Science.gov (United States)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  8. What About Sea Ice? People, animals, and climate change in the polar regions: An online resource for the International Polar Year and beyond

    Science.gov (United States)

    Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.

    2005-12-01

    Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.

  9. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr; Zighem, F.; Chérif, S. M. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Gabor, M. S., E-mail: mihai.gabor@phys.utcluj.ro; Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Lorraine Université, BP 70239, F-54506 Vandoeuvre (France)

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  10. The 20th century retreat of ice caps in Iceland derived from airborne SAR

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnsson, Helgi; Dall, Jørgen

    2005-01-01

    with the Danish airborne EMISAR radar system. Polarimetric and interferometric SAR data reveal the margins of the present ice caps as well as a series of terminal moraines in the fore field. These moraines date back to the maximum Neoglacial extent at the end of the 19th century and the outermost allow...... of the surges in W-Vatnajokull in the 20th century are observed in the SAR data including the most recent surges in the 1990s. Interestingly no push moraines were observed in front of the surge advance, but the moraines appear when the glaciers start retreating. We estimate that the collective decrease...

  11. The Penetration of Solar Radiation Into Carbon Dioxide Ice

    Science.gov (United States)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.

    2018-04-01

    Icy surfaces behave differently to rocky or regolith-covered surfaces in response to irradiation. A key factor is the ability of visible light to penetrate partially into the subsurface. This results in the solid-state greenhouse effect, as ices can be transparent or translucent to visible and shorter wavelengths, while opaque in the infrared. This can lead to significant differences in shallow subsurface temperature profiles when compared to rocky surfaces. Of particular significance for modeling the solid-state greenhouse effect is the e-folding scale, otherwise known as the absorption scale length, or penetration depth, of the ice. While there have been measurements for water ice and snow, pure and with mixtures, to date, there have been no such measurements published for carbon dioxide ice. After an extensive series of measurements we are able to constrain the e-folding scale of CO2 ice for the cumulative wavelength range 300 to 1,100 nm, which is a vital parameter in heat transfer models for the Martian surface, enabling us to better understand surface-atmosphere interactions at Mars' polar caps.

  12. Characterization of snow, ice and neve by image processing

    International Nuclear Information System (INIS)

    Gay, Michel

    1999-01-01

    It is now recognized that human activities, by the extent they have achieved since the industrial era, are likely to alter the Earth's climate (IPCC, 1996). Paleo climate and the climate change models show that the polar caps are particularly sensitive to global climate change. They are more likely to play an important role but unknown on the sea level. The positive term of mass balance of polar ice sheets is the accumulation of snow, whereas the negative term is formed by the flow of ice into the oceans. The size of the polar ice caps and their hostile environment limit the amount of available field data. Only satellite remote sensing is able to provide information on geographical scales as large as Antarctica or the Arctic and allows regular monitoring over time. But to be easily interpreted, in order to deduce the snowpack characteristics observed from space (size, shape of grains, surface roughness... ), satellite data should be validated and inverted using simplified parameters. Prior to the establishment of these relations, it is necessary to develop a snow reflectance model (thesis C. Leroux 1996) taking into account the physical and optical characteristics of the snow, and a microwave emissivity model (thesis Surdyck S. 1993) that provide volume information on the morphology of the snowpack. The snowpack is characterized by several physical parameters that depend on the depth: temperature, density, size and shape of grains mainly. It is therefore essential to establish a robust and simple parameterization of the size and shape of snow grains from their observation. Image processing allows to establish these relationships and allows automatic processing of a large number of data independent of the observer. Another glaciological problem of firn is the interpretation of data obtained from the analysis of trapped air bubbles in the gas. This study implies, in particular, the dating of the ice in the firn at the close off, is necessary to determine the age of

  13. THE EFFECT OF BROADBAND SOFT X-RAYS IN SO{sub 2}-CONTAINING ICES: IMPLICATIONS ON THE PHOTOCHEMISTRY OF ICES TOWARD YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Pilling, S.; Bergantini, A., E-mail: sergiopilling@pq.cnpq.br [Universidade do Vale do Paraíba (UNIVAP), Laboratório de Astroquímica e Astrobiologia (LASA), São José dos Campos, SP (Brazil)

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (∼keV) photoelectrons and low-energy (∼eV) induced secondary electrons) in the ice mixtures containing H{sub 2}O:CO{sub 2}:NH{sub 3}:SO{sub 2} (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO{sub 2}-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H{sub 2}O{sub 2}, H{sub 3}O{sup +}, SO{sub 3}, CO, and OCN{sup −}. The dissociation cross section of parental species was on the order of (2–7) × 10{sup −18} cm{sup 2}. The ice temperature does not seem to affect the stability of SO{sub 2} in the presence of X-rays. Formation cross sections of new species  produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  14. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    Science.gov (United States)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  15. FORMATION OF N{sub 3}, CH{sub 3}, HCN, AND HNC FROM THE FAR-UV PHOTOLYSIS OF CH{sub 4} IN NITROGEN ICE

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Jen-Iu; Chou, Sheng-Lung; Peng, Yu-Chain; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming, E-mail: bmcheng@nsrrc.org.tw [National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2015-11-15

    The irradiation of pure solid N{sub 2} at 3 K with far-ultraviolet light from a synchrotron produced infrared absorption lines at 1657.7, 1655.6, and 1652.4 cm{sup −1} and an ultraviolet absorption line at 272.0 nm, which are characteristic of the product N{sub 3}. The threshold wavelength at which N{sub 3} was generated was 145.6 ± 2.9 nm, corresponding to an energy of 8.52 ± 0.17 eV. The photolysis of isotopically labeled {sup 15}N{sub 2} at 3 K consistently led to the formation of {sup 15}N{sub 3} with the same threshold wavelength of 145.6 ± 2.9 nm for its formation. The photolysis of CH{sub 4} in nitrogen ice in low concentrations also led to the formation of N{sub 3}, together with CH{sub 3}, HCN, and HNC, with the same threshold wavelength of 145.6 ± 2.9 nm. These results indicate that N{sub 3} radicals may play an important role in the photochemistry of nitrogen ices in astronomical environments.

  16. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E<sub>C>-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E<sub>C>-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  17. Ice thickness measurements and volume estimates for glaciers in Norway

    Science.gov (United States)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  18. Integrated Data Collection Analysis (IDCA) Program — KClO<sub>3sub>/Icing Sugar (-100 mesh) Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Sorenson, Daniel N. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Moran, Jesse S. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL/RXQF), Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-02

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a mixture of KClO<sub>3sub> sized through a 100-mesh sieve mixed with icing sugar, also sized through a 100-mesh sieve—KClO<sub>3sub>/icing sugar (-100) mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solid materials. The mixture was found to be: 1) more sensitive to impact than RDX, with sensitivity similar to PETN, 2) the same or more sensitive to friction than PETN, and 3) less sensitive to spark than RDX. The analysis showed that the mixture has thermally stability similar to RDX and is perhaps more energetic upon decomposition but variable results indicate sampling issues.

  19. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  20. Molecular Markers in the Quelccaya Ice Cap, Peru Describe 20th Century Biomass Burning Variability

    Science.gov (United States)

    Makou, M. C.; Thompson, L. G.; Eglinton, T. I.; Montluçon, D. B.

    2007-12-01

    Organic geochemical analytical methods were applied to Andean ice core samples, resulting in a multi- molecular biomass burning record spanning 1915 to 2001 AD. The Quelccaya Ice Cap in Peru is situated on the eastern flank of the Andes at 14°S and is well situated to receive aeolian inputs of organic matter derived from Amazonian forest fire events. Compounds of interest, which occur in trace quantities in ice, were recovered by stir bar sorptive extraction and analyzed by gas chromatography/time-of-flight mass spectrometry coupled with thermal desorption. These methods permitted identification and quantitation of numerous biomarkers in sample volumes of as little as 10 ml. At least one wet and dry season sample was analyzed for every year. Observed biomarkers that may be derived from vegetation fires include several polycyclic aromatic hydrocarbons (PAHs), atraric acid, 2-ethylhexyl p-methoxycinnamate, and a range of other aromatic compounds. Abrupt changes in compound abundances were superimposed on decadal variability. Systematic offsets between wet and dry season abundances were not observed, suggesting that the biomass burning signal is not biased by seasonal depositional effects, such as dust delivery. Inputs likely reflect a combination of sources from anthropogenic burning of the Amazon rainforest as well as natural fires related to aridity, and include both high and low elevation vegetation. These compounds and techniques can be applied to older ice in this and other core locations as an independent estimate of aridity.

  1. Structure and electrical conduction of the system La sub(1-x)Ca sub(x)FeO sub(3-. cap alpha. )

    Energy Technology Data Exchange (ETDEWEB)

    Hombo, Jukichi; Urabe, Noriake [Kumamoto Univ. (Japan). Faculty of Engineering; Hiroshige, Gota; Hamada, Kotaro

    1982-08-01

    Perovskite phases in the system, La sub(1-x)Ca sub(x)FeO sub(3-..cap alpha..) were prepared with La/sub 2/O/sub 3/, CaCO/sub 3/, and Fe/sub 2/O/sub 3/ by firing in air and in vacuo. The compositions of samples fired in vacuo and in air are represented as La sub(1-x)Ca sub(x)FeO sub(3-x 2) and La sub(1-x)Ca sub(x)Fe sub(1-y)sup(3+)Fe sub(y)sup(4+)O sub(3-x/2+y/2), respectively. That is, samples fired in vacuo contain some oxygen vacancies and no tetravalent iron; in contrast, samples fired in air contain both oxygen vacancies and tetravalent iron in the structures. The electrical conductivities of these synthesized oxides depended extensively upon the content of tetravalent iron. For instance, the conductivity of the sample x = 0.6 fired in air was larger by 10/sup 6/ than that of the sample fired in vacuo. In this system, except for the two terminal compositions of x = 0 and x = 1.0, the values of activation energy for conduction are considerably small, and from the results of thermo-electromotive force measurement, the charge carrier was positive. Furthermore, the conductivity increased somewhat with time during the conductivity measurement by the direct-current method. These facts suggest that the electric conduction would not be ionic but electronic. The electrical conduction would then be carried out by the so-called hopping mechanism by which the positive charge is transferred.

  2. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    Directory of Open Access Journals (Sweden)

    Homayun Mehrabani

    2014-09-01

    Full Text Available Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice, or in environments with moisture and cold air (e.g., plants, intertidal begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli. The geometric dimensions of the features have only a small (∼6% effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their

  3. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C{sub 2}H{sub 4}) and D4-Ethylene (C{sub 2}D{sub 4}) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Abplanalp, Matthew J.; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2017-02-20

    The processing of the hydrocarbon ice, ethylene (C{sub 2}H{sub 4}/C{sub 2}D{sub 4}), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH{sub 4} (CD{sub 4})], acetylene [C{sub 2}H{sub 2} (C{sub 2}D{sub 2})], the ethyl radical [C{sub 2}H{sub 5} (C{sub 2}D{sub 5})], ethane [C{sub 2}H{sub 6} (C{sub 2}D{sub 6})], 1-butene [C{sub 4}H{sub 8} (C{sub 4}D{sub 8})], and n -butane [C{sub 4}H{sub 10} (C{sub 4}D{sub 10})]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C{sub n}H{sub 2n+2} (n = 4–10), C{sub n}H{sub 2n} ( n = 2–12, 14, 16), C{sub n}H{sub 2n−2} ( n = 3–12, 14, 16), C{sub n}H{sub 2n−4} (n = 4–12, 14, 16), C{sub n}H{sub 2n−6} (n = 4–10, 12), C{sub n}H{sub 2n−8} ( n = 6–10), and C{sub n}H{sub 2n−10} ( n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C{sub 3}H{sub 4}) or 1, 3-butadiene (C{sub 4}H{sub 6}) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical

  4. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    International Nuclear Information System (INIS)

    Stauning, P.

    2015-01-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B y ) of the interplanetary magnetic field (IMF). The added IMF B y -related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m -1 ). Furthermore, cases of reverse convection during strong northward IMF B z (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m -1 during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  5. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS

    Science.gov (United States)

    Teolis, B. D.; Waite, J. H.

    2016-07-01

    A Dione O2 and CO2 exosphere of similar composition and density to Rhea's is confirmed by Cassini spacecraft Ion Neutral Mass Spectrometer (INMS) flyby data. INMS results from three Dione and two Rhea flybys show exospheric spatial and temporal variability indicative of seasonal exospheres, modulated by winter polar gas adsorption and desorption at the equinoxes. Cassini Plasma Spectrometer (CAPS) pickup ion fluxes also show exospheric structure and evolution at Rhea consistent with INMS, after taking into consideration the anticipated charge exchange, electron impact, and photo-ionization rates. Data-model comparisons show the exospheric evolution to be consistent with polar frost diffusion into the surface regolith, which limits surface exposure and loss of the winter frost cap by sputtering. Implied O2 source rates of ∼45(7) × 1021 s-1 at Dione(Rhea) are ∼50(300) times less than expected from known O2 radiolysis yields from ion-irradiated pure water ice measured in the laboratory, ruling out secondary sputtering as a major exospheric contributor, and implying a nanometer scale surface refractory lag layer consisting of concentrated carbonaceous impurities. We estimate ∼30:1(2:1) relative O2:CO2 source rates at Dione(Rhea), consistent with a stoichiometric bulk composition below the lag layer of 0.01(0.13) C atoms per H2O molecule, deriving from endogenic constituents, implanted micrometeoritic organics, and (in particular at Dione) exogenous H2O delivery by E-ring grains. Impact deposition, gardening and vaporization may thereby control the global O2 source rates by fresh H2O ice exposure to surface radiolysis and trapped oxidant ejection.

  6. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  7. The ITO-capped WO{sub 3} nanowires biosensor based on field-effect transistor in label-free protein sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Mohsen [Sharif University of Technology, Institute for Nanoscience and Nanotechnology, Tehran (Iran, Islamic Republic of)

    2017-05-15

    The fabrication of ITO-capped WO{sub 3} nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO{sub 3} nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was 'label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO{sub 3} nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics. (orig.)

  8. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age.

    Science.gov (United States)

    Cahill, James A; Heintzman, Peter D; Harris, Kelley; Teasdale, Matthew D; Kapp, Joshua; Soares, Andre E R; Stirling, Ian; Bradley, Daniel; Edwards, Ceiridwen J; Graim, Kiley; Kisleika, Aliaksandr A; Malev, Alexander V; Monaghan, Nigel; Green, Richard E; Shapiro, Beth

    2018-05-01

    Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.

  9. Correlation of Ice-Rafted Detritus in South Atlantic Sediments with Climate Proxies in Polar Ice over the Last Glacial Period

    Directory of Open Access Journals (Sweden)

    Sharon L. Kanfoush

    2013-03-01

    Full Text Available Previous study identified 6–7 millennial-scale episodes of South Atlantic ice-rafted sediment deposition (SA events during the glaciation. Questions remain, however, regarding their origin, significance for sea-ice and/or Antarctic ice-sheet dynamics, and relationship to climate. Here I correlate sediment core (TTN057–21 SA events to Greenland and Antarctic ice using two independent methods, stable isotopes and geomagnetic paleointensity, placing SA events in the context of polar climate change in both hemispheres. Marine isotopic stage (MIS 3 SA events generally coincided with Greenland interstadials and with cooling following Antarctic warm events (A1-A4. This anti-phase behavior is best illustrated when SA0 coincided with both the Antarctic Cold Reversal and Bolling-Allerod warming in Greenland. Moreover, SA events coincide with sea-level rises during the deglaciation (mwp1A and MIS 3 (30.4, 38.3, 43.7, 51.5 ka, implying unpinning of grounded Weddell Sea region ice masses discharged debris-laden bergs that had a chilling effect on South Atlantic surface temperatures.

