WorldWideScience

Sample records for sub-planck energy scales

  1. Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Hamburg, II. Inst. fuer Theoretische Physik (Germany); Taylor, A.M. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Mattingly, D.M.; Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy)

    2009-09-15

    We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sup -1}{sub Planck}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sup -2}{sub Planck} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sup -2}{sub Planck}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sup -2}{sub Planck}. (orig.)

  2. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  3. Designing the Nuclear Energy Attitude Scale.

    Science.gov (United States)

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  4. Scale Dependence of Dark Energy Antigravity

    Science.gov (United States)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  5. Philippines: Small-scale renewable energy update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  6. Scaling-up energy conservation initiatives

    NARCIS (Netherlands)

    Doren, van D.; Giezen, M.; Driessen, P.P.J.; Runhaar, H.A.C.

    2016-01-01

    Energy conservation in residential and commercial buildings is considered a key challenge and opportunity for low-carbon urban development. In cities worldwide, energy conservation initiatives have been realized that demonstrate the social, financial, and environmental benefits that energy

  7. VCSEL Scaling, Laser Integration on Silicon, and Bit Energy

    Science.gov (United States)

    2017-03-01

    VCSEL Scaling, Laser Integration on Silicon, and Bit Energy D.G. Deppe,1,2 Ja. Leshin,1 and Je. Leshin1 1CREOL, College of Optics & Photonics...described to scale to smaller lasers for high speed, integration, and low bit energy optical interconnects. OCIS codes: (140.5960) Semiconductor...produce the lowest bit energy . We show in this paper that a significant influence on bit energy will be the modulation scheme that is used, and

  8. Localization of energy on the molecular scale

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, K.; Brown, D.W. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    We discuss the spontaneous localization of vibrational energy in translationally invariant anharmonic chains at finite temperatures. In addition to the familiar energy-driven coherent mechanisms, which are rapidly degraded by thermal fluctuations, we identify the entropy-driven phenomenon we call {open_quotes}stochastic localization{close_quotes}, within which we include a number of characteristics of soft anharmonic oscillators in thermal equilibrium. Principal among these are a tendency for soft oscillators to spend more time at higher energies than comparable harmonic oscillators, and for high-energy fluctuations in soft oscillators to persist for longer times than lower-energy fluctuations, leading to a tendency for energy fluctuations to be organized into {open_quotes}bursts{close_quotes} separated by intervals of relative quiet. We illustrate the effects of stochastic localization on a bistable impurity embedded in a chain of soft oscillators by comparing it to an impurity embedded in a harmonic chain. Effects on transition rates at a given system energy can be quite dramatic.

  9. Scaling up energy efficiency under the CDM

    Energy Technology Data Exchange (ETDEWEB)

    Arquit Niederberger, A.

    2009-07-01

    This paper analyses the barriers to end-use energy efficiency under the CDM, presents elements of a new shared vision for a CDM that will encourage end-use energy efficiency and suggests necessary reforms in the international climate framework that go beyond the traditional conception of CDM reform. For the CDM to achieve its dual mitigation and sustainable development objectives, the Parties to the UNFCCC can no longer be satisfied with the perfect environmental integrity of a zero-sum CDM at the expense of real action on end-use efficiency. Nothing short of a global energy efficiency offensive is needed in Copenhagen in 2009. (au)

  10. Compton-Energy Scale of Friction Quantization

    OpenAIRE

    Peters, Randall D.

    2006-01-01

    Numerous different experiments by the author, approaching nearly two decades of study, point strongly toward the possibility that friction operates around a mesoscale quantum of energy having the value 11 pJ.

  11. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  12. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  13. Estimating returns to scale and scale efficiency for energy consuming appliances

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group; Okwelum, Edson O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group

    2018-01-18

    Energy consuming appliances accounted for over 40% of the energy use and $17 billion in sales in the U.S. in 2014. Whether such amounts of money and energy were optimally combined to produce household energy services is not straightforwardly determined. The efficient allocation of capital and energy to provide an energy service has been previously approached, and solved with Data Envelopment Analysis (DEA) under constant returns to scale. That approach, however, lacks the scale dimension of the problem and may restrict the economic efficient models of an appliance available in the market when constant returns to scale does not hold. We expand on that approach to estimate returns to scale for energy using appliances. We further calculate DEA scale efficiency scores for the technically efficient models that comprise the economic efficient frontier of the energy service delivered, under different assumptions of returns to scale. We then apply this approach to evaluate dishwashers available in the market in the U.S. Our results show that (a) for the case of dishwashers scale matters, and (b) the dishwashing energy service is delivered under non-decreasing returns to scale. The results further demonstrate that this method contributes to increase consumers’ choice of appliances.

  14. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  15. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  16. Scaling blockchain for the energy sector

    OpenAIRE

    Dahlquist, Olivia; Hagström, Louise

    2017-01-01

    p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Helvetica} Blockchain is a distributed ledger technology enabling digital transactions without the need for central governance. Once transactions are added to the blockchain, they cannot be altered. One of the main challenges of blockchain implementation is how to create a scalable network meaning verifying many transactions per second. The goal of this thesis is to survey different approaches for scaling blockchain technologies. Scalability...

  17. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  18. Reynolds number effects on scale energy balance in wall turbulence

    Science.gov (United States)

    Saikrishnan, Neelakantan; De Angelis, Elisabetta; Longmire, Ellen K.; Marusic, Ivan; Casciola, Carlo M.; Piva, Renzo

    2012-01-01

    The scale energy budget utilizes a modified version of the classical Kolmogorov equation of wall turbulence to develop an evolution equation for the second order structure function [R. J. Hill, "Exact second-order structure-function relationships," J. Fluid Mech. 468, 317 (2002)]. This methodology allows for the simultaneous characterization of the energy cascade and spatial fluxes in turbulent shear flows across the entire physical domain as well as the range of scales. The present study utilizes this methodology to characterize the effects of Reynolds number on the balance of energy fluxes in turbulent channel flows. Direct numerical simulation data in the range Reτ = 300-934 are compared to previously published results at Reτ = 180 [N. Marati, C. M. Casciola, and R. Piva, "Energy cascade and spatial fluxes in wall turbulence," J. Fluid Mech. 521, 191 (2004)]. The present results show no Reynolds number effects in the terms of the scale energy budget in either the viscous sublayer or buffer regions of the channel. In the logarithmic layer, the transfer of energy across scales clearly varies with Reynolds number, while the production of turbulent kinetic energy is not dependent on Reynolds number. An envelope of inverse energy cascade is quantified in the buffer region within which energy is transferred from small to larger scales. This envelope is observed in the range 6 < y+ < 37, where all scales except the smallest scales display characteristics of an inverse energy cascade. The cross-over scale lc+, which indicates the transition between production dominated and scale transfer dominated regimes, increases with Reynolds number, implying a larger range of transfer dominated scales, before the dominant mechanism switches to production. At higher Reynolds numbers, two distinct regimes of lc+ as a function of wall-normal location are observed, which was not captured at Reτ = 180. The variations of lc+ match the trends of the shear scale, which is a

  19. Phase change material selection for small scale solar energy ...

    African Journals Online (AJOL)

    This paper focuses on choosing an appropriate phase change material for latent heat storing systems that can store excess energy of a small scale solar thermal power plant suitable for distributed or off grid power supply. Most commercially available thermal storage materials cater for Mega Watt scale power plants ...

  20. Energy scaling and reduction in controlling complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  1. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  2. Commercial mortgages: An underutilized channel for scaling energy efficiency investments?

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Wallace, Nancy; Alschuler, Elena; Kolstad, Leonard

    2016-02-01

    Commercial mortgages currently do not fully account for energy factors in underwriting and valuation, particularly as it relates to the impact of energy costs and volatility on an owner’s net operating income. As a consequence, energy efficiency is not properly valued and energy risks are not properly assessed and mitigated. Commercial mortgages are a large lever and could be a significant channel for scaling energy efficiency investments. A pilot analysis of loans with different mortgage contract structures and locations showed that when energy cost volatility was included in mortgage valuation, a 20% reduction in energy use resulted in a 1.3% average increase in mortgage value. This suggests that the explicit inclusion of energy use and volatility in mortgage valuation can send a strong price signal that financially rewards and values energy efficiency in commercial properties. This paper presents findings from a scoping study addressing energy factors in commercial mortgages. First, we present a review of current practices as it relates to incorporating energy factors into commercial mortgage underwriting and valuation. Next, we detail the impacts of energy factors on property values, net operating income and mortgage valuation. Building operational practices alone can result in energy use variations from -17% to 87%. Finally, we present a set of proposed interventions to properly address energy factors in commercial mortgages, based on extensive discussions with stakeholders including mortgage originators, underwriters, building owners and regulators.

  3. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  4. Energy reduction through voltage scaling and lightweight checking

    Science.gov (United States)

    Kadric, Edin

    As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures. We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant

  5. Scale-invariant structure of energy fluctuations in real earthquakes

    Science.gov (United States)

    Wang, Ping; Chang, Zhe; Wang, Huanyu; Lu, Hong

    2017-11-01

    Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.

  6. Isotopic Scaling and the Symmetry Energy in Spectator Fragmentation

    OpenAIRE

    INDRA, The; collaborations, ALADIN; :; Fèvre, A. Le; Auger, G.; Begemann-Blaich, M.L.; Bellaize, N.; Bittiger, R.; Bocage, F.; Borderie, B.; R. Bougault(LPCC); Bouriquet, B.; Charvet, J. L.; Chbihi, A.; Dayras, R.

    2004-01-01

    Isotopic effects in the fragmentation of excited target residues following collisions of $^{12}$C on $^{112,124}$Sn at incident energies of 300 and 600 MeV per nucleon were studied with the INDRA 4$\\pi$ detector. The measured yield ratios for light particles and fragments with atomic number $Z \\leq$ 5 obey the exponential law of isotopic scaling. The deduced scaling parameters decrease strongly with increasing centrality to values smaller than 50% of those obtained for the peripheral event gr...

  7. Combining high-scale inflation with low-energy SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2011-12-15

    We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)

  8. Energy scale of Lorentz violation in Rainbow Gravity

    Science.gov (United States)

    Nilsson, Nils A.; Dąbrowski, Mariusz P.

    2017-12-01

    We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.

  9. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  10. Density-scaling exponents and virial potential-energy correlation ...

    Indian Academy of Sciences (India)

    This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...

  11. SNO+ Liquid Scintillator Characterization: Timing, Quenching, and Energy Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, E., E-mail: eosullivan@owl.phy.queensu.ca [Queen' s University, Department of Physics, Stirling Hall, Kingston, Ontario (Canada); Wan Chan Tseung, H.S., E-mail: hwan@uw.edu [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Tolich, N. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); O' Keeffe, H.M.; Chen, M. [Queen' s University, Department of Physics, Stirling Hall, Kingston, Ontario (Canada)

    2012-08-15

    This contribution describes laboratory measurements designed to investigate the optical properties of linear alkybenzene (LAB). Presented here is the measurement of the scintillation light timing profiles due to alpha and beta-particle excitation, the calculation of alpha/beta discrimination capability based on these timing distributions, and the investigation of electron energy scale.

  12. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  13. Green smartphone GPUs: Optimizing energy consumption using GPUFreq scaling governors

    KAUST Repository

    Ahmad, Enas M.

    2015-10-19

    Modern smartphones are limited by their short battery life. The advancement of the graphical performance is considered as one of the main reasons behind the massive battery drainage in smartphones. In this paper we present a novel implementation of the GPUFreq Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) model implemented in the Android Linux kernel for dynamically scaling smartphone Graphical Processing Units (GPUs). The GPUFreq governors offer users multiple variations and alternatives in controlling the power consumption and performance of their GPUs. We implemented and evaluated our model on a smartphone GPU and measured the energy performance using an external power monitor. The results show that the energy consumption of smartphone GPUs can be significantly reduced with a minor effect on the GPU performance.

  14. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  15. Scaling of energy spreading in strongly nonlinear disordered lattices

    Science.gov (United States)

    Mulansky, Mario; Ahnert, Karsten; Pikovsky, Arkady

    2011-02-01

    To characterize a destruction of Anderson localization by nonlinearity, we study the spreading behavior of initially localized states in disordered, strongly nonlinear lattices. Due to chaotic nonlinear interaction of localized linear or nonlinear modes, energy spreads nearly subdiffusively. Based on a phenomenological description by virtue of a nonlinear diffusion equation, we establish a one-parameter scaling relation between the velocity of spreading and the density, which is confirmed numerically. From this scaling it follows that for very low densities the spreading slows down compared to the pure power law.

  16. Measurement of the calorimetric energy scale in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Hartnell, Jeffrey J. [St. John' s College, Oxford (United Kingdom)

    2005-01-01

    MINOS is a long-baseline neutrino oscillation experiment. A neutrino beam is created at the Fermi National Accelerator Laboratory in Illinois and fired down through the Earth. Measurements of the energy spectra and composition of the neutrino beam are made both at the source using the Near detector and 735 km away at the Soudan Underground Laboratory in Minnesota using the Far detector. By comparing the spectrum and flavour composition of the neutrino beam between the two detectors neutrino oscillations can be observed. Such a comparison depends on the accuracy of the relative calorimetric energy scale. This thesis details a precise measurement of the calorimetric energy scale of the MINOS Far detector and Calibration detector using stopping muons with a new ''track window'' technique. These measurements are used to perform the relative calibration between the two detectors. This calibration has been accomplished to 1.7% in data and to significantly better than 2% in the Monte Carlo simulation, thus achieving the MINOS relative calibration target of 2%. A number of cross-checks have been performed to ensure the robustness of the calorimetric energy scale measurements. At the Calibration detector the test-beam energy between run periods is found to be consistent with the detector response to better than 2% after the relative calibration is applied. The muon energy loss in the MINOS detectors determined from Bethe-Bloch predictions, data and Monte Carlo are compared and understood. To estimate the systematic error on the measurement of the neutrino oscillation parameters caused by a relative miscalibration a study is performed. A 2% relative miscalibration is shown to cause a 0.6% bias in the values of Δm2 and sin2(2θ).

  17. Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector

    Science.gov (United States)

    Cimdina, Ginta; Timma, Lelde; Veidenbergs, Ivars; Blumberga, Dagnija

    2015-12-01

    In a well-functioning and sustainable national energy sector, each of its elements should function with maximum efficiency. To ensure maximum efficiency and study possible improvement of the sector, a scaling-up framework is presented in this work. The scaling-up framework means that the starting point is a CHP unit and its operation, the next step of aggregation is in a district heating network, followed by a municipal energy plan and finally leading to a low carbon strategy. In this framework the authors argue, that the successful, innovative practices developed and tested at the lower level of aggregation can be then transferred to the upper levels of aggregation, thus leading to a scaling-up effect of innovative practices. The work summarizes 12 methodologies used in the energy sector, by dividing these methodologies among the levels of aggregation in a scaling-up framework.

  18. Energy confinement scaling from the international stellarator database

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Murakami, M.; Dory, R.A.; Yamada, H.; Okamura, S.; Sano, F.; Obiki, T.

    1995-09-01

    An international stellarator database on global energy confinement is presented comprising data from the ATF, CHS and Heliotron E heliotron/torsatrons and the W7-A and W7-AS shearless stellarators. Regression expressions for the energy confinement time are given for the individual devices and the combined dataset. A comparison with tokamak L mode confinement is discussed on the basis of various scaling expressions. In order to make this database available to interested colleagues, the structure of the database and the parameter list are explained in detail. More recent confinement results incorporating data from enhanced confinement regimes such as H mode are reported elsewhere. (author).

  19. Uncertainty in Analyzed Water and Energy Budgets at Continental Scales

    Science.gov (United States)

    Bosilovich, Michael G.; Robertson, F. R.; Mocko, D.; Chen, J.

    2011-01-01

    Operational analyses and retrospective-analyses provide all the physical terms of mater and energy budgets, guided by the assimilation of atmospheric observations. However, there is significant reliance on the numerical models, and so, uncertainty in the budget terms is always present. Here, we use a recently developed data set consisting of a mix of 10 analyses (both operational and retrospective) to quantify the uncertainty of analyzed water and energy budget terms for GEWEX continental-scale regions, following the evaluation of Dr. John Roads using individual reanalyses data sets.

  20. Examining the scale of the Behaviour Energy Efficiency Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. ' Skip' ; Ehrhardt-Martinez, Karen; McKinney, Vanessa (ACEEE, American Council for an Energy-Efficient Economy, Washington, D.C. (United States))

    2009-07-01

    There is a burgeoning interest in the 'human dimension' of energy use. As but one example, the second annual Behavior, Energy, and Climate Conference (co-convened by the American Council for an Energy-Efficient Economy, the Precourt Inst. for Energy Efficiency, and the California Inst. for Energy and Environment) exceeded capacity almost six weeks before the November 2008 conference date (see, for example, the conference website at http://www.BECCconference.org). At the same time, many analysts suggest that, yes, behaviour-oriented programs provide a nice way to help deploy smart technologies but that they are, essentially, boutique or niche strategies; they can only help round out a technology-based deployment effort. We suggest to the contrary; elements of the behaviour or human dimension may have a surprising scale which rivals a pure technology-based perspective in terms of expected efficiency gains. In this paper we highlight the potential impact of changed habits, lifestyles and technology-based behaviours in terms of potential energy savings within the United States for the residential sector. We explore the level of potential savings along what we call a Behaviour Energy Response Continuum. In other words, we explore the energy savings if different motivations and habits drove a different behaviour, and if different lifestyles similarly drove a different behaviour as they all, in turn, affect energy consumption. Preliminary research suggests that changed behaviours might reduce household use of energy by about 22 percent within the United States. In this paper we characterize the elements along this behaviour continuum, estimate the potential impact, and describe potential next steps in the needed research.

  1. A tentative programme towards a full scale energy amplifier

    CERN Document Server

    Rubbia, Carlo

    1996-01-01

    We present a proposal of a full scale demonstration plant of the Energy Amplifier (EA), following the conceptual design of Ref. [1]. Unlike the presently on going CERN experiments, reaction rates will be sufficiently massive to permit demonstrating the practical feasibility of energy generation on an industrial scale and to tackle the complete family chains of [1] the breeding process in Thorium fuel, [2] the burning of the self-generated Actinides, [3] the Plutonium (higher Actinides) burning of spent fuel from ordinary Reactors and [4] Fuel reprocessing/regeneration. The accelerator must provide a beam power which is commensurate to the rate of transformations which are sought. No existing accelerator can meet such a performance and a dedicated facility must be built. We describe an alternative based on the superconducting cavities (SC) now in standard use at the LEP \\[e^+-e^-\\] collider which is scheduled to terminate its operation by year 200 After this time, with reasonable modifications, the fully opera...

  2. Energy and the Scaling of Animal Space Use.

    Science.gov (United States)

    Tamburello, Natascia; Côté, Isabelle M; Dulvy, Nicholas K

    2015-08-01

    Daily animal movements are usually limited to a discrete home range area that scales allometrically with body size, suggesting that home-range size is shaped by metabolic rates and energy availability across species. However, there is little understanding of the relative importance of the various mechanisms proposed to influence home-range scaling (e.g., differences in realm productivity, thermoregulation, locomotion strategy, dimensionality, trophic guild, and prey size) and whether these extend beyond the commonly studied birds and mammals. We derive new home-range scaling relationships for fishes and reptiles and use a model-selection approach to evaluate the generality of home-range scaling mechanisms across 569 vertebrate species. We find no evidence that home-range allometry varies consistently between aquatic and terrestrial realms or thermoregulation strategies, but we find that locomotion strategy, foraging dimension, trophic guild, and prey size together explain 80% of the variation in home-range size across vertebrates when controlling for phylogeny and tracking method. Within carnivores, smaller relative prey size among gape-limited fishes contributes to shallower scaling relative to other predators. Our study reveals how simple morphological traits and prey-handling ability can profoundly influence individual space use, which underpins broader-scale patterns in the spatial ecology of vertebrates.

  3. Isotopic scaling and the symmetry energy in spectator fragmentation.

    Science.gov (United States)

    Le Fèvre, A; Auger, G; Begemann-Blaich, M L; Bellaize, N; Bittiger, R; Bocage, F; Borderie, B; Bougault, R; Bouriquet, B; Charvet, J L; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galichet, E; Gourio, D; Guinet, D; Hudan, S; Immé, G; Lautesse, P; Lavaud, F; Legrain, R; Lopez, O; Łukasik, J; Lynen, U; Müller, W F J; Nalpas, L; Orth, H; Plagnol, E; Raciti, G; Rosato, E; Saija, A; Schwarz, C; Seidel, W; Sfienti, C; Tamain, B; Trautmann, W; Trzciński, A; Turzó, K; Vient, E; Vigilante, M; Volant, C; Zwiegliński, B; Botvina, A S

    2005-04-29

    Isotopic effects in the fragmentation of excited target residues following collisions of 12C on (112,124)Sn at incident energies of 300 and 600 MeV per nucleon were studied with the INDRA 4pi detector. The measured yield ratios for light particles and fragments with atomic number Z < or = 5 obey the exponential law of isotopic scaling. The deduced scaling parameters decrease strongly with increasing centrality to values smaller than 50% of those obtained for the peripheral event groups. Symmetry-term coefficients, deduced from these data within the statistical description of isotopic scaling, are near gamma = 25 MeV for peripheral and gamma < 15 MeV for central collisions.

  4. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  5. Renewable biomass energy: Understanding regional scale environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Downing, M.

    1993-12-31

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

  6. Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Mohamed El Kabbash

    2016-01-01

    Full Text Available The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.

  7. MULTI-SCALE COHERENT TURBULENCE AT TIDAL ENERGY SITES

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Kilcher, Levi; Harding, Samuel F.

    2014-11-05

    Turbulence is known to affect the performance and survivability of tidal turbines, yet characterization of turbulence in the field remains limited. Here, we refine and demonstrate a new approach to turbulence measurements, in which an array of multiple Acoustic Doppler Velocimeters (ADV) is suspended above the seabed at the hub height of a tidal turbine. These measurements provide information on the intensity, structure, and coherence of turbulence across the scale of a turbine rotor (< 10 m). Deployment of multiple moorings expands the analysis to array scales (> 10 m). Motion correction of the moored ADV data is essential to this approach and is verified using the turbulent kinetic energy spectra. Additional measurements include a bottommounted 5-beam Acoustic Doppler Current Profiler, from which scales can be assessed using the velocities a separation distances along a given beam. These methods are demonstrated with data collected at the site of the Snohomish PUD pilot project in Admiralty Inlet, Puget Sound, WA (USA). Coherent motion is found to be largely isotropic, such that coherence is high only at scales less than the advective length scale or the water depth, whichever is less.

  8. Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector

    National Research Council Canada - National Science Library

    Ginta Cimdina; Lelde Timma; Ivars Veidenbergs; Dagnija Blumberga

    2015-01-01

    ... leading to a low carbon strategy. In this framework the authors argue, that the successful, innovative practices developed and tested at the lower level of aggregation can be then transferred to the upper levels of aggregation, thus leading to a scaling-up effect of innovative practices. The work summarizes 12 methodologies used in the energy sector, by dividing these methodologies among the levels of aggregation in a scaling-up framework.

  9. Jet energy scale uncertainty and resolution in the ATLAS experiment

    CERN Document Server

    Doglioni, C; The ATLAS collaboration

    2011-01-01

    About one year after the first proton proton collisions at a centre of mass energy of sqrt(s)= 7 TeV the ATLAS experiment has achieved an accuracy of the jet energy measurement between 2-4\\% for jet transverse momenta from 20 GeV to 2 TeV in the pseudo-rapidity region up to eta=4.5. The jet energy scale uncertainty is derived from in-situ single hadron response measurement along with systematic variations in the Monte Carlo simulation. In addition, the transverse momentum balance between a central and a forward jet in events with only two jets at high transverse momentum is exploited. The obtained uncertainty is confirmed by direct in-situ measurements exploiting the transverse momentum balance between a jet and a well measured reference like the photon transverse in photon-jet events or the total transverse track momentum. Jets in the TeV-energy regime can be also tested using a system of well calibrated jets at low transverse momenta against a high-pt jet. The jet energy resolution can be determined in in-s...

  10. Jet energy scale uncertainty and resolution in the ATLAS experiment

    CERN Document Server

    Doglioni, C; The ATLAS collaboration

    2011-01-01

    About one year after the first proton proton collisions at a centre of mass energy of sqrt(s)= 7 TeV the ATLAS experiment has achieved an accuracy of the jet energy measurement between 2-4% for jet transverse momenta from 20 GeV to 2 TeV in the pseudo-rapidity region up to eta=4.5. The jet energy scale uncertainty is derived from in-situ single hadron response measurement a long with systematic variations in the Monte Carlo simulation. In addition, the transverse momentum balance between a central and a forward jet in events with only two jets at high transverse momentum is exploited. The obtained uncertainty is confirmed by direct in-situ measurements exploiting the transverse momentum balance between a jet and a well measured reference like the photon transverse in photon-jet events or the total transverse track momentum. Jets in the TeV-energy regime can be also tested using a system of well calibrated jets at low transverse momenta against a high-pt jet. The jet energy resolution can be determined in in-s...

  11. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence

    Science.gov (United States)

    Salhi, A.; Baklouti, F. S.; Godeferd, F.; Lehner, T.; Cambon, C.