  10. Composition tuning of rectifying polarity of colloidal CdS{sub 1−x}Se{sub x} nanocrystal-based devices

    Energy Technology Data Exchange (ETDEWEB)

    An, Yuehua; Wu, Zhenping; Chu, Xulong; Guo, Daoyou; Guo, Xuncai [Beijing University of Posts and Telecommunications, Laboratory of Optoelectronics Materials and Devices, School of Science (China); Li, Linghong [The State University of New York at Potsdam, Physics Department (United States); Li, Peigang, E-mail: pgli@zstu.edu.cn [Zhejiang Sci-Tech University, Department of Physics, Center for Optoelectronics Materials and Devices (China); Tang, Hao [The University of Tennessee at Knoxville, Department of Chemistry (United States); Tang, Weihua, E-mail: whtang@bupt.edu.cn [Beijing University of Posts and Telecommunications, Laboratory of Optoelectronics Materials and Devices, School of Science (China)

    2015-03-15

    CdS{sub 1–x}Se{sub x} colloidal nanocrystals (NCs) were synthesized by colloidal chemistry route. Both lattice parameters and band structure were modulated by tuning the content of Se. As the Se content increases, the peak of UV–Visible absorbance spectrum of CdS{sub 1−x}Se{sub x} shifts toward longer wavelength direction, indicating the reduction of band gap. Devices with Au/CdS{sub 1−x}Se{sub x} NCs/Au structures have been fabricated by assembling the obtained CdS{sub 1−x}Se{sub x} NCs into Au microelectrodes via dielectrophoresis method. It is found that the rectifying polarities of the devices are strongly dependent on the content of Se. With the increasing Se content, the rectification polarity changes from backward to forward. This polarity tuning could be caused by the change of the relative height of the Fermi levels between CdS{sub 1−x}Se{sub x} and Au. The Se-content-dependent rectifying behavior may offer us an opportunity to design novel logical structure in NC-based nanoelectronics.

  11. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  12. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  13. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, B<sub>z> was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF B<sub>y>, suggesting IMF control over arc initiation. When B<sub>y> is positive there is arc motion from dawn to dusk, while B<sub>y> is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when B<sub>z> was northward but increased to 500 m/s after B<sub>z> turned southward on January 20.

    Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  14. Luminescence properties of Si-capped β-FeSi{sub 2} nanodots epitaxially grown on Si(001) and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2014-02-28

    We studied the luminescence properties of Si-capped β-FeSi{sub 2} nanodots (NDs) epitaxially grown on Si substrates by using photoluminescence (PL) and electroluminescence (EL) spectroscopies. Codepositing Fe and Si on ultrathin SiO{sub 2} films induced the self-assembly of epitaxial β-FeSi{sub 2} NDs. The PL spectra of the Si/β-FeSi{sub 2} NDs/Si structure depended on the crystal orientation of the Si substrate. These structures exhibited a broad PL peak near 0.8 eV on both Si(001) and (111) substrates. The PL intensity depended on the shape of the β-FeSi{sub 2} NDs. For the flat NDs, which exhibited higher PL intensity, we also recorded EL spectra. We explained the luminescence properties of these structures by the presence of nanostructured Si offering radiative electronic states in the Si cap layers, generated by nano-stressors for upper Si layer: the strain-relaxed β-FeSi{sub 2} NDs.

  15. Manipulating the ferroelectric polarization state of BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.; Rioult, M.; Stanescu, D.; Magnan, H.; Barbier, A., E-mail: antoine.barbier@cea.fr

    2016-05-31

    Controlling the ferroelectric polarization at macroscopic or microscopic levels is crucial in the framework of the development of ferroelectric materials used in yet challenging photo-electrochemical (PEC) cells and spintronic applications. We report here on polarization methods allowing to electrically polarize prototypical samples of BaTiO{sub 3} (001) films. Epitaxial single crystalline layers were grown up to a thickness of 25 nm by atomic oxygen assisted molecular beam epitaxy on 1 at.% Nb doped SrTiO{sub 3} (001) single crystals. The samples were both microscopically and macroscopically polarized using Piezoresponse Force Microscopy and electrochemical poling in an electrolyte respectively. In addition we demonstrate the possibility to retrieve a quasi-native mixed ferroelectric polarization state after annealing. These polarization methods may be applied to many other ferroelectric thin films. - Highlights: • Ferroelectricity of BaTiO{sub 3} layers can be micro- and macroscopically controlled. • Microscopic ferroelectric domains are defined with piezoresponse force microscopy. • Poling in a LiClO{sub 4} electrolyte is a macroscopic poling method. • Air annealing above the Curie temperature “resets” the polarization state.

  16. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  17. Increased Ocean Heat Convergence Into the High Latitudes With CO <sub>2sub> Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  18. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    Science.gov (United States)

    Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni

    2018-01-01

    For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  19. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  20. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  1. Dielectric measurements of magnetic monopoles on the spin-ice compounds (Ho/Dy){sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Manuel; Grams, Christoph P.; Welter, Jean-Francois; Cho, Victoria; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Universitaet zu Koeln, Cologne (Germany)

    2015-07-01

    In so-called spin-ice compounds a frustrated ground-state with finite zero-point entropy is stabilized via competing interactions and emergent magnetic monopoles excitations. It was postulated that a magnetic monopole holds an electric dipole moment, which allows to investigate their dynamics via the dielectric function ε(ν). In Dy{sub 2}Ti{sub 2}O{sub 7} a critical speeding-up for frequencies up to 100 kHz was reported down to temperatures of 200 mK with a specific focus on the critical endpoint present for a [111] magnetic field. In Ho{sub 2}Ti{sub 2}O{sub 7} both faster relaxation dynamics compared to the sister-compound and an additional relaxation process are suspected. Here we report on broadband dielectric spectroscopy measurements of ε(ν) in Ho{sub 2}Ti{sub 2}O{sub 7}.

  2. In-plane polarization dependence of (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} single crystals studied by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A., E-mail: ghafari@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149 Trieste (Italy); Ariffin, A.K. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Department of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia); Janowitz, C., E-mail: christoph.janowitz@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Dwelk, H.; Krapf, A.; Manzke, R. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany)

    2014-06-15

    The effects of in-plane polarization change on the determination of the hole density of weakly under-doped (Bi, Pb)-2212 single crystals has been studied by x-ray absorption spectroscopy (XAS). The XAS signal at the CuL{sub 3} edge (925–940 eV) and O K edge (525 eV to 539 eV) were recorded under continuous rotation of the CuO{sub 2} plane from 0° to 180° with a minimum increment of 1.8°, yielding experimentally an in-plane polarization dependence for the absorption signals at the respective threshold. From that the in-plane angular dependence of the hole density (n{sub H}(φ)) could be determined. Fermi's golden rule was then used for the evaluation of the in-plane polarization dependence showing the expected polarization independence in disaccord to the experimental observations. Possible scenarios to solve this issue are discussed. Our results propose that polarization dependence could be due to inhomogeneous distribution of holes in the CuO{sub 2} planes which is also supported by models. Second, the role of out of plane orbitals has to be taken into account for interpretation.

  3. Investigation of magnetic mesostructure of (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy by polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation)]. E-mail: ggordev@pnpi.spb.ru; Zabenkin, V. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Axelrod, L. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Lazebnik, I. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Wagner, V. [Physikalish-Technishe Bundesanstalt D-38116, Braunschweig (Germany); Eckerlebe, H. [Forschung Zentrum GKSS, Geesthacht (Germany)

    2007-07-15

    Neutron depolarization measurements and a simple model for depolarization were used to determine the geometrical sizes of magnetic inhomogeneities in the (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy. Polarized small angle scattering shows an asymmetric part, which should be attributed to a chiral ordering of the spins.

  4. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    Science.gov (United States)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  5. CO<sub>2sub> Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David [Battelle Memorial Institute, Columbus, OH (United States)

    2014-05-31

    This report outlines the comprehensive bench-scale testing of the CO<sub>2sub>-binding organic liquids (CO<sub>2sub>BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO<sub>2sub>BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO<sub>2sub> from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  6. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment

    DEFF Research Database (Denmark)

    Farinotti, Daniel; Brinkerhoff, Douglas J.; Clarke, Garry K. C.

    2017-01-01

    Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models...

  7. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  8. Oxygen 18 isotopic analysis of sub-glacial concentrations of the Laurentide Ice Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hillaire-Marcel, C [Quebec Univ., Montreal (Canada); Cailleux, A [Observatoire de Paris, Section de Meudon, 92 (France); Soucy, J

    1979-07-01

    Calcareous concretions occuring on Grenvillian gneiss have been discovered north of Hull, Quebec. Their structure and isotopic composition (delta/sub PDB//sup 18/O approximately equal to -26%; delta/sub PDB//sup 13/C approximately equal to 0%; /sup 14/C age > 35,000 BP) indicate subglacial conditions of precipitation. It is concluded that they were deposited at the base of the Laurentide ice sheet. Assuming equilibrium conditions with the subglacial film of water during precipitation of calcite, it is possible to define a -27.5 to -31.8% (vs. 'standard mean ocean water' (SMOW)) range for the oxygen-18 content of ice.

  9. Glacial Boundary Features Delineated Using Enhanced-resolution Passive-microwave Data to Determine Melt Season Variation of the Vatnajokull Ice Cap, Iceland

    Science.gov (United States)

    Marzillier, D. M.; Ramage, J. M.

    2017-12-01

    Temperate glaciers such as those seen in Iceland experience high annual mass flux, thereby responding to small scale changes in Earth's climate. Decadal changes in the glacial margins of Iceland's ice caps are observable in the Landsat record, however twice daily AMSR-E Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record (ESDR) allow for observation on a daily temporal scale and a 3.125 km spatial scale, which can in turn be connected to patterns seen over longer periods of time. Passive microwave data allow for careful observation of melt onset and duration in Iceland's glacial regions by recording changes in emissivity of the ice surface, known as brightness temperature (TB), which is sensitive to fluctuations in the liquid water content of snow and ice seen during melting in glaciated regions. Enhanced resolution of this data set allows for a determination of a threshold that defines the melting season. The XPGR snowmelt algorithm originally presented by Abdalati and Steffen (1995) is used as a comparison with the diurnal amplitude variation (DAV) values on Iceland's Vatnajokull ice cap located at 64.4N, -16.8W. Ground-based air temperature data in this region, digital elevation models (DEMs), and river discharge dominated by glacial runoff are used to confirm the glacial response to changes in global climate. Results show that Iceland glaciers have a bimodal distribution of brightness temperature delineating when the snow/ice is melting and refreezing. Ground based temperatures have increased on a decadal trend. Clear glacial boundaries are visible on the passive microwave delineating strong features, and we are working to understand their variability and contribution to glacier evolution. The passive microwave data set allows connections to be made between observations seen on a daily scale and the long term glacier changes observed by the Landsat satellite record that integrates the

  10. Dependence of the cross polar cap potential saturation on the type of solar wind streams

    OpenAIRE

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2013-01-01

    We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{M...

  11. Structural, electronic properties and enhancement of electrical polarization in Er{sub 2}NiMnO{sub 6}/La{sub 2}NiMnO{sub 6} superlattice by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Haipeng; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Sun, Xun, E-mail: sunxunphy@hotmail.com; Hou, Zhihua; Yang, Wen; Wang, Siyuan; Xie, Jianliang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China)

    2016-03-15

    Employing first-principles calculations, structural, electronic properties of new multiferroic material Er{sub 2}NiMnO{sub 6}/La{sub 2}NiMnO{sub 6} perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr{sub 2}NiMnO{sub 7} structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  12. Neutron transition multipole moment for /sup 88/Sr(. cap alpha. ,. cap alpha. ')/sup 88/Sr (2/sup +/, 1. 84 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K.; Ray, S.; Majumdar, H.; Ghosh, S.K.; Samanta, C.; Dasgupta, P.; Chintalapudi, S.N.; Banerjee, S.R.

    1989-04-01

    The neutron transition multipole moment, M/sub n/, for (0/sup +/..-->..2/sup +/, 1.84 MeV) transition is inferred by measuring the (..cap alpha..,..cap alpha..') angular distribution at E/sub ..cap alpha../ = 50 MeV and comparing it with a microscopic distorted-wave Born approximation calculation. Proton transition densities are taken from electron scattering data. M/sub n//M/sub p/ is found to be substantially less than N/Z in agreement with the (p,p') result.

  13. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  14. A Closer Look at Some of Mercury's North Polar Deposits: Three Craters that Could Have Extensive Surface Ice but Don't?

    Science.gov (United States)

    Chabot, N. L.; Neumann, G. A.; Ernst, C. M.; Mazarico, E. M.; Shread, E. E.

    2018-05-01

    We investigate three of Mercury's north polar craters that are predicted from their thermal conditions to be conducive to the presence of extensive water ice at the surface, but that may lack such ice.

  15. Measurements of mesospheric ice aerosols using radars and rockets

    Energy Technology Data Exchange (ETDEWEB)

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  16. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    International Nuclear Information System (INIS)

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  17. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H{sub 2}S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2015-01-10

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  18. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical Models and Ice Core Microstructure Analysis

    Directory of Open Access Journals (Sweden)

    Florian Steinbach

    2017-09-01

    Full Text Available The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modeling and analyzed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD have been used together with c-axis orientations using an optical technique (Fabric Analyser. Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighboring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modeling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be

  19. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to

  20. The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland

    DEFF Research Database (Denmark)

    Sørensen, Louise Sandberg; Jarosch, Alexander H.; Adalgeirsdottir, Gudfinna

    2017-01-01

    Monthly gravity field models from the GRACE satellite mission are widely used to determine ice mass changes of large ice sheets as well as smaller glaciers and ice caps. Here, we investigate in detail the ice mass changes of the Icelandic ice caps as derived from GRACE data. The small size...... of the Icelandic ice caps, their location close to other rapidly changing ice covered areas and the low viscosity of the mantle below Iceland make this especially challenging. The mass balance of the ice caps is well constrained by field mass balance measurements, making this area ideal for such investigations. We...... the Little Ice Age (∼ 1890 AD). To minimize the signal that leaks towards Iceland from Greenland, we employ an independent mass change estimate of the Greenland Ice Sheet derived from satellite laser altimetry. We also estimate the effect of post Little Ice Age glacial isostatic adjustment, from knowledge...

  1. Organic molecules in the polar ice: from chemical analysis to environmental proxies

    Science.gov (United States)

    Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea

    2015-04-01

    The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.

  2. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Science.gov (United States)

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  3. Mechanisms of basal ice formation in polar glaciers: An evaluation of the apron entrainment model

    Science.gov (United States)

    Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis

    2008-06-01

    Previous studies of polar glaciers have argued that basal ice can form when these glaciers override and entrain ice marginal aprons that accumulate adjacent to steep ice cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal ice at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated ice that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the ice, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal ice. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an ice marginal process does not provide a satisfactory explanation for the origin of basal ice observed at the ice margin. Our interpretation of the origin of basal ice is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.

  4. Response of the polar cap boundary and the current system to changes in IMF observed from the MAGSAT satellite in the southern hemisphere during summer

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Burrows, J.R.

    1987-01-01

    The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions. The study has been carried out for the summer months in the Southern Hemisphere. ''Shear reversals'' (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180 0 . It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bsub(z) component and in the latitude range of about 70 0 -80 0 . SRs in the dusk sector occur predominantly when the azimuthal component Bsub(y) is positive and in the dawn sector when Bsub(y) is negative, irrespective of the sign of Bsub(z). These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bsub(z). Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 x 10 4 to 6.5 x 10 5 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to

  5. Ice Velocity Variations of the Polar Record Glacier (East Antarctica Using a Rotation-Invariant Feature-Tracking Approach

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available In this study, the ice velocity changes from 2004 to 2015 of the Polar Record Glacier (PRG in East Antarctica were investigated based on a feature-tracking method using Landsat-7 enhanced thematic mapper plus (ETM+ and Landsat-8 operational land imager (OLI images. The flow field of the PRG curves make it difficult to generate ice velocities in some areas using the traditional normalized cross-correlation (NCC-based feature-tracking method. Therefore, a rotation-invariant parameter from scale-invariant feature transform (SIFT is introduced to build a novel rotation-invariant feature-tracking approach. The validation was performed based on multi-source images and the making earth system data records for use in research environments (MEaSUREs interferometric synthetic aperture radar (InSAR-based Antarctica ice velocity map data set. The results indicate that the proposed method is able to measure the ice velocity in more areas and performs as well as the traditional NCC-based feature-tracking method. The sequential ice velocities obtained present the variations in the PRG during this period. Although the maximum ice velocity of the frontal margin of the PRG and the frontal iceberg reached about 900 m/a and 1000 m/a, respectively, the trend from 2004 to 2015 showed no significant change. Under the interaction of the Polar Times Glacier and the Polarforschung Glacier, both the direction and the displacement of the PRG were influenced. This impact also led to higher velocities in the western areas of the PRG than in the eastern areas. In addition, elevation changes and frontal iceberg calving also impacted the ice velocity of the PRG.

  6. A gas extraction system for the measurement of carbon dioxide and carbon isotopes in polar ice cores

    International Nuclear Information System (INIS)

    Steig, E.

    1992-06-01

    Knowledge of the distribution of Carbon 13 in the glacial ocean, atmosphere, and biosphere is important to understanding the causes of glacial/interglacial changes in atmospheric CO 2 levels. Although deep-ocean Carbon 13 values are well-constrained by ocean sediment studies, model-based estimates of changes in the carbon budget for the biosphere and atmosphere vary considerably. Measurement of atmospheric Carbon 13 in CO 2 in ice cores will provide additional constraints on this budget and will also improve estimates of changes in the ocean surface layer Carbon 13. Direct measurement of ancient atmospheric Carbon 13 can be accomplished through polar ice core studies. A gas-extraction line for ice cores has been designed and constructed with particular attention to the specific difficulties of measuring Carbon 13 in CO 2 . The ice is shaved, rather than crushed, to minimize fractionation effects resulting from gas travel through long air-paths in the ice. To minimize the risk of isotopic contamination and fractionation within the vacuum line, CO 2 is separated immediately from the air; the CO 2 concentration is then measured by a simple pressure/volume comparison rather than by gas chromatography or spectroscopy. Measurements from Greenland ice core samples give an average value of 280±2 ppM CO 2 for preindustrial samples, demonstrating that the extraction system gives accurate, precise determinations Of CO 2 concentrations. Measurement of δ 13 C from polar ice samples has not been achieved at this time. However, results on standard air samples demonstrate a precision for δ 13 C of less than 0.2 per-thousand at the 95% confidence level

  7. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    Science.gov (United States)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  8. Polarization measurement by use of discrete space-variant sub wavelength dielectric gratings

    International Nuclear Information System (INIS)

    Biener, G.; Niv, A.; Gorodetski, Yu.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Polarization measurement has been widely used for a large range of applications such as ellipsometry bio-imaging, imaging polarimetry and optical communications. A commonly used method is measuring of the time-dependent signal once the beam is transmitted through a photoelastic modulator or a rotating quarter-wave plate followed by an analyzer. The polarization state of the beam can be derived by Fourier analysis of the detected signal. This method, however, requires a sequence of consecutive measurements, thus making it impractical for real-time polarization measurement in an application such as adaptive polarization-mode dispersion compensation in optical communications. Recently, we developed a novel method for real-time polarization measurement by use of a discrete space-variant sub wavelength dielectric grating (DSG). The formation of the grating is done by discrete orientation of the local sub wavelength grooves. The complete polarization analysis of the incident beam is determined by spatial Fourier transform of the near-field intensity distribution transmitted through the DSG followed by a sub wavelength metal polarizer. We realized the gratings for CO 2 laser radiation at a wavelength of 10.6 micron on GaAs substrate utilizing advanced photo lithographic and etching techniques. We experimentally demonstrated the ability of our method to measure the polarization state for fully and partially polarized light. Unlike other methods based on Fourier analysis, no active elements are required. It is possible to integrate our polarimeter on a two-dimensional detector array for lab-on chip applications to achieve a high-throughput and low-cost commercial polarimeter for bio sensing. Currently we are investigating the possibility of using far-field measurement of the beam emerging from a DSG for polarization measurement

  9. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  10. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  11. 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.; Jouzel, J.; Domaine Univ., 38 - St-Martin-d'Heres; Petit, J.R.

    1990-01-01

    By using the technique of accelerator mass spectrometry, it is now possible to measure detailed profiles of cosmogenic (cosmic ray produced) 10 Be in polar ice cores. Recent work has demonstrated that these profiles contain information on solar activity, via its influence on the intensity of galactic cosmic rays arriving in the Earth's atmosphere. It has been known for some time that, as a result of temperature-dependent fractionation effects, the stable isotope profiles δ 2 O and δ 2 H in polar ice cores contain palaeoclimate information. Thus by comparing the 10 Be and stable isotope profiles in the same ice core, one can test the influence of solar variability on climate, and this independent of possible uncertainties in the absolute chronology of the records. We present here the results of such a comparison for two Antarctic ice cores; one from the South Pole, covering the past ca. 1000 years, and one from Dome C, covering the past ca. 3000 years. (author)

  12. Strain profile and polarization enhancement in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amir, F.Z. [Physics Department, St John' s University, 8000 Utopia Pkwy, Jamaica, NY 11439 (United States); Donner, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Aspelmeyer, M. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Noheda, B. [Department of Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Xi, X.X. [Physics Department, College of Science and Technology, Temple University, 1900 N.13th Street, Philadelphia, PA 19122 (United States); Moss, S.C. [Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204-5005 (United States)

    2012-11-15

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Electrically detected magnetic resonance study of the Ge dangling bonds at the Ge(1 1 1)/GeO{sub 2} interface after capping with Al{sub 2}O{sub 3} layer

    Energy Technology Data Exchange (ETDEWEB)

    Paleari, S., E-mail: s.paleari6@campus.unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Molle, A. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Accetta, F. [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Lamperti, A.; Cianci, E. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Fanciulli, M., E-mail: marco.fanciulli@unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy)

    2014-02-01

    The electrical activity of Ge dangling bonds is investigated at the interface between GeO{sub 2}-passivated Ge(1 1 1) substrate and Al{sub 2}O{sub 3} grown by atomic layer deposition, by means of electrically detected magnetic resonance spectroscopy (EDMR). The Al{sub 2}O{sub 3}/GeO{sub 2}/Ge stacked structure is promising as a mobility booster for the post-Si future electronic devices. EDMR proved to be useful in characterizing interface defects, even at the very low concentrations of state-of-the-art devices (<10{sup 10} cm{sup −2}). In particular, it is shown that capping the GeO{sub 2}-passivated Ge(1 1 1) with Al{sub 2}O{sub 3} has no impact on the microstructure of the Ge dangling bond.

  14. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  15. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Determination of the K/sub L/0 → π-μ+ν/sub μ/ form factor xi(q2) by muon polarization measurements

    International Nuclear Information System (INIS)

    Shen, G.

    1975-09-01

    The polarization of the muon in the decay K 0 /sub L/ → π - μ + ν/sub μ/ was measured as a function of q 2 , the four-momentum transferred to the lepton pair. The kinematic information was used to compute the polarization expected on the basis of various assumed values of the form factor xi(q 2 ). By comparing the interpolated curve of the polarization as a function of xi(q 2 ) to the experimentally measured polarization, one has determined xi(q 2 ) as a function of q 2 . If one parameterizes the q 2 dependence of xi by xi(q 2 ) = xi(0) + Λ q 2 /m 2 /sub π/, then xi(0) = 0.178 +- 0.105 - 3.80 Λ

  17. Very low resistance alloyed Ni-based ohmic contacts to InP-capped and uncapped n{sup +}-In{sub 0.53} Ga{sub 0.47}As

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Michael; Yu, Shih-Ying; Choi, Won Hyuck; Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lee, Rinus T. P. [SEMATECH, 257 Fuller Road, Suite 2200, Albany, New York 12203 (United States)

    2014-10-28

    Successful application of the silicide-like Ni{sub x}InGaAs phase for self-aligned source/drain contacts requires the formation of low-resistance ohmic contacts between the phase and underlying InGaAs. We report Ni-based contacts to InP-capped and uncapped n{sup +}- In{sub 0.53}Ga{sub 0.47}As (N{sub D} = 3 × 10{sup 19 }cm{sup −3}) with a specific contact resistance (ρ{sub c}) of 4.0 × 10{sup −8 }± 7 × 10{sup −9} Ω·cm{sup 2} and 4.6 × 10{sup −8 }± 9 × 10{sup −9} Ω·cm{sup 2}, respectively, after annealing at 350 °C for 60 s. With an ammonium sulfide pre-metallization surface treatment, ρ{sub c} is further reduced to 2.1 × 10{sup −8 }± 2 × 10{sup −9} Ω·cm{sup 2} and 1.8 × 10{sup −8 }± 1 × 10{sup −9} Ω·cm{sup 2} on epilayers with and without 10 nm InP caps, respectively. Transmission electron microscopy reveals that the ammonium sulfide surface treatment results in more complete elimination of the semiconductor's native oxide at the contact interface, which is responsible for a reduced contact resistance both before and after annealing.

  18. Atmospheric depositions of natural and anthropogenic trace elements on the Guliya ice cap (northwestern Tibetan Plateau) during the last 340 years

    Science.gov (United States)

    Sierra-Hernández, M. Roxana; Gabrielli, Paolo; Beaudon, Emilie; Wegner, Anna; Thompson, Lonnie G.

    2018-03-01

    A continuous record of 29 trace elements (TEs) has been constructed between 1650 and 1991 CE (Common Era) from an ice core retrieved in 1992 from the Guliya ice cap, on the northwestern Tibetan Plateau. Enrichments of Pb, Cd, Zn and Sb were detected during the second half of the 19th century and the first half of the 20th century (∼1850-1950) while enrichments of Sn (1965-1991), Cd and Pb (1975-1991) were detected during the second half of the 20th century. The EFs increased significantly by 20% for Cd and Sb, and by 10% for Pb and Zn during 1850-1950 relative to the pre-1850s. Comparisons of the Guliya TEs data with other ice core-derived and production/consumption data suggest that Northern Hemisphere coal combustion (primarily in Western Europe) is the likely source of Pb, Cd, Zn, and Sb during the 1850-1950 period. Coal combustion in Europe declined as oil replaced coal as the primary energy source. The European shift from coal to oil may have contributed to the observed Sn enrichment in ∼1965 (60% EF increase in 1975-1991), although regional fossil fuel combustion (coal and leaded gasoline) from western China, Central Asia, and South Asia (India, Nepal), as well as Sn mining/smelting in Central Asia, may also be possible sources. The post-1975 Cd and Pb enrichments (40% and 20% EF increase respectively in 1975-1991) may reflect emissions from phosphate fertilizers, fossil fuel combustion, and/or non-ferrous metal production, from western China, Central Asia, and/or South Asia. Leaded gasoline is likely to have also contributed to the post-1975 Pb enrichment observed in this record. The results strongly suggest that the Guliya ice cap has recorded long-distance emissions from coal combustion since the 1850s with more recent contributions from regional agriculture, mining, and/or fossil fuel combustion. This new Guliya ice core record of TEs fills a geographical gap in the reconstruction of the pollution history of this region that extends well beyond modern

  19. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2012-12-01

    Full Text Available The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO<sub>2sub> and a critical sea-ice cover (SI, both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO<sub>2sub>, SI*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO<sub>2sub>, SI* in the atmosphere–ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma continents and solar insolation (94% of modern. In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO<sub>2sub>, SI* ≈ (500 ppm, 55%. Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO<sub>2sub>, SI* ≈ (204 ppm, 70%. This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO<sub>2sub>: (CO<sub>2sub>, SI* ≈ (2 ppm, 85%. Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO<sub>2sub> for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO<sub>2sub>. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true

  20. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins

    Science.gov (United States)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert

    2017-04-01

    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  1. Centrosymmetric [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} vs. noncentrosymmetric polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}: A hydrogen-bonding effect on the out-of-center distortion of TiF{sub 6} octahedra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-ah [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-11-15

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A{sub 2}TiF{sub 6} (A=[N(CH{sub 3}){sub 4}] or [C(NH{sub 2}){sub 3}]), are reported. Phase pure samples of A{sub 2}TiF{sub 6} were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} crystallizes in a centrosymmetric space group, R-3, [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF{sub 6} octahedra in polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF{sub 6} octahedra and the nitrogen atoms in the [C(NH{sub 2}){sub 3}]{sup +} cation. Powder second-harmonic generation (SHG) measurements on the [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}, using 1064 nm radiation, indicate the material has SHG efficiency of 25 Multiplication-Sign that of {alpha}-SiO{sub 2}, which indicates an average nonlinear optical susceptibility, Left-Pointing-Angle-Bracket d{sub eff} Right-Pointing-Angle-Bracket {sub exp} of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF{sub 6} octahedra will be also reported. - Graphical abstract: The out-of-center distortion of TiF{sub 6} octahedron in the polar noncentrosymmetric [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} is attributable to the hydrogen-bonding interactions between the F in TiF{sub 6} octahedron and the H-N in the [C(NH{sub 2}){sub 3}]{sup +}. Highlights: Black-Right-Pointing-Pointer Two titanium fluorides materials have been synthesized in high yields. Black-Right-Pointing-Pointer Hydrogen-bonds are crucial for the out-of-center distortion of TiF{sub 6} octahedra. Black-Right-Pointing-Pointer [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} has a SHG efficiency of 25

  2. Standard for Ground Vehicle Mobility

    Science.gov (United States)

    2005-02-01

    Zone Dry climates (2), humid mesothermal (3), See Appendix A humid microthermal (4), undifferentiated highland (6) Condition Dry, wet, snow See...represent the Dry, the Humid Mesothermal, and the Humid Microthermal climate zones, respectively. Scenarios ERDC-GSL was sponsored by WARSIM to...Coast D. Humid Microthermal Climates Humid Continental, Warm Summer, Humid Continental, Cool Summer, Sub-Arctic E. Polar Climates Tundra, Ice Caps F

  3. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  4. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  5. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2011-04-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86 × 106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  6. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    1995-08-01

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  7. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  8. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-01-01

    Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior. PMID:24223286

  9. Comparison of Single and Dual Polarized Envisat Asar Data with Laser Scanner Data of Saa Ice Freeboard in Fram Strait

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Kloster, Kjell; Hvidegaard, Sine Munk

    2005-01-01

    In this project we have produced co-registered datasets of laser scanner and ENVISAT ASAR AP data. A comparison of ENVISAT ASAR Alternate Polarization (AP) mode (HH+VV) backscatter coefficient values and polarization ratios with ice freeboard height measured with the KMS laser scanner is made. Th...

  10. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  11. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  12. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic.

    Science.gov (United States)

    Iverson, Samuel A; Gilchrist, H Grant; Smith, Paul A; Gaston, Anthony J; Forbes, Mark R

    2014-03-22

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.

  13. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    DEFF Research Database (Denmark)

    Capron, E.; Landais, A.; Chappellaz, J.

    2010-01-01

    Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized...... that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period....

  14. New approach towards the polyol route to fabricate MFe{sub 2}O{sub 4} magnetic nanoparticles: The use of MCl{sub 2} and Fe(acac){sub 3} as chemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Eduardo, E-mail: eduardo.solano@ugent.be [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia (Spain); Yáñez, Ramón [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia (Spain); Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain)

    2015-05-15

    A new more efficient approach of the polyol route to generate MFe{sub 2}O{sub 4} (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl{sub 2}, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl{sup −}) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe{sub 2}O{sub 4} case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized. - Highlights: • An optimized one-pot methodology is presented to produce pure MFe{sub 2}O{sub 4} nanoparticles. • MCl{sub 2} and Fe(acac){sub 3} precursors in TREG are used for a more efficient process. • Polar dispersible nanoparticles are obtained with high physicochemical properties. • The influence of the temperature ramp and rate on the final size is studied.

  15. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  16. A study of the decontamination procedures used for chemical analysis of polar deep ice cores

    Directory of Open Access Journals (Sweden)

    Takayuki Miyake

    2009-11-01

    Full Text Available We investigated the decontamination procedures used on polar deep ice cores before chemical analyses such as measurements of the concentrations of iron species and dust (microparticles. We optimized cutting and melting protocols for decontamination using chemically ultraclean polyethylene bags and simulated ice samples made from ultrapure water. For dust and ion species including acetate, which represented a high level of contamination, we were able to decrease contamination to below several μg l^ for ion concentrations and below 10000 particles ml^ for the dust concentration. These concentration levels of ion species and dust are assumed to be present in the Dome Fuji ice core during interglacial periods. Decontamination of the ice core was achieved by cutting away approximately 3 mm of the outside of a sample and by melting away approximately 30% of a sample's weight. Furthermore, we also report the preparation protocols for chemical analyses of the 2nd Dome Fuji ice core, including measurements of ion and dust concentrations, pH, electric conductivity (EC, and stable isotope ratios of water (δD and δO, based on the results of the investigation of the decontamination procedures.