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k-1, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, VAk ,N , and f . By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012), 10.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f -plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001), 10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, Sκ(k ,t ) , magnetic, Sm(k ,t ) , and potential, Sp(k ,t ) , energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that VAk /f ≪1 , the Alfvén ratio Sκ(k ,t ) /Sm(k ,t ) behaves like k-2 if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k-1 if the rotation axis is perpendicular to the magnetic field. At small scales, such that VAk /f ≫1 , there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (VAk /N ≪1 ), there is an equipartition of energy between magnetic and potential components, while at small scales (VAk /N ≫1

  12. Monitoring of the energy scale in the KATRIN neutrino experiment

    CERN Document Server

    AUTHOR|(CDS)2083282

    The question of the absolute mass scale of neutrinos is of particular interest for particle physics, astrophysics, and cosmology. The KATRIN experiment (KArlsruhe TRItium Neutrino experiment) aims to address the effective electron antineutrino mass from the shape of the tritium $\\beta$-spectrum with an unprecedented sensitivity of 0.2 eV/c$^2$. One of the major systematic effects concerns the experimental energy scale, which has to be stable at the level of only a few parts in a million. For its calibration and monitoring the monoenergetic electrons emitted in the internal conversion of $\\gamma$-transition of the metastable isotope $^{83\\mathrm{m}}$Kr will be extensively applied. The aim of this thesis is to address the problem of KATRIN energy scale distortions and its monitoring in detail. The source of electrons based on $^{83\\mathrm{m}}$Kr embedded in a solid as well as the source based on gaseous $^{83\\mathrm{m}}$Kr are studied. Based on the experimental results an approach for the continuous stability m...

  13. Ultrahigh energy neutrino interactions and weak-scale string theories

    CERN Document Server

    Kachelriess, M

    2000-01-01

    It has been suggested that ultrahigh energy neutrinos can acquire cross-sections approaching hadronic size if the string scale is as low as 1-10 TeV. In this case, the vertical air showers observed with energies above the Greisen-Zatsepin-Kuzmin cutoff at E approximately 6x10^{19} eV could be initiated by neutrinos which are the only known primaries able to travel long distances unimpeded. We have calculated the neutrino-nucleon cross-section due to the exchange of Kaluza-Klein excitations of the graviton in a field theoretical framework. We have found that the neutrino-nucleon cross section and the transferred energy per interaction are too small to explain vertical showers even in the most optimistic scenario. However, future cosmic ray experiments like AUGER or OWL which are able to observe horizontal air showers could have a potential to restrict or to discover weak-scale string physics comparable to LHC.

  14. Photon energy scale determination and commissioning with radiative Z decays

    Directory of Open Access Journals (Sweden)

    Bondu Olivier

    2012-06-01

    Full Text Available The CMS electromagnetic calorimeter (ECAL is composed of 75848 lead-tungstate scintillating crystals. It has been designed to be fast, compact, and radiation hard, with fine granularity and excellent energy resolution. Obtaining the design resolution is a crucial challenge for the SM Higgs search in the two photon channel at the LHC, and more generally good photon calibration and knowledge of the photon energy scale is required for analyses with photons in the final state. The behavior of photons and electrons in the calorimeter is not identical, making the use of a dedicated standard candle for photons, complementary to the canonical highyield Z decay to electrons, highly desirable. The use of Z decays to a pair of muons, where one of the muons emits a Bremsstrahlung photon, can be such a standard candle. These events, which can be cleanly selected, are a source of high-purity, relatively high-pt photons. Their kinematics are well-constrained by the Z boson mass and the precision on the muon momenta, and can be used for numerous calibration and measurement purposes. This proceeding presents the event selection method and the results of the photon energy scale measurement via Z0 → μμγ events as well as their use in evaluating the efficiency of photon identification requirements, based on data recorded by the CMS experiment in 2010.

  15. The Impact of Process Scaling on Scratchpad Memory Energy Savings

    Directory of Open Access Journals (Sweden)

    Bennion Redd

    2014-09-01

    Full Text Available Scratchpad memories have been shown to reduce power consumption, but the different characteristics of nanometer scale processes, such as increased leakage power, motivate an examination of how the benefits of these memories change with process scaling. Process and application characteristics affect the amount of energy saved by a scratchpad memory. Increases in leakage as a percentage of total power particularly impact applications that rarely access memory. This study examines how the benefits of scratchpad memories have changed in newer processes, based on the measured performance of the WIMS (Wireless Integrated MicroSystems microcontroller implemented in 180- and 65-nm processes and upon simulations of this microcontroller implemented in a 32-nm process. The results demonstrate that scratchpad memories will continue to improve the power dissipation of many applications, given the leakage anticipated in the foreseeable future.

  16. Approximate scaling properties of RNA free energy landscapes

    Science.gov (United States)

    Baskaran, S.; Stadler, P. F.; Schuster, P.

    1996-01-01

    RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.

  17. Weak-scale string theories and ultrahigh energy neutrino interactions

    CERN Document Server

    Kachelriess, M

    2001-01-01

    We discuss if ultrahigh energy (UHE) neutrinos can be responsible for the observed vertical extensive air showers with energy ~10/sup 20/ e V. After briefly reviewing the proposal that the decay products from UHE neutrinos annihilations on relic neutrinos are the observed UHE primaries, we concentrate on the suggestion that UHE neutrinos can acquire cross-sections approaching hadronic size if the string scale is as low as approximately=10 TeV. In this case, the vertical air showers observed with energies above the Greisen-Zatsepin-Kuzmin cutoff at E approximately=6.10/sup 19/ eV could be initiated directly by neutrinos which are the only known primaries able to travel long distances unimpeded. We review the calculation of the neutrino- nucleon cross-section sigma /sub N nu //sup KK/ due to the exchange of Kaluza-Klein excitations of the graviton in a field theoretical framework and discuss the issue of unitarity. We find that sigma /sub N nu //sup KK/ and the transferred energy per interaction are too small t...

  18. Generalized Scaling of Urban Heat Island Effect and Its Applications for Energy Consumption and Renewable Energy

    Directory of Open Access Journals (Sweden)

    T.-W. Lee

    2014-01-01

    Full Text Available In previous work from this laboratory, it has been found that the urban heat island intensity (UHI can be scaled with the urban length scale and the wind speed, through the time-dependent energy balance. The heating of the urban surfaces during the daytime sets the initial temperature, and this overheating is dissipated during the night-time through mean convection motion over the urban surface. This may appear to be in contrast to the classical work by Oke (1973. However, in this work, we show that if the population density is used in converting the population data into urbanized area, then a good agreement with the current theory is found. An additional parameter is the “urban flow parameter,” which depends on the urban building characteristics and affects the horizontal convection of heat due to wind. This scaling can be used to estimate the UHI intensity in any cities and therefore predict the required energy consumption during summer months. In addition, all urbanized surfaces are expected to exhibit this scaling, so that increase in the surface temperature in large energy-consumption or energy-producing facilities (e.g., solar electric or thermal power plants can be estimated.

  19. Detecting Tsunami Source Energy and Scales from GNSS & Laboratory Experiments

    Science.gov (United States)

    Song, Y. T.; Yim, S. C.; Mohtat, A.

    2016-12-01

    Historically, tsunami warnings based on the earthquake magnitude have not been very accurate. According to the 2006 U.S. Government Accountability Office report, an unacceptable 75% false alarm rate has prevailed in the Pacific Ocean (GAO-06-519). One of the main reasons for those inaccurate warnings is that an earthquake's magnitude is not the scale or power of the resulting tsunami. For the last 10 years, we have been developing both theories and algorithms to detect tsunami source energy and scales, instead of earthquake magnitudes per se, directly from real-time Global Navigation Satellite System (GNSS) stations along coastlines for early warnings [Song 2007; Song et al., 2008; Song et al., 2012; Xu and Song 2013; Titov et al, 2016]. Here we will report recent progress on two fronts: 1) Examples of using GNSS in detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, the 2011 M9.0 Tohoku-Oki earthquake, and the 2015 M8.3 Illapel earthquake. 2) New results from recent state-of-the-art wave-maker experiments and comparisons with GNSS data will also be presented. Related reference: Titov, V., Y. T. Song, L. Tang, E. N. Bernard, Y. Bar-Sever, and Y. Wei (2016), Consistent estimates of tsunami energy show promise for improved early warning, Pur Appl. Geophs., DOI: 10.1007/s00024-016-1312-1. Xu, Z. and Y. T. Song (2013), Combining the all-source Green's functions and the GPS-derived source for fast tsunami prediction - illustrated by the March 2011 Japan tsunami, J. Atmos. Oceanic Tech., jtechD1200201. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767. Song, Y. T., L.-L. Fu, V. Zlotnicki, C. Ji, V. Hjorleifsdottir, C.K. Shum, and Y. Yi, 2008: The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami (2007

  20. Direct Drive Wave Energy Buoy – 33rd scale experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  1. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  2. Scale-by-scale energy fluxes in anisotropic non-homogeneous turbulence behind a square cylinder

    Science.gov (United States)

    Alves Portela, Felipe; Papadakis, George; Vassilicos, John Christos

    2015-11-01

    The turbulent wake behind a square section cylinder is studied by means of high resolution direct numerical simulations using an in-house finite volume code. The Reynolds number based on the cylinder side is 3900. Single- and two-point statistics are collected in the lee of the cylinder for over 30 shedding periods, allowing for an extensive description of the development of the turbulence. The power spectrum in the frequency domain of velocity fluctuations displays a near -5/3 power law in the near wake, where the turbulence is neither isotropic nor homogeneous. In the same region of the flow, two-point statistics reveal a direct cascade of fluctuating kinetic energy down the scales as a result of the combined effect of linear and non-linear interactions. For scales aligned with the mean flow the non-linear interactions dominate the cascade. Conversely, for scales normal to the mean flow the cascade is dominated by the linear interactions while the non-linear term is mostly responsible for redistributing energy to different orientations. The authors acknowledge support form the EU through the FP7 Marie Curie MULTISOLVE project (grant agreement No. 317269).

  3. On Landau's prediction for large-scale fluctuation of turbulence energy dissipation

    OpenAIRE

    Mouri, H.; Takaoka, M.; Hori, A.; Kawashima, Y.

    2005-01-01

    Kolmogorov's theory for turbulence in 1941 is based on a hypothesis that small-scale statistics are uniquely determined by the kinematic viscosity and the mean rate of energy dissipation. Landau remarked that the local rate of energy dissipation should fluctuate in space over large scales and hence should affect small-scale statistics. Experimentally, we confirm the significance of this large-scale fluctuation, which is comparable to the mean rate of energy dissipation at the typical scale fo...

  4. The Circadian Energy Scale (CIRENS): two simple questions for a reliable chronotype measurement based on energy.

    Science.gov (United States)

    Ottoni, Gustavo L; Antoniolli, Eduardo; Lara, Diogo R

    2011-04-01

    This study presents the Circadian Energy Scale (CIRENS), a very short and simple chronotype measurement tool based on energy. The CIRENS consists of two introspective questions about the usual energy level (very low, low, moderate, high, or very high, scored 1 to 5) in the morning and in the evening. The difference between energy level scores (-4 to 4) felt by respondents in the evening and morning defines the chronotype score and classification. A concurrent validity analysis of the CIRENS with the widely used Horne and Östberg Morningness-Eveningness Questionnaire (MEQ) was conducted using a sample of 225 college students, and with MSFsc, a sleep-based chronotype assessment tool based on the Munich Chronotype Questionnaire (MCTQ), using a sample of 34,530 subjects (18-83 yrs, 27% males). This large sample was collected in a Web survey for behavioral correlates of the CIRENS with variables previously associated with chronotype differences. The correlation of the CIRENS chronotype score was r = -.70 with the MEQ and r = .32 with the MSFsc. CIRENS chronotype scores declined with age and were not affected by sex. Both CIRENS and MSFsc chronotype scores were related to differences in tobacco, caffeine, and cola soft-drink consumption (all higher in evening types). The CIRENS provides a simple chronotype index and a measure of absolute energy throughout the day and seems to be a reliable chronotype assessment tool that may be useful both clinically and for large-scale studies.

  5. Biomass energy use in small-scale commercial operations

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, K.M. [Carbon Cycle Co., Woodland, CA (United States)

    1999-07-01

    A coffee roasting system using sawdust has been developed by Carbon Cycle, a California Company. They have shown that biomass combustion can be a safe, low-cost alternative to the use of natural gas in a food processing operation. Two systems are in operation with a combined run time of over 80,000 hours. The system uses a patented furnace technology characterized by thermal control to clean combustion, which, when used with biomass, achieves an even, slow roast of raw coffee beans. This results in high-quality coffee flavor. The technology has potential for use in other medium-temperature applications in food processing, district heating, and small-scale energy production. (author)

  6. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  7. Risk Management Challenges in Large-scale Energy PSS

    DEFF Research Database (Denmark)

    Tegeltija, Miroslava; Oehmen, Josef; Kozin, Igor

    2017-01-01

    Probabilistic risk management approaches have a long tradition in engineering. A large variety of tools and techniques based on the probabilistic view of risk is available and applied in PSS practice. However, uncertainties that arise due to lack of knowledge and information are still missing...... adequate representations. We focus on a large-scale energy company in Denmark as one case of current product/servicesystems risk management best practices. We analyze their risk management process and investigate the tools they use in order to support decision making processes within the company. First, we...... identify the following challenges in the current risk management practices that are in line with literature: (1) current methods are not appropriate for the situations dominated by weak knowledge and information; (2) quality of traditional models in such situations is open to debate; (3) quality of input...

  8. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    Directory of Open Access Journals (Sweden)

    A. Paulin Florence

    2016-01-01

    Full Text Available Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  9. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    Science.gov (United States)

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  10. Low energy probes of PeV scale sfermions

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  11. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  12. AM05-12-001 Large-scale Fluctuation of Turbulence Energy Dissipation

    OpenAIRE

    毛利, 英明; 高岡, 正憲; 堀, 晃浩; 川島, 儀英; H, MOURI; M., Takaoka; A., Hori; Y., Kawashima; 同志社大学工学部; 気象研究所; Doshisha University; Meteorological Research Institute

    2005-01-01

    Kolmogorov's theory for turbulence in 1941 is based on a hypothesis that small-scale statistics are uniquely determined by the kinematic viscosity and the mean rate of energy dissipation. Landau remarked that the local rate of energy dissipation should fluctuate in space over scales of large eddies and hence should affect small-scale statistics. Experimentally, we confirm the significance of this fluctuation, which is comparable to the mean rate of energy dissipation at the typical scale of l...

  13. Scaling-up energy conservation initiatives : Barriers and local strategies

    NARCIS (Netherlands)

    van Doren, D.; Giezen, M.; Driessen, P. P J; Runhaar, H. A C

    2016-01-01

    Energy conservation in residential and commercial buildings is considered a key challenge and opportunity for low-carbon urban development. In cities worldwide, energy conservation initiatives have been realized that demonstrate the social, financial, and environmental benefits that energy

  14. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  15. Emergent scale symmetry: Connecting inflation and dark energy

    Science.gov (United States)

    Rubio, Javier; Wetterich, Christof

    2017-09-01

    Quantum gravity computations suggest the existence of an ultraviolet and an infrared fixed point where quantum scale invariance emerges as an exact symmetry. We discuss a particular variable gravity model for the crossover between these fixed points which can naturally account for inflation and dark energy, using a single scalar field. In the Einstein-frame formulation, the potential can be expressed in terms of Lambert functions, interpolating between a power-law inflationary potential and a mixed-quintessence potential. For two natural heating scenarios, the transition between inflation and radiation domination proceeds through a "graceful reheating" stage. The radiation temperature significantly exceeds the temperature of big bang nucleosynthesis. For this type of model, the observable consequences of the heating process can be summarized in a single parameter, the heating efficiency. Our quantitative analysis of compatibility with cosmological observations reveals the existence of realistic models able to describe the whole history of the Universe using only a single metric and scalar field and involving just a small number of order 1 parameters.

  16. Synergies of scale - A vision of Mongolia and China's common energy future

    Energy Technology Data Exchange (ETDEWEB)

    Borgford-Parnell, Nathan

    2010-09-15

    Energy consumption in China is expected to double over the next 20 years. Addressing the enormous scale of China's energy need and attendant increases in greenhouse gas emissions requires dramatic and rapid rollout of renewable energy technologies. Mongolia has some of the world's best renewable energy resources but the scale of its market cannot tap them efficiently. Developing Mongolia into a significant exporter of renewable energy to China will create synergies of scale moving both countries towards their energy goals, creating jobs, and fostering growth while significantly reducing GHG emissions in the region.

  17. The green computing book tackling energy efficiency at large scale

    CERN Document Server

    Feng, Wu-chun

    2014-01-01

    Low-Power, Massively Parallel, Energy-Efficient Supercomputers The Blue Gene TeamCompiler-Driven Energy Efficiency Mahmut Kandemir and Shekhar Srikantaiah An Adaptive Run-Time System for Improving Energy Efficiency Chung-Hsing Hsu, Wu-chun Feng, and Stephen W. PooleEnergy-Efficient Multithreading through Run-Time Adaptation Exploring Trade-Offs between Energy Savings and Reliability in Storage Systems Ali R. Butt, Puranjoy Bhattacharjee, Guanying Wang, and Chris GniadyCross-Layer Power Management Zhikui Wang and Parthasarathy Ranganathan Energy-Efficient Virtualized Systems Ripal Nathuji and K

  18. Energy efficiency in small and medium scale foundry industry

    Directory of Open Access Journals (Sweden)

    G. Patange

    2016-04-01

    Full Text Available In this paper, the research results of surveys which were conducted in an Indian foundry cluster which are potential members of such sectors are presented. These results indicate that there is an enough potential improvement in the energy use. The use of energy efficient practices can result in their energy use effectively as well as cost reduction. The key findings about the energy pattern are a lack of energy efficient practices. The suggested recommendations can contribute to an increase in energy efficiency in such cluster.

  19. Planetary dynamo energies for paleomagnetic intensity, scaling, inversions and asymmetries

    Science.gov (United States)

    Starchenko, S. V.

    2014-04-01

    I derive, simplify and analyze integral evolutional laws of the kinetic, magnetic, and an original orientation energies in the liquid core of the Earth or another Earth's type planet. These integral laws are reduced to the rude but simplest system of three ordinary differential equations for cross-helicity Z, root-mean square averaged magnetic field Y and velocity X. This system is controlled by the relatively well-known convection power W and other parameters. Estimates are obtained for the characteristic velocities, magnetic fields, periods and scales depending on the convection power at the stable states and near the inversion/excursion where the above system has its stationary (market by s) points. It was shown that for the implementation of this short-time inversion/excursion the convection power should achieve some rare value, while a normal deviation from this value results in longer-time stable period. Here the inversion is a global process when the volume integral of the scalar product of convective velocity on the magnetic field changes sign. So, the inversions and asymmetries are due to two types of stable states. Named as "lined" is a state with the magnetic field predominantly directed along velocity, while "contra lined" state is with their opposite direction. The lined state is characterized by smaller convection power and magnetic field in contrast to the contra lined state. The duration of the lined state is likely smaller than the duration of opposite state when the geodynamo power gradually increases with time, while for decreasing power it is vice versa. Basing on the obtained results I estimate how diffusion can determine the average period between geomagnetic reversals due to turbulent, thermal, electromagnetic and critical viscositycompositional processes. Predominant in this process, in many cases, can be identified from the dependence of the reversal frequency on the magnetic field intensity from paleomagnetic data. The data available to me

  20. Energy-aware semantic modeling in large scale infrastructures

    NARCIS (Netherlands)

    Zhu, H.; van der Veldt, K.; Grosso, P.; Zhao, Z.; Liao, X.; de Laat, C.

    2012-01-01

    Including the energy profile of the computing infrastructure in the decision process for scheduling computing tasks and allocating resources is essential to improve the system energy efficiency. However, the lack of an effective model of the infrastructure energy information makes it difficult for

  1. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  2. Macro-economic benefit analysis of large scale building energy efficiency programs in Qatar

    Directory of Open Access Journals (Sweden)

    Moncef Krarti

    2017-12-01

    Full Text Available This paper evaluates the economic, environmental, and social benefits of large-scale energy efficiency programs for new and existing buildings in Qatar. Using data obtained from detailed energy audits, several proven energy efficiency measures have been analyzed through optimized based analysis to assess their impact on the energy performance for both new and existing buildings in Qatar. Moreover, a bottom-up analysis approach is considered to quantify the multiple benefits for implementing large-scale building energy efficiency programs for the building stock in Qatar. In particular, a more stringent energy efficiency code for the new constructions and three energy retrofit levels for the existing buildings are considered in the analysis. A novel macro-economic analysis using the concept of energy productivity is used to assess the cost-benefit of large-scale energy efficiency programs in Qatar. It is determined that the implementation of a government funded large-scale energy retrofit program for the existing building stock is highly cost-effective in Qatar. In particular, it is found that a large-scale energy efficiency retrofit program of existing buildings can provide a reduction of 11,000 GWh in annual electricity consumption and 2500 MW in peak demand as well as over 5400 kilo-ton per year in carbon emissions. In addition, over 4000 jobs per year can be created when this large-scale energy retrofit program is implemented over 10-year period.

  3. Self-folding origami at any energy scale

    Science.gov (United States)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind

    2017-05-01

    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  4. 77 FR 32621 - Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft

    Science.gov (United States)

    2012-06-01

    ... of Energy Efficiency and Renewable Energy Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft AGENCY: Office of Energy Efficiency and Renewable Energy, Department... draft guidebook entitled Federal Renewable Energy Guide: Developing Large-Scale Renewable Energy...

  5. Overview of village scale, renewable energy powered desalination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  6. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the

  7. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces

    DEFF Research Database (Denmark)

    Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank

    2011-01-01

    Using density functional theory calculations we show that the adsorption energies for C2Hx-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws f...

  8. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    NARCIS (Netherlands)

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  9. Large-scale integration of wind power into the existing Chinese energy system

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has...... have been discussed and suggestions proposed for the Chinese energy system to integrate large-scale renewable energy in the future. It is concluded that the model constructed by the use of EnergyPLAN can accurately simulate the Chinese energy system. Based on current regulations to secure grid...... of securing grid stability, was left primarily to large coal-fired power plants. There are at least three possible solutions for the Chinese energy system to integrate large-scale fluctuating renewable energy in the long term: Redesigning the regulations to secure grid stability by means of diversifying...

  10. Impacts of Large Scale Wind Penetration on Energy Supply Industry

    Directory of Open Access Journals (Sweden)

    John Kabouris

    2009-11-01

    Full Text Available Large penetration of Renewable Energy Sources (RES impacts Energy Supply Industry (ESI in many aspects leading to a fundamental change in electric power systems. It raises a number of technical challenges to the Transmission System Operators (TSOs, Distribution System Operators (DSOs and Wind Turbine Generators (WTG constructors. This paper aims to present in a thorough and coherent way the redrawn picture for Energy Systems under these conditions. Topics related to emergent technical challenges, technical solutions required and finally the impact on ESI due to large wind power penetration, are analyzed. Finally, general conclusions are extracted about the ESI current and future state and general directions are recommended.

  11. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    Science.gov (United States)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous

  12. Jet energy scale determination in the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Abbott, B. [University of Oklahoma, Norman, OK 73019 (United States); Acharya, B.S. [Tata Institute of Fundamental Research, Mumbai (India); Adams, M. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Adams, T. [Florida State University, Tallahassee, FL 32306 (United States); Agnew, J.P. [The University of Manchester, Manchester M13 9PL (United Kingdom); Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alkhazov, G. [Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Alton, A. [University of Michigan, Ann Arbor, MI 48109 (United States); Askew, A. [Florida State University, Tallahassee, FL 32306 (United States); Atkins, S. [Louisiana Tech University, Ruston, LA 71272 (United States); Augsten, K. [Czech Technical University in Prague, Prague (Czech Republic); Avila, C. [Universidad de los Andes, Bogotá (Colombia); Badaud, F. [LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont (France); Bagby, L.; Baldin, B. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bandurin, D.V., E-mail: bandurin@fnal.gov [University of Virginia, Charlottesville, VA 22904 (United States); Banerjee, S. [Tata Institute of Fundamental Research, Mumbai (India); Barberis, E. [Northeastern University, Boston, MA 02115 (United States); Baringer, P. [University of Kansas, Lawrence, KS 66045 (United States); and others

    2014-11-01

    The calibration of jet energy measured in the D0 detector is presented, based on pp{sup ¯} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with γ+jet, Z+jet and dijet events, with jet transverse momentum p{sub T}>6GeV and pseudorapidity range |η|<3.6. The corrections are measured separately for data and simulation, achieving a precision of 1.4–1.8% for jets in the central part of the calorimeter and up to 3.5% for the jets with pseudorapidity |η|=3.0. Specific corrections are extracted to enhance the description of jet energy in simulation and in particular of the effects due to the flavor of the parton originating the jet, correcting biases up to 3–4% in jets with low p{sub T} originating from gluons and up to 6–8% in jets from b quarks.

  13. A triboelectric wind turbine for small-scale energy harvesting

    Science.gov (United States)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper deals with a rotational energy harvester including a Horizontal Axis Wind Turbine (HAWT), a cylindrical stator covered by several electrodes, and thin Teflon dielectric membranes hung on the rotor. The sliding contact of the Teflon membranes on the stator provides simultaneously large capacitance variations and a polarization source for the electrostatic converter by exploiting triboelectric phenomena. 1μW has been harvested at 4m/s; 130μW at 10m/s and 550μW at 20m/s with a 40mmØ device. In order to validate the energy harvesting chain, the airflow energy harvester has been connected to a power management circuit implementing Synchronous Electric Charge Extraction (SECE) to supply a wireless sensor node with temperature and acceleration measurements, transmitted to a computer at 868MHz.

  14. Scaling of the Coulomb Energy Due to Quantum Fluctuations in the Charge on a Quantum Dot

    DEFF Research Database (Denmark)

    Molenkamp, L. W; Flensberg, Karsten; Kemerink, M.

    1995-01-01

    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy...

  15. Energy scaling of terahertz-wave parametric sources.

    Science.gov (United States)

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  16. Feasible utility scale superconducting magnetic energy storage system

    Science.gov (United States)

    Loyd, R. J.; Schoenung, S. M.; Nakamura, T.; Lieurance, D. W.; Hilal, M. A.; Rogers, J. D.; Purcell, J. R.; Hassenzahl, W. V.

    This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.

  17. Large scale grid integration of renewable energy sources

    CERN Document Server

    Moreno-Munoz, Antonio

    2017-01-01

    This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.

  18. Regional Scale Assessment of the Gross Hydrokinetic Energy ...

    African Journals Online (AJOL)

    This study investigates the hydrokinetic energy potential of some selected rivers in the Lower Niger River Basin in North Central Nigeria. The methodology adopted was to obtain the gross naturally occurring theoretical hydrokinetic potential of the rivers through the use of a hydrological model and a spatial tool. MWSWAT ...

  19. Time tracking and interaction of energy-eddies at different scales

    Science.gov (United States)

    Cardesa, Jose I.; Vela-Martin, Alberto; Jimenez, Javier

    2016-11-01

    We study the energy cascade through coherent structures obtained in time-resolved simulations of incompressible, statistically steady isotropic turbulence. The structures are defined as geometrically connected regions of the flow with high kinetic energy. We compute the latter by band-pass filtering the velocity field around a scale r. We analyse the dynamics of structures extracted with different r, which are a proxy for eddies containing energy at those r. We find that the size of these "energy-eddies" scales with r, while their lifetime scales with the local eddy-turnover r 2 / 3ɛ - 1 / 3 , where ɛ is the energy dissipation averaged over all space and time. Furthermore, a statistical analysis over the lives of the eddies shows a slight predominance of the splitting over the merging process. When we isolate the eddies which do not interact with other eddies of the same scale, we observe a parent-child dependence by which, on average, structures are born at scale r during the decaying part of the life of a structure at scale r' > r . The energy-eddy at r' lives in the same region of space as that at r. Finally, we investigate how interactions between eddies at the same scale are echoed across other scales. Funded by the ERC project Coturb.

  20. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    17025 :2005 General Requirements for the Competence of Testing and Cali- bration Laboratories, which specifies the requirements for sound management and...technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO/IEC 17025 ... 17025 : 2005 General re- quirements for the competence of testing and calibration laboratories. CMU/SEI-2010-TR-021 | 32 3.5 Transition Transition

  1. Energy Constraints for Building Large-Scale Systems

    Science.gov (United States)

    2016-03-17

    but not sufficient because we need to consider the resulting power dissipation for communication. Neurobiological systems are power (and energy... neurobiological levels [1], but not sufficient because we need to consider the resulting power dissipation for communication [1]. Neurobiological systems are... neurobiological systems use a similar approach in the fact that over 90% of neurons in cortex project locally to nearby neurons (i.e. nearest 1000 pyramidal

  2. National-scale wave energy resource assessment for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael G.; Heap, Andrew D. [Geoscience Australia, Marine and Coastal Environment Group, GPO Box 378, Canberra, ACT 2601 (Australia)

    2010-08-15

    A nationally consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1 grid covering 110-156 longitude and 7-46 latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25-35 kW m{sup -1} (90th percentile of 60-78 kW m{sup -1}), delivering 800-1100 GJ m{sup -1} of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10-20 kW m{sup -1}; 90th percentile: 20-30 kW m{sup -1}), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m{sup -1}. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry. (author)

  3. Energy scaling, crab crossing and the pair problem

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.

    1988-12-01

    Making reasonable assumptions, the luminosities of linear colliders are calculated for center-of-mass energies of 10 GeV, 100 GeV and 1 TeV. A calculation is also mode for a 1/2 TeV collider that could be upgraded to 1 TeV later. The improvements possible using ''crab-like'' crossing are also given. 4 refs., 4 figs., 3 tabs.

  4. Prospects for mass unification at low energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Volkas, R.R.

    1995-12-31

    A simple Pati-Salam SU(4) model with a low symmetry breaking scale of about 1000 TeV is presented. The analysis concentrates on calculating radiative corrections to tree level mass relations for third generation fermions. The tree-level relation m{sub b}/m{sub {tau}} = 1 predicted by such models can receive large radiative corrections up to about 50% due to threshold effects at the mass unification scale. These corrections are thus of about the same importance as those that give rise to renormalisation group running. The high figure of 50% can be achieved because l-loop graphs involving the physical charged Higgs boson give corrections to m{sub {tau}} -m{sub b} that are proportional to the large top quark mass. These corrections can either increase or decrease m{sub b}/m{sub {tau}} depending on the value of an unknown parameter. They can also be made to vanish through a fine-tuning. A related model of tree-level t-b-{tau} unification which uses the identification of SU(2){sub R} with custodial SU(2) is then discussed. A curious relation m{sub b}{approx} {radical}2m{sub {tau}} is found to be satisfied at tree-level in this model. The overall conclusion of this work is that the tree-level relation m{sub b}=m{sub {tau}} at low scales such as 1000 TeV or somewhat higher can produce a successful value for m{sub b}/m{sub {tau}} after corrections, but one must be mindful that radiative corrections beyond those incorporated through the renormalisation group can be very important. 14 refs., 7 figs.

  5. Thermal energy harvesting for application at MEMS scale

    CERN Document Server

    Percy, Steven; McGarry, Scott; Post, Alex; Moore, Tim; Cavanagh, Kate

    2014-01-01

    This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power.  A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.

  6. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Jonathan [University of Leeds, Leeds (United Kingdom). Institute for Transport Studies; Hubacek, Klaus [University of Leeds, Leeds (United Kingdom). School of Earth and Environment, Sustainability Research Institute

    2007-12-15

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information. (author)

  7. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications

    DEFF Research Database (Denmark)

    Liu, Yubao; Warner, Tom; Liu, Yuewei

    2011-01-01

    This paper describes an advanced multi-scale weather modeling system, WRF–RTFDDA–LES, designed to simulate synoptic scale (~2000 km) to small- and micro-scale (~100 m) circulations of real weather in wind farms on simultaneous nested grids. This modeling system is built upon the National Center...... grids and seamlessly providing realistic mesoscale weather forcing to drive a large eddy simulation (LES) model within the WRF framework. The WRF based RTFDDA LES modeling capability is referred to as WRF–RTFDDA–LES. In this study, WRF–RTFDDA–LES is employed to simulate real weather in a major wind farm...... located in northern Colorado with six nested domains. The grid sizes of the nested domains are 30, 10, 3.3, 1.1, 0.370 and 0.123 km, respectively. The model results are compared with wind–farm anemometer measurements and are found to capture many intra-farm wind features and microscale flows. Additional...

  8. Helical turbulence with small-scale energy and helicity sources and external intermediate scale noises as the origin of large scale generation

    Science.gov (United States)

    Chkhetiani, Otto G.; Gledzer, Evgeny B.

    2017-11-01

    Interactions violating the symmetry of positive and negative total helicity components are considered. In the ideal case where one of the components is zero, the system have two sign-definite integrals of motion, which lead to an inverse energy cascade, as occurs in two-dimensional turbulence. The generation of large-scale modes is considered in the quasi-normal approximation and is manifested as the instability of second moments, a mechanism of which was discussed at the end of previous century. A crucial point in this mechanism is the presence of mean turbulence with large-scale helical disturbances and small-scale sources of energy and helicity. In the case of both helicity components being nonzero, the possibility of the large-scale generation is studied by applying numerical experiments with a shell model and by analyzing special cases of interactions between different shells of the model. In all the approaches used, it is shown that an inverse energy flux (from small to large scales) can exist at a certain level of external helical noises in large-scale modes, which depends on the degree of ;mixing; oppositely signed helicity components.

  9. Energy analysis for a sustainable future multi-scale integrated analysis of societal and ecosystem metabolism

    CERN Document Server

    Giampietro, Mario; Sorman, Alevgül H

    2013-01-01

    The vast majority of the countries of the world are now facing an imminent energy crisis, particularly the USA, China, India, Japan and EU countries, but also developing countries having to boost their economic growth precisely when more powerful economies will prevent them from using the limited supply of fossil energy. Despite this crisis, current protocols of energy accounting have been developed for dealing with fossil energy exclusively and are therefore not useful for the analysis of alternative energy sources. The first part of the book illustrates the weakness of existing analyses of energy problems: the science of energy was born and developed neglecting the issue of scale. The authors argue that it is necessary to adopt more complex protocols of accounting and analysis in order to generate robust energy scenarios and effective assessments of the quality of alternative energy sources. The second part of the book introduces the concept of energetic metabolism of modern societies and uses empirical res...

  10. Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale

    Science.gov (United States)

    Coccolo, Silvia; Kaempf, Jérôme; Scartezzini, Jean-Louis

    2017-01-01

    A new methodology is proposed to couple a meteorological model with a building energy use model. The aim of such a coupling is to improve the boundary conditions of both models with no significant increase in computational time. In the present case, the Canopy Interface Model (CIM) is coupled with CitySim. CitySim provides the geometrical characteristics to CIM, which then calculates a high resolution profile of the meteorological variables. These are in turn used by CitySim to calculate the energy flows in an urban district. We have conducted a series of experiments on the EPFL campus in Lausanne, Switzerland, to show the effectiveness of the coupling strategy. First, measured data from the campus for the year 2015 are used to force CIM and to evaluate its aptitude to reproduce high resolution vertical profiles. Second, we compare the use of local climatic data and data from a meteorological station located outside the urban area, in an evaluation of energy use. In both experiments, we demonstrate the importance of using in building energy software, meteorological variables that account for the urban microclimate. Furthermore, we also show that some building and urban forms are more sensitive to the local environment. PMID:28880883

  11. Parametric City Scale Energy Modeling Perspectives on using Termite in city scaled models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Nielsen, Toke Rammer

    Termite is a parametric tool using the Danish building performance simulation engine Be10 written for the Grasshopper3D/Rhino3D environment. The tool Be10 is originally intended for building energy frame calculations and is required by Danish law when constructing new buildings. Termite opens up...

  12. Finite-size scaling of interface free energies in the 3d Ising model

    CERN Document Server

    Pepé, M; Forcrand, Ph. de

    2002-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  13. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  14. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  15. How covalence breaks adsorption-energy scaling relations and solvation restores them

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Krabbe, Alexander; García Lastra, Juan Maria

    2017-01-01

    It is known that breaking the scaling relations between the adsorption energies of *O, *OH, and *OOH is paramount in catalyzing more efficiently the reduction of O2 in fuel cells and its evolution in electrolyzers. Taking metalloporphyrins as a case study, we evaluate here the adsorption energies...

  16. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Douglas P. Cook

    2012-05-22

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  17. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    Science.gov (United States)

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales. © 2014 American Institute of Chemical Engineers.

  18. Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.P.; Tan, Q. [Environmental Systems Engineering Program, Faculty of Engineering, Unversity of Regina, Regina, Saskatchewan (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, Unversity of Regina, Regina, Saskatchewan (Canada)]|[Chinese Research Academy of Environmental Science, Beijing Normal University, Beijing 100012-100875 (China); Yang, Z.F. [State Key Laboratory of Water Environment Simulation, School of Enviroment, Beijing Normal University, Beijing 100875 (China)

    2009-07-15

    In this study, an interval-parameter superiority-inferiority-based two-stage programming model has been developed for supporting community-scale renewable energy management (ISITSP-CREM). This method is based on an integration of the existing interval linear programming (ILP), two-stage programming (TSP) and superiority-inferiority-based fuzzy-stochastic programming (SI-FSP). It allows uncertainties presented as both probability/possibilistic distributions and interval values to be incorporated within a general optimization framework, facilitating the reflection of multiple uncertainties and complexities during the process of renewable energy management systems planning. ISITSP-CREM can also be used for effectively addressing dynamic interrelationships between renewable energy availabilities, economic penalties and electricity-generation deficiencies within a community scale. Thus, complexities in renewable energy management systems can be systematically reflected, highly enhancing applicability of the modeling process. The developed method has then been applied to a case of long-term renewable energy management planning for three communities. Useful solutions for the planning of renewable energy management systems have been generated. Interval solutions associated with different energy availabilities and economic penalties have been obtained. They can be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The generated solutions can also provide desired energy resource/service allocation plans with a minimized system cost (or economic penalties), a maximized system reliability level and a maximized energy security. Tradeoffs between system costs and energy security can also be tackled. Higher costs will increase potential energy generation amount, while a desire for lower system costs will run into a risk of energy deficiency. They are helpful for supporting

  19. Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses

    Science.gov (United States)

    Nie, Bai; Parker, Greg; Lozovoy, Vadim Vadimovich; Dantus, Marcos

    2014-05-01

    A Yb fiber oscillator producing high-energy femtosecond pulse clusters is reported. Visualized by averaging autocorrelation, the output pulses consist of femtosecond pulse clusters that appear as a picosecond envelope with a ˜100-fs pulse in its center. Using more than 200-m fiber, the pulse energy is scaled up to 450 nJ. This high energy in a cluster of femtosecond pulses enables an important application-laser-induced breakdown spectroscopy.

  20. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  1. Developing A Renewable Energy Awareness Scale For Pre-service Chemistry Teachers

    Directory of Open Access Journals (Sweden)

    Soner YAVUZ

    2006-01-01

    Full Text Available Developing A Renewable Energy Awareness Scale For Pre-service Chemistry Teachers Inci MORGIL Nilgün SECKEN A. Seda YUCEL Ozge OZYALCIN OSKAY Soner YAVUZ and Evrim URAL Hacettepe University, Faculty of Education, Department of Chemistry Education, 06800 Beytepe, Ankara, TURKEY ABSTRACT In times when human beings used to live in a natural environment, their needs were also provided by natural resources. With the increases in population in time, human beings started to look for new resources willing to get “the more” and “the fastest”. Just like the invention of steam, firstly, they increased the density of the resources and produced “more” energy. However, instead of working on the density of water, which spreads with the solar energy, they chose an easier way, which was fuel that produced more energy when burnt. Unfortunately, the damages these fuel products create in the atmosphere and environment shaded their benefits. It did not take so long for the earth to run out of energy resources and to threaten environmental and human health. As a result of that, new energy resources were started to be sought and the studies enlightened the concepts of sustainable, renewable energy. Renewable energy is defined as “the energy source, which continues its existence for the following days within the evolution of nature”. Educators pointed out a need in students for gaining consciousness on renewable energy resources. In the light of the importance of renewable and sustainable energy, a “Renewable Energy Awareness Scale” that questioned to what extent the individuals were aware of renewable energy was developed. The Renewable Energy Awareness Scale, which consisted of 50 items, was administered as a pilot study. The factor analysis concluded with a scale of 39 items with a reliability coefficient of 0.944 was developed.

  2. Challenges of Implementing Renewable Energy Policies at Community Scale: The Case of Strategic Energy Plans in Denmark

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2017-01-01

    The implementation of national energy efficiency targets requires policies at the local scale. It is widely acknowledged that local communities play an important tole to implement these policies: as arena where renewable energy technologies can be combined with socio-economic interests of local...... stakeholders. Although a vast amount of demo projects are well-documented, insufficient attention has been given to the average performing municipalities and their challenges in linking technical energy scenarios with their socio-economic realities in practice. This paper analyses the Strategic Energy Plans...... (SEP) of 17 Danish municipalities on their development, inclusion of local communities, affected stakeholders, and on their impact on the municipalities’ working procedures. The main technical, physical, organisational and socio-economic challenges for local energy policy implementation are illustrated...

  3. Analysis of energy-saving dispatch based on energy efficiency for power system with large scale wind power integration

    Science.gov (United States)

    Zou, Lanqing; Zhou, Peng; Li, Shitong; Lin, Li

    2017-01-01

    With the increasing of wind generators and the scale of wind farm, the utilization rate of wind power decreases continually, it is essential to develop an energy-saving dispatching model for the purpose of energy conservation and emission reduction. Firstly, considering some main factors, such as generator operating costs, start-up unit costs, shutdown unit costs, oil consumption and pollutant emission, establish an energy efficiency model. Then, based on the principle of energy-saving dispatch, a model is established which objective is maximizing the energy efficiency. Moreover, in order to realize the priority dispatching of wind power, another model is established which objective is minimizing the wind power shedding. Finally, under the conditions of different installed wind power capacities being integrated into a real region grid, two models are compared and analyzed from perspectives of the society, thermal power enterprise and wind power enterprise.

  4. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans.

    Science.gov (United States)

    Simmen, Bruno; Darlu, Pierre; Hladik, Claude Marcel; Pasquet, Patrick

    2015-01-01

    Studies of how a mammal's daily energy expenditure scales with its body mass suggest that humans, whether Westerners, agro-pastoralists, or hunter-gatherers, all have much lower energy expenditures for their body mass than other mammals. However, non-human primates also differ from other mammals in several life history traits suggestive of low energy use. Judging by field metabolic rates of free-ranging strepsirhine and haplorhine primates with different lifestyle and body mass, estimated using doubly labeled water, primates have lower energy expenditure than other similar-sized eutherian mammals. Daily energy expenditure in humans fell along the regression line of non-human primates. The results suggest that thrifty energy use could be an ancient strategy of primates. Although physical activity is a major component of energy balance, our results suggest a need to revise the basis for establishing norms of energy expenditure in modern humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Energy budget closure and field scale estimation of canopy energy storage with increased and sustained turbulence

    Science.gov (United States)

    Eddy Covariance (EC) is widely used for direct, non-invasive observations of land-atmosphere energy and mass fluxes. However, EC observations of available energy fluxes are usually less than fluxes inferred from radiometer and soil heat flux observations; thus introducing additional uncertainty in u...

  6. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hillesheim, Michael B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Jeff [Colorado School of Mines, Golden, CO (United States); Boak, Jeremy [Colorado School of Mines, Golden, CO (United States); Washington, Jeremy [Colorado School of Mines, Golden, CO (United States); Sharp, Cory [Colorado School of Mines, Golden, CO (United States)

    2017-11-03

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  7. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  8. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  9. A kinetic energy analysis of the meso beta-scale severe storm environment

    Science.gov (United States)

    Fuelberg, H. E.; Printy, M. F.

    1984-01-01

    Analyses are performed of the meso beta-scale (20-200 km wavelengths and several hours to one-day periods) severe storm kinetic energy balance on the fifth day of the AVE SESAME campaign of May 1979. A 24-hr interval covering the antecedent, active and post-convective outbreak activity over Oklahoma are considered. Use is made of the kinetic energy budget equation (KEBE) for a finite volume in an isobaric coordinate system. Rawindsonde data with 75 km resolution were treated. The KEBE model covered changes in kinetic energy due to the cross contour flows, horizontal and vertical components of flux divergence, and volumic mass changes on synoptic and subsynoptic scales. The greatest variability was concentrated above 400 mb height and over the most intense storm activity. Energy was generated at the highest rates in divergence and decreased the most in convection. The meso beta-scale lacked sufficient resolution for analyzing mesoscale activity.

  10. Femtoscopy: The way back in the energy scale from ALICE to the NICA energies

    CERN Document Server

    Batyuk, P; Rogachevsky, O; Karpenko, Iu; Malinina, L; Mikhailov, K; Wielanek, D

    2016-01-01

    The main features of femtoscopy measurements in heavy-ion collisions at high energies are understood as a manifestation of the strong collective flow and well-interpreted within hydrodynamic models with a crossover. In this work, we discuss possibilities for observing the change from a first order phase transition expected at the NICA energies ($\\sqrt s_{NN} = 4–11$ GeV) to a crossover one with the femtoscopy observables using the vHLLE+UrQMD model.

  11. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...... of biomass consumption as base load in the energy system. Large heat pumps may also contribute to developing future smart energy systems as they can create flexibility between the electricity and heating/cooling sectors. A case study of Denmark in 2020 indicates that large heat pumps can increase fuel...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium...

  12. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  13. Geophysical turbulence and the duality of the energy flow across scales

    CERN Document Server

    Pouquet, A

    2013-01-01

    The ocean and the atmosphere, and hence the climate system, are governed at large scale by interactions between the pressure gradient, Coriolis force and buoyancy force. This leads to a quasi-geostrophic balance in which, in a two-dimensional-like fashion, the energy injected e.g. by solar radiation, winds or tides goes to large scales in what is known as an inverse cascade. Yet, except for Ekman friction, energy dissipation and turbulent mixing occur at small scale implying the formation of small scales in a direct energy cascade associated with breaking of geostrophic dynamics through wave-eddy interactions \\cite{ledwell_00, vanneste_13} or with frontogenesis \\cite{hoskins_72, mcwilliams_10}. How do these phenomena co-exist? There are several known physical systems, idealized representations of more complex fluids as occur in geophysics and astrophysics, that exhibit such a dual behavior of energy flowing to the large scales and to the small scales, with constant fluxes as required by theoretical arguments....

  14. Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Jayanta K., E-mail: jayanta.bhattacharjee@gmail.com

    2015-03-20

    In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. - Highlights: • A Kolmogorov argument for global energy balance for turbulence in a stratified fluid is presented. • It is seen that for unstable stratification an unambiguous argument cannot be set up. • For stable stratification there is clear Kolmogorov scenario but the flux is a combination of kinetic and thermal fluxes. • A pure Bolgiano–Obukhov scaling is seen only for wave-numbers greater than a critical wave-number. • The critical wave-number decreases as the Richardson number increases.

  15. Lowering the cost of large-scale energy storage: High temperature adiabatic compressed air energy storage

    Directory of Open Access Journals (Sweden)

    B. Cárdenas

    2017-06-01

    Full Text Available Compressed air energy storage is an energy storage technology with strong potential to play a significant role in balancing energy on transmission networks, owing to its use of mature technologies and low cost per unit of storage capacity. Adiabatic compressed air energy storage (A-CAES systems typically compress air from ambient temperature in the charge phase and expand the air back to ambient temperature in the discharge phase. This papers explores the use of an innovative operating scheme for an A-CAES system aimed at lowering the total cost of the system for a given exergy storage capacity. The configuration proposed considers preheating of the air before compression which increases the fraction of the total exergy that is stored in the form of high-grade heat in comparison to existing designs in which the main exergy storage medium is the compressed air itself. Storing a high fraction of the total exergy as heat allows reducing the capacity of costly pressure stores in the system and replacing it with cheaper thermal energy stores. Additionally, a configuration that integrates a system based on the aforementioned concept with solar thermal power or low-medium grade waste heat is introduced and thoroughly discussed.

  16. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  17. Reynolds number effects on scale energy analysis of turbulent boundary layers

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Marusic, Ivan

    2009-11-01

    Scale energy analysis combines two approaches of studying wall- bounded turbulent flows - analysis in physical space and analysis in scale space. Previously, scale energy analysis has been performed on DNS channel flow data for a range of friction Reynolds numbers Reτ= 180-934 and dual plane PIV boundary layer data at Reτ= 1100. The dual plane technique allows determination of the full velocity gradient tensor in the measurement plane. Dual Plane PIV data were acquired in streamwise-spanwise planes in the logarithmic region of a water channel boundary layer at two higher Reynolds numbers - Reτ= 2400 and 3000. The results of this study will be described and compared with the lower Re data. It is observed that in general, the production and scale transfer terms of the turbulent kinetic energy increase with increasing Reynolds number. The cross-over scale, which divides the range of scales into a transfer-dominated region and a production- dominated region, increases with increasing Reynolds numbers, resulting in a larger range of transfer-dominated scales at higher Reynolds numbers.

  18. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  19. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  20. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Lingguo Kong

    2015-01-01

    Full Text Available An AC-linked large scale wind/photovoltaic (PV/energy storage (ES hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC, is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.

  1. An Interdisciplinary Approach to Developing Renewable Energy Mixes at the Community Scale

    Science.gov (United States)

    Gormally, Alexandra M.; Whyatt, James D.; Timmis, Roger J.; Pooley, Colin G.

    2013-04-01

    Renewable energy has risen on the global political agenda due to concerns over climate change and energy security. The European Union (EU) currently has a target of 20% renewable energy by the year 2020 and there is increasing focus on the ways in which these targets can be achieved. Here we focus on the UK context which could be considered to be lagging behind other EU countries in terms of targets and implementation. The UK has a lower overall target of 15% renewable energy by 2020 and in 2011 reached only 3.8 % (DUKES, 2012), one of the lowest progressions compared to other EU Member States (European Commission, 2012). The reticence of the UK to reach such targets could in part be due to their dependence on their current energy mix and a highly centralised electricity grid system, which does not lend itself easily to the adoption of renewable technologies. Additionally, increasing levels of demand and the need to raise energy awareness are key concerns in terms of achieving energy security in the UK. There is also growing concern from the public about increasing fuel and energy bills. One possible solution to some of these problems could be through the adoption of small-scale distributed renewable schemes implemented at the community-scale with local ownership or involvement, for example, through energy co-operatives. The notion of the energy co-operative is well understood elsewhere in Europe but unfamiliar to many UK residents due to its centralised approach to energy provision. There are many benefits associated with engaging in distributed renewable energy systems. In addition to financial benefits, participation may raise energy awareness and can lead to positive responses towards renewable technologies. Here we briefly explore how a mix of small-scale renewables, including wind, hydro-power and solar PV, have been implemented and managed by a small island community in the Scottish Hebrides to achieve over 90% of their electricity needs from renewable

  2. Relaxation Mode Analysis and Scale-Dependent Energy Landscape Statistics in Liquids

    Science.gov (United States)

    Cai, Zhikun; Zhang, Yang

    2015-03-01

    In contrast to the prevailing focus on short-lived classical phonon modes in liquids, we propose a classical treatment of the relaxation modes in liquids under a framework analogous to the normal mode analysis in solids. Our relaxation mode analysis is built upon the experimentally measurable two-point density-density correlation function (e.g. using quasi-elastic and inelastic scattering experiments). We show in the Laplace-inverted relaxation frequency z-domain, the eigen relaxation modes are readily decoupled. From here, important statistics of the scale-dependent activation energy in the energy landscape as well as the scale-dependent relaxation time distribution function can be obtained. We first demonstrate this approach in the case of supercooled liquids when dynamic heterogeneity emerges in the landscape-influenced regime. And then we show, using this framework, we are able to extract the scale-dependent energy landscape statistics from neutron scattering measurements.