  17. Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing

    Directory of Open Access Journals (Sweden)

    Jørgen Dall

    2011-07-01

    Full Text Available We assess the volume change and mass balance of three ice caps in southern Iceland for two periods, 1979–1984 to 1998 and 1998 to 2004, by comparing digital elevation models (DEMs. The ice caps are Eyjafjallajökull (ca. 81 km2, Tindfjallajökull (ca. 15 km2 and Torfajökull (ca. 14 km2. The DEMs were compiled using aerial photographs from 1979 to 1984, airborne Synthetic Aperture Radar (SAR images obtained in 1998 and two image pairs from the SPOT 5 satellite's high-resolution stereoscopic (HRS instrument acquired in 2004. The ice-free part of the accurate DEM from 1998 was used as a reference map for co-registration and correction of the vertical offset of the other DEMs. The average specific mass balance was estimated from the mean elevation difference between glaciated areas of the DEMs. The glacier mass balance declined significantly between the two periods: from −0.2 to 0.2 m yr−1 w. eq. during the earlier period (1980s through 1998 to −1.8 to −1.5 m yr−1 w. eq. for the more recent period (1998–2004. The declining mass balance is consistent with increased temperature over the two periods. The low mass balance and the small accumulation area ratio of Tindfjallajökull and Torfajökull indicate that they will disappear if the present-day climate continues. The future lowering rate of Eyjafjallajökull will, however, be influenced by the 2010 subglacial eruption in the Eyjafjallajökull volcano.

  18. A new polar symmetry of huebnerite (MnWO{sub 4}) with ferrodistortive domains

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H., E-mail: sohyun.park@lmu.de [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Mihailova, B. [Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, 20146 Hamburg (Germany); Pedersen, B. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstraße 1, 85748 Garching (Germany); Paulmann, C. [Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, 20146 Hamburg (Germany); HASYLAB, DESY, Notkestr. 85, 22603 Hamburg (Germany); Behal, D. [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstraße 1, 85748 Garching (Germany); Gattermann, U. [Sektion Kristallographie, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München (Germany); Hochleitner, R. [Mineralogische Staatssammlung München, Theresienstrasse 41, 80333 Munich (Germany)

    2015-11-15

    Large-size single-crystal samples of huebnerite natural multiferroic MnWO{sub 4} were analyzed by neutron and synchrotron X-ray single-crystal diffraction as well as by polarized Raman spectroscopy. Both neutron and X-ray diffraction analyzes reveal polar space-group symmetry P2 for the nuclear structure of huebnerite via the detection of weak reflections h0l (l=odd) forbidden for the gliding plane c. Renninger scans of the reflection 301 on the neutron single-crystal diffractometer RESI (FRM-II) could confirm the absence of the gliding plane c in both para- and antiferromagnetic states of huebnerite. The symmetry breaking could be explained by structure analyzes with neutron single crystal diffraction data at 293 K revealing that two Mn atoms in P2 are displaced independently along the b axis from their equilibrium position at a polar point site, C{sub 2} in P2/c. Micro X-ray diffraction and Raman-scattering mapping reveal a ferrodistortive domain texture in the room-temperature paramagnetic state of huebnerite, which is attributed to P2 domain formation through a proper ∼180° rotation about the reciprocal-space axis c*. - Graphical abstract: Schematic presentation of polar atomic shifts (arrows) in P2 from the respective equivalent sites (spheres) in P2/c at the boundary of two 180°-in-plane micro twins. - Highlights: • Neutron and X-ray diffraction analyzes reveal the polar symmetry P2 for MnWO{sub 4}. • Raman mapping shows ferrodistortive domains in its RT paramagnetic state. • These observations are explained by the hidden polar site C{sub 2} for Mn atoms.

  19. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  20. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Science.gov (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  1. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    Science.gov (United States)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  2. High-x sub T single-spin asymmetry in. pi. sup 0 and. eta. production at x sub F =0 by 200 GeV polarized antiprotons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Akchurin, N; Belikov, N I; Bystricky, J; Corcoran, M D; Cossairt, J D; Cranshaw, J; Derevschikov, A A; En' yo, H; Funahashi, H; Goto, Y; Grachov, O A; Grosnick, D P; Hill, D A; Imai, K; Itow, Y; Iwatani, K; Krueger, K W; Kuroda, K; Laghai, M; Lehar, F; Lesquen, A de; Lopiano, D; Luehring, F C; Maki, T; Makino, S; Masaike, A; Matulenko, Yu A; Meschanin, A P; Michalowicz, A; Miller, D H; Miyake, K; Nagamine, T; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Nurushev, S B; Ohashi, Y; Onel, Y; Patalakha, D I; Pauletta, G; Penzo, A; Read, A L; Roberts, J B; Van Rossum, L; Rykov, V L; Saito, N; Salvato, G; Schiavon, P; Skeens, J; Solovyanov, V L; Spinka, H; Takashima, R; Takeutchi, F; Tamura, N; Tanaka, N; Underwood, D G; Vasiliev, A N; Villari, A; White, J L; Yamashita, S; Yokosawa, A; Yoshida, T; Zanetti, A [T.W. Bonner Nuclear Lab., Rice Univ., Houston, TX (United States) Dept. of Physics, Univ. Iowa, Iowa City, IA (Unite; FNAL E704 Collaboration

    1992-02-20

    A measurement of the single-spin asymmetry A{sub N} in p{up arrow}+p{yields}{pi}{sup 0}+X at 200 GeV with x{sub F}=0 shows a transition in the production process from a 'low-x{sub T}' regime with A{sub N}=0, through an intermediate region of negative asymmetry, to a 'high-x{sub T}' regime with A{sub N}>0.3. This transition occurs at x{sub T}{approx equal}0.4 and is consistent with x{sub T}-scaling of A{sub N} in pion production using polarized beams or targets from {radical}-s=5.2 to 19.4 GeV. Results for A{sub N} in {eta} production by polarized protons and in {pi}{sup 0} production by polarized antiprotons are also presented. (orig.).

  3. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  4. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    DEFF Research Database (Denmark)

    Machguth, H.; Rastner, P.; Bolch, T.

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR...... experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half...... feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity...

  5. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  6. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  7. Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo [Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193 (Japan)

    2016-06-21

    The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism is in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.

  8. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  9. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. G.; Wright, C. M.; Robinson, G. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Charnley, S. B. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pendleton, Y. J. [NASA Lunar Science Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Maldoni, M. M., E-mail: r.smith@adfa.edu.au, E-mail: c.wright@adfa.edu.au, E-mail: g.robinson@adfa.edu.au, E-mail: Steven.B.Charnley@nasa.gov, E-mail: yvonne.pendleton@nasa.gov [Geoscience Australia, Canberra, ACT 2601 (Australia)

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  10. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  11. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  12. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  13. Gate-tunable coherent transport in Se-capped Bi{sub 2}Se{sub 3} grown on amorphous SiO{sub 2}/Si

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H.; Chong, C. W., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: smhuang@mail.nsysu.edu.tw; Huang, S. Y. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Jheng, J. L.; Huang, S. M., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: smhuang@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Huang, J. C. A., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: smhuang@mail.nsysu.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center (AOTC), National Cheng Kung University, Tainan 70101, Taiwan (China); Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei 10622, Taiwan (China); Li, Z.; Qiu, H. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Marchenkov, V. V. [M.N. Miheev Institute of Metal Physics, Ekaterinburg 620137 (Russian Federation)

    2015-07-06

    A topological insulator (TI) is an exotic material that has a bulk insulating gap and metallic surface states with unique spin-momentum locking characteristics. Despite its various important applications, large scale integration of TI into MOSFET technologies and its coherent transport study are still rarely explored. Here, we report the growth of high quality Bi{sub 2}Se{sub 3} thin film on amorphous SiO{sub 2}/Si substrate using MBE. By controlling the thickness of the film at ∼7 nm and capping the as grown film in situ with a 2 nm-thick Se layer, largest electrostatic field effect is obtained and the resistance is changed by almost 300%. More importantly, pronounced gate-tunable weak antilocalization (WAL) is observed, which refers to modulation of α from ∼−0.55 to ∼−0.2 by applying a back gate voltage. The analysis herein suggests that the significant gate-tunable WAL is attributable to the transition from weak disorder into intermediate disorder regime when the Fermi level is shifted downward by increasing the negative back gate voltage. Our findings may pave the ways towards the development of TI-based MOSFET and are promising for the applications of electric-field controlled spintronic and magnetic device.

  14. Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Pentti Kujala

    2018-05-01

    Full Text Available Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code. Keywords: Loads, Serviceability, Limit ice thickness, Polar code

  15. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  16. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    Science.gov (United States)

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  17. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Baccolo, Giovanni, E-mail: giovanni.baccolo@mib.infn.it [Graduate School in Polar Sciences, University of Siena, Via Laterina 8, 53100, Siena (Italy); Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Clemenza, Massimiliano [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Delmonte, Barbara [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); Maffezzoli, Niccolò [Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej, 30, 2100, Copenhagen (Denmark); Nastasi, Massimiliano; Previtali, Ezio [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Prata, Michele; Salvini, Andrea [LENA, University of Pavia, Pavia (Italy); Maggi, Valter [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy)

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10{sup −13}–10{sup −6} g, improving previous results of 1–3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. - Highlights: • A new method based on neutron activation for the multi-elemental characterization of atmospheric dust entrapped in polar ice cores is proposed. • 37 elements were quantified in μg size dust samples with detection limits ranging from 10{sup −13} to 10{sup −6} g. • A low background approach and a clean analytical protocol improved INAA performances to unprecedented levels for multi-elemental analyses.

  18. Fine-Scale Layering of Mars Polar Deposits and Signatures of Ice Content in Nonpolar Material From Multiband SHARAD Data Processing

    Science.gov (United States)

    Campbell, Bruce A.; Morgan, Gareth A.

    2018-02-01

    The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.

  19. A Legacy for IPY: The Global Snowflake Network (GSN) Together With Art and Ice, and Music and Ice; Unique new Features for Science Education.

    Science.gov (United States)

    Wasilewski, P. J.

    2007-12-01

    thermochrons, snow pit observations, and snowflake identification protocols into her Ph.D. dissertation on snow changes, and reindeer pastures in Northern Norway. SCIENTISTS DISCOVER - ARTISTS INTERPRET - TOGETHER WE CAN OPEN THE EYES OF THE WORLD. This theme of the "Polar Artists "can be reached from the web search. Water ice is one of the most widespread, intriguing, and familiar compounds on the planet, in the solar system, and beyond. On the planet, it falls as snow, forms lacy deposits on winter windows, creates skating surfaces on lakes, gracefully drapes rock cliffs, packs thickly on the polar oceans, and lays even thicker on the ice caps blanketing Greenland and Antarctica. Of the 11 forms of water ice so far identified, only the form found on Earth can provide a "Frizion". Communicating this is part of Polar Artists outreach. We are working with Terje Isungset, from Norway, who creates musical instruments from ice. We will demonstrate how ART and Ice and Music and Ice are presented. In addition to video presentations appearing on YOUTUBE, we are preparing additional live performances of this work.

  20. Large-x sub F spin asymmetry in. pi. sup 0 production by 200-GeV polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (United States). T.W. Bonner Nuclear Lab.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (United States). Dept. of Physics; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Inst. of High Energy Physics, Serpukhov (Russia); Bystricky, J; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (United States); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Grosnick, D P; Hill, D A; Laghai, M; Lopiano, D; Ohashi, Y; Spinka, H; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (United States); FNAL E704 Collaboration

    1992-10-01

    The spin asymmetry A{sub N} for inclusive {pi}{sup 0} production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range of x{sub F}, with 0.5sub T}<2 GeV/c. At x{sub F}>0.3, the asymmetry rises with increasing x{sub F} and reaches a value of A{sub N}=0.15{+-}0.03 in the region 0.6sub F}<0.8. This result provides new input regarding the question of the internal spin structure of transversely-polarized protons. (orig.).

  1. New uranium chalcoantimonates, RbU{sub 2}SbS{sub 8} and KU{sub 2}SbSe{sub 8}, with a polar noncentrosymmetric structure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K S; Kanatzidis, M G

    1999-09-01

    The new compounds, RbU{sub 2}SbS{sub 8} and KU{sub 2}SbSe{sub 8}, were prepared as golden-black, blocklike crystals by the polychalcogenide molten flux method. RbU{sub 2}SbS{sub 8} has a two-dimensional character with layers running perpendicular to the c-axis. The coordination geometry around the U{sup 4+} atoms is best described as a bicapped trigonal prism. The trigonal prisms share triangular faces with neighboring prisms, forming one-dimensional columns along the a-axis. The columns are then joined to construct sheets by sharing capping S atoms. Sb{sup 3+} ions are sitting at the center of a slightly distorted seesaw coordination environment (CN = 4). Rb{sup +} ions are stabilized in 8-coordinate bicapped trigonal prismatic sites. KU{sub 2}SbSe{sub 8} has essentially the same structure as RbU{sub 2}SbS{sub 8}. However, Sb{sup 3+} and K{sup +} ions appear disordered in every other layer resulting in a different unit cell. RbU{sub 2}SbS{sub 8} is a semiconductor with a band gap of 1.38 eV. The band gap of KU{sub 2}SbSe{sub 8} could not be determined precisely due to the presence of overlapping intense f-f transitions in the region (0.5--1.1 eV). The Raman spectra show the disulfide stretching vibration in RbU{sub 2}SbS{sub 8} at 479 cm{sup {minus}1} and the diselenide stretching vibration in KU{sub 2}SbSe{sub 8} at 252 cm{sup {minus}1}. Magnetic susceptibility measurements indicate the presence of U{sup 4+} centers in the compounds. The compounds do not melt below 1,000 C under vacuum.

  2. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    Science.gov (United States)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  3. Timing of Expansions of the Quelccaya Ice Cap, Peru, and Implications for Cosmogenic Nuclide Production Rate Calibration

    Science.gov (United States)

    Lowell, T. V.; Kelly, M. A.; Applegate, P. J.; Smith, C. A.; Phillips, F. M.; Hudson, A. M.

    2010-12-01

    We calibrate the production rate of the cosmogenic nuclide beryllium-10 (10Be) at a low-latitude, high-elevation site, using nuclide concentrations measured in moraine boulders and an independent chronology determined with bracketing radiocarbon dates. The measurement of terrestrial cosmogenic nuclide (TCN) concentrations in earth surface materials has been an important development for understanding a host of earth surface processes. Uncertainty in cosmogenic nuclide production rates has hampered application of this method. Here, we contribute to the estimation of 10Be production rates by reporting both preliminary 10Be concentrations and independent radiocarbon dates from a low latitude, high elevation site. Our study site in the southeastern Peruvian Andes (~13.9°S, 70.9°W, 4850 m asl) is centered on a moraine set, known as the Huancané II moraines, that represents a ~4 km expansion of Quelccaya Ice Cap during late glacial time. At this location, organic material situated both stratigraphically below and above moraines in two adjacent valleys provide material for radiocarbon dating. Based on geomorphic arguments, we correlate results from the two valleys. The timing of ice cap margin advance is bracketed by 13 radiocarbon ages on organic material within the outermost Huancané II moraines that range from 13.6 to 12.5 ka. Two stratigraphic sections upvalley from the moraines yield 6 radiocarbon ages from 11.3 to 12.4 ka, indicating the time of retreat . We computed the probability density function that lies between these two sets of dates, and assign an age of 12.4 ka (+/-???) for the formation of the Huancané II moraines. Calculating beryllium-10 exposure dates from the measured concentrations yield exposure dates that significantly underestimate the independently determined age of the moraine (~8-30%), if existing production rate estimates are used. We suggest that the radiocarbon age for the moraines can be used as a robust independent calibration for 10Be

  4. Magnetostructural Phase Diagram of Multiferroic (ND<sub>4sub>)>2sub>FeCl>5sub>.H>2sub>O

    Energy Technology Data Exchange (ETDEWEB)

    Clune, A. [Univ. of Tennessee, Knoxville, TN (United States); Hughey, K. [Univ. of Tennessee, Knoxville, TN (United States); Musfeldt, J. L. [Univ. of Tennessee, Knoxville, TN (United States); Tian, W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fernandez-Baca, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singleton, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    Spin and polarization flop transitions are fascinating, especially when controlled by external stimuli like magnetic and electric field and accompanied by large material responses involving multiple degrees of freedom. Multiferroics like MnWO<sub>4sub>, TbMnO<sub>3sub>, and Ni<sub>3sub>TeO>6sub> are flagship examples and owe their remarkable properties, for instance field control of polarization and polarization flops combined with spin helix reorientation, to the anisotropy and heavy centers that bring in spin-orbit coupling. The family of A<sub>2sub>FeX>5sub>.H>2sub>O erythrosiderites (A = K, Rb, NH<sub>4sub>; B = Fe, Mn, Co; X = Cl, Br, H<sub>2sub>O) drew our attention due to the rich chemical tuning possibilities, complex phase diagrams, and topological similarities to oxide multiferroics.1 (NH<sub>4sub>)>2sub>FeCl>5sub>.H>2sub>O is the flagship example (Fig. 1(a)). It displays a high temperature order-disorder transition involving long-range hydrogen bonding of the NH<sub>4sub>+ group and two successive low temperature magnetic transitions below which non-collinear magnetic order and ferroelectricity are established.1 In addition to the magnetically-induced electric polarization that arises below 6.9 K (P = 3 μC/m<sub>2sub> along a and a smaller component along b), applied field reveals a peculiar hysteretic spin flop transition near 4.5 T above which polarization flops from the a- to the c-axis. There are elastic components as well. Taken together, these findings raise questions about the interactions that induce this behavior and whether additional non-equilibrium phases might be accessed under even higher magnetic fields.