  3. Laboratory Testing and Energy Production of Scale 1:35 Sigma Energy WEC

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Ferri, Francesco

    This report describes some preliminary experiments carried out on the MD wave power converting device. The aim of the investigation have been to obtain a better understanding of the behavior and performance of the wave energy converters under different structural configurations, sea states...

  4. Improved Multibody Dynamics for Investigating Energy Dissipation in Train Collisions Based on Scaling Laws

    Directory of Open Access Journals (Sweden)

    Heng Shao

    2016-01-01

    Full Text Available This study aimed to investigate energy dissipation in train collisions. A 1/8 scaled train model, about one-dimensional in longitudinal direction, was used to carry out a scaled train collision test. Corresponding multibody dynamic simulations were conducted using traditional and improved method model (IMM in ADAMS. In IMM, the connection between two adjacent cars was expressed by a nonlinear spring and energy absorbing structures were equivalently represented by separate forces, instead of one force. IMM was able to simulate the motion of each car and displayed the deformation of structures at both ends of the cars. IMM showed larger deformations and energy absorption of structures in moving cars than those in stationary cars. Moreover, the asymmetry in deformation proportion in main energy absorbing structures decreased with increasing collision speed. The asymmetry decreased from 11.69% to 3.60% when the collision speed increased from 10 km/h to 36 km/h.

  5. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Directory of Open Access Journals (Sweden)

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  6. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    This doctoral thesis is framed into the development process of the Wave Dragon wave energy converter (WEC). Wave energy is a vast and untapped resource with the potential of becoming an important contributor to the World energy mix, although presently its commercial exploitation has been hindered....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance...... by the difficulties of developers to demonstrate the technology feasibility at full-scale, first of all caused by lack of finance of full-scale demonstration units. Although having a large potential for the cost-effective generation of clean and renewable electricity, Wave Dragon is currently in a pre...

  7. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  8. MAGNETOHYDRODYNAMIC KINK WAVES IN NONUNIFORM SOLAR FLUX TUBES: PHASE MIXING AND ENERGY CASCADE TO SMALL SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2015-04-10

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  9. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  10. Efficient integration of torque-free rotation by energy scaling method

    Science.gov (United States)

    Fukushima, T.

    2006-10-01

    As a first trial of the manifold correction methods applied to rotational motions, we adapted its simplest technique, the energy scaling method, to the torque-free rotational motion in terms of Serret-Andoyer variables. The key point is to keep rigorously the consistency of the kinetic energy relation by applying a scaling to L, the C-axis component of the rotational angular momentum at every integration step. As a result, the new method suppress the growth rate of the integration errors in the combined rotational angles, g + l, from quadratic to linear in time.

  11. Test of multiplicity independence of single pi 'mean scaled' distributions in low-energy pp annihilations

    CERN Document Server

    Angelini, C; Bigi, A; Casali, R; Defoix, C; Espigat, P; Flaminio, V; Laloum, M; Pazzi, R; Petitjean, P; Petri, C

    1977-01-01

    Dao et al. (1974) proposed the hypotheses that the distributions, properly normalized of 'mean scaled' variables in multiparticle production at high energies are independent of multiplicity, initial state and incident energy. The multiplicity dependence of fhe mean- scaled variables x/(x) are studied for various semi-inclusive (or exclusive) reactions in the pp annihilation around 1 GeV/c incident momentum (x=p/sub t/, mod p/sub L/ mod ) using the 81 cm CERN hydrogen bubble chamber data. It is found that the distributions are poorly described by universal functions. (6 refs).

  12. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems :

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  13. Energy loss as the origin of a universal scaling law of the elliptic flow

    Energy Technology Data Exchange (ETDEWEB)

    Andres, Carlota; Pajares, Carlos [Universidade de Santiago de Compostela, Instituto Galego de Fisica de Altas Enerxias IGFAE, Santiago de Compostela, Galicia (Spain); Braun, Mikhail [Saint Petersburg State University, Department of High-Energy Physics, Saint Petersburg (Russian Federation)

    2017-03-15

    It is shown that the excellent scaling of the elliptic flow found for all centralities, species and energies from RHIC to the LHC for p{sub T} less than the saturation momentum is a consequence of the energy lost by a parton interacting with the color field produced in a nucleus-nucleus collision. In particular, the deduced shape of the scaling curve describes correctly all the data. We discuss the possible extensions to higher p{sub T}, proton-nucleus and proton-proton collisions as well as higher harmonics. (orig.)

  14. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  15. ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Directory of Open Access Journals (Sweden)

    T. Eich

    2017-08-01

    Full Text Available A newly established scaling of the ELM energy fluence using dedicated data sets from JET operation with CFC & ILW plasma facing components (PFCs, ASDEX Upgrade (AUG operation with both CFC and full-W PFCs and MAST with CFC walls has been generated. The scaling reveals an approximately linear dependence of the peak ELM energy with the pedestal top electron pressure and with the minor radius; a square root dependence is seen on the relative ELM loss energy. The result of this scaling gives a range in parallel peak ELM energy fluence of 10–30MJm−2 for ITER Q= 10 operation and 2.5–7.5MJm−2 for intermediate ITER operation at 7.5MA and 2.65T. These latter numbers are calculated using a numerical regression (ɛII=0.28MJm2ne0.75Te1ΔEELM0.5Rgeo1. A simple model for ELM induced thermal load is introduced, resulting in an expression for the ELM energy fluence of ɛII≅6π pe Rgeo qedge. The relative ELM loss energy in the data is between 2–10% and the ELM energy fluence varies within a range of 100.5 ∼ 3 consistently for each individual device. The so far analysed power load database for ELM mitigation experiments from JET-EFCC and Kicks, MAST-RMP and AUG-RMP operation are found to be consistent with both the scaling and the introduced model, ie not showing a further reduction with respect to their pedestal pressure. The extrapolated ELM energy fluencies are compared to material limits in ITER and found to be of concern.

  16. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    OpenAIRE

    Min Gyung Yu; Yujin Nam

    2016-01-01

    Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant...

  17. More than "more individuals": the nonequivalence of area and energy in the scaling of species richness.

    Science.gov (United States)

    Hurlbert, Allen H; Jetz, Walter

    2010-08-01

    One of the primary ecological hypotheses put forward to explain patterns of biodiversity is known as the more-individuals hypothesis of species-energy theory. This hypothesis suggests that the number of species increases along the global energy gradient primarily as a result of an increase in the total number of individuals that can be supported along that gradient. Implicit in this hypothesis is that species richness should scale with energy in the same way in which it scales with area in species-area relationships. We developed a novel framework for thinking about the interaction of area and energy, and we provide the first global test of this equivalence assumption using a data set on terrestrial breeding birds. We found that (1) species-energy slopes are typically greater than species-area slopes, (2) the magnitude of species-area and species-energy slopes varies strongly across the globe, and (3) the degree to which area and energy interact to determine species richness depends on the way mean values of species occupancy change along the energy gradient. Our results indicate that the increase in richness along global productivity gradients cannot be explained by more individuals alone, and we discuss other mechanisms by which increased productivity might facilitate species coexistence.

  18. Eggs as energy: revisiting the scaling of egg size and energetic content among echinoderms.

    Science.gov (United States)

    Moran, A L; McAlister, J S; Whitehill, E A G

    2013-08-01

    Marine organisms exhibit substantial life-history diversity, of which egg size is one fundamental parameter. The size of an egg is generally assumed to reflect the amount of energy it contains and the amount of per-offspring maternal investment. Egg size and energy are thought to scale isometrically. We investigated this relationship by updating published datasets for echinoderms, increasing the number of species over those in previous studies by 62%. When we plotted egg energy versus egg size in the updated dataset we found that planktotrophs have a scaling factor significantly lower than 1, demonstrating an overall trend toward lower energy density in larger planktotrophic eggs. By looking within three genera, Echinometra, Strongylocentrotus, and Arbacia, we also found that the scaling exponent differed among taxa, and that in Echinometra, energy density was significantly lower in species with larger eggs. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life-history evolution. These data suggest that the evolution of egg size and egg energy content can be decoupled, possibly facilitating response to selective factors such as sperm limitation which could act on volume alone.

  19. Free energy of cluster formation and a new scaling relation for the nucleation rate.

    Science.gov (United States)

    Tanaka, Kyoko K; Diemand, Jürg; Angélil, Raymond; Tanaka, Hidekazu

    2014-05-21

    Recent very large molecular dynamics simulations of homogeneous nucleation with (1 - 8) × 10(9) Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln J'/η is scaled by ln S/η, where the supersaturation ratio is S, η is the dimensionless surface energy, and J(') is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

  20. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas.

    Science.gov (United States)

    Culfa, O; Tallents, G J; Rossall, A K; Wagenaars, E; Ridgers, C P; Murphy, C D; Dance, R J; Gray, R J; McKenna, P; Brown, C D R; James, S F; Hoarty, D J; Booth, N; Robinson, A P L; Lancaster, K L; Pikuz, S A; Faenov, A Ya; Kampfer, T; Schulze, K S; Uschmann, I; Woolsey, N C

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μm).

  1. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  2. The Geopolitical Energy Security Evaluation Method and a China Case Application Based on Politics of Scale

    Directory of Open Access Journals (Sweden)

    Zhiding Hu

    2014-08-01

    Full Text Available Combining the theories of politics of scale from political geography, security theory from international relations, and energy security theory, and putting the scale conversion of energy contention, geographical relationship and geo-structure in geo-setting, and the three properties of safety in consideration, this paper rebuilds a geo-energy security evaluation model and uses the model to quantitatively evaluate China’s geo-oil energy security in the Russian Pacific oil pipeline construction from 1995 to 2010. Five results could be drawn as follows: (1 from the aspect of time, an up-surging Geo-oil Safety Index of China in the Russian Pacific oil pipeline construction indicated an increasingly disadvantage of China in the geo-oil contention by politics of scale. If the United States and South Korea are involved, the competition would be further intensified; (2 from the aspect of geopolitical relationship, a general decrease occurred in the Sino-Japan Energy Competition Index, but a specific increase appeared in the competition of energy imports from Russia, by China and Japan individually; (3 from the aspect of regional strategy of energy export, an obvious downward tendency in Energy Export Strategy Index showed that Russia has changed its export destination off of Europe; (4 from the aspect of geo-security, a relatively steady proportion of China’s oil consumption, and a friendly comprehensive strategic partnership of cooperation between China and Russia, reduced the worries of China’s geo-oil energy security to some extent; (5 from the aspect of geopolitical structure, the increasing comprehensive national power in China, driven by rapid economic growth, will intensify the geo-oil competition in Northeast Asia.

  3. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Scott Beatty

    2017-07-01

    Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.

  4. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    Science.gov (United States)

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    Science.gov (United States)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  6. Cross-Scale Energy Transport and Kinetic Wave Properties Associated with Kelvin-Helmholtz Instability

    Science.gov (United States)

    Moore, Thomas W.

    In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this (Dimmock et al., 2015), so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet, that contribute to this asymmetry. This thesis focuses on ion heating across the magnetopause boundary separating the magnetosheath and the magnetospheric plasmas, which is driven by mechanisms operating on fluid, ion and electron scales. One of the pending problems in collisionless astrophysical plasmas is to understand the plasma heating and transport across three fundamental scales: fluid, ion and electron. Presented here is evidence of the energy transport between the fluid and ion scales: energy is provided by a velocity shear at the magnetopause generating fluid-scale Kelvin-Helmholtz Instability and their rolled-up vortices, where an ion-scale fast magnetosonic wave packet located in the center of a Kelvin-Helmholtz vortex has sufficient energy to account for observed cold-component ion heating. In addition, a statistical analysis is performed on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold and dense magnetosheath and mixed (H. Hasegawa, Fujimoto, Phan, et al., 2004). The statistical analysis shows that during KH events there is enhanced non-adiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH

  7. Interaction Between the Atmospheric Boundary Layer and Wind Energy: From Continental-Scale to Turbine-Scale

    Science.gov (United States)

    St. Martin, Clara Mae

    Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to

  8. Next generation molten NaI batteries for grid scale energy storage

    Science.gov (United States)

    Small, Leo J.; Eccleston, Alexis; Lamb, Joshua; Read, Andrew C.; Robins, Matthew; Meaders, Thomas; Ingersoll, David; Clem, Paul G.; Bhavaraju, Sai; Spoerke, Erik D.

    2017-08-01

    Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3-xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120-180 °C) and boasts an energy density of >150 Wh kg-1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.

  9. Experimental studies of the vibroacoustic characteristics of a large-scale energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Gaev, G.P.; Kail, I.I.; Kinski, D.; Koban, I.; Zhileiko, P.G.

    1986-06-01

    The results are given from experimental studies of the vibroacoustic characteristics of a large-scale energy (velocity) pump for the purpose of diagnosing its state under various service operating conditions. Recommendations are given for measuring the statistical characteristics of vibroacoustic pump noise.

  10. LIDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling

    Energy Technology Data Exchange (ETDEWEB)

    Christen, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geography; Coops, N. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Canada Research Chairs, Ottawa, ON (Canada); Kellet, R. [British Columbia Univ., Vancouver, BC (Canada). School of Architecture and Landscape Architecture

    2010-07-01

    A remote sensing technology was used to model neighbourhood scale energy and carbon emissions in a case study set in Vancouver, British Columbia (BC). The study was used to compile and aggregate atmospheric carbon flux, urban form, and energy and emissions data in a replicable neighbourhood-scale approach. The study illustrated methods of integrating diverse emission and uptake processes on a range of scales and resolutions, and benchmarked comparisons of modelled estimates with measured energy consumption data obtained over a 2-year period from a research tower located in the study area. The study evaluated carbon imports, carbon exports and sequestration, and relevant emissions processes. Fossil fuel emissions produced in the neighbourhood were also estimated. The study demonstrated that remote sensing technologies such as LIDAR and multispectral satellite imagery can be an effective means of generating and extracting urban form and land cover data at fine scales. Data from the study were used to develop several emissions reduction and energy conservation scenarios. 6 refs.

  11. Scaling of sound emission energy and fracture behavior of cellular solid foods

    NARCIS (Netherlands)

    Meinders, M.B.J.; Vliet, van T.

    2008-01-01

    A detailed study was performed of the fracture behavior of toasted rusk rolls, a cellular solid food, at different water activities and morphologies. We find that the energies of the emitted sound pulses follow Gutenberg-Richter power laws with characteristic exponents b~1.5. The scaling exponents

  12. Unpacking the nexus : Different spatial scales for water, food and energy

    NARCIS (Netherlands)

    Bijl, David L.|info:eu-repo/dai/nl/371578418; Bogaart, Patrick W.; Dekker, Stefan C.|info:eu-repo/dai/nl/203449827; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X

    2018-01-01

    Recent years have shown increased awareness that the use of the basic resources water, food, and energy are highly interconnected (referred to as a ‘nexus’). Spatial scales are an important but complicating factor in nexus analyses, and should receive more attention – especially in the

  13. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp......Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately...... with the adsorption energy of the central, C, N, O, or S atom, the scaling constant depending only on x. A model is proposed to understand this behavior. The scaling model is developed into a general framework for estimating the reaction energies for hydrogenation and dehydrogenation reactions....

  14. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  15. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    , and the resultant uxes were compared to field based measurements and to the output of a well calibrated, physically-based distributed hydrological model. The "Triangle" approach was applied in semi-arid Spanish landscape at spatial resolutions ranging from 30 m to 4 km. The study resulted in a number...... climate, weather and numerous biophysical processes, such as plant productivity. As energy is required for ET to occur, it also forms a link between the land-surface energy uxes and water uxes. Therefore, to be able to obtain reliable estimates of ET, reliable estimates of the other land-surface energy...... of this study was to look at, and improve, various approaches for modelling the land-surface energy uxes at different spatial scales. The work was done using physically-based Two-Source Energy Balance (TSEB) approach as well as semi-empirical \\Triangle" approach. The TSEB-based approach was the main focus...

  16. Approaches to 30% Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S.; Beal, D.; Martin, E.; Fonorow, K.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the BA Program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. The scope of this report is to demonstrate achievement of these goals though the documentation of production-scale homes built cost-effectively at the community scale, and modeled to reduce whole-house energy use by 30% in the Hot Humid climate region. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  17. Micro-scale energy valorization of grape marcs in winery production plants

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  18. Workload-Aware and CPU Frequency Scaling for Optimal Energy Consumption in VM Allocation

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2014-01-01

    Full Text Available In the problem of VMs consolidation for cloud energy saving, different workloads will ask for different resources. Thus, considering workload characteristic, the VM placement solution will be more reasonable. In the real world, different workload works in a varied CPU utilization during its work time according to its task characteristics. That means energy consumption related to both the CPU utilization and CPU frequency. Therefore, only using the model of CPU frequency to evaluate energy consumption is insufficient. This paper theoretically verified that there will be a CPU frequency best suit for a certain CPU utilization in order to obtain the minimum energy consumption. According to this deduction, we put forward a heuristic CPU frequency scaling algorithm VP-FS (virtual machine placement with frequency scaling. In order to carry the experiments, we realized three typical greedy algorithms for VMs placement and simulate three groups of VM tasks. Our efforts show that different workloads will affect VMs allocation results. Each group of workload has its most suitable algorithm when considering the minimum used physical machines. And because of the CPU frequency scaling, VP-FS has the best results on the total energy consumption compared with the other three algorithms under any of the three groups of workloads.

  19. Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2017-01-01

    Full Text Available The concept of harvesting ambient energy as an alternative power supply for electronic systems like remote sensors to avoid replacement of depleted batteries has been enthusiastically investigated over the past few years. Wind energy is a potential power source which is ubiquitous in both indoor and outdoor environments. The increasing research interests have resulted in numerous techniques on small-scale wind energy harvesting, and a rigorous and quantitative comparison is necessary to provide the academic community a guideline. This paper reviews the recent advances on various wind power harvesting techniques ranging between cm-scaled wind turbines and windmills, harvesters based on aeroelasticities, and those based on turbulence and other types of working principles, mainly from a quantitative perspective. The merits, weaknesses, and applicability of different prototypes are discussed in detail. Also, efficiency enhancing methods are summarized from two aspects, that is, structural modification aspect and interface circuit improvement aspect. Studies on integrating wind energy harvesters with wireless sensors for potential practical uses are also reviewed. The purpose of this paper is to provide useful guidance to researchers from various disciplines interested in small-scale wind energy harvesting and help them build a quantitative understanding of this technique.

  20. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader

    2015-01-01

    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  1. Approaches to 30 Percent Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Beal, D. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the Building America program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  2. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-12

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

  3. Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal

    Science.gov (United States)

    Hartleb, Daniel; Papp, Balázs

    2017-01-01

    Energy metabolism is central to cellular biology. Thus, genome-scale models of heterotrophic unicellular species must account appropriately for the utilization of external nutrients to synthesize energy metabolites such as ATP. However, metabolic models designed for flux-balance analysis (FBA) may contain thermodynamically impossible energy-generating cycles: without nutrient consumption, these models are still capable of charging energy metabolites (such as ADP→ATP or NADP+→NADPH). Here, we show that energy-generating cycles occur in over 85% of metabolic models without extensive manual curation, such as those contained in the ModelSEED and MetaNetX databases; in contrast, such cycles are rare in the manually curated models of the BiGG database. Energy generating cycles may represent model errors, e.g., erroneous assumptions on reaction reversibilities. Alternatively, part of the cycle may be thermodynamically feasible in one environment, while the remainder is thermodynamically feasible in another environment; as standard FBA does not account for thermodynamics, combining these into an FBA model allows erroneous energy generation. The presence of energy-generating cycles typically inflates maximal biomass production rates by 25%, and may lead to biases in evolutionary simulations. We present efficient computational methods (i) to identify energy generating cycles, using FBA, and (ii) to identify minimal sets of model changes that eliminate them, using a variant of the GlobalFit algorithm. PMID:28419089

  4. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber

    Science.gov (United States)

    Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W.

    2011-01-01

    We report a mode-locked dissipative soliton laser based on large-mode-area chirally-coupled-core Yb-doped fiber. This demonstrates scaling of a fiber oscillator to large mode area in a format that directly holds the lowest-order mode and that is also compatible with standard fiber integration. With an all-normal-dispersion cavity design, chirped pulse energies above 40 nJ are obtained with dechirped durations below 200 fs. Using a shorter fiber, dechirped durations close to 100 fs are achieved at pump-limited energies. The achievement of correct energy scaling is evidence of single-transverse-mode operation, which is confirmed by beam-quality and spectral-interference measurements. PMID:21369169

  5. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    Science.gov (United States)

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  6. Multifractal scaling of the kinetic energy flux in solar wind turbulence

    Science.gov (United States)

    Marsch, E.; Rosenbauer, H.; Tu, C.-Y.

    1995-01-01

    The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. By present experimental technology in solar wind measurements, we cannot directly measure the real volumetric dissipation rate, epsilon(t), but are constrained to represent it by surrogating the energy flux near the dissipation range at the proton gyro scales. There is evidence for the multifractal nature of the so defined dissipation field epsilon(t), a result derived from the scaling exponents of its statistical q-th order moments. The related generalized dimension D(q) has been determined and reveals that the dissipation field has a multifractal structure. which is not compatible with a scale-invariant cascade. The associated multifractal spectrum f(alpha) has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension D(q) can, for turbulence in high-speed streams, be fitted well by the functional dependence of the p-model with a comparatively large parameter, p = 0.87. indicating a strongly intermittent multifractal energy cascade. The experimental value for D(p)/3, if used in the scaling exponent s(p) of the velocity structure function, gives an exponent that can describe some of the observations. The scaling exponent mu of the auto correlation function of epsilon(t) has also been directly evaluated. It has the value of 0.37. Finally. the mean dissipation rate was determined, which could be used in solar wind heating models.

  7. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    Science.gov (United States)

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  8. Minnesota wood energy scale-up project 1994 establishment cost data

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M. [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  9. Sustainability of utility-scale solar energy – critical ecological concepts

    Science.gov (United States)

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  10. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  11. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  12. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  13. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    Science.gov (United States)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta

  14. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  15. Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A; Barty, C J

    2006-06-23

    The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of apertures, or with

  16. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    Directory of Open Access Journals (Sweden)

    Brett Gareth

    2014-01-01

    Full Text Available Liquid Air Energy Storage (LAES provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh hosted at SSE's (Scottish & Southern Energy 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  17. Potential for small-scale, decentralized energy sources and the Federal role in their development

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D.

    1978-02-01

    The idea that the solution to our energy problems is to be found in an expanded role for small-scale, decentralized energy sources, particularly solar energy, has gained considerable attention and increasing respectability in recent years. One of the most articulate spokesmen for this point of view is Denis Hayes. Mr. Hayes explained his perspective on the energy problem to an invited audience of about 85 professionals and students in the energy policy field. This paper is an edited version of Mr. Hayes' presentation. In his presentation, Mr. Hayes discussed the prospects for fossil and nuclear energy, stressing the potential limitations on coal use due to the problem of CO/sub 2/ and the greenhouse effect, and highlighting the hazards of the plutonium economy. He described the role conservation can play in dealing with the energy problem, but declared that conservation alone is not enough. There is still a need, he indicated, to replace declining energy sources with some alternative. In his view, the most promising alternative is solar energy, and Mr. Hayes discussed the various ways in which it can be utilized. The presentation concluded with a number of suggestions regarding Federal actions and policy initiatives that Mr. Hayes feels are needed to encourage solar energy development. These ideas served as the focus for the question and answer session which followed the presentation. Questions dealt with many issues, including priorities in solar R and D, the role of the Federal government vis a vis the private sector, the timing of solar energy implementation, and the strategy and tactics of the solar movement.

  18. Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    DEFF Research Database (Denmark)

    Standardi, Laura

    Sources (RESs) in the smart grids is increasing. These energy sources bring uncertainty to the production due to their fluctuations. Hence,smart grids need suitable control systems that are able to continuously balance power production and consumption.  We apply the Economic Model Predictive Control (EMPC.......  The mathematical model of the large-scale energy system embodies the decoupled dynamics of each power units. Moreover,all units of the grid contribute to the overall power production. Economic Model Predictive Control (EMPC) This control strategy is an extension of the Model Predictive Control (MPC......In this thesis, we consider control strategies for large and distributed energy systems that are important for the implementation of smart grid technologies.  An electrical grid has to ensure reliability and avoid long-term interruptions in the power supply. Moreover, the share of Renewable Energy...

  19. Revitalization of Energy Supply Systems in the Scale of a Town, a District and an Island

    Directory of Open Access Journals (Sweden)

    Juchimiuk Justyna

    2016-09-01

    Full Text Available Model actions undertaken in HafenCity and Wilhelmsburg during IBA Hamburg 2006- 13 as well as energy transformation of Danish island of Samsø towards self-sufficiency are examples of the use of energy as one of the key factors in the design of revitalization process in various scales. An important issue is to determine the impact of renewable energy systems on design process, architecture and urbanism of revitalized structures. Article examines the programs and projects related to the processes: renewal of degraded inner-industrial areas (brownfields, ecological restoration of degraded land, the revitalization of port and underdeveloped areas in the aspects of climate protection, the use of energy from renewable sources and improvement of technical conditions of building substance while maintaining the principles of sustainable development.

  20. Revitalization of Energy Supply Systems in the Scale of a Town, a District and an Island

    Science.gov (United States)

    Juchimiuk, Justyna

    2016-09-01

    Model actions undertaken in HafenCity and Wilhelmsburg during IBA Hamburg 2006- 13 as well as energy transformation of Danish island of Samsø towards self-sufficiency are examples of the use of energy as one of the key factors in the design of revitalization process in various scales. An important issue is to determine the impact of renewable energy systems on design process, architecture and urbanism of revitalized structures. Article examines the programs and projects related to the processes: renewal of degraded inner-industrial areas (brownfields), ecological restoration of degraded land, the revitalization of port and underdeveloped areas in the aspects of climate protection, the use of energy from renewable sources and improvement of technical conditions of building substance while maintaining the principles of sustainable development.

  1. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    Science.gov (United States)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  2. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  3. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    Science.gov (United States)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  4. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  5. Current integrator for calibration system of energy scale of electrostatic accelerator

    CERN Document Server

    Nagornyj, A G

    2002-01-01

    To calibrate energy scale of electrostatic accelerator one designed a current integrator based on a reference charge equalizing. Current integrator measures positive charge coming to the target at its bombardment by a particle beam via charge transformation into number of pulses. Paper describes a basic diagram of integrator and lists its basic characteristics. Current integrator operates within 10 nA - 30 mu A current range. Its transformation factor is equal to 10 sup 9 pulses/C, while transformation error is maximum 1.2x10 sup - sup 1 sup 2 A/deg C. Current integrator showed stable operation with 2 MeV small-scale electrostatic accelerator

  6. Scales of Marine Turbulence in Cook Strait (New Zealand) in the Context of Tidal Energy Turbines

    Science.gov (United States)

    Stevens, Craig

    2017-04-01

    Cook Strait, the channel separating New Zealand's North and South Islands, is at it's narrowest around 22 km across with flows driven by a semidiurnal tide, wind and a baroclinic pressure gradient. Water depths are around 250-300 m in the main part of the channel, with shoals to the south and the submerged Fishermans Rock (aka pinnacle) in the centre northwest of the Strait. The substantial tidal flow speed is due to the tide being nearly out of phase comparing the ends of the strait and further enhanced by a narrowing of the strait. It has significant potential for a tidal energy resource suitable for extraction due to both its significant energy levels but also its proximity to electricity infrastructure and nationally high uptake of renewable energy in general. Here we describe recent flow and turbulence data and contextualise them in terms of scales relevant to marine energy extraction. With flow speeds reaching 3 m s-1 in a water column of > 200 m depth the setting is heuristically known to be highly turbulent. Turbulent energy dissipation rates are modest but high for oceans, around 5x10-5 W kg-1. Thorpe scales, the observed quantity representing the energy-bearing scale, are often as much as one quarter of the water depth. This means eddy sizes can potentially be larger than blade length. A boundary-layer structure was apparent but highly variable. This has implications for both operation of tidal turbines, as well as modulating their effect on the environment. Fishermans Rock itself is interesting as if can be considered a proxy for a larger array of turbines.

  7. Considerations for reducing food system energy demand while scaling up urban agriculture

    Science.gov (United States)

    Mohareb, Eugene; Heller, Martin; Novak, Paige; Goldstein, Benjamin; Fonoll, Xavier; Raskin, Lutgarde

    2017-12-01

    There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food–energy–water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA. Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs. By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the

  8. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO...

  9. Electricity network limitations on large-scale deployment of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, R.J.

    1999-07-01

    This report sought to identify limitation on large scale deployment of wind energy in the UK. A description of the existing electricity supply system in England, Scotland and Wales is given, and operational aspects of the integrated electricity networks, licence conditions, types of wind turbine generators, and the scope for deployment of wind energy in the UK are addressed. A review of technical limitations and technical criteria stipulated by the Distribution and Grid Codes, the effects of system losses, and commercial issues are examined. Potential solutions to technical limitations are proposed, and recommendations are outlined.

  10. A Policymaker's Guide to Scaling Home Energy Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    LeBaron, Robin [Home Performance Coalition, Moon, PA (United States); Saul-Rinaldi, Kara [Home Performance Coalition, Moon, PA (United States)

    2015-09-01

    There has never been a better time to launch initiatives to promote residential energy efficiency savings. Over the past several decades, residential retrofit programs have demonstrated that energy efficiency measures contribute to achieving multiple benefits, including but not limited to reductions in home energy consumption, stabilization improvements for the grid by shaving peak loads, saving consumers millions on utility bills, and significantly reducing carbon emissions. Although a number of barriers to widespread uptake of home energy upgrades persist, the lessons learned as a result of the 2009 stimulus funding1 have resulted in a set of policy approaches that create new strategies for taking residential energy efficiency to scale.2 The identification of these approaches is well timed; energy efficiency is often the least expensive and most cost effective way to comply with a variety of federal, state and local policies. This Guide is designed to help state and local policymakers to take full advantage of new policy developments by providing them with a comprehensive set of tools to support launching or accelerating residential energy efficiency programs. It is written primarily for state and local policymakers, including state and local executives, legislators, public utility commissioners, and the staff who advise them.

  11. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater

    Science.gov (United States)

    Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen

    2015-11-01

    Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.

  12. Time scale for energy equipartition in a two-dimensional FPU model.

    Science.gov (United States)

    Benettin, Giancarlo

    2005-03-01

    The FPU problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in dimension two, more precisely in a model with triangular cell and nearest-neighbors Lennard-Jones interaction. The number n of degrees of freedom ranges from 182 to 6338. Energy is initially equidistributed among a small number n(0) of low frequency modes, with n(0) proportional to n. We study numerically the time evolution of the so-called spectral entropy and the related "effective number" n(eff) of degrees of freedom involved in the dynamics; in this (rather typical) way we can estimate, for each n and each specific energy (energy per degree of freedom) epsilon, the time scale T(n)(epsilon) for energy equipartition. Numerical results indicate that in the thermodynamic limit the equipartition times are short: more precisely, for large n at fixed epsilon we find a limit curve T(infinity)(epsilon), and T(infinity) grows only as epsilon(-1) for small epsilon. Larger equipartition times are obtained by lowering epsilon, at fixed n, below a crossover value epsilon(c)(n). However, epsilon(c) appears to vanish by increasing n (faster than 1n), and the total energy E=nepsilon, rather than epsilon, appears to be the relevant variable when n is large and epsilonmodel and this kind of initial conditions, the FPU phenomenon, namely the lack of energy equipartition in physically reasonable times, practically disappears.

  13. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Riddick, Thomas [Univ. College London, Bloomsbury (United Kingdom)

    2012-06-15

    The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → eve channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c2 and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c2. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.

  14. Constraints on Dark Energy, Observable-mass Scaling Relations, Neutrino Properties and Gravity from Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrino...... properties and gravity. I will present the novel statistical framework we employed to self-consistently and simultaneously constrain cosmology and observable-mass scaling relations accounting for survey biases, parameter covariances and systematic uncertainties. Allowing the dark energy equation of state...... and the linear growth index to take any constant values, we find no evidence for departures from the standard cosmological paradigm – General Relativity plus a cosmological constant and cold dark matter. I will review in detail our results and demonstrate the power of X-ray cluster studies to constrain both...

  15. A potential energy scaling Monte Carlo simulation of thin film nucleation and growth

    Science.gov (United States)

    Outlaw, R. A.; Heinbockel, J. H.

    1983-01-01

    The initial growth of thin Ge fims on the (100) surface of an Fe substrate is investigated theoretically by means of Monte Carlo simulations based on a potential-energy-scaling technique. The substrate is modeled as a 20 x 20-square array with periodic boundary conditions, as described by Heinbockel et al. (1983), and the movement of surface atoms under the influence of the substrate interaction potential and the lateral interaction of neighboring atoms is explored via continuous updating (on the time scale of single events) of the potential energy at each site in the array. Results for the clustering of nine dispersed atoms over 1.0 s at 600 K and for deposition at 5 x 10 to the -14th/sq cm s over 2.0 s at 500 K are presented graphically.

  16. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    Science.gov (United States)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  17. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  18. Collisional Scaling of the Energy Transfer in Drift-Wave Zonal Flow Turbulence.

    Science.gov (United States)

    Schmid, B; Manz, P; Ramisch, M; Stroth, U

    2017-02-03

    The collisionality scaling of density and potential coupling together with zonal flow energy transfer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of 128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line with theoretical expectations and is a first experimental verification of the importance of collisionality for large-scale structure formation in magnetically confined toroidal plasmas.

  19. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Science.gov (United States)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  20. A simplified framework to assess the feasibility of zero-energy at the neighbourhood / community scale

    OpenAIRE

    Marique, Anne-Françoise; Reiter, Sigrid

    2014-01-01

    Zero-energy buildings (ZEBs) are attracting increasing interest internationally in policies aiming at a more sustainably built environment, the scientific literature and practical applications. Although “zero energy” can be considered at different scales (e.g., community, city), the most common approach adopts only the perspective of the individual building. Moreover, the feasibility of this objective is not really addressed, especially as far as the retrofitting of the existing building stoc...

  1. Coupling meso- and micro-scale fluid dynamics codes for wind-energy computing

    Science.gov (United States)

    Satkauskas, Ignas; Sprague, Michael; Churchfield, Matt

    2012-11-01

    Enabled by peta-scale supercomputing, the next generation of computer models for wind energy will simulate a vast range of scales and physics, spanning from wind-turbine structural dynamics and blade-scale turbulence to meso-scale atmospheric flow. This work focuses on new mathematical interface conditions and computational algorithms for coupling meso-scale numerical-weather-prediction codes with micro-scale turbine-vicinity fluid-dynamics codes. Here, an inherent challenge exists when the weather code is based on the compressible Euler equations while the turbine-vicinity flow is modeled by the incompressible Navier-Stokes equations. We propose several one- and two-way code-interaction approaches. These approaches are implemented in a two-dimensional testing platform composed of two in-house codes: (1) a finite-difference code that mimics the weather research and forecasting (WRF) solver and (2) an embedded-domain code based on a common finite-volume approach. Supported by the Center for Research and Education in Wind.

  2. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    Science.gov (United States)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  3. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    Science.gov (United States)

    MacCrann, N.; Aleksić, J.; Amara, A.; Bridle, S. L.; Bruderer, C.; Chang, C.; Dodelson, S.; Eifler, T. F.; Huff, E. M.; Huterer, D.; Kacprzak, T.; Refregier, A.; Suchyta, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Sheldon, E.; Soares-Santos, M.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; DES Collaboration

    2017-03-01

    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback, and active galactic nuclei feedback. While muddying any cosmological information that is contained in small-scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. (2015) halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on non-linear scales, 'lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear data sets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

  4. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll...

  5. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation

    Science.gov (United States)

    Katzner, Todd E.; Nelson, David M.; Braham, Melissa; Doyle, Jacqueline M.; Fernandez, Nadia B.; Duerr, Adam E.; Bloom, Peter H.; Fitzpatrick, Matthew C.; Miller, Tricia A.; Culver, Renee C. E.; Braswell, Loan; DeWoody, J. Andrew

    2017-01-01

    Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.

  6. Scaling of energy amplification in the weak and strong elastic limits of viscoelastic shear flows

    Science.gov (United States)

    Hameduddin, Ismail; Zaki, Tamer; Gayme, Dennice

    2015-11-01

    We investigate energy amplification in viscoelastic parallel shear flows in terms of the steady-state variance maintained in the velocity and polymer stresses when either quantity is excited with white noise. We derive analytical expressions that show how this amplification scales with both Reynolds (Re) and Weissenberg (Wi) numbers. The analysis focuses on the streamwise-constant fields in the limits of high and low elasticity. By introducing stochastic forcing in both the velocity and the polymer stress dynamics, we show that at low elasticity the scaling retains a form similar to the well-known O(Re3) relationship but with an added elastic correction. At high elasticity, however, the scaling is O(Wi3) with a viscous correction. Our results demonstrate that energy amplification in a viscoelastic flow can be considerable even at low Re, correlating well with recent observations of elastic turbulence in creeping flows. We also note that forcing in the polymer stress dynamics can contribute significantly to the energy amplification.

  7. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation.

    Science.gov (United States)

    Katzner, Todd E; Nelson, David M; Braham, Melissa A; Doyle, Jacqueline M; Fernandez, Nadia B; Duerr, Adam E; Bloom, Peter H; Fitzpatrick, Matthew C; Miller, Tricia A; Culver, Renee C E; Braswell, Loan; DeWoody, J Andrew

    2017-04-01

    Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences. © 2016 Society for Conservation Biology.

  8. Energy use and carbon dioxide emission of Indonesian small and medium scale industries

    Energy Technology Data Exchange (ETDEWEB)

    Priambodo, A.; Kumar, S. [Asian Inst. of Technology, Pathumthani (Thailand). Energy Program

    2001-07-01

    In Asia, small and medium scale industries (SMIs) form a significant number of establishments contributing to economic growth, stimulating indigenous entrepreneurship, leading to overall development and serving as a training center for developing skills of industrial workers and entrepreneurs. Because of the nature of these enterprises with their inefficient use of energy and other resources, they contribute to local pollution and other environmental problems. Studies on the emission of carbon dioxide (CO{sub 2}) from these industries are few, especially in developing countries. This article presents an estimation of CO{sub 2} emission due to energy (fuel and electricity) consumption in seven SMI sectors in Indonesia. The specific energy consumption and the energy intensity (energy use per value addition) of these sectors have been estimated. Results of the energy use survey and detailed energy audits show that the highest specific fuel consumption is found in the textile industry, followed by the fabricated metal and chemical industries, while the highest specific electricity consumption is found in the fabricated metal industry, followed by the textile and chemical industries. The highest energy intensity among small industry sectors is found in the food and beverages sector. CO{sub 2} emission from the SMI sectors of Indonesia was estimated based on Intergovernmental panel on Climate Change methodology by considering the emission from each audited factory and from the aggregated energy consumption data of the SMI sectors. The textile and fabricated metal industry contribute the highest specific CO{sub 2} emission. The analysis shows that the contribution of liquid fuels to CO{sub 2} emission is very significant in the SMI sector. The overall contribution by the small industrial sector is about 366,000 tons in 1993 compared to about 46 million tons generated by all industrial sectors. (Author)

  9. z-Scaling and Jet Production in Hadron-Hadron Collisions at High Energies

    Science.gov (United States)

    Tokarev, M. V.; Dedovich, T. G.

    Inclusive jet production in ¯ pp and pp collisions at high energies in the framework of the concept of z-scaling is studied. The available experimental data on the cross-section of jet production obtained by the UA1, UA2, CDF and D0 Collaborations are used for analysis. The scaling function ψ(z) is expressed via inclusive cross-section Ed3σ/dq3 and jet multiplicity density ρ(s,η). The properties of z-scaling, the energy and angular independence of ψ(z) and the power behavior, ψ(z) z-α, of jet and dijet production were found. Based on the properties of z-scaling, the dependence of the cross-section of jets produced in ¯ pp and pp collisions on transverse momentum q⊥ over the central range is predicted. The obtained results can be of interest for future experiments planned at RHIC, LHC, HERA and Tevatron to search for new phenomena in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions.

  10. Complexity in earthquake sequences controlled by multi-scale heterogeneity in fault fracture energy

    Science.gov (United States)

    Aochi, H.; Ide, S.

    2008-12-01

    A series of dynamic rupture events under constant tectonic loading is simulated on a fault with multi-scale heterogeneity and a stochastic rupture initiation process. The fracture energy of the fault plane is assumed to have multi-scale heterogeneous distribution using fractal circular patches. The stochastic rupture initiation process with a function of the accumulated stress is introduced in order to take account for unknown smaller- scale heterogeneity and incertitude. Five realizations of a statistical spatial distribution of fracture energy (fault heterogeneity maps) are tested for the simulations of earthquake sequences during a few seismic cycles. The diversity of earthquake sequences is principally controlled by the spatial distribution of the patches. The effect of dynamic rupture appears in the residual stress after the characteristic events due to their directivity and this localizes the subsequent sequences. Although the characteristic earthquakes occur rather regularly in time and similarly in different seismic cycles, some irregular behaviors are found, based on the heterogeneity maps and the randomness of the preceding earthquake sequence, leading to a visible anomaly in the seismicity. Such anomaly is not predicable, but understandable through the analysis of the concerned earthquakes during the cycle. The similarity and the diversity simulated in this study, governed by the structure of an inherent distribution of multi-scale heterogeneity, suggests the importance of pre-existing heterogeneity field along the fault for the appearance of earthquake sequences, including those that are characteristic.

  11. Understanding the scaling-up of community energy niches through Strategic Niche Management Theory: insights from Finland

    OpenAIRE

    Ruggiero, Salvatore; Martiskainen, Mari; Onkila, Tiina

    2018-01-01

    The growing phenomenon of civil society involvement in renewable energy generation has attracted researchers’ interest. However, rather little is known of how a diverse and relatively small sector such as community energy could scale up and promote a change in energy production. We examine this issue through the lens of Strategic Niche Management (SNM) and conceptualize community energy as a socio-technical niche that holds the potential to promote a transition to renewable energy. Drawing on...

  12. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx)

    Science.gov (United States)

    Baudin, Pablo; Kristensen, Kasper

    2017-06-01

    We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D')-NTOs, which are obtained by diagonalizing generalized hole and particle density matrices determined from configuration interaction singles (CIS) information and additional terms that represent correlation effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the CIS(D')-NTOs, and a standard CC excitation energy calculation is then performed in that reduced orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Framework for Low-scaling Excitation energy calculations). We calculate second-order approximate CC singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation energies for a series of solvated formamide clusters (up to 4836 basis functions).

  13. High-pT Jet Energy Scale Uncertainty from single hadron response with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration

    2016-01-01

    The jet energy scale (JES) uncertainty is estimated using different methods at different p$_\\text{T}$ ranges. In-situ techniques exploiting the p$_\\text{T}$ balance between a jet and a reference object (e.g. Z or gamma) are used at lower p$_\\text{T}$, but at very high p$_\\text{T}$ (> 2.5 TeV) there is not enough statistics for such in-situ techniques. A low JES uncertainty at high-p$_\\text{T}$ is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest p$_\\text{T}$ range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy deposition belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.

  14. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  15. First Joint Workshop on Energy Management for Large-Scale Research Infrastructures

    CERN Multimedia

    2011-01-01

      CERN, ERF (European Association of National Research Facilities) and ESS (European Spallation Source) announce the first Joint Workshop on Energy Management for Large-Scale Research Infrastructures. The event will take place on 13-14 October 2011 at the ESS office in Sparta - Lund, Sweden.   The workshop will bring together international experts on energy and representatives from laboratories and future projects all over the world in order to identify the challenges and best practice in respect of energy efficiency and optimization, solutions and implementation as well as to review the challenges represented by potential future technical solutions and the tools for effective collaboration. Further information at: http://ess-scandinavia.eu/general-information

  16. Evaluation of human-scale motion energy harvesting for wearable electronics

    Science.gov (United States)

    Kathpalia, Bharat; Tan, David; Stern, Ilan; Erturk, Alper

    2017-04-01

    We explore the potential of human-scale motion energy harvesting toward enabling self-powered wearable electronic components to avoid the burden of battery replacement and charging in next-generation wireless applications. The focus in this work is piezoelectric transduction for converting human motion into electricity. Specifically, we explore three piezoelectric energy harvesting approaches experimentally and numerically: (1) Direct base excitation of a cantilevered bimorph configuration without/with a tip mass; (2) plucking of a bimorph cantilever using a flexible/nonlinear plectrum; and (3) direct force excitation of a curved unimorph. In all cases, electromechanical models are developed and experimental validations are also presented. Specifically a nonlinear plectrum model is implemented for the plucking energy harvester. Average power outputs are on the order 10-100 uW and can easily exceed mW in certain cases via design optimization.

  17. From eV to EeV: Neutrino Cross Sections Across Energy Scales

    CERN Document Server

    Formaggio, J A

    2013-01-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactio...

  18. A potential-energy scaling model to simulate the initial stages of thin-film growth

    Science.gov (United States)

    Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.

    1983-01-01

    A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.

  19. On the modifications of near-inertial waves at fronts: implications for energy transfer across scales

    Science.gov (United States)

    Thomas, Leif N.

    2017-10-01

    In the ocean, wind-generated kinetic energy (KE) manifests itself primarily in balanced currents and near-inertial waves. The dynamics of these flows is strongly constrained by the Earth's rotation, causing the KE in balanced currents to follow an inverse cascade but also preventing wave-wave interactions from fluxing energy in the near-inertial band to lower frequencies and higher vertical wavenumbers. How wind-generated KE is transferred to small-scale turbulence and dissipated is thus a non-trivial problem. This article presents a review of recent theoretical calculations and numerical simulations that demonstrate how some surprising modifications to internal wave physics by the lateral density gradients present at ocean fronts allow for strong interactions between balanced currents and near-inertial waves that ultimately result in energy loss for both types of motion.

  20. Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.

    Science.gov (United States)

    Preuss, R; Dinklage, A; Weller, A

    2007-12-14

    High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.

  1. Evaluation of Characteristic Energy Scales of Pressure Stabilized Oxygen Chain States in YBa2Cu3Ox Films

    Science.gov (United States)

    2017-03-14

    TECHNICAL REPORT 3060 March 2016 Evaluation of Characteristic Energy Scales of Pressure Stabilized Oxygen Chain States in YBa2Cu3O∇x...the superconducting effective mass, m∗, and the superconducting penetration depth, λ, we examine the nature of characteristic energy scales of...quantum-like “states” in that they have near integer ratios of the superconducting to normal state carrier densities and condensation energy densities

  2. Energy-Water-Land-Climate Nexus: Modeling Impacts from the Asset to Regional Scale

    Science.gov (United States)

    Tidwell, V. C.; Bennett, K. E.; Middleton, R. S.; Behery, S.; Macknick, J.; Corning-Padilla, A.; Brinkman, G.; Meng, M.

    2016-12-01

    A critical challenge for the energy-water-land nexus is understanding and modeling the connection between the natural system—including changes in climate, land use/cover, and streamflow—and the engineered system including water for energy, agriculture, and society. Equally important is understanding the linkage across scales; that is, how impacts at the asset level aggregate to influence behavior at the local to regional scale. Toward this need, a case study was conducted featuring multi-sector and multi-scale modeling centered on the San Juan River basin (a watershed that accounts for one-tenth of the Colorado River drainage area). Simulations were driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. The Variable Infiltration Capacity (VIC) hydrologic model was fitted with a custom vegetation mortality sub-model and used to estimate tributary inflows to the San Juan River and estimate reservoir evaporation. San Juan River operations, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries out to the year 2100. Major water demands included two large coal-fired power plants, a local electric utility, river-side irrigation, the Navajo Indian Irrigation Project and instream flows managed for endangered aquatic species. Also tracked were basin exports, including water (downstream flows to the Colorado River and interbasin transfers to the Rio Grande) and interstate electric power transmission. Implications for the larger western electric grid were assessed using PLEXOS, a sub-hourly dispatch, electric production-cost model. Results highlight asset-level interactions at the energy-water-land nexus driven by climate and population dynamics; specifically, growing vulnerabilities to shorted water deliveries. Analyses also explored linkages across geographic scales from the San Juan to the larger

  3. A Feasibility Study on Operating Large Scale Compressed Air Energy Storage in Porous Formations

    Science.gov (United States)

    Wang, B.; Pfeiffer, W. T.; Li, D.; Bauer, S.

    2015-12-01

    Compressed air energy storage (CAES) in porous formations has been considered as one promising option of large scale energy storage for decades. This study, hereby, aims at analyzing the feasibility of operating large scale CAES in porous formations and evaluating the performance of underground porous gas reservoirs. To address these issues quantitatively, a hypothetic CAES scenario with a typical anticline structure in northern Germany was numerically simulated. Because of the rapid growth in photovoltaics, the period of extraction in a daily cycle was set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. The gas turbine scenario was defined referring to the specifications of the Huntorf CAES power plant. The numerical simulations involved two stages, i.e. initial fill and cyclic operation, and both were carried out using the Eclipse E300 simulator (Schlumberger). Pressure loss in the gas wells was post analyzed using an analytical solution. The exergy concept was applied to evaluate the potential energy amount stored in the specific porous formation. The simulation results show that porous formations prove to be a feasible solution of large scale CAES. The initial fill with shut-in periods determines the spatial distribution of the gas phase and helps to achieve higher gas saturation around the wells, and thus higher deliverability. The performance evaluation shows that the overall exergy flow of stored compressed air is also determined by the permeability, which directly affects the deliverability of the gas reservoir and thus the number of wells required.