  5. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  6. Comparison of fabric analysis of snow samples by Computer-Integrated Polarization Microscopy and Automatic Ice Texture Analyzer

    Science.gov (United States)

    Leisinger, Sabine; Montagnat, Maurine; Heilbronner, Renée; Schneebeli, Martin

    2014-05-01

    Accurate knowledge of fabric anisotropy is crucial to understand the mechanical behavior of snow and firn, but is also important for understanding metamorphism. Computer-Integrated Polarization Microscopy (CIP) method used for the fabric analysis was developed by Heilbronner and Pauli in the early 1990ies and uses a slightly modified traditional polarization microscope for the fabric analysis. First developed for quartz, it can be applied to other uniaxial minerals. Up to now this method was mainly used in structural geology. However, it is also well suited for the fabric analysis of snow, firn and ice. The method is based on the analysis of first- order interference colors images by a slightly modified optical polarization microscope, a grayscale camera and a computer. The optical polarization microscope is featured with high quality objectives, a rotating table and two polarizers that can be introduced above and below the thin section, as well as a full wave plate. Additionally, two quarter-wave plates for circular polarization are needed. Otherwise it is also possible to create circular polarization from a set of crossed polarized images through image processing. A narrow band interference filter transmitting a wavelength between 660 and 700 nm is also required. Finally a monochrome digital camera is used to capture the input images. The idea is to record the change of interference colors while the thin section is being rotated once through 180°. The azimuth and inclination of the c-axis are defined by the color change. Recording the color change through a red filter produces a signal with a well-defined amplitude and phase angle. An advantage of this method lies in the simple conversion of an ordinary optical microscope to a fabric analyzer. The Automatic Ice Texture Analyzer (AITA) as the first fully functional instrument to measure c-axis orientation was developed by Wilson and other (2003). Most recent fabric analysis of snow and firn samples was carried

  7. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  8. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay

    Science.gov (United States)

    Lunn, Nicholas J.; Servanty, Sabrina; Regehr, Eric V.; Converse, Sarah J.; Richardson, Evan S.; Stirling, Ian

    2016-01-01

    Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture–recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993–1411) in 1987 to 806 (95% BCI = 653–984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001–2010 = 1.02, 95% BCI = 0.98–1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00–1.05) and 0.97 (95% BCI = 0.92–1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations.

  9. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay.

    Science.gov (United States)

    Lunn, Nicholas J; Servanty, Sabrina; Regehr, Eric V; Converse, Sarah J; Richardson, Evan; Stirling, Ian

    2016-07-01

    Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture-recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993-1411) in 1987 to 806 (95% BCI = 653-984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001-2010 = 1.02, 95% BCI = 0.98-1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00-1.05) and 0.97 (95% BCI = 0.92-1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations. © 2016 by the Ecological Society of

  10. Metop SG Ice Cloud Imager data analysis preparations

    Science.gov (United States)

    Eriksson, Patrick; Mendrok, Jana; Ekelund, Robin; Rydberg, Bengt; Brath, Manfred; Buehler, Stefan A.

    2017-04-01

    The Ice Cloud Imager (ICI), one the instruments to be onboard the second generation (SG) of Metop satellites, will be the first operational instrument making use of sub-millimeter wavelengths. Increasing the sensitivity of microwave ice hydrometeor measurements with at least two orders of magnitude, its primary aim is to characterize the bulk mass of ice hydrometeors, where the basic retrieval products will be ice water path, mean mass size, and mean mass altitude. With the expected competitive accuracy it can e.g. complement the narrow horizontal coverage of active instruments. Here we present our activities to develop and improve the data analysis for passive sub-millimeter sensors and ICI in particular, where for the latter we are also developing the froaen hydrometeor retrieval algorithm on behalf of EUMETSAT and its NWC-SAF. One crucial aspect in the data analysis is the quality of the forward modeling, the ability to produce realistic, statistically representative synthetic measurements and to reproduce the performed observations, which poses challenges regarding representation of hydrometeor microphysical as well as optical properties and of the radiative transfer problem itself (atmospheric dimensionality, polarization, etc.). One of our core activities is the creation of a consistent database of ice hydrometeor single scattering properties that covers not only ICI applications, but passive and active sensors in the whole microwave region. The database will fill the gaps (spectral, temperature, habits) of and between existing databases (e.g. by Liu, Hong, Ding, Kuo) and will also hold data for oriented particles. Furthermore, sensitivity to forward modeling assumptions is tested, and the results are validated statistically versus existing (satellite microwave and airborne sub-millimeter) observations. These assumptions include microphysics (e.g. size distributions, habit choices, particle orientation) as well as model complexity (e.g. 3D effects

  11. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS{sub 2} nanocrystals and solid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Guangmei, E-mail: zhaiguangmei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China)

    2016-07-25

    In this work, the optical and electronic properties of iron pyrite FeS{sub 2} nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS{sub 2} nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS{sub 2} nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS{sub 2} nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS{sub 2} nanocrystals with different ligands were obtained by current density–voltage measurements.

  12. An ultra-clean technique for accurately analysing Pb isotopes and heavy metals at high spatial resolution in ice cores with sub-pg g{sup -1} Pb concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Burn, Laurie J. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Rosman, Kevin J.R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia)], E-mail: K.Rosman@curtin.edu.au; Candelone, Jean-Pierre [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Vallelonga, Paul [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Istituto per la Dinamica dei Processi Ambientali (IDPA-CNR), Dorsoduro 2137, 30123 Venice (Italy); Burton, Graeme R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Smith, Andrew M. [Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234 (Australia); Morgan, Vin I. [Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, Private Bag 80, Hobart, Tasmania 7001 (Australia); Barbante, Carlo [Istituto per la Dinamica dei Processi Ambientali (IDPA-CNR), Dorsoduro 2137, 30123 Venice (Italy); Hong, Sungmin [Korea Polar Research Institute, Songdo Techno Park, 7-50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Boutron, Claude F. [Laboratoire de Glaciologie et Geophysique de l' Environnement du CNRS, 54, rue Moliere, B.P. 96, 3840.2 St Martin d' Heres Cedex (France)

    2009-02-23

    Measurements of Pb isotope ratios in ice containing sub-pg g{sup -1} concentrations are easily compromised by contamination, particularly where limited sample is available. Improved techniques are essential if Antarctic ice cores are to be analysed with sufficient spatial resolution to reveal seasonal variations due to climate. This was achieved here by using stainless steel chisels and saws and strict protocols in an ultra-clean cold room to decontaminate and section ice cores. Artificial ice cores, prepared from high purity water were used to develop and refine the procedures and quantify blanks. Ba and In, two other important elements present at pg g{sup -1} and fg g{sup -1} concentrations in Polar ice, were also measured. The final blank amounted to 0.2 {+-} 0.2 pg of Pb with {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.16 {+-} 0.12 and 2.35 {+-} 0.16, respectively, 1.5 {+-} 0.4 pg of Ba and 0.6 {+-} 2.0 fg of In, most of which probably originates from abrasion of the steel saws by the ice. The procedure was demonstrated on a Holocene Antarctic ice core section and was shown to contribute blanks of only {approx}5%, {approx}14% and {approx}0.8% to monthly resolved samples with respective Pb, Ba and In concentrations of 0.12 pg g{sup -1}, 0.3 pg g{sup -1} and 2.3 fg g{sup -1}. Uncertainties in the Pb isotopic ratio measurements were degraded by only {approx}0.2%.

  13. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA

  14. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  15. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice

    Science.gov (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C.F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero

    2018-01-01

    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  16. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice

    Science.gov (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C. F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero

    2018-03-01

    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  17. Crystal structure and characterization of the novel NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonded polar crystal [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wojtas, M., E-mail: maciej.wojtas@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Gagor, A. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Science, PO Box 1410, 50-950 Wroclaw (Poland); Czupinski, O. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Medycki, W. [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznan (Poland); Jakubas, R. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2012-03-15

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonds and molecular motions of the [BF{sub 4}]{sup -} units. The crystal structure of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. {sup 1}H and {sup 19}F NMR measurements indicate the reorientational motions of [BF{sub 4}]{sup -} anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic-inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic-inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], phase IV. The

  18. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  19. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  20. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  1. Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss.

    Science.gov (United States)

    Laidre, Kristin L; Born, Erik W; Atkinson, Stephen N; Wiig, Øystein; Andersen, Liselotte W; Lunn, Nicholas J; Dyck, Markus; Regehr, Eric V; McGovern, Richard; Heagerty, Patrick

    2018-02-01

    Climate change is expected to result in range shifts and habitat fragmentation for many species. In the Arctic, loss of sea ice will reduce barriers to dispersal or eliminate movement corridors, resulting in increased connectivity or geographic isolation with sweeping implications for conservation. We used satellite telemetry, data from individually marked animals (research and harvest), and microsatellite genetic data to examine changes in geographic range, emigration, and interpopulation connectivity of the Baffin Bay (BB) polar bear ( Ursus maritimus ) subpopulation over a 25-year period of sea-ice loss. Satellite telemetry collected from n  = 43 (1991-1995) and 38 (2009-2015) adult females revealed a significant contraction in subpopulation range size (95% bivariate normal kernel range) in most months and seasons, with the most marked reduction being a 70% decline in summer from 716,000 km 2 (SE 58,000) to 211,000 km 2 (SE 23,000) ( p  Bears in the 2000s were less likely to leave BB, with significant reductions in the numbers of bears moving into Davis Strait (DS) in winter and Lancaster Sound (LS) in summer. Harvest recoveries suggested both short and long-term fidelity to BB remained high over both periods (83-99% of marked bears remained in BB). Genetic analyses using eight polymorphic microsatellites confirmed a previously documented differentiation between BB, DS, and LS; yet weakly differentiated BB from Kane Basin (KB) for the first time. Our results provide the first multiple lines of evidence for an increasingly geographically and functionally isolated subpopulation of polar bears in the context of long-term sea-ice loss. This may be indicative of future patterns for other polar bear subpopulations under climate change.

  2. Initiation and long-term instability of the East Antarctic Ice Sheet.

    Science.gov (United States)

    Gulick, Sean P S; Shevenell, Amelia E; Montelli, Aleksandr; Fernandez, Rodrigo; Smith, Catherine; Warny, Sophie; Bohaty, Steven M; Sjunneskog, Charlotte; Leventer, Amy; Frederick, Bruce; Blankenship, Donald D

    2017-12-13

    Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.

  3. Coexistence of Weak Ferromagnetism and Polar Lattice Distortion in Epitaxial NiTiO<sub>3sub> thin films of the LiNbO<sub>3sub>-Type Structure

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas [Environmental Molecular Sciences Lab., Richland, WA (United States); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Environmental Molecular Sciences Lab., Richland, WA (United States); Colby, Robert J. [Environmental Molecular Sciences Lab., Richland, WA (United States); Manandhar, Sandeep [Environmental Molecular Sciences Lab., Richland, WA (United States); Shutthanandan, Vaithiyalingam [Environmental Molecular Sciences Lab., Richland, WA (United States); Hu, Dehong [Environmental Molecular Sciences Lab., Richland, WA (United States); Kabius, Bernd C. [Environmental Molecular Sciences Lab., Richland, WA (United States); Apra, Edoardo [Environmental Molecular Sciences Lab., Richland, WA (United States); Shelton, William A. [Environmental Molecular Sciences Lab., Richland, WA (United States); Chambers, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-15

    We report the magnetic and structural characteristics of epitaxial NiTiO<sub>3sub> films grown by pulsed laser deposition that are isostructural with acentric LiNbO<sub>3sub> (space group R3c). Optical second harmonic generation and magnetometry demonstrate lattice polarization at room temperature and weak ferromagnetism below 250 K, respectively. These results appear to be consistent with earlier predictions from first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LiNbO<sub>3 sub>structure. This acentric form of NiTiO<sub>3sub> is believed to be one of the rare examples of ferroelectrics exhibiting weak ferromagnetism generated by a Dzyaloshinskii-Moriya interaction.

  4. One-pot synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} nanoparticles using oleylamine as solvent and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Mirabet, Leonardo [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Solano, Eduardo, E-mail: eduardo.solano@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Martínez-Julián, Fernando; Guzmán, Roger [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona (Spain); Puig, Teresa; Obradors, Xavier; Pomar, Alberto [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Yáñez, Ramón; Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2013-03-15

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles (<10 nm) in non-polar media. ► Nanoparticles present high monocrystal quality and monodispersion. ► Superparamagnetic behavior at room temperature. ► Nanoparticles transfer to polar media via ligand exchange. - Abstract: An easy, efficient, reproducible and scalable one-pot synthetic methodology to obtain magnetic spinel ferrite nanoparticles has been developed. This approach is based on one-pot thermal decomposition of Fe(acac){sub 3} and M(acac){sub 2} (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media.

  5. Electron and ion angular distributions in resonant dissociative photoionization of H{sub 2} and D{sub 2} using linearly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge; MartIn, Fernando [Departamento de Quimica C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: fernando.martin@uam.es

    2009-04-15

    We have evaluated fully differential electron angular distributions in H{sub 2} and D{sub 2} dissociative photoionization by using linearly polarized light of 20, 27 and 33 eV. At 20 eV, the distributions exhibit simple p-wave patterns, which is the signature of direct ionization through the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) channel. At 27 eV, where the Q{sub 1} autoionizing states are populated, we observe a similar pattern, except when the molecule is oriented perpendicularly to the polarization direction and the energy of the ejected electron is small. In contrast, at 33 eV, autoionization from the Q{sub 1} and Q{sub 2} states leads to interferences between the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) and {sup 2}{sigma}{sub u}{sup +}(2p{sigma}{sub u}) ionization channels that result in a strong asymmetry of the electron angular distributions along the molecular axis. This asymmetry changes rapidly with the energy of the ejected electron. Electron angular distributions integrated over all possible molecular orientations or ion angular distributions integrated over electron emission angle show no reminiscence of the above phenomena, but the corresponding asymmetry parameters dramatically change with electron and ion energies in the region of autoionizing states.

  6. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  7. The motley family of polar compounds (MV)[M(X{sub 5-x}X Prime {sub x})] based on anionic chains of trans-connected M{sup (III)}(X,X Prime ){sub 6} octahedra (M=Bi, Sb; X, X Prime =Cl, Br, I) and methylviologen (MV) dications

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Nicolas [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Mercier, Nicolas, E-mail: nicolas.mercier@univ-angers.fr [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Allain, Magali; Toma, Oksana [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Auban-Senzier, Pascale; Pasquier, Claude [Laboratoire de Physique des Solides, UMR-CNRS 8502, Bat. 510,Universite Paris Sud, 91405 Orsay (France)

    2012-11-15

    The search for hybrid organic-inorganic materials remains a great challenge in the field of ferroelectrics. Following the discovery of the room temperature ferroelectric material (MV)[BiI{sub 3}Cl{sub 2}] (MV{sup 2+}: methylviologen) exhibiting the highest polarization value in the field of hybrid ferroelectrics, we report here nine new hybrids with the general formulation (MV)[M{sup (III)}X{sub 5-x}X Prime {sub x}] (M=Bi, Sb; X, X Prime =Cl, Br, I): (MV)[BiCl{sub 3.3}Br{sub 1.7}] (1), (MV)[BiCl{sub 1.3}Br{sub 3.7}] (2), (MV)[BiBr{sub 3.2}I{sub 1.8}] (3), (MV)[SbCl{sub 5}] (4), (MV)[SbBr{sub 5}] (5), (MV)[SbCl{sub 3.8}Br{sub 1.2}] (6), (MV)[SbCl{sub 2.4}Br{sub 2.6}] (7), (MV)[SbI{sub 3}Cl{sub 2}] (8) and (MV)[SbBr{sub 3.8}I{sub 1.2}] (9). Depending on the presence of polar chains or not, and on the coupling of polar chains, two types of centrosymmetrical structures [C1] and [C2] and two types of polar structures [P1] and [P2] are defined. (2) undergoes a paraelectric-to-relaxor ferroelectric transition around 100-150 K depending of the frequency showing that the Curie temperature, T{sub C}, of (MV)[BiBr{sub 5}] (243 K) can be modulated by the substitution of Br by Cl. The most interesting family is the [P2] type because the syn coupling of polar chains is in favor of high polarization values, as in (MV)[BiI{sub 3}Cl{sub 2}]. Five of the nine new hybrids, (4), (6-9), which have the [P2] type structure are potential ferroelectrics. - Graphical abstract: The methylviologen haloantimonate (MV)[SbX{sub 5-x}X Prime {sub x}] families (X, X Prime =Cl, Br, I) - [P1] and [P2] are the two kinds of polar structures - and view of the (MV)[SbBr{sub 3.8}I{sub 1.2}] hybrid based on chiral polar chains which are in syn coupling. Highlights: Black-Right-Pointing-Pointer Nine hybrids based on methylviologen and halometalate chains have been discovered. Black-Right-Pointing-Pointer The polar nature of chains is due to the ns{sup 2} stereoactivity of Sb{sup (III)} or Bi{sup (III

  8. Population ecology of polar bears in Davis Strait, Canada and Greenland

    Science.gov (United States)

    Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian

    2013-01-01

    Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.