  4. Scale dependent controls of stream water temperatures - interaction of advective and diffusive energy fluxes

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2017-04-01

    Diurnal stream water temperature amplitudes (WTA) have a large impact on local ecohydrological conditions, e.g. aquatic habitat quality or biogeochemical cycling. Depending on discharge, streambed geomorphology, connectivity to the groundwater, hyporheic exchange flow and other local factors such as shading and climate conditions observable WTAs vary strongly from up- to downstream and can locally even exceed seasonal temperature variations. The main process which is responsible for the local expression of WTA is the energy balance which can be either dominated by advective energy fluxes (e. g. discharge and upwelling groundwater) or by diffusive energy fluxes (e. g. radiation, latent and sensible heat fluxes, heat exchange with the streambed). In recent years research has mainly focused on improving our knowledge how groundwater-surface water interaction, hyporheic exchange and shading processes influence locally observable WTA in smaller streams, while for larger streams or rivers WTA might even be non-observable throughout the year. Within this study we analyze the scaling behavior of advective and diffusive energy fluxes from small to large streams to better understand on which scales and under which conditions WTA might be dominated either by advective or diffusive energy fluxes and how groundwater - surface water interaction influences this relationship. For this purpose, we carried out a synthetic model study. Using published hydraulic geometry relations for different types of rivers, we apply a conceptual energy balance- and mixing model, which includes GW-SW interaction, discharges from 100 l/s up to 50 m3/s on length scales from 100 m up to 50 km. Simulated boundary conditions were constant discharges at the upstream boundary and constant and uniformly distributed exchange fluxes to the groundwater. Upstream water temperatures were 15 °C (WTA of 5 °C), while groundwater temperature was assumed to be cooler than the stream with 9°C. Net diffusive energy

  5. Small-scale heating events in the solar atmosphere. II. Lifetime, total energy, and magnetic properties

    Science.gov (United States)

    Guerreiro, N.; Haberreiter, M.; Hansteen, V.; Schmutz, W.

    2017-07-01

    Context. Small-scale heating events (SSHEs) are believed to play a fundamental role in understanding the process responsible for heating of the solar corona, the pervading redshifts in the transition region, and the acceleration of spicules. Aims: We determine the properties of the SSHEs and the atmospheric response to them in 3D magnetohydrodynamics (3D-MHD) simulations of the solar atmosphere. Methods: We developed a method for identifying and following SSHEs over their lifetime, and applied it to two simulation models. We identified the locations where the energy dissipation is greatest inside the SSHEs volume, and we traced the SSHEs by following the spatial and temporal evolution of the maximum energy dissipation inside the SSHEs volume. Results: The method is effective in following the SSHEs. We can determine their lifetime, total energy, and properties of the plasma, as well as the magnetic field orientation in the vicinity of the SSHEs. Conclusions: We determine that the SSHEs that have the potential to heat the corona live less than 4 min, and typically the energy they release ranges from 1020 to 1024 erg. In addition, the directional change of the field lines on the two sides of the current sheet constituting the SSHEs ranges from 5° to 15° at the moment of the absolute maximum energy dissipation.

  6. Scales of Disconnection: Mismatches Shaping the Geographies of Emerging Energy Landscapes

    Directory of Open Access Journals (Sweden)

    Warren Charles R.

    2014-07-01

    Full Text Available The networked nature of energy systems produces geographies of connection, but the focus of this paper is on geographies of disconnection, exploring the multi-scalar processes which shape the context in which energy landscapes emerge. It does so, first, by presenting a case study of farmers' attitudes to perennial energy crops in south-west Scotland. Their strong antipathy to converting farmland to short-rotation coppice, and the reasons for their negative attitudes, exemplify some of the wider mismatches and disconnects which the paper goes on to discuss. These include socio-political and socio-cultural mismatches, and a range of essentially geographical disconnects which are scalar in nature, such as the familiar local-global tension and the mismatch between the scales (both temporal and spatial at which environmental and human systems organise and function. The discussion shows how these disjunctions not only affect energy geographies but also raise far-reaching questions about the ability of current governance structures and liberal democratic systems to respond swiftly and effectively to global challenges. The way that these mismatches are negotiated will mould both the character of future energy landscapes and the speed at which they take shape.

  7. Convective kinetic energy equation under the mass-flux subgrid-scale parameterization

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-03-01

    The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.

  8. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    Directory of Open Access Journals (Sweden)

    Iván Tomás Cotes-Ruiz

    Full Text Available Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS. The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  9. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    Science.gov (United States)

    Cotes-Ruiz, Iván Tomás; Prado, Rocío P; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás

    2017-01-01

    Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  10. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  11. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    Science.gov (United States)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  12. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  13. Electricity Generation and Energy Cost Estimation of Large-Scale Wind Turbines in Jarandagh, Iran

    Directory of Open Access Journals (Sweden)

    Kasra Mohammadi

    2014-01-01

    Full Text Available Currently, wind energy utilization is being continuously growing so that it is regarded as a large contender of conventional fossil fuels. This study aimed at evaluating the feasibility of electricity generation using wind energy in Jarandagh situated in Qazvin Province in north-west part of Iran. The potential of wind energy in Jarandagh was investigated by analyzing the measured wind speed data between 2008 and 2009 at 40 m height. The electricity production and economic evaluation of four large-scale wind turbine models for operation at 70 m height were examined. The results showed that Jarandagh enjoys excellent potential for wind energy exploitation in 8 months of the year. The monthly wind power at 70 m height was in the range of 450.28–1661.62 W/m2, and also the annual wind power was 754.40 W/m2. The highest capacity factor was obtained using Suzlon S66/1.25 MW turbine model, while, in terms of electricity generation, Repower MM82/2.05 MW model showed the best performance with total annual energy output of 5705 MWh. The energy cost estimation results convincingly demonstrated that investing on wind farm construction using all nominated turbines is economically feasible and, among all turbines, Suzlon S66/1.25 MW model with energy cost of 0.0357 $/kWh is a better option.

  14. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    Science.gov (United States)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  15. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales.

    Science.gov (United States)

    Tack, Jason D; Fedy, Bradley C

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  16. Landscapes for energy and wildlife: conservation prioritization for golden eagles across large spatial scales

    Science.gov (United States)

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  17. New Strategies for Atomic Scale Measurements at Interfaces using Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Muller, David A.

    1997-03-01

    The local electronic structure of a material can be measured directly from the energy loss spectrum of a swift electron scattered through it. When the electron beam is focussed down to the width of an atomic column, the electronic density of states at an interface, grain boundary or impurity site can be decomposed by site, chemical species and angular momentum. Here, we discuss the use of electron energy loss spectroscopy (EELS) fine structure to provide insight into the origin of grain boundary and interfacial properties. EELS can reveal the physics underlying why a particular local bonding arrangement develops. Even a qualitative understanding of local bonding can help indentify possible sites for chemical reactions and potentially weak points at a grain boundary. More can be done however: an EELS sum rule allows quantitative estimates of grain boundary energies. This is particularly useful at general, large angle grain boundaries where no other atomic scale information can be obtained. As an example, we show how atomic-scale EELS measurements of grain boundaries in Ni_3Al (D.A. Muller, S. Subramanian, P.E. Batson, S.L. Sass, J. Silcox, Phys. Rev. Lett.) 75 4744 (1995). lead not only to rules-of-thumb for segregation and bond strength, but also to quantitative estimates of the boundary cohesion. Application to magnetic multilayers and Al:Cu interconnects will also be touched on. (Work at Cornell supported by DOE grant DE-FG02-87ER45322 and NSF grant DMR-9121654.)

  18. A Study on Applicability of Distributed Energy Generation, Storage and Consumption within Small Scale Facilities

    Directory of Open Access Journals (Sweden)

    Jesús Rodríguez-Molina

    2016-09-01

    Full Text Available Distributed generation and storage of energy, conceived as one of the prominent applications of the Smart Grid, has become one of the most popular ways for generation and usage of electricity. Not only does it offer environmental advantages and a more decentralized way to produce energy, but it also enables former consumers to become producers (thus turning them into prosumers. Alternatively, regular power production and consumption is still widely used in most of the world. Unfortunately, accurate business models representations and descriptive use cases for small scale facilitates, either involved in distributed energy or not, have not been provided in a descriptive enough manner. What is more, the possibilities that electricity trade and its storage and consumption activities offer for small users to obtain profits are yet to be addressed and offered to the research community in a thorough manner, so that small consumers will use them to their advantage. This paper puts forward a study on four different business models for small scale facilities and offers an economical study on how they can be deployed as a way to offer profitability for end users and new companies, while at the same time showing the required technological background to have them implemented.

  19. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    Science.gov (United States)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-11-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  20. Jet Energy Scale and its Uncertainties using the Heavy Ion Jet Reconstruction Algorithm in pp Collisions

    CERN Document Server

    Puri, Akshat; The ATLAS collaboration

    2017-01-01

    ATLAS uses a jet reconstruction algorithm in heavy ion collisions that takes as input calorimeter towers of size $0.1 \\times \\pi/32$ in $\\Delta\\eta \\times \\Delta\\phi$ and iteratively determines the underlying event background. This algorithm, which is different from the standard jet reconstruction used in ATLAS, is also used in the proton-proton collisions used as reference data for the Pb+Pb and p+Pb. This poster provides details of the heavy ion jet reconstruction algorithm and its performance in pp collisions. The calibration procedure is described in detail and cross checks using photon- jet balance are shown. The uncertainties on the jet energy scale and the jet energy resolution are described.

  1. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seasholtz, Jeff [East Penn Mfg. Co., Inc., Lyons, PA (United States)

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the East Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).

  2. Linear-scaling generation of potential energy surfaces using a double incremental expansion

    CERN Document Server

    König, Carolin

    2016-01-01

    We present a combination of the incremental expansion of potential energy surfaces (PESs), known as n-mode expansion, with the incremental evaluation of the electronic energy in a many-body approach. The application of semi-local coordinates in this context allows the generation of PESs in a very cost-efficient way. For this, we employ the recently introduced FALCON (Flexible Adaptation of Local COordinates of Nuclei) coordinates. By introducing an additional transformation step, concerning only a fraction of the vibrational degrees of freedom, we can achieve linear scaling of the accumulated cost of the single point calculations required in the PES generation. Numerical examples of these double incremental approaches for oligo-phenyl examples show fast convergence with respect to the maximum number of simultaneously treated fragments and only a modest error introduced by the additional transformation step. The approach, presented here, represents a major step towards the applicability of vibrational wave fun...

  3. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    Science.gov (United States)

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-03-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  4. Improved morphed potentials for Ar-HBr including scaling to the experimentally determined dissociation energy.

    Science.gov (United States)

    Wang, Z; McIntosh, A L; McElmurry, B A; Walton, J R; Lucchese, R R; Bevan, J W

    2005-09-15

    A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

  5. Golden Eagle mortality at a utility-scale wind energy facility near Palm Springs, California

    Science.gov (United States)

    Lovich, Jeffrey E.

    2015-01-01

    Golden Eagle (Aquila chrysaetos) mortality associated with wind energy turbines and infrastructure is under-reported and weakly substantiated in the published literature. I report two cases of mortality at a utility-scale renewable energy facility near Palm Springs, California. The facility has been in operation since 1984 and included 460 65KW turbines mounted on 24.4 m or 42.7 m lattice-style towers with 8 m rotor diameters. One mortality event involved a juvenile eagle that was struck and killed by a spinning turbine blade on 31 August, 1995. The tower was 24.4 m high. The other involved an immature female that was struck by a spinning blade on another 24.4 m tower on 17 April, 1997 and was later euthanized due to the extent of internal injuries. Other raptor mortalities incidentally observed at the site, and likely attributable to turbines, included three Red-tailed Hawks (Buteo jamaicensis) found near turbines.

  6. ATLAS Jet Reconstruction, Energy Scale Calibration, and Tagging of Lorentz-boosted Objects

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    The reconstruction and calibration of jets in ATLAS is a critical component in producing precise analyses, whether precision measurements or searches for new physics. This talk describes the steps involved in deriving the jet energy scale (JES) and presents the results. Calibrations and their uncertainties are shown using the full 2015 + 2016 datasets. The study of jet substructure has also become increasingly more prevalent throughout a wide array of searches and measurements. We also report on the latest results from ATLAS for the reconstruction and tagging of large-R jets as well as the calibration and determination of the uncertainties associated with these techniques.

  7. Progress in Heavy Ion Driven Inertial Fusion Energy: From Scaled Experiments to the Integrated Research Experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Ahle, L E; Baca, D; Bangerter, R O; Bieniosek, F M; Celata, C M; Chacon-Golcher, E; Davidson, R C; Faltens, A; Friedman, A; Franks, R M; Grote, D P; Haber, I; Henestroza, E; de Hoon, M J; Kaganovich, I; Karpenko, V P; Kishek, R A; Kwan, J W; Lee, E P; Logan, B G; Lund, S M; Meier, W R; Molvik, W; Olson, C; Prost, L R; Qin, H; Rose, D; Sabbi, G L; Sangster, T C; Seidl, P A; Sharp, W M; Shuman, D; Vay, J L; Waldron, W L; Welch, D; Yu, S S

    2001-07-10

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (approx 100's Amperes/beam) and ion energies ({approx} 1 - 10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tun depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in the Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now beginning at LBNL. The mission of the HCX is to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will

  8. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  9. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density.

    Science.gov (United States)

    Damuth, John

    2007-05-01

    Across a wide array of animal species, mean population densities decline with species body mass such that the rate of energy use of local populations is approximately independent of body size. This "energetic equivalence" is particularly evident when ecological population densities are plotted across several or more orders of magnitude in body mass and is supported by a considerable body of evidence. Nevertheless, interpretation of the data has remained controversial, largely because of the difficulty of explaining the origin and maintenance of such a size-abundance relationship in terms of purely ecological processes. Here I describe results of a simulation model suggesting that an extremely simple mechanism operating over evolutionary time can explain the major features of the empirical data. The model specifies only the size scaling of metabolism and a process where randomly chosen species evolve to take resource energy from other species. This process of energy exchange among particular species is distinct from a random walk of species abundances and creates a situation in which species populations using relatively low amounts of energy at any body size have an elevated extinction risk. Selective extinction of such species rapidly drives size-abundance allometry in faunas toward approximate energetic equivalence and maintains it there.

  10. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  11. From eV to EeV: Neutrino cross sections across energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Formaggio, J. A.; Zeller, G. P.

    2012-09-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactions, quasi-elastic scattering, resonant pion production, kaon production, deep inelastic scattering and ultra-high energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  12. Large-scale Roll-to-Roll Fabrication of Organic Solar Cells for Energy Production

    DEFF Research Database (Denmark)

    Hösel, Markus

    The global energy consumption is increasing steadily while natural energy sources are running out sooner or later. Solar electricity is one of many renewable energy sources that contributes to the world’s demand. Organic solar cells (OPV) are an attractive 3rd generation solar technology that can...... solar park based on OPV modules. Infinity modules with a length of 100m (width 0.3 m) were rolled out and taped onto a wooden structure. The maximum power output of six parallel-connected modules with a total active area of 88.2m2 was beyond 1.3 kW while having energy payback times P1 year. Alternative...... be produced cheaply and very fast from solution with printing processes. The current research all around the world is still focused on lab-scale sized devices « cm2, ITO-glass substrates, and spin coating as the main fabrication method. These OPV devices are far from any practical application although record...

  13. European large-scale farmland investments and the land-water-energy-food nexus

    Science.gov (United States)

    Siciliano, Giuseppina; Rulli, Maria Cristina; D'Odorico, Paolo

    2017-12-01

    The escalating human demand for food, water, energy, fibres and minerals have resulted in increasing commercial pressures on land and water resources, which are partly reflected by the recent increase in transnational land investments. Studies have shown that many of the land-water issues associated with land acquisitions are directly related to the areas of energy and food production. This paper explores the land-water-energy-food nexus in relation to large-scale farmland investments pursued by investors from European countries. The analysis is based on a "resource assessment approach" which evaluates the linkages between land acquisitions for agricultural (including both energy and food production) and forestry purposes, and the availability of land and water in the target countries. To that end, the water appropriated by agricultural and forestry productions is quantitatively assessed and its impact on water resource availability is analysed. The analysis is meant to provide useful information to investors from EU countries and policy makers on aspects of resource acquisition, scarcity, and access to promote responsible land investments in the target countries.

  14. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  15. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  16. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  17. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  18. Engineering design for a large scale renewable energy network installation in an urban environment

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Spencer, L.; Brown, M. B.

    2016-12-01

    Humanity's current avid consumption of resources cannot be maintained and the use of renewable energy is a significant approach towards sustainable energy future. Alberta is the largest greenhouse gas-producing province in Canada (per capita) and Climate change is expected to impact Alberta with warmer temperatures, intense floods, and earlier snow melting. However, as one of the sunniest and windiest places in Canada, Alberta is poised to become one of Canada's leader provinces in utilizing renewable energies. This research has four main objectives. First, to determine the feasibility of implementing solar and wind energy systems at the University of Lethbridge campus. Second, to quantify rooftop and parking lot solar photovoltaic potential for the city of Lethbridge. Third, to determine the available rooftop area for PV deployment in a large scale region (Province of Alberta). Forth, to investigate different strategies for correlating solar PV array production with electricity demand in the province of Alberta. The proposed work addresses the need for Alberta reductions to fossil fuel pollution that drives climate change, and degrades our air, water and land resources.

  19. Scaled Second Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Min; Head-Gordon, Martin

    2007-02-01

    Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.

  20. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  1. Micro-scale energy valorization of grape marcs in winery production plants.

    Science.gov (United States)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Occupant Protection Experiments in Support of a Full-scale Train-to-Train Crash Energy Management Equipment Collision Test

    Science.gov (United States)

    2009-07-31

    The Federal Railroad Administration sponsored a full-scale train-to-train crash energy management (CEM) technology test that was conducted on March 23, 2006, at the Transportation Technology Center in Pueblo, Colorado. The Volpe National Transportati...

  3. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  4. Large-scale linear system solver using secondary storage: Self-energy in hybrid nanostructures

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-02-01

    We present a Fortran library which can be used to solve large-scale dense linear systems, Ax=b. The library is based on the LU decomposition included in the parallel linear algebra library PLAPACK and on its out-of-core extension POOCLAPACK. The library is complemented with a code which calculates the self-polarization charges and self-energy potential of axially symmetric nanostructures, following an induced charge computation method. Illustrative calculations are provided for hybrid semiconductor-quasi-metal zero-dimensional nanostructures. In these systems, the numerical integration of the self-polarization equations requires using a very fine mesh. This translates into very large and dense linear systems, which we solve for ranks up to 3×10. It is shown that the self-energy potential on the semiconductor-metal interface has important effects on the electronic wavefunction. Program summaryProgram title: HDSS (Huge Dense System Solver) Catalogue identifier: AEHU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 98 889 No. of bytes in distributed program, including test data, etc.: 1 009 622 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes. 4 processors used in the sample tests; tested from 1 to 288 processors RAM: 2 GB for the sample tests; tested for up to 80 GB Classification: 7.3 External routines: MPI, BLAS, PLAPACK, POOCLAPACK. PLAPACK and POOCLAPACK are included in the distribution file. Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Application to calculations of self-energy

  5. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation.

    Science.gov (United States)

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping; Zhang, Ying

    2017-01-01

    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation

  6. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    Science.gov (United States)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  7. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator.

    Science.gov (United States)

    Zhu, Guang; Lin, Zong-Hong; Jing, Qingshen; Bai, Peng; Pan, Caofeng; Yang, Ya; Zhou, Yusheng; Wang, Zhong Lin

    2013-02-13

    This article describes a simple, cost-effective, and scalable approach to fabricate a triboelectric nanogenerator (NG) with ultrahigh electric output. Triggered by commonly available ambient mechanical energy such as human footfalls, a NG with size smaller than a human palm can generate maximum short-circuit current of 2 mA, delivering instantaneous power output of 1.2 W to external load. The power output corresponds to an area power density of 313 W/m(2) and a volume power density of 54,268 W/m(3) at an open-circuit voltage of ~1200 V. An energy conversion efficiency of 14.9% has been achieved. The power was capable of instantaneously lighting up as many as 600 multicolor commercial LED bulbs. The record high power output for the NG is attributed to optimized structure, proper materials selection and nanoscale surface modification. This work demonstrated the practicability of using NG to harvest large-scale mechanical energy, such as footsteps, rolling wheels, wind power, and ocean waves.

  8. Large-Scale Electrochemical Energy Storage in High Voltage Grids: Overview of the Italian Experience

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2017-01-01

    Full Text Available This paper offers a wide overview on the large-scale electrochemical energy projects installed in the high voltage Italian grid. Detailed descriptions of energy (charge/discharge times of about 8 h and power intensive (charge/discharge times ranging from 0.5 h to 4 h installations are presented with some insights into the authorization procedures, safety features, and ancillary services. These different charge/discharge times reflect the different operation uses inside the electric grid. Energy intensive storage aims at decoupling generation and utilization since, in the southern part of Italy, there has been a great growth of wind farms: these areas are characterized by a surplus of generation with respect to load absorption and to the net transport capacity of the 150 kV high voltage backbones. Power intensive storage aims at providing ancillary services inside the electric grid as primary and secondary frequency regulation, synthetic rotational inertia, and further functionalities. The return on experience of Italian installations will be able to play a key role also for other countries and other transmission system operators.

  9. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  10. A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Daniele De Martino

    Full Text Available The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility. The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260. In the former case, we produce consistent predictions for chemical potentials (or log-concentrations of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (10(6 of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility.

  11. Evolution of matter and energy on a cosmic and planetary scale

    CERN Document Server

    Taube, M

    1985-01-01

    My intention in this book is to describe in simple language, using a minimum of mathematics but a maximum of numerical values, the most important developments of science dealing with matter and energy on cosmic and global scales. In the conventional literature all of these findings are distributed among books and journals on physics, astronomy, chemistry, geology, biology, energy, engineering, and the environmental sciences. The main purpose here is to attempt to give a unified description of Nature from the elementary particles to the Universe as a whole. This is used as a basis for analysing the future development of mankind. The future evolution of the Universe, galaxies, stars, and planets gives some hope for the destiny of mankind. The problem of matter and energy flow on the Earth appears soluble even for the distant future. There seems to be no reason why a long period of human development on this planet should not be possible. The book has been prepared based on my lectures at the Warsaw University fr...

  12. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source

    NARCIS (Netherlands)

    Leemans, R; vanAmstel, A; Battjes, C; Kreileman, E; Toet, S

    The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover,

  13. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NARCIS (Netherlands)

    van der Molen, J.; Ruardij, P.; Greenwood, N.

    2016-01-01

    A model study was carried out of the potentiallarge-scale (> 100 km) effects of marine renewabletidal energy generation in the Pentland Firth, using the 3-D hydrodynamics–biogeochemistry model GETM-ERSEMBFM.A realistic 800MW scenario and a high-impact scenariowith massive expansion of tidal energy

  14. Instrumentation of the model in scaled 1:10 to prototype of the AquaBuOY wave energy converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Frigaard, Peter

    The objective of this report is to provide guidelines for the instrumentation of a model in scale 1:10 to prototype of the AquaBuOY wave energy converter. The model will be located in Nissum Bredning area: this is an important waterway already used by Aalborg University for real sea tests of wave...... energy converters....

  15. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  16. Scaling-up of Energy Services Access in East Africa to achieve the Millennium Development Goals

    Energy Technology Data Exchange (ETDEWEB)

    Arvidson, Anders; Nordstroem, Mattias; Forslund, Helena; Syngellakis, Katerina; Marcel, Jean-Christian; Woodsworth, Gregory; Songela, Francis; Sawe, Estomih; Ngigi, Ashington; Macharia, Daniel; Ngoye, Elizabeth

    2006-06-15

    From the 13th to the 15th March 2006, the ENABLE team together with UNDP facilitated a three day consultative workshop hosted by the East African Community. The principal objective of this workshop was to facilitate the design of a regional energy access workplan and accompanying investment programmes to support the achievement of the millennium development goals. The workshop brought together almost 50 stakeholders from the East African region, representing various sectors (health, education, water, agriculture, environment, finance, etc.), organisations (public, private and NGOs) and donors, with the objective to identify and recommend actions that need to be undertaken in East Africa at regional, national and local levels in order to achieve the EAC Regional Energy Access Scale-up targets endorsed by the Ministers of Energy of Kenya, Tanzania and Uganda in August 2005. In order to generate new and substantive information during the three days, a highly interactive and participatory approach was used, where participants worked intensively in small groups with a set of questions which examined the issues and actions needed to achieve the four EAC Regional Energy Access Scale-up targets, as listed below: Target 1: Enable the use of modern fuels for 50% of those who at present use traditional biomass for cooking. Support efforts to develop and adopt the use of improved cook stoves, means to reduce indoor air pollution, and measures to increase sustainable biomass production. Target 2: Access to reliable modern energy services for all urban and peri-urban poor. Target 3: Electricity for services such as lighting, refrigeration, information and communication technology, and water treatment and supply for schools, clinics, hospitals and community centres. Target 4: Access to mechanical power within the community for all communities for productive uses. The main output from the workshop was a set of interventions for each of the energy access scale-up targets

  17. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  18. Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow

    Science.gov (United States)

    Abe, Hiroyuki; Antonia, Robert Anthony

    2011-05-01

    Non-dimensional parameters for the mean energy and scalar dissipation rates Cɛ and Cɛθ are examined using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow with a passive scalar (Pr = 0.71) at several values of the Kármán (Reynolds) number h+. It is shown that Cɛ and Cɛθ are approximately equal in the near-equilibrium region (viz., y+ = 100 to y/h = 0.7) where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes of Cɛ and Cɛθ are about 2 and 1 in the logarithmic and outer regions, respectively, when h+ is sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary layer, reflecting the similarity between the mean velocity and temperature distributions among these three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour of Cɛ and Cɛθ impacts on turbulence modeling. In particular, the similarity between Cɛ and Cɛθ leads to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and Corrsin microscales and analogous relations, in terms of h+, for the Taylor microscale Reynolds number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both the DNS data at small to moderate h+ and the experimental data of Comte-Bellot [Ph. D. thesis (University of Grenoble, 1963)] at larger h+. It does not however apply to a turbulent boundary layer where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30% larger than for the channel flow.

  19. Some exploratory considerations of scale effects on the potential performance of wood energy conversion systems

    Science.gov (United States)

    Eggers, A. J., Jr.; Smith, B. A.; Tombaugh, L. W.

    1982-06-01

    Scale effects on the potential performance of wood energy conversion systems whose products might compete in many of the same diverse and dispersed markets as comparable products from fossil fuels are explored. The analytical approach is derived from the average total cost formulation of micro-economics which is configured to account for the factors of total cost rate for wood production, transportation, and conversion in systems with a given conversion efficiency and capacity. The exploratory systems analysis includes: systems elements and cost formulation; area production and associated transportation; point production and associated transportation; conversion system capacity effects; conversion plant learning curve effects; subsystem disaggregation, staging, and production rate effects, and conversion plant financing effects.

  20. Low-energy effective field theory below the electroweak scale: anomalous dimensions

    Science.gov (United States)

    Jenkins, Elizabeth E.; Manohar, Aneesh V.; Stoffer, Peter

    2018-01-01

    We compute the one-loop anomalous dimensions of the low-energy effective Lagrangian below the electroweak scale, up to terms of dimension six. The theory has 70 dimension-five and 3631 dimension-six Hermitian operators that preserve baryon and lepton number, as well as additional operators that violate baryon number and lepton number. The renormalization group equations for the quark and lepton masses and the QCD and QED gauge couplings are modified by dimension-five and dimension-six operator contributions. We compute the renormalization group equations from one insertion of dimension-five and dimension-six operators, as well as two insertions of dimension-five operators, to all terms of dimension less than or equal to six. The use of the equations of motion to eliminate operators can be ambiguous, and we show how to resolve this ambiguity by a careful use of field redefinitions.

  1. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    Electricity demand worldwide is growing which is mainly driven by growing industrial activities and the widening of access to consumers in the developing world. On the other hand, limitations of conventional sources of energy generation coupled with substantial financial and regulatory incentives...... of complex power systems. WAMS is rapidly being implemented in power systems across the globe and is seen a means to realize smart grid at transmission system level. This thesis (industrial PhD with kk-electronic) proposes WAMS based methods to intelligently control and operate large scale wind integrated...... power system with least dependence on conventional power plants. An important aspect of WAMS realization in a power system is optimal placement of expensive PMUs in order to realize cost effective and reliable grid state monitoring and control. Coupled with Real time digital simulator (RTDS) based...

  2. Energy conservation in reheating furnaces by reducing scrap and scale formation; Kuumamuokkauksen energiasaeaestoet romun maeaeraeae ja hilseilyae vaehentaemaellae

    Energy Technology Data Exchange (ETDEWEB)

    Kivivuori, S.; Savolainen, P.; Fredriksson, J.; Paavola, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1996-12-31

    The main objective of the project `Energy Savings in Reheating Furnaces by Reducing Scrap and Scale Formation` is to reduce energy consumption and environmental harms in reheating and rolling of steel. This was done by analysing the different atmospheres in reheating furnaces of the steel companies participating in this project. These atmospheres were then simulated in a laboratory furnace. Scale formation tests with different steel grades were then carried out in these atmospheres. Scale removal tests were done to some steel grades too. The results showed that lower oxygen content - as expected - decreases oxidation despite the even higher carbondioxide content in the atmosphere. Lower oxygen content may cause difficulties in scale removal. This however is highly dependent on the steel grade. Heat treatment tests showed the effect of increased temperature and furnace time on decarburization. Some energy savings was obtained in fuel consumption by optimising the operation parameters and the atmosphere steadier in different reheating furnaces. (orig.)

  3. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    Energy Technology Data Exchange (ETDEWEB)

    Ram, B. [Energetics, Inc., Columbia, MD (United States)

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  4. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    Science.gov (United States)

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  7. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    Science.gov (United States)

    Coso, Dusan

    The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat

  8. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  9. Exploring the low-energy landscape of large-scale signed social networks

    Science.gov (United States)

    Facchetti, G.; Iacono, G.; Altafini, C.

    2012-09-01

    Analogously to a spin glass, a large-scale signed social network is characterized by the presence of disorder, expressed in this context (and in the social network literature) by the concept of structural balance. If, as we have recently shown, the signed social networks currently available have a limited amount of true disorder (or frustration), it is also interesting to investigate how this frustration is organized, by exploring the landscape of near-optimal structural balance. What we obtain in this paper is that while one of the networks analyzed shows a unique valley of minima, and a funneled landscape that gradually and smoothly worsens as we move away from the optimum, another network shows instead several distinct valleys of optimal or near-optimal structural balance, separated by energy barriers determined by internally balanced subcommunities of users, a phenomenon similar to the replica-symmetry breaking of spin glasses. Multiple, essentially isoenergetic, arrangements of these communities are possible. Passing from one valley to another requires one to destroy the internal arrangement of these balanced subcommunities and then to reform it again. It is essentially this process of breaking the internal balance of the subcommunities which gives rise to the energy barriers.

  10. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage.

    Science.gov (United States)

    Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie

    2014-10-27

    Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89K >= T-c >= 2.78 K. Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm(-1) (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature T-c, the pairing energy Delta, and the superfluid stiffness J, and the superfluid density n(s) can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  12. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  13. Precision studies of proton structure and jet energy scale with the CMS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Haitz, Dominik

    2016-05-20

    +jet events can be utilized for studies of the proton structure. In the parton model, this structure is expressed by the parton distribution functions (PDFs) which predict the probability to nd a certain proton constituent (a parton) with a proton momentum fraction x at an energy scale Q. The PDFs are not predicted by perturbative QCD but have to be experimentally determined. In this thesis, a method to constrain the parameters of the PDFs by measuring the distributions of kinematic quantities of Z bosons is explored. This method exploits the correlation between the PDFs and the expected number of events with Z bosons in particular phase space regions. By fitting the PDFs to these data, the PDF parameters can be determined. If the measurement is precise enough, the uncertainties in the PDFs can be reduced. Z+jet events can also be used for jet energy calibration: All physics analyses at the LHC rely on the precise reconstruction of the objects produced in a collision. Among the most important of these objects are jets, collimated streams of particles produced by the hadronization of partons. As there are numerous effects that bias the jet measurement, the precise determination of jet energies is among the most challenging experimental tasks. Sophisticated techniques have been developed to deal with the various systematic biases. One of the most important steps is the data-driven calibration with balancing methods: Exploiting momentum conservation, the jet transverse momentum is compared with the transverse momentum of a well-measured reference object and consequently corrected. In this thesis, the jet energy scale is calibrated by studying Z(→μ{sup +}μ{sup -})+jet events.

  14. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  15. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  16. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  17. CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS

    Energy Technology Data Exchange (ETDEWEB)

    Morasca, P; Mayeda, K; Malagnini, L; Walter, W

    2004-02-03

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from

  18. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  19. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity

    DEFF Research Database (Denmark)

    Stoy, Paul C.; Mauder, Matthias; Foken, Thomas

    2013-01-01

    . We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (CEB,s) averaged 0.84±0.20, with best......The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent...... motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites...

  20. The impact of off-site land use energy intensity on the overall life cycle land use energy intensity for utility-scale solar electricity generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, David J.; Horner, Robert M.; Clark, Corrie E.

    2015-05-01

    Estimates of the amount of land used for a defined amount of utility-scale electricity generation in the solar power industry, referred to as solar land use energy intensity (LUEI), are important to decision makers for evaluating the environmental impact of energy technology choices. In general, solar energy tends to have a larger on-site LUEI than that of fossil fuels because the energy generated per square meter of power plant area is much lower. Unfortunately, there are few studies that quantify the off-site LUEI for utility-scale solar energy, and of those that do, they share common methodologies and data sets. In this study, we develop a new method for calculating the off-site LUEI for utility-scale solar energy for three different technologies: silicon photovoltaic (Si-PV), cadmium-telluride (CdTe) PV, and parabolic trough concentrated solar thermal. Our results indicate that the off-site LUEI is most likely 1% or less of the on-site LUEI for each technology. Although our results have some inherent uncertainties, they fall within an order of magnitude of other estimates in the literature.

  1. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    Science.gov (United States)

    Zulueta, Rommel Callejo

    VDTLBs, represent ˜67% of the Barrow Peninsula surface area, accounting for ˜59% of the regional flux signal. Though the Medium and Young VDTLBs represent ˜11% of the surface area, they account for a large portion, ˜35%, of the total regional flux. The remaining ˜22% of the surface area are lakes and contributed the remaining ˜6% of the total regional flux. Previous studies treated vegetated areas of the region as a single surface type with measurements from a few study sites; doing so could underestimate the regional flux by ˜22%. The San Diego State University Sky Arrow 650TCN Environmental Research Aircraft proved to be an effective tool in characterizing land-atmosphere fluxes of energy, CO2 and water across heterogeneous landscapes at the scale of 1 km, and was capable of discriminating fluxes from the various ecosystem and land surface types a few kilometers distant. Here, we demonstrate that SERA-based approaches have the ability to cover large spatial scales while measuring the turbulent fluxes across a number of surfaces and combined with ground- and satellite-based measurements provide a valuable tool for both scaling and validation of regional-scale fluxes.

  2. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    Science.gov (United States)

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  3. Control of modular multilevel converters for grid integration of full-scale wind energy conversion systems

    Science.gov (United States)

    Debnath, Suman

    The growing demand for wind power generation has pushed the capacity of wind turbines towards MW power levels. Higher capacity of the wind turbines necessitates operation of the generators and power electronic conversion systems at higher voltage/power levels. The power electronic conversion system of a wind energy conversion system (WECS) needs to meet the stringent requirements in terms of reliability, efficiency, scalability and ease of maintenance, power quality, and dv/dt stress on the generator/transformer. Although the multilevel converters including the neutral point clamped (NPC) converter and the active NPC converter meet most of the requirements, they fall short in reliability and scalability. Motivated by modularity/scalability feature of the modular multilevel converter (MMC), this research is to enable the MMC to meet all of the stringent requirements of the WECS by addressing their unique control challenges. This research presents systematic modeling and control of the MMC to enable it to be a potential converter topology for grid integration of full-scale WECSs. Based on the developed models, appropriate control systems for control of circulating current and capacitor voltages under fixed- and variable-frequency operations are proposed. Using the developed MMC models, a gradient-based cosimulation algorithm to optimize the gains of the developed control systems, is proposed. Performance/effectiveness of the developed models and the proposed control systems for the back-to-back MMC-based WECS are evaluated/verified based on simulations studies in the PSCAD/EMTDC software environment and experimental case studies on a laboratory-scale hardware prototype.

  4. A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Model in ARW-WRF Model

    Science.gov (United States)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2017-04-01

    A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing model is developed to address the problem of simulating the convective boundary layer (CBL) across the terra incognita in the Advanced Research version of the Weather Research and Forecasting Model (ARW-WRF). The new model combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the convectional one-dimensional (1D) planetary boundary layer (PBL) schemes. The transition between large-eddy simulation (LES) and mesoscale limit is accomplished in the new scale-adaptive model. A series of dry CBL and real-time simulations using the WRF model are carried out, in which the newly-developed, scale-adaptive, more general and energetically consistent TKE-based model is compared with the conventional 1D TKE-based PBL schemes for parameterizing vertical subgrid turbulent mixing against the WRF LES dataset and observations. The characteristics of the WRF-simulated results using the new and conventional schemes are compared. The importance of including the nonlocal component in the vertical buoyancy specification in the newly-developed general TKE-based scheme is illustrated. The improvements of the new scheme over convectional PBL schemes across the terra incognita can be seen in the partitioning of vertical flux profiles. Through comparing the results from the simulations against the WRF LES dataset and observations, we will show the feasibility of using the new scheme in the WRF model in the lieu of the conventional PBL parameterization schemes.

  5. SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

    2015-01-01

    The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Monte Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.

  6. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  7. The statistical analysis of energy release in small-scale coronal structures

    Science.gov (United States)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  8. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Directory of Open Access Journals (Sweden)

    Rafael M Santos

    2016-02-01

    Full Text Available To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary Gravity Pressure Vessel (GPV reactor technology, and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular rocking autoclave reactor. The mineral of choice has been olivine (~Mg1.6Fe2+0.4(SiO4 + ppm Ni/Cr, although asbestos, steel slags and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties have been tested: CO2 pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers, solids loading, and mixing rate. The products (carbonates, amorphous silica and chromite have been physically separated (based on size, density and magnetic properties, characterized (for chemistry, mineralogy and morphology and tested in intended applications (as pozzolanic carbon-negative building material. Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO2. The approach of using a GPV and focusing on valuable reaction products could thus make CO2 mineralization a feasible and sustainable industrial process.

  9. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  10. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  11. A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)

    Science.gov (United States)

    Jedlovec, G. J.; Fuelberg, H. E.

    1981-01-01

    The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.

  12. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    Science.gov (United States)

    Pellish, Jonathan A.; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; hide

    2014-01-01

    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment.

  13. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.

  14. Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    CERN Document Server

    Aggarwal, M M; Ahammed, Z; Angelis, Aris L S; Antonenko, V G; Arefev, V; Astakhov, V A; Avdeichikov, V; Awes, T C; Baba, P V K S; Badyal, S K; Baldin, A; Barabash, L; Barlag, C; Bathe, S; Batyunya, B; Bernier, T; Bhalla, K B; Bhatia, V S; Blume, C; Bohne, E M; Böröcz, Z K; Bucher, D; Buijs, A; Büsching, H; Carlén, L; Chalyshev, V; Chattopadhyay, S; Cherbachev, R; Chujo, T; Claussen, A; Das, A C; Decowski, M P; Delagrange, H; Dzhordzhadze, V; Dönni, P; Dubovik, I; Dutt, S K; Dutta-Majumdar, M R; El-Chenawi, K F; Eliseev, S; Enosawa, K; Foka, P Y; Fokin, S L; Frolov, V; Ganti, M S; Garpman, S I A; Gavrishchuk, O P; Geurts, F J M; Ghosh, T K; Glasow, R; Sen-Gupta, S K; Guskov, B; Gustafsson, Hans Åke; Gutbrod, H H; Higuchi, R; Hrivnacova, I; Ippolitov, M S; Kalechofsky, H; Kamermans, R; Kampert, K H; Karadzhev, K; Karpio, K; Kato, S; Kees, S; Kim, H; Kolb, B W; Kosarev, I G; Kucheryaev, I; Krümpel, T; Kugler, A; Kulinich, P A; Kurata, M; Kurita, K; Kuzmin, N A; Langbein, I; Lebedev, A; Lee, Y Y; Löhner, H; Luquin, Lionel; Mahapatra, D P; Man'ko, V I; Martin, M; Martínez, G; Maksimov, A; Mehdiyev, R; Mgebrishvili, G; Miake, Y; Mikhalev, D; Mir, M F; Mishra, G C; Miyamoto, Y; Mohanty, B; Mora, M J; Morrison, D; Mukhopadhyay, D S; Myalkovskii, V; Naef, H; Nandi, B K; Nayak, S K; Nayak, T K; Neumaier, S; Nyanin, A; Nikitin, V A; Nikolaev, S; Nilsson, P O; Nishimura, S; Nomokonov, V P; Nystrand, J; Obenshain, F E; Oskarsson, A; Otterlund, I; Pachr, M; Parfenov, A; Pavlyuk, S; Peitzmann, Thomas; Petracek, V; Plasil, F; Pinganaud, W; Purschke, M L; Räven, B; Rak, J; Raniwala, R; Raniwala, S; Ramamurthy, V S; Rao, N K; Retière, F; Reygers, K; Roland, G; Rosselet, L; Rufanov, I A; Roy, C; Rubio, J M; Sako, H; Sambyal, S S; Santo, R; Sato, S; Schlagheck, H; Schmidt, H R; Schutz, Y; Shabratova, G; Shah, T H; Sibiryak, Yu; Siemiarczuk, T; Silvermyr, D; Sinha, B C; Slavin, N V; Söderström, K; Solomey, Nickolas; Sørensen, S P; Stankus, P; Stefanek, G; Steinberg, P; Stenlund, E; Stüken, D; Sumbera, M; Svensson, T; Trivedi, M D; Tsvetkov, A A; Tykarski, L; Urbahn, J; Van den Pijll, E C; van Eijndhoven, N; van Nieuwenhuizen, G J; Vinogradov, A; Viyogi, Y P; Vodopyanov, A S; Vörös, S; Wyslouch, B; Yagi, K; Yokota, Y; Young, G R

    2001-01-01

    Transverse energy, charged particle, and photon pseudorapidity distributions have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy and charged particle pseudorapidity density at midrapidity as N_{part}^{1.08} and N_{coll}^{0.83} is observed. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.

  15. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  16. Validated real-time energy models for small-scale grid-connected PV-systems

    Energy Technology Data Exchange (ETDEWEB)

    Ayompe, L.M.; Duffy, A. [Department of Civil and Structural Engineering, School of Civil and Building Services, Dublin Institute of Technology, Bolton Street, Dublin 1 (Ireland); McCormack, S.J. [Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2 (Ireland); Conlon, M. [School of Electrical Engineering Systems, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland)

    2010-10-15

    This paper presents validated real-time energy models for small-scale grid-connected PV-systems suitable for domestic application. The models were used to predict real-time AC power output from a PV-system in Dublin, Ireland using 30-min intervals of measured performance data between April 2009 and March 2010. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of power prediction models. PV-system AC output power predictions using empirical models for PV-cell temperature and efficiency prediction showed lower percentage mean absolute errors (PMAEs) of 7.9-11.7% while non-empirical models had errors of 10.0-12.4%. Cumulative errors for PV-system AC output power predictions were 1.3% for empirical models and 3.3% for non-empirical models. The proposed models are suitable for predicting PV-system AC output power at time intervals suitable for smart metering. (author)

  17. Optimization biogas management as alternative energy from communal scale dairy farm

    Science.gov (United States)

    Ruhiyat, R.; Siami, L.

    2018-01-01

    Cow Slurry can be the main pollution source in most villages in Indonesia. In this study, treatment of cow slurry intended to reduce pollution in Citarum river and greenhouse gases effect of CH4 and CO2. As a part of renewable energy, biogas can be one of solution to be implemented in small-scale and remote area. In Pejaten, Tarumajaya Village, the cost-effective reached when 7cattleman united to treat cow slurry in one biodigester. The breed varies cow from calf, veal to adult cattle. The installation of anaerobic-bio digester that produce biogas 28 m3/day equivalent with Rp 168,000 to be consumed for 14 households. In addition, villager also benefitted manure as 42.5 ton monthly. As a whole, the highest profit comes from adult cattle that produce 900 kg/month slurry as Rp 59,919 monthly. Furthermore, this system gives job opportunity for villagers to be biodigester operator is the main beneficial with the higher income compare to mower that only Rp 600.000 monthly as Rp 1.065.000.

  18. A verification analysis of power quality and energy yield of a large scale PV rooftop

    Directory of Open Access Journals (Sweden)

    B. Plangklang

    2016-11-01

    Full Text Available The power quality and energy yield of a large scale PV rooftop power plant in Samut Songkhram province are analyzed and presented in this paper. The power quality is examined and analyzed from the measured data to comply with the Provincial Electricity Authority (PEA standard in Thailand. The measured parameters used in this study are as follows: the RMS Voltage, Frequency, Total Voltage Harmonic Distortion (THDv, and Voltage ripple. Certain parameters of measured data are used to calculate the distributed power yield and then compared with the Homer program simulation respectively. The investigated PV rooftop system has the installed capacity of 987.84 kWp. From the monitoring results, it found that the highest power yield was 778.125 kW while the simulation result was 783 kW. Moreover, based on the PEA standard EN 50160 with the cumulative percentile at 95% for PV rooftop power plant, the measured data showed that the power quality of this power plant passed the PEA regulations for its distribution network connecting system.

  19. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    Science.gov (United States)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  20. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  1. Fine and nanometer scaled particle behavior characterization and control for sustainable energy and environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hidehiro Kamiya; Mayumi Tsukada; Wuled Lenggoro; Wladyslaw W. Szymanski [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    2008-07-01

    Characterization and control of fine and nanometer scaled particles are essential technological fundamentals for understanding and development of various approaches concerned with sustainable energy and environmental technology, for example, PM10/PM2.5 and nanoparticle emission, clean and high efficiency power generation systems from biomass and solid waste combustion. The standard measuring methods for PM10/PM2.5 and nanoparticle emission behavior from stationary sources, such as coal-fired power plants and waste incinerators, have been discussed in ISO and numerous countries. However, it is difficult to evaluate the actual emission amount and particle size distribution, such as condensable suspended particulate matter, condensable SPM, which is nucleated and grow during cooling and diluting process from flue to atmosphere. High temperature gas cleaning using rigid ceramic filters is an important technology to develop high efficiency power generation system. In this paper, based on the review of background and recent research works of each subject, mass concentration measurement method of PM10/PM2.5 and size distribution of condensable SPM from stationary sources are introduced. Subsequently, research results with focus on ash adhesion behavior characterization and control for the development of dust collection and gas cleaning technology at high temperature conditions in high efficiency power generation systems by coal, biomass and solid waste combustion are presented. 12 refs., 7 figs., 3 tabs.

  2. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  3. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  4. Examination on the viability of various energy supply systems for a small-scale symbiotic housing development in Kitakyushu, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Ryu, Y. [Kitakyushu Univ., Kitakkyushu (Japan); Ruan, Y. [Kyushu Univ., Fukuoka (Japan). Faculty of Human-Environment Studies

    2006-07-01

    This paper examined the viability of various distributed energy systems for a planned small-scale symbiotic housing development in Kitakyushu, Japan. Energy provision options included conventional energy supply systems with gas and electricity; photovoltaic (PV) systems; and combined heating and power (CHP) systems. Hourly power generation of the PV system was calculated using field studies and an expression model. Operating conditions for the CHP systems were simulated. The simulation data were then used to estimate energy savings, environmental impacts and economic benefits of the systems.The analysis was conducted using hourly weather data for the region in which the complex will be situated. Hourly energy loads and annual timescales for detached houses, terraced houses and apartments were calculated. Results indicated that distributed energy resources gained significant energy savings when compared with conventional systems. PV system energy savings ratios were estimated at 29.19 per cent, and carbon dioxide reductions were estimated at 46.28 per cent, with a payback period of 9 years. The CHP system also achieved significant energy savings. Further research is needed to determine appropriate CHP capacity for the housing complex. It was concluded that there is now a strong interest in energy systems that will reduce Japan's dependence on imported fuels. 9 refs., 5 tabs., 8 figs.

  5. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    Science.gov (United States)

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (G s ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO 2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk G s representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO 2 , H 2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m 2 m -2 . Both ET and G s experienced a minimum in the LAI range 1-2 m 2 m -2 caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m 2 m -2 ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests. © 2016 John Wiley & Sons Ltd.

  6. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trinity College Dublin, Dublin (Ireland); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  7. Dark matter haloes in modified gravity and dark energy: interaction rate, small- and large-scale alignment

    Science.gov (United States)

    L'Huillier, Benjamin; Winther, Hans A.; Mota, David F.; Park, Changbom; Kim, Juhan

    2017-07-01

    We study the properties of dark matter haloes in a wide range of modified gravity models, namely, f(R), DGP and interacting dark energy models. We study the effects of modified gravity and dark energy on the internal properties of haloes, such as the spin and the structural parameters. We find that f(R) gravity enhances the median value of the Bullock spin parameter, but could not detect such effects for DGP and coupled dark energy. f(R) also yields a lower median sphericity and oblateness, while coupled dark energy has the opposite effect. However, these effects are very small. We then study the interaction rate of haloes in different gravity and find that only strongly coupled dark energy models enhance the interaction rate. We then quantify the enhancement of the alignment of the spins of interacting halo pairs by modified gravity. Finally, we study the alignment of the major axes of haloes with the large-scale structures. The alignment of the spins of interacting pairs of haloes in DGP and coupled dark energy models show no discrepancy with GR, while f(R) shows a weaker alignment. Strongly coupled dark energy shows a stronger alignment of the halo shape with the large-scale structures.

  8. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply

  9. The ocean response at multiple space and time scales to tidal stream energy extraction by a large-scale turbine array.

    Science.gov (United States)

    De Dominicis, Michela; O'Hara Murray, Rory; Wolf, Judith

    2017-04-01

    A comprehensive assessment of the tidal energy resource realistically available for electricity generation and the study of the potential environmental impacts associated with its extraction in the Pentland Firth (Scottish Waters, UK) are presented. In order to examine both local (100 km) spatial scales, the Scottish Shelf Model (SSM), an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) model implementation has been used, since it covers the entire NW European Shelf, with a high resolution where the tidal stream energy is extracted. A large theoretical array of tidal stream turbines has been designed and implemented in the model using the momentum sink approach, in which a momentum sink term represents the loss of momentum due to tidal energy extraction. The estimate of the maximum available power for electricity generation from the Pentland Firth is 1.64 GW, which requires thousands of turbines to be deployed. This estimate takes into account the tidal stream energy extraction feedbacks on the flow and considers, for the first time, the realistic operation of a generic tidal stream turbine, which is limited to operate in a range of flow velocities due to technological constraints. The ocean response to the extraction of 1.64 GW of energy has been examined by comparing a typical annual cycle of the NW European Shelf hydrodynamics reproduced by the SSM with the same period perturbed by tidal stream energy extraction. The changes were analysed at the temporal scale of a spring-neap tidal cycle and, for the first time, on longer term seasonal timescales. Tidal elevation mainly increases in the vicinity of the tidal farm, while far-field effects show a decrease in the mean spring tidal range of the order of 2 cm along the whole east coast of the UK, possibly counteracting some part of the predicted sea level rise due to climate change. Marine currents, both tidal and residual flows, are also affected. They can slow down due to the

  10. Reliability and Energy Loss in Full-scale Wind Power Converter Considering Grid Codes and Wind Classes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    With the increasing penetration of the wind power, reliable operation and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the cost on reliability and production losses of permanent-magnet synchronous generator based full-scale wind...