  9. Severnaya Zemlya, arctic Russia: a nucleation area for Kara Sea ice sheets during the Middle to Late Quaternary

    DEFF Research Database (Denmark)

    Möller, Per; Lubinski, David J.; Ingólfsson, Ólafur

    2006-01-01

    Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 79°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from......-5e and MIS 5d-3. The MIS 6-5e event, associated with the high marine limit, implies ice-sheet thickness of >2000 m only 200 km from the deep Arctic Ocean, consistent with published evidence of ice grounding at ~1000 m water depth in the central Arctic Ocean. Till fabrics and glacial tectonics record...... repeated expansions of local ice caps exclusively, suggesting wet-based ice cap advance followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains, appear to have repeatedly fostered initiation...

  10. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    fraction product and the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to...Stamnes, Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G

  11. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to the infrequent...Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G. Heygster, M

  12. On the polarization of Herbig Ae/Be star radiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N I; Shevchenko, V S

    1987-08-01

    Results of multicolor UBVRI polarimetry of 14 Herbig Ae/Be stars including 7 stars for which observations of polarization have been made for the first time are presented. 6 bright Herbig Ae/Be stars (As 441, AS 442, LK H..cap alpha..134, LK H..cap alpha..135, Lk H..cap alpha..169 and V517 Cyg) which belong to star formation region connected with IC 5070 show the polarization from 1 to 4.5. per cent with similar theta (approx. 180 deg) (basically of interstellar nature). The polarimetrical variability of BD+46 deg 3471, BD+65 deg 1637, HD 200775 and Lk H..cap alpha..234 is confirmed. Mechanismes of polarization in Herbig Ae/Be stars in circumstellar formations are discussed.

  13. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mlambo, M. [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Moloto, M.J., E-mail: makwenam@vut.ac.za [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Moloto, N. [Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Mdluli, P.S. [Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa)

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  14. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Di [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Qin [College of Environmental Science and Engineering, Hohai University, Nanjing (China); Zhong, Jicheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Wu, Wei; Jia, Fei [College of Environmental Science and Engineering, Hohai University, Nanjing (China)

    2012-11-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K{sub p}) values and greater adsorption capacity (Q{sub max}) values, while zero equilibrium concentrations (EPC{sub 0}s) were similar to those in native sediments. The larger K{sub p} and Q{sub max} were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: Black-Right-Pointing-Pointer Evaluation of capping with soils was performed through high-resolution sampling. Black-Right-Pointing-Pointer Capping decreased the concentrations of DRP in pore waters and its release to waters. Black-Right-Pointing-Pointer Capping decreased the resupply of pore water DRP from the sediments. Black-Right-Pointing-Pointer Capped sediments had stronger abilities to adsorb and retain P. Black-Right-Pointing-Pointer Active Fe and Al introduced by capping played a critical role.

  15. Multi-station basis for Polar Cap (PC) indices: ensuring credibility and operational reliability

    Science.gov (United States)

    Stauning, Peter

    2018-02-01

    The Polar Cap (PC) indices, PCN (North) and PCS (South) are based on polar geomagnetic observations from Qaanaaq (Thule) and Vostok, respectively, processed to measure the transpolar plasma convection that may seriously affect space weather conditions. To establish reliable space weather forecasts based on PC indices, and also to ensure credibility of their use for scientific analyses of solar wind-magnetosphere interactions, additional sources of data for the PC indices are investigated. In the search for alternative index sources, objective quality criteria are established here to be used for the selection among potential candidates. These criteria are applied to existing PC index series to establish a quality scale. In the Canadian region, the data from Resolute Bay magnetometer are shown to provide alternative PCN indices of adequate quality. In Antarctica, the data from Concordia Dome-C observatory are shown to provide basis for alternative PCS indices. In examples to document the usefulness of these alternative index sources it is shown that PCN indices in a real-time version based on magnetometer data from Resolute Bay could have given 6 h of early warning, of which the last 2 h were "red alert", up to the onset of the strong substorm event on 13 March 1989 that caused power outage in Quebec. The alternative PCS indices based on data from Dome-C have helped to disclose that presently available Vostok-based PCS index values are corrupted throughout most of 2011.

  16. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  17. Chronological changes in the eighth cranial nerve compound action potential (CAP) in experimental endolymphatic hydrops: the effects of altering the polarity of click sounds.

    Science.gov (United States)

    Morizono, Tetsuo; Kondo, Tsuyoshi; Yamano, Takafumi; Miyagi, Morimichi; Shiraishi, Kimio

    2009-02-01

    Using a guinea pig model of experimental endolymphatic hydrops, click sounds of altered polarity showed different latencies and amplitudes in hydropic compared with normal cochleae. Latency changes appeared as early as 1 week after endolymphatic obstruction. This method can help diagnose endolymphatic hydrops. The goal of the study was to develop an objective electrophysiological diagnosis of endolymphatic hydrops. Endolymphatic hydrops were created surgically in guinea pigs. The latency and the amplitude of the eighth cranial nerve compound action potential (CAP) for click sounds of altered polarity were measured up to 8 weeks after the surgery. At early stages after surgery, the latency for condensation clicks became longer, and at later stages the latencies for both condensation and rarefaction became longer. The discrepancy in the latencies for rarefaction and condensation click sounds (rarefaction minus condensation) became larger by the first week after surgery, but no further discrepancy occurred thereafter. Compared with latency changes, amplitude changes in the CAP were rapid and progressive following surgery, suggesting ongoing damage to hair cells.

  18. Evaluating Sealing Efficiency of Cap-rocks for CO{sub 2} Storage: an Overview of the Geocarbone-Integrity Program and Results; Evaluation de l'integrite des couvertures d'un stockage de CO{sub 2}: un apercu du programme Geocarbone-Integrite et de ses resultats

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, M. [Institut francais du petrole, IFP, 92 - Rueil-Malmaison (France); Pironon, J. [Institut National Polytechnique de Lorraine, INPL, 54 - Nancy (France); Le Nindre, Y.M. [Bureau de Recherches Geologiques et Minieres, BRGM, 45 - Orleans (France); Bildstein, O. [CEA Cadarache, DEN, 13 - Saint-Paul-lez-Durance (France); Berne, P. [CEA Grenoble, LITEN, LCSN, 38 (France); Lagneau, V. [Institut de Geosciences, Ecole des Mines de Paris, ARMINES, 77 - Fontainebleau (France); Broseta, D. [Laboratoire des Fluides Complexes, LFC, 64 - Pau (France); Pichery, T. [Gaz de France, GDF, 93 - Saint-Denis La Plaine (France); Fillacier, S. [Geostock, 92 - Rueil-Malmaison (France); Lescanne, M. [Total, 64 - Pau (France); Vidal, O. [Laboratoire de Geodynamique des Chaines Alpines, LGCA, 38 - Grenoble (France)

    2010-05-15

    An overview of the three-year program and results of the Geocarbone-Integrity French project is given. It focused on the development of experimental and numerical methodologies to assess the integrity of underground CO{sub 2} storage at various scales. The primary criteria in the selection of a cap-rock formation for CO{sub 2} storage purposes are the thickness and permeability of the formation. Local and limited migration of CO{sub 2} into the cap-rock due to insufficient capillary entry pressure has been studied as a probable scenario. At a large scale, cap-rock characterization requires at least seismic profiles to identify lateral continuity. When well-logging data are available, simple rules based on clay content can be used to estimate thicknesses. For the formation considered, the geochemical reactivity to CO{sub 2} was small, making the reaction path difficult to identify. Similarly, artificial alterations of samples representing extreme situations had little impact on geomechanical properties. Finally, with realistic overpressure due to injection, shear fracture reactivation criteria are not reached and migration of CO{sub 2} either by diffusion or by two-phase flow within the first meters of the cap-rock produce mostly a decrease in porosity by precipitation, and very locally an increase in porosity by dissolution. (authors)

  19. Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.

    2018-05-01

    . For Mercury's polar deposits, we argue that Case I of the small craters predating the emplacement of the ice deposits is more likely, given other geologic evidence that suggests that these ice deposits are relatively young. Using the ice thickness estimates from Case I to calculate the total amount of water ice currently contained in Mercury's polar deposits results in a value of ∼1014-1015 kg. This is equivalent to ∼100-1000 km3 ice in volume. This volume of water ice is consistent with delivery via micrometeorite bombardment, Jupiter-family comets, or potentially a single impactor.

  20. The influence of firn air transport processes and radiocarbon production on gas records from polar firn and ice

    DEFF Research Database (Denmark)

    Buizert, Christo

    Air bubbles found in polar ice cores preserve a record of past atmospheric composition up to 800 kyr back in time. The composition of the bubbles is not identical to the ancient atmosphere, as it is influenced by processes prior to trapping, within the ice sheet itself, and during sampling...... does not vanish completely in the lock-in zone, as is commonly assumed. Six state-of-the-art firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1 Gaussian distribution. We present the first intercomparison study of firn air models, where we...

  1. Polarization labelling spectroscopy of the A 1Σ+sub(u) band of Na2

    International Nuclear Information System (INIS)

    Itoh, H.; Hayakawa, M.; Fukuda, Y.; Matsuoka, M.

    1981-01-01

    A result of the polarization labelling spectroscopy of the A 1 Σ + sub(u) band of sodium dimer for the high vibrational quantum number upsilon' > 20 is reported. The frequency difference Δν = νsub(o)sub(b)sub(s)-νsub(c)sub(a)sub(l) is found to decrease from 2 to -3 cm -1 as the rotational levels (upsilon' = 27-30), where νsub(c)sub(a)sub(l) is the calculated transition frequency using the Dunham coefficients of Demtroeder and Stock for the X 1 Σ + sub(g) band and of Kusch and Hessel for the A 1 Σ + sub(u) band. (orig.)

  2. ULF/Lower-ELF Electromagnetic Field Measurements in the Polar Caps

    Science.gov (United States)

    1980-12-01

    motion sensitive and the ice stations are subject to noisy motion from I ordinary ice movements (the bumping, scraping, and so on of ice floes) 56 ,zp and...the earth", Geomag. Aeron. USSR, English Transl., 17, 760-762, 1977. Cagniard, L., "Basic theory of the magneto- telluric method of geo- physical...1967. Nishida, A., Geomagnetic Diagnosis of the Magnetosphere, 256 pp., Springer, New York, 1978. Novysh, V.V., and G.A. Fonarev, " Telluric currents

  3. Observation of stimulated Raman scattering in polar tetragonal crystals of barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Rhee, Hanjo; Eichler, Hans J.; Lux, Oliver [Institute of Optics and Atomic Physics, Technical University of Berlin (Germany); Nemec, Ivan [Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague (Czech Republic); Yoneda, Hitoki; Shirakawa, Akira [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan); Becker, Petra; Bohaty, Ladislav [Section Crystallography, Institute of Geology and Mineralogy, University of Cologne (Germany)

    2017-04-15

    The non-centrosymmetric polar tetragonal (P4{sub 1}) barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O, was found to be an attractive novel semi-organic crystal manifesting numerous χ{sup (2)}- and χ{sup (3)}-nonlinear optical interactions. In particular, with picosecond single- and dual-wavelength pumping SHG and THG via cascaded parametric four-wave processes were observed. High-order Stokes and anti-Stokes lasing related to two SRS-promoting vibration modes of the crystal, with ω{sub SRS1} ∼ 575 cm{sup -1} and ω{sub SRS2} ∼ 2940 cm{sup -1}, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS-active vibration modes is discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO{sub 3} with different polar surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023 (China); Zhang, Jun, E-mail: zhangjun@njtech.edu.cn [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-12-01

    Graphical abstract: - Highlights: • The non-polar and short vinyl groups can greatly reduce G′ of HDPE composites. • Long chains on BaTiO{sub 3} surface enhance the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups on BaTiO{sub 3} surface raise the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups can boost the dielectric constant of HDPE composites. • The potential use in electronic equipment of the KH550 composites is obtained. - Abstract: In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO{sub 3}) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO{sub 3} from 37.53 mJ/m{sup 2} to 7.51 mJ/m{sup 2}, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO{sub 3}, but make BaTiO{sub 3} have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO{sub 3} still with hydrophilic properties. It is found that SG-Si151 modified BaTiO{sub 3} has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO{sub 3} surface can improve the adhesion of BaTiO{sub 3} with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO{sub 3} can boost the dielectric properties of HDPE/BaTiO{sub 3} composites and decrease the volume resistivity of HDPE/BaTiO{sub 3} composites. The aim of this study is to investigate how functional groups

  5. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  6. Preparation, properties and anticancer effects of mixed As{sub 4}S{sub 4}/ZnS nanoparticles capped by Poloxamer 407

    Energy Technology Data Exchange (ETDEWEB)

    Bujňáková, Z., E-mail: bujnakova@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Baláž, M. [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Zdurienčíková, M.; Sedlák, J. [Cancer Research Institute, BMC Slovak Academy of Sciences, Dúbravská 9, 84505 Bratislava (Slovakia); Čaplovičová, M. [STU Centre for Nanodiagnostics, Slovak University of Technology, Vazovova 5, 81243 Bratislava (Slovakia); Čaplovič, Ľ. [Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 91724 Trnava (Slovakia); Dutková, E.; Zorkovská, A.; Turianicová, E.; Baláž, P. [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Shpotyuk, O. [Scientific Research Company “Carat”, Stryjska 202, 79031 Lviv (Ukraine); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15., 42200 Czestochowa (Poland); and others

    2017-02-01

    Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As{sub 4}S{sub 4}) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As{sub 4}S{sub 4}/ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5 wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~ 120 nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As{sub 4}S{sub 4} and ZnS nanocrystals. - Highlights: • Mixed As{sub 4}S{sub 4}/ZnS nanoparticles were prepared by dry milling in the first stage • Stable nanosuspensions of As{sub 4}S{sub 4}/ZnS nanoparticles capped by Poloxamer 407 were prepared by wet milling in the second stage • ZnS in the samples is beneficial: higher values of S{sub A}, stability, solubility and anticancer activity were improved.

  7. Perspectives for DNA studies on polar ice cores

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, E.

    2002-01-01

    Recently amplifiable ancient DNA was obtained from a Greenland ice core. The DNA revealed a diversity of fungi, plants, algae and protists and has thereby expanded the range of detectable organic material in fossil glacier ice. The results suggest that ancient DNA can be obtained from other ice c...

  8. Determination of heavy metals in polar snow and ice by laser-excited atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Boutron, C.F.

    1994-01-01

    The new laser-excited atomic fluorescence spectrometry technique offers unrivalled sensitivity for the determination of trace metals in a wide variety of samples. This has allowed the direct determination of Pb, Cd and Bi in Antarctic and Greenland snow and ice down to the sub pg/g level. (authors). 11 refs., 2 figs

  9. Optimization of the polarized Klein tunneling currents in a sub-lattice: pseudo-spin filters and latticetronics in graphene ribbons.

    Science.gov (United States)

    López, Luis I A; Yaro, Simeón Moisés; Champi, A; Ujevic, Sebastian; Mendoza, Michel

    2014-02-12

    We found that with an increase of the potential barrier applied to metallic graphene ribbons, the Klein tunneling current decreases until it is totally destroyed and the pseudo-spin polarization increases until it reaches its maximum value when the current is zero. This inverse relation disfavors the generation of polarized currents in a sub-lattice. In this work we discuss the pseudo-spin control (polarization and inversion) of the Klein tunneling currents, as well as the optimization of these polarized currents in a sub-lattice, using potential barriers in metallic graphene ribbons. Using density of states maps, conductance results, and pseudo-spin polarization information (all of them as a function of the energy V and width of the barrier L), we found (V, L) intervals in which the polarized currents in a given sub-lattice are maximized. We also built parallel and series configurations with these barriers in order to further optimize the polarized currents. A systematic study of these maps and barrier configurations shows that the parallel configurations are good candidates for optimization of the polarized tunneling currents through the sub-lattice. Furthermore, we discuss the possibility of using an electrostatic potential as (i) a pseudo-spin filter or (ii) a pseudo-spin inversion manipulator, i.e. a possible latticetronic of electronic currents through metallic graphene ribbons. The results of this work can be extended to graphene nanostructures.

  10. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, Volker; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Bremer, R; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Feld, Lutz; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; Klein, Katja; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing.

  11. Marginal Ice Zone (MIZ) Program: Science and Experiment Plan

    Science.gov (United States)

    2012-10-01

    MIZ ( Terra Nordica and Sir John Franklin, since renamed Amundsen) served largely to provide ground truth data. _______________________UNIVERSITY OF...ocean, and sea ice components. Currently under development is the incorporation of ice sheets, glaciers and ice caps, and dynamic vegetation . The...and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the

  12. Evaluation of Composite-Hull Ships Operating in Arctic Ice

    Science.gov (United States)

    2016-06-01

    COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE by Ryan M. Tran June 2016 Thesis Advisor: Young W. Kwon Co-Advisor: Jarema M. Didoszak THIS...Master’s thesis 4. TITLE AND SUBTITLE EVALUATION OF COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE 5. FUNDING NUMBERS 6. AUTHOR Ryan M. Tran 7...melting ice caps. Extensive research is thus being conducted to determine the interaction between ice and steel- hulls in anticipation of opening sea

  13. Spider Web Pattern

    Science.gov (United States)

    2006-01-01

    A delicate pattern, like that of a spider web, appears on top of the Mars residual polar cap, after the seasonal carbon-dioxide ice slab has disappeared. Next spring, these will likely mark the sites of vents when the carbon-dioxide ice cap returns. This Mars Global Surveyor, Mars Orbiter Camera image is about 3-kilometers wide (2-miles).

  14. Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel

    2016-04-01

    The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research icebreaker RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context

  15. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe<sub>2sub>O>3sub> or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  16. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  17. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  18. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  19. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    Science.gov (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  20. Snowball Earth: Skating on Thin Ice?

    Science.gov (United States)

    Roberson, A. L.; Stout, A. M.; Pollard, D.; Kasting, J. F.

    2011-12-01

    There is evidence of at least two intervals of widespread glaciation during the late Neoproterozoic (600-800 Myr ago), which are commonly referred to as "Snowball Earth" episodes. The global nature of these events is indicated by the fact that glacial deposits are found at low paleolatitudes during this time. Models of a global glacial event have produced a variety of solutions at low latitudes: thick ice, thin ice, slushball, and open ocean . The latter two models are similar, except that the slushball model has its ice-line at higher latitudes. To be viable, a model has to be able to account for the survival of life through the glaciations and also explain the existence of cap carbonates and other glacial debris deposited at low latitudes. The "thick-ice" model is not viable because kilometers of ice prevent the penetration of light necessary for the photosynthetic biota below. The "slushball" model is also not viable as it does not allow the formation of cap carbonates. The "thin-ice" model has been discussed previously and can account for continuation of photosynthetic life and glacial deposits at low paleolatitudes. The recently proposed "open-ocean" or "Jormungand" model also satisfies these requirements. What is it, though, that causes some models to produce thin ice near the equator and others to have open water there? We examine this question using a zonally symmetric energy balance climate model (EBM) with flowing sea glaciers to determine what parameter ranges produce each type of solution.

  1. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bhat Zahoor; Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in [Solid State Research Laboratory, Department of Physics, University of Kashmir, Srinagar 190006 (India)

    2016-04-14

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O]. X-ray crystal structure analyses reveal that it crystallizes in the P4{sub 1}2{sub 1}2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  2. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  3. Assessment of RISAT-1 and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective

    Directory of Open Access Journals (Sweden)

    Martine M. Espeseth

    2017-10-01

    Full Text Available Utilizing several Synthetic Aperture Radar (SAR missions will provide a data set with higher temporal resolution. It is of great importance to understand the difference between various available sensors and polarization modes and to consider how to homogenize the data sets for a following combined analysis. In this study, a uniform and consistent analysis across different SAR missions is carried out. Three pairs of overlapping hybrid- and full-polarimetric C-band SAR scenes from the Radar Imaging Satellite-1 (RISAT-1 and Radarsat-2 satellites are used. The overlapping Radarsat-2 and RISAT-1 scenes are taken close in time, with a relatively similar incidence angle covering sea ice in the Fram Strait and Northeast Greenland in September 2015. The main objective of this study is to identify the similarities and dissimilarities between a simulated and a real hybrid-polarity (HP SAR system. The similarities and dissimilarities between the two sensors are evaluated using 13 HP features. The results indicate a similar separability between the sea ice types identified within the real HP system in RISAT-1 and the simulated HP system from Radarsat-2. The HP features that are sensitive to surface scattering and depolarization due to volume scattering showed great potential for separating various sea ice types. A subset of features (the second parameter in the Stokes vector, the ratio between the HP intensity coefficients, and the α s angle were affected by the non-circularity property of the transmitted wave in the simulated HP system across all the scene pairs. Overall, the best features, showing high separability between various sea ice types and which are invariant to the non-circularity property of the transmitted wave, are the intensity coefficients from the right-hand circular transmit and the linear horizontal receive channel and the right-hand circular on both the transmit and the receive channel, and the first parameter in the Stokes vector.

  4. Temperature and polarization dependent Raman measurements of Ca{sub 2}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    German, Raphael [II. Physikalisches Institut, Univ. Koeln (Germany)

    2016-07-01

    Ca{sub 2}RuO{sub 4} is a Mott-like insulator, which undergoes a metal-insulator transition at 357 K and antiferromagnetic ordering at T{sub N} = 110 K. Here, we report a temperature and polarization dependent Raman scattering study. Earlier studies claimed a Raman active two-magnon excitation around 100 cm{sup -1}. This, however, is incompatible with the results from recent inelastic neutron scattering measurements, which suggest that this mode might be of single magnon nature. Instead, it is more likely that the feature which appears at ∝ 650 cm{sup -1}, previously claimed to be due to a charge gap, has a two-magnon origin. Another open question in the interpretation of the Raman spectra is the origin of the high-energy peak at ∝1360 cm{sup -1}. We will discuss the origin of the Raman peaks in terms of one- and two-magnon processes; magnon-phonon coupling, and possible crystal field excitations.

  5. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems

    OpenAIRE

    Bagshaw, E; Lishman, B; Wadham, J; Bowden, J; Burrow, S; Clare, L; Chandler, D

    2014-01-01

    Wireless sensors have the potential to provide significant insight into in situ physical and biogeochemical processes in sub-ice hydrologic systems. However, the nature of the glacial environment means that sensor deployment and data return is challenging. We describe two bespoke sensor platforms, electronic tracers or ‘ETracers’, and ‘cryoegg’, for untethered, wireless data collection from glacial hydrologic systems, including subglacial channels. Both employ radio frequencies for data trans...

  6. On the retrieval of ice cloud particle shapes from POLDER measurements

    International Nuclear Information System (INIS)

    Sun Wenbo; Loeb, Norman G.; Yang Ping

    2006-01-01

    Shapes of ice crystals can significantly affect the radiative transfer in ice clouds. The angular distribution of the polarized reflectance over ice clouds strongly depends on ice crystal shapes. Although the angular-distribution features of the total or polarized reflectance over ice clouds imply a possibility of retrieving ice cloud particle shapes by use of remote sensing data, the accuracy of the retrieval must be evaluated. In this study, a technique that applies single ice crystal habit and multidirectional polarized radiance to retrieve ice cloud particle shapes is assessed. Our sensitivity studies show that the retrieved particle shapes from this algorithm can be considered good approximations to those in actual clouds in calculation of the phase matrix elements. However, this algorithm can only work well under the following conditions: (1) the retrievable must be overcast and thick ice cloud pixels, (2) the particles in the cloud must be randomly oriented, (3) the particle shapes and size distributions used in the lookup tables must be representative, and (4) the multi-angle polarized measurements must be accurate and sufficient to identify ice cloud pixels of randomly oriented particles. In practice, these conditions will exclude most of the measured cloud pixels. Additionally, because the polarized measurements are only sensitive to the upper cloud part not deeper than an optical thickness of 4, the retrieved particle shapes with the polarized radiance may only approximate those in the upper parts of the clouds. In other words, for thicker clouds with vertical inhomogeneity in particle shapes, these retrieved particle shapes cannot represent those of whole clouds. More robust algorithm is needed in accurate retrieval of ice cloud particle shapes

  7. N- AND O-HETEROCYCLES PRODUCED FROM THE IRRADIATION OF BENZENE AND NAPHTHALENE IN H{sub 2}O/NH{sub 3}-CONTAINING ICES

    Energy Technology Data Exchange (ETDEWEB)

    Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A., E-mail: christopher.k.materese@nasa.gov [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2015-02-20

    Aromatic heterocyclic molecules are an important class of molecules of astrophysical and biological significance that include pyridine, pyrimidine, and their derivatives. Such compounds are believed to exist in interstellar and circumstellar environments, though they have never been observed in the gas phase. Regardless of their presence in the gas phase in space, numerous heterocycles have been reported in carbonaceous meteorites, which indicates that they are formed under astrophysical conditions. The experimental work described here shows that N- and O-heterocyclic molecules can form from the ultraviolet (UV) irradiation of the homocyclic aromatic molecules benzene (C{sub 6}H{sub 6}) or naphthalene (C{sub 10}H{sub 8}) mixed in ices containing H{sub 2}O and NH{sub 3}. This represents an alternative way to generate aromatic heterocycles to those considered before and may have important implications for astrochemistry and astrobiology.

  8. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fauchez, Thomas [Laboratoire d’Optique Atmosphèrique (LOA), UMR 8518, Université Lille 1, Villeneuve d’Ascq (France); Rossi, Loic; Stam, Daphne M. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2017-06-10

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.

  9. Detection of current-induced spin polarization in BiSbTeSe{sub 2} toplogical insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Ghatak, Subhamoy; Taskin, Alexey; Ando, Yoichi [Institute of Physics II, University of Cologne (Germany); Ando, Yuichiro [Department of Electronic Science and Engineering, Kyoto University (Japan)

    2016-07-01

    Topological insulators (TIs) are a class of quantum matter which possess spin-momentum-locked Dirac Fermions on the surfaces. Due to the spin-momentum locking, spin polarization will be induced when a charge current flows through the surface of a TI. Such spin polarization can be detected by using a ferromagnetic tunneling contact as a detector. In this talk, we present our results measured in devices fabricated from BiSbTeSe{sub 2} flakes. Spin signals were observed in both n-type and p-type BiSbTeSe{sub 2} samples.

  10. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    the conductivity of an infinitely thick slab of sea ice. Ice thickness, Hice, is then obtained by subtracting the height of the ...Thickness Survey of Sea Ice Runway” ERDC/CRREL SR-16-4 ii Abstract We conducted an autonomous survey of sea -ice thickness using the Polar rover Yeti...efficiency relative to manual surveys routinely con- ducted to assess the safety of roads and runways constructed on the sea ice. Yeti executed the

  11. ACTIVITY OF LICHENS UNDER THE INFLUENCE OF SNOW AND ICE (18th Symposium on Polar Biology)

    OpenAIRE

    Ludger, KAPPEN; Burkhard, SCHROETER

    1997-01-01

    A major aim of our investigations is to explain the adaptation of vegetation to the peculiar environmental conditions in polar regions. Our concept describes the main limiting and favorable factors influencing photosynthetic production of cryptogams, mainly lichens. Snow and ice-usually stress factors to the activity of plants-can be effectively used by lichens because of their poikilohydrous nature. Light, the basic driving force for photosynthetic activity, may be deleterious under certain ...

  12. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    Science.gov (United States)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  13. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent

    International Nuclear Information System (INIS)

    Zhao, Meng; Ramage, Joan; Semmens, Kathryn; Obleitner, Friedrich

    2014-01-01

    Glacier surface melt dynamics throughout Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) serve as a good indicator of ice mass ablation and regional climate change in the Russian High Arctic. Here we report trends of surface melt onset date (MOD) and total melt days (TMD) by combining multiple resolution-enhanced active and passive microwave satellite datasets and analyze the TMD correlations with local temperature and regional sea ice extent. The glacier surface snowpack on SevZ melted significantly earlier (−7.3 days/decade) from 1992 to 2012 and significantly longer (7.7 days/decade) from 1995 to 2011. NovZ experienced large interannual variability in MOD, but its annual mean TMD increased. The snowpack melt on NovZ is more sensitive to temperature fluctuations than SevZ in recent decades. After ruling out the regional temperature influence using partial correlation analysis, the TMD on both archipelagoes is statistically anti-correlated with regional late summer sea ice extent, linking land ice snowmelt dynamics to regional sea ice extent variations. (letter)

  14. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017

    Directory of Open Access Journals (Sweden)

    Tazio Strozzi

    2017-09-01

    Full Text Available We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011 and Sentinel-1 (2015–2017 data. In certain cases JERS-1 SAR (1994–1998, TerraSAR-X (2008–2012, Radarsat-2 (2009–2016 and ALOS-2 PALSAR-2 (2015–2016 data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2 Wide Ultra Fine and ground-based measurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen. Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s.

  15. Review of ice and snow runway pavements

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-05-01

    Full Text Available Antarctica is the highest, driest, coldest, windiest, most remote and most pristine place on Earth. Polar operations depend heavily on air transportation and support for personnel and equipment. It follows that improvement in snow and ice runway design, construction and maintenance will directly benefit polar exploration and research. Current technologies and design methods for snow and ice runways remain largely reliant on work performed in the 1950s and 1960s. This paper reviews the design and construction of polar runways using snow and ice as geomaterials. The inability to change existing snow and ice thickness or temperature creates a challenge for polar runway design and construction, as does the highly complex mechanical behaviour of snow, including the phenomena known as sintering. It is recommended that a modern approach be developed for ice and snow runway design, based on conventional rigid and flexible pavement design principles. This requires the development on an analytical model for the prediction of snow strength, based on snow age, temperature history and density. It is also recommended that the feasibility of constructing a snow runway at the South Pole be revisited, in light of contemporary snow sintering methods. Such a runway would represent a revolutionary advance for the logistical support of Antarctic research efforts. Keywords: Runway, Pavement, Snow, Ice, Antarctic

  16. A circumpolar monitoring framework for polar bears

    Science.gov (United States)

    Vongraven, Dag; Aars, Jon; Amstrup, Steven C.; Atkinson, Stephen N.; Belikov, Stanislav; Born, Erik W.; DeBruyn, T.D.; Derocher, Andrew E.; Durner, George M.; Gill, Michael J.; Lunn, Nicholas J.; Obbard, Martyn E.; Omelak, Jack; Ovsyanikov, Nikita; Peacock, Elizabeth; Richardson, E.E.; Sahanatien, Vicki; Stirling, Ian; Wiig, Øystein

    2012-01-01

    Polar bears (Ursus maritimus) occupy remote regions that are characterized by harsh weather and limited access. Polar bear populations can only persist where temporal and spatial availability of sea ice provides adequate access to their marine mammal prey. Observed declines in sea ice availability will continue as long as greenhouse gas concentrations rise. At the same time, human intrusion and pollution levels in the Arctic are expected to increase. A circumpolar understanding of the cumulative impacts of current and future stressors is lacking, long-term trends are known from only a few subpopulations, and there is no globally coordinated effort to monitor effects of stressors. Here, we describe a framework for an integrated circumpolar monitoring plan to detect ongoing patterns, predict future trends, and identify the most vulnerable polar bear subpopulations. We recommend strategies for monitoring subpopulation abundance and trends, reproduction, survival, ecosystem change, human-caused mortality, human–bear conflict, prey availability, health, stature, distribution, behavioral change, and the effects that monitoring itself may have on polar bears. We assign monitoring intensity for each subpopulation through adaptive assessment of the quality of existing baseline data and research accessibility. A global perspective is achieved by recommending high intensity monitoring for at least one subpopulation in each of four major polar bear ecoregions. Collection of data on harvest, where it occurs, and remote sensing of habitat, should occur with the same intensity for all subpopulations. We outline how local traditional knowledge may most effectively be combined with the best scientific methods to provide comparable and complementary lines of evidence. We also outline how previously collected intensive monitoring data may be sub-sampled to guide future sampling frequencies and develop indirect estimates or indices of subpopulation status. Adoption of this framework

  17. Asymmetry in nonmesonic decay of polarized sup 5 subLAMBDA He hypernucleus

    CERN Document Server

    Ajimura, S; Ejiri, H; Hasegawa, T; Hashimoto, O; Ishikawa, M; Ikeda, K; Kim, Y; Kishimoto, T; Maeda, K; Manabe, K; Nagae, T; Nakano, T; Noumi, H; Okusu, A; Park, H; Sekimoto, M; Shibata, T; Shinkai, N; Takahashi, T; Tanaka, Y; Youn, M

    2000-01-01

    We have measured the asymmetric emission of protons and pions from the non mesonic decay of the polarized sup 5 subLAMBDA He produced by the (pi sup + , K sup +) reaction. The polarization was derived by the observed asymmetry of the mesonic decay pions for the first time. The asymmetry parameter of the non mesonic decay has been evaluated using the obtained polarization and the asymmetry of the decay protons. The positive asymmetry parameter contradicts theoretical prediction based on meson exchange model. The discrepancy can be attributed to insufficient knowledge of the weak LAMBDA N interaction, especially at short range, which may consistently explain the discrepancy seen in the partial decay rates of the non mesonic decay.

  18. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  19. IceBridge: Bringing a Field Campaign Home

    Science.gov (United States)

    Woods, J.; Beck, J.; Bartholow, S.

    2015-12-01

    IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for 2017. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year at a minimum, with new campaigns being developed during the Arctic melt season. IceBridge flights are conducted in the spring and summer for the Arctic and in the fall over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. IceBridge actively engages the public and educators through a variety of outlets ranging from communications strategies through social media outlets, to larger organized efforts such as PolarTREC. In field activities include blog posts, photo updates, in flight chat sessions, and more intensive live events to include google hangouts, where field team members can interact with the public during a scheduled broadcast. The IceBridge team provides scientists and other team members with the training and support to become communicators in their own right. There is an exciting new initiative where IceBridge will be collaborating with Undergraduate and Graduate students to integrate the next generation of scientists and communicators into the Science Teams. This will be explored through partnerships with institutions that are interested in mentoring through project based initiatives.

  20. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  1. Magnetic effects on the dielectric and polarization properties in BiAlO{sub 3}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanan [Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi' an (China); College of Engineering Management, Shaanxi Radio and Television University, Xi' an (China); Luo, Bingcheng; Chen, Changle; Xing, Hui; Wang, Jianyuan; Jin, Kexin [Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi' an (China)

    2017-09-15

    BiAlO{sub 3}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructure was fabricated on LaAlO{sub 3} (111) substrate by pulsed laser deposition technology. A remarkable magneto-resistivity effect was detected at H = 1 T near the metal-insulator phase transition temperature (T{sub MI}) of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}. The magneto-dielectric constant shows an anomaly near T{sub MI} of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, whereas the ferroelectric polarization increases under magnetic field and its variation shows the similar anomaly near T{sub MI} of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which could be assigned to the important role of the phase transformation of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}. The magnetic moment of the BiAlO{sub 3}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructure distinctly arises compared to the single La{sub 0.67}Sr{sub 0.33}MnO{sub 3} layer, probably on account of the spin-orbit coupling effect at the interface, and the relative magnetization variation also shows an anomaly near T{sub MI} of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    Science.gov (United States)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  3. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure.

    Science.gov (United States)

    Suzuki, Yoshiharu; Tominaga, Yasunori

    2010-10-28

    We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ∼0.35 GPa increases, while the volume of HDA on heating above ∼0.35 GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100 cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.

  4. Airborne observations of changes of ice sheet and sea ice in the Arctic using CryoVEx campaign data

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Skourup, Henriette; Forsberg, René

    measurements of ice sheet changes. The majority of the campaigns have been sponsored by the European Space Agency, ESA, as part of the CryoSat Validation Experiments – CryoVEx. These have been internationally coordinated efforts to collect coincident space‐borne, airborne, and in‐situ data for pre‐ and post...... cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat‐2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar‐5...

  5. Snow nitrate photolysis in polar regions and the mid-latitudes: Impact on boundary layer chemistry and implications for ice core records

    Science.gov (United States)

    Zatko, Maria C.

    The formation and recycling of nitrogen oxides (NOx=NO+NO 2) associated with snow nitrate photolysis has important implications for air quality and the preservation of nitrate in ice core records. This dissertation examines snow nitrate photolysis in polar and mid-latitude regions using field and laboratory based observations combined with snow chemistry column models and a global chemical transport model to explore the impacts of snow nitrate photolysis on boundary layer chemistry and the preservation of nitrate in polar ice cores. Chapter 1 describes how a global chemical transport model is used to calculate the photolysis-driven flux and redistribution of nitrogen across Antarctica, and Chapter 2 presents similar work for Greenland. Snow-sourced NOx is most dependent on the quantum yield for nitrate photolysis as well as the concentration of photolabile nitrate and light-absorbing impurities (e.g., black carbon, dust, organics) in snow. Model-calculated fluxes of snow-sourced NOx are similar in magnitude in Antarctica (0.5--7.8x108 molec cm-2 s -1) and Greenland (0.1--6.4x108 molec cm-2 s-1) because both nitrate and light-absorbing impurity concentrations in snow are higher (by factors of 2 and 10, respectively) in Greenland. Snow nitrate photolysis influences boundary layer chemistry and ice-core nitrate preservation less in Greenland compared to Antarctica largely due to Greenland's proximity to NOx-source regions. Chapter 3 describes how a snow chemistry column model combined with chemistry and optical measurements from the Uintah Basin Winter Ozone Study (UBWOS) 2014 is used to calculate snow-sourced NOx in eastern Utah. Daily-averaged fluxes of snow-sourced NOx (2.9x10 7--1.3x108 molec cm-2 s-1) are similar in magnitude to polar snow-sourced NO x fluxes, but are only minor components of the Uintah Basin boundary layer NOx budget and can be neglected when developing ozone reduction strategies for the region. Chapter 4 presents chemical and optical

  6. On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-11-01

    Full Text Available The distribution of ice layers in the polar summer mesosphere (called polar mesospheric clouds or PMCs is sensitive to background atmospheric conditions and therefore affected by global-scale dynamics. To investigate this coupling it is necessary to simulate the global distribution of PMCs within a 3-dimensional (3-D model that couples large-scale dynamics with cloud microphysics. However, modeling PMC microphysics within 3-D global chemistry climate models (GCCM is a challenge due to the high computational cost associated with particle following (Lagrangian or sectional microphysical calculations. By characterizing the relationship between the PMC effective radius, ice water content (iwc, and local temperature (T from an ensemble of simulations from the sectional microphysical model, the Community Aerosol and Radiation Model for Atmospheres (CARMA, we determined that these variables can be described by a robust empirical formula. The characterized relationship allows an estimate of an altitude distribution of PMC effective radius in terms of local temperature and iwc. For our purposes we use this formula to predict an effective radius as part of a bulk parameterization of PMC microphysics in a 3-D GCCM to simulate growth, sublimation and sedimentation of ice particles without keeping track of the time history of each ice particle size or particle size bin. This allows cost effective decadal scale PMC simulations in a 3-D GCCM to be performed. This approach produces realistic PMC simulations including estimates of the optical properties of PMCs. We validate the relationship with PMC data from the Solar Occultation for Ice Experiment (SOFIE.

  7. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels

    International Nuclear Information System (INIS)

    Krapp, Rupert H.; Bassinet, Thievery; Berge, Jorgen; Pampanin, Daniela M.; Camus, Lionel

    2009-01-01

    Polar marine surface waters are characterized by high levels of dissolved oxygen, seasonally intense UV irradiance and high levels of dissolved organic carbon. Therefore, the Arctic sea-ice habitat is regarded as a strongly pro-oxidant environment, even though its significant ice cover protects the ice-associated (=sympagic) fauna from direct irradiation to a large extent. In order to investigate the level of resistance to oxyradical stress, we sampled the sympagic amphipod species Gammarus wilkitzkii during both winter and summer conditions, as well as exposed specimens to simulated levels of near-natural and elevated levels of UV irradiation. Results showed that this amphipod species possessed a much stronger antioxidant capacity during summer than during winter. Also, the experimental UV exposure showed a depletion in antioxidant defences, indicating a negative effect of UV exposure on the total oxyradical scavenging capacity. Another sympagic organism, Onisimus nanseni, was sampled during summer conditions. When compared to G. wilkitzkii, the species showed even higher antioxidant scavenging capacity.

  8. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    Science.gov (United States)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  9. Structure of NaH/sub 2/As/sub 3/O/sub 9/: A new condensed arseniate anion

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T.; Durif, A.; Averbuch-Pouchot, M.T.

    1988-09-15

    (NaH/sub 2/As/sub 3/O/sub 9/)/sub n/, M/sub r/=393.77, triclinic, Panti 1, a=7.167(1), b=7.575(1), c=7.850(1) A, ..cap alpha..=109.89(1), ..beta..=107.27(1), ..gamma..=106.15(1)/sup 0/, V=346.9 A/sup 3/, Z=2, D/sub m/=3.58, D/sub x/=3.77 g cm/sup -3/, F(000)=368, lambda(Mo K anti ..cap alpha..)=0.7107 A, ..mu..=142 cm/sup -1/, final R=0.034 and wR=0.039 for 1485 reflections with F > sigma(F). A new condensed arseniate anion is found. It consists of infinite (H/sub 2/As/sub 3/O/sub 9/)/sub n//sup n-/ chains built from As/sub 4/O/sub 14/ rings linked by bidentate bridging AsO/sub 4/ tetrahedra.

  10. Determination of intrinsic polarization for K{sub 2}ZnCl{sub 4} single crystal grown by Czochralski technique for ferroelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sonu [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi-7 (India); Ray, Geeta [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi-7 (India); Physics Department, Miranda House, University of Delhi, Delhi-7 (India); Sinha, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi-7 (India); Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi-7 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi-7 (India)

    2017-04-01

    Large sized single crystal of K{sub 2}ZnCl{sub 4} (KZC) was grown by Czochralski (Cz) technique. Structural parameters of KZC were determined by Single crystal X-ray diffraction (SCXRD). From DSC analysis and temperature dependent dielectric measurement, KZC crystal was found to show Curie phase transition at 151 °C. TG/DTA confirmed the melting point that was found to be 443 °C. The value of piezoelectric charge coefficient (d{sub 33}) for KZC crystal was found to be 32 pC/N demonstrating their applicability in transducers and piezoelectric devices. Ferroelectric P-E loop for the grown crystal was traced at room temperature and the intrinsic polarization obtained by PUND measurement was found to be 0.1398 μC/cm{sup 2} indicating its applicability in switching devices. The energy band gap for KZC single crystal was found to be 6.13 eV. Vickers micro-hardness test revealed soft nature of KZC single crystals. - Highlights: • Large sized K{sub 2}ZnCl{sub 4} (KZC) single crystal was grown by Czochralski technique. • It possesses high Curie temperature as 151 °C. • d{sub 33} coefficient was found to be 32 pC/N. • Intrinsic polarization measured by PUND. • Its direct band gap energy was calculated to be 6.13 eV.

  11. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  12. Concordia, Antarctica, seismic experiment for the International Polar Year (CASE-IPY

    Directory of Open Access Journals (Sweden)

    Alessia Maggi

    2014-06-01

    Full Text Available The CASE-IPY project, part of the larger POLENET initiative of geophysical observations for the International Polar Year, was built on our extensive experience of running seismological stations in Antarctica, both on rock sites (Dumont d’Urville station, and directly on the ice plateau (Concordia station. For CASE-IPY, we deployed 8 temporary seismic stations on the Antarctic plateau: 3 situated near Concordia itself (starting 2008, and the other 5 regularly spaced between Concordia and Vostok (2010-2012, following the maximum in ice topography. The technical problems we have encountered in our field deployments were essentially due to a combination of extreme environmental conditions and isolation of deployment sites. The 3 stations near Concordia were used as test sites to experiment different solutions, and to converge on a design for the 5 main stations. Results from the nearest stations, which transmit data regularly to Concordia, are very promising. The data recorded by our stations will be distributed widely in the scientific community. We expect them to be exploited essentially for structural studies involving Antarctica itself (its ice-cap, crust and lithosphere via receiver functions, noise correlation, and surface-wave tomography, but also for studies of the Earth’s core.

  13. Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples

    International Nuclear Information System (INIS)

    Ferrari, C.P.; Moreau, A.L.; Boutron, C.F.; Univ. Joseph Fourier de Grenoble

    2000-01-01

    Laboratory facilities and methods are presented for the determination of ultra-low levels of mercury (Hg) in ice and snow samples originating from polar ice caps or temperate regions. Special emphasis will be given to the presentation of the clean laboratory and the cleaning procedures. The laboratory is pressurized with air filtered through high efficiency particle filters. This first filtration is not enough to get rid of contamination by Hg in air. Experiments are conducted in a clean bench, especially built for Hg analysis, equipped with both particle filter and activated charcoal filter. It allows to obtain very low levels of atmospheric Hg contamination. Ultrapure water is produced for cleaning all the plastic containers that will be used for ice and snow samples and also for the dilution of the standards. Hg content in laboratory water is about 0.08 ± 0.02 pg/g. A Teflon system has been developed for the determination of Hg in ice and snow samples based on Hg(II) reduction to Hg(0) with a SnCl 2 /HNO 3 solution followed by the measurement of gaseous Hg(0) with a Hg analyzer GARDIS 1A+ based on the Cold Vapor Atomic Absorption Spectroscopy method. Blank determination is discussed. (orig.)

  14. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO{sub 3} composites with aligned lamellar porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beilei [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Chen, Liangjian, E-mail: jian007040@sina.com [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Shao, Chunsheng [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Fuqiang; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Cao, Jun [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO{sub 3} piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO{sub 3} composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p < 0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO{sub 3} than on the dense one, especially HA/BaTiO{sub 3} with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p > 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO{sub 3} played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO{sub 3} piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO{sub 3} composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO{sub 3} composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d{sub 33} coefficient of HA/BaTiO{sub 3} with porosity

  15. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  16. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO{sub 3}-buffered ferroelectric BaTiO{sub 3} film on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qiao [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhang, Yuyang [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Contreras-Guerrero, Rocio; Droopad, Ravi [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37240 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore); Ogut, Serdar; Klie, Robert F. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO{sub 3} thin films grown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO{sub 3} grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. Here, we use a combination of aberration-corrected scanning transmission electron microscopy and first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectric polarization of a BaTiO{sub 3} thin film grown on GaAs. We demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO{sub 3}), and propose that the presence of surface charge screening allows the formation of switchable domains.

  17. PolarPortal.org Communicates Real-Time Developments in the Arctic

    Science.gov (United States)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  18. A database of microwave and sub-millimetre ice particle single scattering properties

    Science.gov (United States)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  19. Workshop on wave-ice interaction

    Science.gov (United States)

    Wadhams, Peter; Squire, Vernon; Rottier, Philip; Liu, Antony; Dugan, John; Czipott, Peter; Shen, Hayley

    The subject of wave-ice interaction has been advanced in recent years by small groups of researchers working on a similar range of topics in widely separated geographic locations. Their recent studies inspired a workshop on wave-ice interaction held at the Scott Polar Research Institute, University of Cambridge, England, December 16-18, 1991, where theories in all aspects of the physics of wave-ice interaction were compared.Conveners of the workshop hoped that plans for future observational and theoretical work dealing with outstanding issues in a collaborative way would emerge. The workshop, organized by the Commission on Sea Ice of the International Association for Physical Sciences of the Ocean (IAPSO), was co-chaired by Vernon Squire, professor of mathematics and statistics at the University of Otago, New Zealand, and Peter Wadhams, director of the Scott Polar Research Institute. Participants attended from Britain, Finland, New Zealand, Norway, and the United States.

  20. MASS BALANCE CHANGES AND ICE DYNAMICS OF GREENLAND AND ANTARCTIC ICE SHEETS FROM LASER ALTIMETRY

    Directory of Open Access Journals (Sweden)

    G. S. Babonis

    2016-06-01

    Full Text Available During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA’s Ice, Cloud and land Elevation Satellite mission (ICESat and airborne laser campaigns, such as Airborne Topographic Mapper (ATM and Land, Vegetation and Ice Sensor (LVIS. For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.