  11. Body size scaling relationships in bivalves: a comparison of field data with predictions by dynamic energy budgets (deb theory).

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van de Veer, H.W..; Kooijman, S.A.L.M.

    2006-01-01

    In this paper, we apply the Dynamic Energy Budget (DEB) theory to bivalve species (1) to provide basic body-size scaling relationships that can be used to predict species characteristics when basic information is lacking, and (2) to analyse the discrepancy between DEB predictions based on energetic

  12. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick–slip motion

    Science.gov (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick–slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  13. Improved analysis and visualization of friction loop data : unraveling the energy dissipation of meso-scale stick–slip motion

    NARCIS (Netherlands)

    Kokorian, J.; van Spengen, W.M.

    2017-01-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick–slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating

  14. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  15. Evaluating Potential Human Health Risks Associated with the Development of Utility-Scale Solar Energy Facilities on Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. -J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Y. -S. [Argonne National Lab. (ANL), Argonne, IL (United States); Hartmann, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Wescott, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Kygeris, C. [Indiana Univ. of Pennsylvania, PA (United States)

    2013-09-01

    This report presents a general methodology for obtaining preliminary estimates of the potential human health risks associated with developing a utility-scale solar energy facility on a contaminated site, based on potential exposures to contaminants in soils (including transport of those contaminants into the air).

  16. Optimal Siting and Sizing of Energy Storage System for Power Systems with Large-scale Wind Power Integration

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2015-01-01

    This paper proposes algorithms for optimal sitingand sizing of Energy Storage System (ESS) for the operationplanning of power systems with large scale wind power integration.The ESS in this study aims to mitigate the wind powerfluctuations during the interval between two rolling EconomicDispatches...

  17. The role of large scale energy storage systems in the electricity grid of the Netherlands in 2050

    NARCIS (Netherlands)

    Velthuis, Martin

    2012-01-01

    SUMMARY The burning of the fossil fuels for electricity generation has an environmental impact on a global scale. Also, the world is going to be running out of the fossil fuels before or within the next century. This is the reason why renewable energy so

  18. Improving and validating 3D models for the leaf energy balance in canopy-scale problems with complex geometry

    Science.gov (United States)

    Bailey, B.; Stoll, R., II; Miller, N. E.; Pardyjak, E.; Mahaffee, W.

    2014-12-01

    Plants cover the majority of Earth's land surface, and thus play a critical role in the surface energy balance. Within individual plant communities, the leaf energy balance is a fundamental component of most biophysical processes. Absorbed radiation drives the energy balance and provides the means by which plants produce food. Available energy is partitioned into sensible and latent heat fluxes to determine surface temperature, which strongly influences rates of metabolic activity and growth. The energy balance of an individual leaf is coupled with other leaves in the community through longwave radiation emission and advection through the air. This complex coupling can make scaling models from leaves to whole-canopies difficult, specifically in canopies with complex, heterogeneous geometries. We present a new three-dimensional canopy model that simultaneously resolves sub-tree to whole-canopy scales. The model provides spatially explicit predictions of net radiation exchange, boundary-layer and stomatal conductances, evapotranspiration rates, and ultimately leaf surface temperature. The radiation model includes complex physics such as anisotropic emission and scattering. Radiation calculations are accelerated by leveraging graphics processing unit (GPU) technology, which allows canopy-scale problems to be performed on a standard desktop workstation. Since validating the three-dimensional distribution of leaf temperature can be extremely challenging, we used several independent measurement techniques to quantify errors in measured and modeled values. When compared with measured leaf temperatures, the model gave a mean error of about 2°C, which was close to the estimated measurement uncertainty.

  19. Long-term energy security in a national scale using LEAP. Application to de-carbonization scenarios in Andorra

    Science.gov (United States)

    Travesset-Baro, Oriol; Jover, Eric; Rosas-Casals, Marti

    2016-04-01

    This paper analyses the long-term energy security in a national scale using Long-range Energy Alternatives Planning System (LEAP) modelling tool. It builds the LEAP Andorra model, which forecasts energy demand and supply for the Principality of Andorra by 2050. It has a general bottom-up structure, where energy demand is driven by the technological composition of the sectors of the economy. The technological model is combined with a top-down econometric model to take into account macroeconomic trends. The model presented in this paper provides an initial estimate of energy demand in Andorra segregated into all sectors (residential, transport, secondary, tertiary and public administration) and charts a baseline scenario based on historical trends. Additional scenarios representing different policy strategies are built to explore the country's potential energy savings and the feasibility to achieve the Intended Nationally Determined Contribution (INDC) submitted in April 2015 to UN. In this climatic agreement Andorra intends to reduce net greenhouse gas emissions (GHG) by 37% as compared to a business-as-usual scenario by 2030. In addition, current and future energy security is analysed in this paper under baseline and de-carbonization scenarios. Energy security issues are assessed in LEAP with an integrated vision, going beyond the classic perspective of security of supply, and being closer to the sustainability's integrative vision. Results of scenarios show the benefits of climate policies in terms of national energy security and the difficulties for Andorra to achieving the de-carbonization target by 2030.

  20. Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine

    Directory of Open Access Journals (Sweden)

    Zhihua Ge

    2018-01-01

    Full Text Available To reduce the exergy loss that is caused by the high-grade extraction steam of traditional heating mode of combined heat and power (CHP generating unit, a high back-pressure cascade heating technology for two jointly constructed large-scale steam turbine power generating units is proposed. The Unit 1 makes full use of the exhaust steam heat from high back-pressure turbine, and the Unit 2 uses the original heating mode of extracting steam condensation, which significantly reduces the flow rate of high-grade extraction steam. The typical 2 × 350 MW supercritical CHP units in northern China were selected as object. The boundary conditions for heating were determined based on the actual climatic conditions and heating demands. A model to analyze the performance of the high back-pressure cascade heating supply units for off-design operating conditions was developed. The load distributions between high back-pressure exhaust steam direct supply and extraction steam heating supply were described under various conditions, based on which, the heating efficiency of the CHP units with the high back-pressure cascade heating system was analyzed. The design heating load and maximum heating supply load were determined as well. The results indicate that the average coal consumption rate during the heating season is 205.46 g/kWh for the design heating load after the retrofit, which is about 51.99 g/kWh lower than that of the traditional heating mode. The coal consumption rate of 199.07 g/kWh can be achieved for the maximum heating load. Significant energy saving and CO2 emission reduction are obtained.

  1. Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: Insights from KiK-net data in Japan

    Science.gov (United States)

    Oth, Adrien; Bindi, Dino; Parolai, Stefano; Di Giacomo, Domenico

    2010-10-01

    We investigate earthquake source characteristics and scaling properties using the results of a spectral inversion of more than 29,000 accelerometric borehole recordings from 1,826 earthquakes (MJMA 2.7-8) throughout Japan. We find that the calculated source spectra can be well characterized by the omega-square model and show on average self-similar scaling over the entire magnitude range, with median stress drops of 1.1 and 9.2 MPa for crustal and subcrustal events, respectively. The seismic energy-to-moment ratio, as theoretically expected if the omega-square model is valid, shows a strong dependency on stress drop only, which, in conjunction with data selection practice in some studies to cope with limited recording bandwidth, can explain the often observed apparent scale-dependence. Our observations suggest that there is no significant deviation from similarity of the energy radiation in the investigated magnitude range and that the observed scatter is mainly related to the scatter in stress drop.

  2. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  3. Design and cost of a utility scale superconducting magnetic energy storage plant

    Energy Technology Data Exchange (ETDEWEB)

    Loyd, R.J.; Nakamura, T.; Schoenung, S.M.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

    1985-01-01

    Superconducting Magnetic Energy Storage (SMES) has potential as a viable technology for use in electric utility load leveling. The advantage of SMES over other energy storage technologies is its high net roundtrip energy efficiency. This paper reports the major features and costs of a jointly developed 5000 MWh SMES plant design.

  4. Nutrient flows in small-scale bio-energy use in developing countries

    NARCIS (Netherlands)

    Bonten, L.T.C.; Wösten, J.H.M.

    2012-01-01

    This study explored the opportunities for the retention and return of nutrients in local bio-energy production using energy crops (oil palm, jatropha and cassava), fuel wood, manure, rice husks and a common pest plant (water hyacinth). For all bio-energy systems some return of nutrients is possible,

  5. The Potential and Utilization of Unused Energy Sources for Large-Scale Horticulture Facility Applications under Korean Climatic Conditions

    Directory of Open Access Journals (Sweden)

    In Tak Hyun

    2014-07-01

    Full Text Available As the use of fossil fuel has increased, not only in construction, but also in agriculture due to the drastic industrial development in recent times, the problems of heating costs and global warming are getting worse. Therefore, introduction of more reliable and environmentally-friendly alternative energy sources has become urgent and the same trend is found in large-scale horticulture facilities. In this study, among many alternative energy sources, we investigated the reserves and the potential of various different unused energy sources which have infinite potential, but are nowadays wasted due to limitations in their utilization. In addition, we utilized available unused energy as a heat source for a heat pump in a large-scale horticulture facility and analyzed its feasibility through EnergyPlus simulation modeling. Accordingly, the discharge flow rate from the Fan Coil Unit (FCU in the horticulture facility, the discharge air temperature, and the return temperature were analyzed. The performance and heat consumption of each heat source were compared with those of conventional boilers. The result showed that the power load of the heat pump was decreased and thus the heat efficiency was increased as the temperature of the heat source was increased. Among the analyzed heat sources, power plant waste heat which had the highest heat source temperature consumed the least electric energy and showed the highest efficiency.

  6. Scale - dependent effects on the surface energy fluxes modelling in Iberian oak-savanna (dehesa) using the Two-Source Energy Balance (TSEB)

    Science.gov (United States)

    Andreu, Ana; Nieto, Hector; Gómez-Giráldez, Pedro; González-Dugo, Maria P.

    2017-04-01

    Iberian semi-arid oak-savannas (dehesas) are complex ecosystems where bare soil and different layers of vegetation (grass/scrubs/trees) are distributed following heterogeneous patterns. An assumption of the two source energy balance models is that the effective source/sink for turbulent flux exchange at the surface(canopy/soil) is described by a bulk radiometric surface temperature (TRAD) and resistance. Therefore, the agreement of the TRAD used as an input to these models, with the "bulk" concept (determined by the spatial resolution), will influence the final energy fluxes estimations. The representativeness of the field-ground measurements, the spatial resolution of sensors, the averaging and the up-scaling of TRAD and the ecosystem vegetation parameters, will be crucial for the precision of the results, more than in homogeneous landscapes. The aim of this study is to analyze the scale-effects derived from TSEB application, comparing the observed energy fluxes and the estimated ones obtained from multiple TRAD data sources of different nature: tree/grass/soil ground-based observations, tower footprint, hyperspectral reflectance imagery acquired with an airborne platform, medium (Landsat) and low spatial resolution satellite data (Sentinel 3, MODIS), and how the up-scaling of the vegetation structural characteristics contribute to the discrepancies. The study area selected for this purpose is a dehesa site (Santa Clotilde, Cordoba), which present canopy mosaics (oak, annual grasses and bushes) differing in phenology, physiology and functioning, and bare soil, all of them influencing the turbulent and radiative exchanges.

  7. A three pronged approach to community scale renewable energy: Education, incremental capital investment and smart grid technology

    Science.gov (United States)

    Demeo, Anna E.

    The reality of global climate change, due to anthropogenic emissions of carbon dioxide and other gases, is upon us. A significant source of emissions comes from the burning of fossil fuels to produce energy that is consumed in every aspect of daily life. As such, the human ecological link between how we live and our impact on the planet is at the very center of addressing the causes of climate change. Reducing and eventually eliminating emissions is an enormous and complex task that will involve input and change from all corners of society. Therefore, reducing anthropogenic emissions and confronting the impacts of global climate change must be addressed across disciplines including education, community outreach and technology. A first step towards a new reality, one in which our daily energy is not derived from burning fossil fuels, is education. Ensuring that all citizens hold a basic understanding of energy is paramount in creating a populace that will willingly alter consumption behaviors while at the same time support renewable energy projects. Energy literacy education, both in K-12 and higher education institutions, fosters a new knowledge base for the next generation of citizens who will have to live with and address the challenges of climate change in the decades ahead. Through a hands-on, practical skill building curriculum students can develop an understanding of energy units as well as the connection between energy use and the health of the planet. Providing this solid understanding is critical to the future success of dealing with adaptation and mitigation. Given that there is no time to spare in implementing real change, it is imperative to create support for renewable energy generation in the present day. One effective means of achieving this support is to create opportunities within communities for small-scale renewable energy projects that both involve and benefit the local population. The positive outcomes of such projects are numerous and include

  8. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications.

    Science.gov (United States)

    Hu, Michael Z; Zhu, Ting

    2015-12-01

    This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  9. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  10. Bridging Scales: A Model-Based Assessment of the Technical Tidal-Stream Energy Resource off Massachusetts, USA

    Science.gov (United States)

    Cowles, G. W.; Hakim, A.; Churchill, J. H.

    2016-02-01

    Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.

  11. Low-energy. beta. -function in a finite super-Yang-Mills model with multiple mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A. (International Centre for Theoretical Physics, Trieste (Italy))

    1985-02-14

    We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass ..mu... The requirement that the S-matrix elements be independent of ..mu.. leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing ..beta..-function.

  12. Risk management with substitution options: Valuing flexibility in small-scale energy systems

    Science.gov (United States)

    Knapp, Karl Eric

    Several features of small-scale energy systems make them more easily adapted to a changing operating environment than large centralized designs. This flexibility is often manifested as the ability to substitute inputs. This research explores the value of this substitution flexibility and the marginal value of becoming a "little more flexible" in the context of real project investment in developing countries. The elasticity of substitution is proposed as a stylized measure of flexibility and a choice variable. A flexible alternative (elasticity > 0) can be thought of as holding a fixed-proportions "nflexible" asset plus a sequence of exchange options---the option to move to another feasible "recipe" each period. Substitutability derives value from following a contour of anticipated variations and from responding to new information. Substitutability value, a "cost savings option", increases with elasticity and price risk. However, the required premium to incrementally increase flexibility can in some cases decrease with an increase in risk. Variance is not always a measure of risk. Tools from stochastic dominance are newly applied to real options with convex payoffs to correct some misperceptions and clarify many common modeling situations that meet the criteria for increased variance to imply increased risk. The behavior of the cost savings option is explored subject to a stochastic input price process. At the point where costs are identical for all alternatives, the stochastic process for cost savings becomes deterministic, with savings directly proportional to elasticity of substitution and price variance. The option is also formulated as a derivative security via dynamic programming. The partial differential equation is solved for the special case of Cobb-Douglas (elasticity = 1) (also shown are linear (infinite elasticity), Leontief (elasticity = 0)). Risk aversion is insufficient to prefer a more flexible alternative with the same expected value. Intertemporal

  13. Considerations for reducing food system energy demand while scaling up urban agriculture

    DEFF Research Database (Denmark)

    Mohareb, Eugene; Heller, Martin; Novak, Paige

    2017-01-01

    with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation......-income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food-energy-water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA.......Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated...

  14. Pre-investigation of power-to-gas technologies for energy storage at large scales

    OpenAIRE

    Gutierrez Martin, Fernando; Corona Bellostas, Blanca; Ruiz, D.; San Miguel Alfaro, Guillermo

    2015-01-01

    This work analyzes the main technical, economical and environmental aspects of power-to-gas processes (PtG) to show their efficiencies, costs and impact potentials. The analysis includes the mass and energy balances, preliminary design, economy and life-cycle emissions of the system (i.e. from primary energy to hydrogen production, methanation and final energy uses). It focuses on the 'Spanish case', which is a good example for planning the transition from a system holding large power&gas ...

  15. Scaling of elastic energy storage in mammalian limb tendons: do small mammals really lose out?

    OpenAIRE

    Bullimore, Sharon R.; Burn, Jeremy F.

    2005-01-01

    It is widely believed that elastic energy storage is more important in the locomotion of larger mammals. This is based on: (a) comparison of kangaroos with the smaller kangaroo rat; and (b) calculations that predict that the capacity for elastic energy storage relative to body mass increases with size. Here we argue that: (i) data from kangaroos and kangaroo rats cannot be generalized to other mammals; (ii) the elastic energy storage capacity relative to body mass is not indicative of the imp...

  16. Scale invariant energy smoothing estimates for the Schr\\"odinger Equation with small Magnetic Potential

    OpenAIRE

    Georgiev, Vladimir; Tarulli, Mirko

    2005-01-01

    We consider some scale invariant generalizations of the smoothing estimates for the free Schr\\"odnger equation obtained by Kenig, Ponce and Vega. Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schr\\"odnger equation with small magnetic potential.

  17. Energy from the desert very large scale PV power : state of the art and into the future

    CERN Document Server

    Komoto, Keiichi; Cunow, Edwin; Megherbi, Karim; Faiman, David; van der Vleuten, Peter

    2013-01-01

    The fourth volume in the established Energy from the Desert series examines and evaluates the potential and feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) systems, which have capacities ranging from several megawatts to gigawatts, and to develop practical project proposals toward implementing the VLS-PV systems in the future. It comprehensively analyses all major issues involved in such large scale applications, based on the latest scientific and technological developments by means of close international co-operation with experts from different countries. From t

  18. A life cycle cost analysis of large-scale thermal energy storage technologies for buildings using combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Gaine, K.; Duffy, A.

    2010-07-01

    Full text: Buildings account for approximately 40% of energy consumption and greenhouse gas (GHG) emissions in developed economies, of which approximately 55% of building energy is used for heating and cooling. The reduction of building-related GHG emissions is a high international policy priority. For this reason and because there are many technical solutions for this, these polices should involve significant improvements in the uptake of small-scale energy efficient (EE) systems. However the widespread deployment of many technologies, must overcome a number of barriers, one of which is a temporal (diurnal or seasonal) mismatch between supply and demand. For example, in office applications, peak combined heat and power (CHP) thermal output may coincide with peak electrical demand in the late morning or afternoon, whereas heating may be required early in the morning. For this reason, cost-effective thermal storage solutions have the potential to improve financial performance, while simultaneously reducing associated GHG emissions. The aim of this paper is to identify existing thermal energy storage (TES) technologies and to present and asses the economic and technical performance of each for a typical large scale mixed development. Technologies identified include: Borehole Thermal Energy Storage (BTES); Aquifer Thermal Energy Storage (ATES); Pitt Thermal Energy Storage (PTES) and Energy Piles. Of these the most appropriate for large scale storage in buildings were BTES and ATES because of they are relatively cheap and are installed under a building and do not use valuable floor area A Heat transfer analyses and system simulations of a variety of BTES systems are carried out using a Finite Element Analysis package (ANSYS) and energy balance simulation software (TRNSYS) is to determine the optimal system design. Financial models for each system are developed, including capital, installation, running and maintenance costs. Using this information the unit costs of

  19. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mohammed, Yasser; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Maron, Gaetano; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zanetti, Marco; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Yetkin, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Sinthuprasith, Tutanon; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-02-22

    Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity $\\eta$ and transverse momentum $p_{\\mathrm{T}}$ are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) $R$, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Sev...

  20. Scheduling and Voltage Scaling for Energy/Reliability Trade-offs in Fault-Tolerant Time-Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Poulsen, Kåre Harbo; Izosimov, Viacheslav

    2007-01-01

    In this paper we present an approach to the scheduling and voltage scaling of low-power fault-tolerant hard real-time applications mapped on distributed heterogeneous embedded systems. Processes and messages are statically scheduled, and we use process re-execution for recovering from multiple tr...... are satisfied and the energy is minimized. We present a constraint logic programming- based approach which is able to find reliable and schedulable implementations within limited energy and hardware resources. The developed algorithms have been evaluated using extensive experiments....

  1. Large-scale energy storage. Investigating improvements of redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, A

    2008-11-01

    Full Text Available and more sustainable energy source. One problem however lies with the intermittent nature of the solar energy source, coupled with a mismatch between generation and use. Redox flow batteries provide a means to bridge the time lag between the availability...

  2. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  3. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter has been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.

  4. Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Wave Energy Converters (WECs) extract energy from ocean waves and have the potential to produce a significant contribution of electricity from renewable sources. However, large "WEC farms" or "WEC arrays" are expected to have "WEC array effects", expressed as the impact of the WECs on the wave...... of geometric layout configurations and wave conditions. WEC response, wave induced forces on the WECs and wave field modifications have been measured. Each WEC consists of a buoy with diameter of 0.315 m. Power take-off is modeled by realizing friction based energy dissipation through damping of the WECs...... array effects and for validation and extension of numerical models. This model validation will enable optimization of the geometrical layout of WEC arrays for real applications and reduction of the cost of energy from wave energy systems....

  5. Exploitation of jet properties for energy scale corrections for the CMS calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenmann, Henning

    2011-02-15

    Jets form important event signatures in proton-proton collisions at the Large Hadron Collider (LHC) and the precise measurement of their energy is a crucial premise for a manifold of physics studies. Jets, which are reconstructed exclusively from calorimeter information, have been widely used within the CMS collaboration. However, the response of the calorimeters to incident particles depends heavily on their energy. In addition, it has been observed at previous experiments that the charged particle multiplicity and the radial distribution of constituents differ for jets induced by light quarks or by gluons. In conjunction with the non-linearity of the CMS calorimeters, this contributes to a mean energy response deviating from unity for calorimeter jets, depending on the jet-flavour. This thesis describes a jet-energy correction to be applied in addition to the default corrections within the CMS collaboration. This correction aims at decreasing the flavour dependence of the jet-energy response and improving the energy resolution. As many different effects contribute to the observed jet-energy response, a set of observables are introduced and corrections based on these observables are tested with respect to the above aims. A jet-width variable, which is defined from energy measured in the calorimeter, shows the best performance: A correction based on this observable improves the energy resolution by up to 20% at high transverse momenta in the central detector region and decreases the flavour dependence of the jet-energy response by a factor of two. A parametrisation of the correction is both derived from and validated on simulated data. First results from experimental data, to which the correction has been applied, are presented. The proposed jet-width correction shows a promising level of performance. (orig.)

  6. A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage under Dynamic Pricing Tariffs

    Directory of Open Access Journals (Sweden)

    Enrico Telaretti

    2015-12-01

    Full Text Available Price arbitrage involves taking advantage of an electricity price difference, storing electricity during low-prices times, and selling it back to the grid during high-prices periods. This strategy can be exploited by customers in presence of dynamic pricing schemes, such as hourly electricity prices, where the customer electricity cost may vary at any hour of day, and power consumption can be managed in a more flexible and economical manner, taking advantage of the price differential. Instead of modifying their energy consumption, customers can install storage systems to reduce their electricity bill, shifting the energy consumption from on-peak to off-peak hours. This paper develops a detailed storage model linking together technical, economic and electricity market parameters. The proposed operating strategy aims to maximize the profit of the storage owner (electricity customer under simplifying assumptions, by determining the optimal charge/discharge schedule. The model can be applied to several kinds of storages, although the simulations refer to three kinds of batteries: lead-acid, lithium-ion (Li-ion and sodium-sulfur (NaS batteries. Unlike literature reviews, often requiring an estimate of the end-user load profile, the proposed operation strategy is able to properly identify the battery-charging schedule, relying only on the hourly price profile, regardless of the specific facility’s consumption, thanks to some simplifying assumptions in the sizing and the operation of the battery. This could be particularly useful when the customer load profile cannot be scheduled with sufficient reliability, because of the uncertainty inherent in load forecasting. The motivation behind this research is that storage devices can help to lower the average electricity prices, increasing flexibility and fostering the integration of renewable sources into the power system.

  7. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    Science.gov (United States)

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  8. Large-scale integration of renewable energy into international electricity markets

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The paper presents the ability of different energy systems and regulation strategies to integrate renewable energy sources (RES) into the electricity supply system. The fluctuating electricity production from renewable energy must interact with the rest of the production units in order to make it...... capacity. Such investments are feasible because the ability to benefit from trade of electricity on the exchange is improved. At the same time the economic advantage of renewable energy is increased.......The paper presents the ability of different energy systems and regulation strategies to integrate renewable energy sources (RES) into the electricity supply system. The fluctuating electricity production from renewable energy must interact with the rest of the production units in order to make...... it possible for the system to secure a balance between supply and demand. At the same time most European electricity systems are in the process of being transformed into competitive electricity markets. Already today, the annual share of wind power in the western part of Denmark is nearly 20 percent, which...

  9. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    Science.gov (United States)

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Corrosion and scaling in utilization of geothermal energy in the Upper Rhine graben

    OpenAIRE

    Mundhenk, Niklas

    2013-01-01

    Corrosion and scaling are two obstructive processes that occur in geothermal industry as a consequence of the chemical characteristics of the geothermal fluid. Here, an experimental approach was chosen to understand the reactions on the material/fluid interface. In-situ and laboratory experiments reveal various types of corrosion phenomena and scale minerals. The outcome of this works establishes a better understanding of the processes that govern the resistance of the materials.

  11. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations

    Science.gov (United States)

    Asta, M.; Hoyt, J. J.; Karma, A.

    2002-09-01

    Solid-liquid interfacial free energies and associated crystalline anisotropies are calculated for a model Ni-Cu alloy system based upon the analysis of equilibrium capillary fluctuations in molecular-dynamics simulations. Alloying of Ni by Cu leads to a reduction in the magnitude of the calculated interfacial free energy, while having only a minor effect on computed anisotropies. The present study demonstrates the viability of applying the fluctuation method to simulation-based calculations of solid-liquid interfacial free energies in alloys.

  12. Examples of Small-scale Urban Area. Experiment Energy Leap Built Environment; Voorbeeldenboek Kleinschalige Binnenstedelijke Gebieden. Experiment Energiesprong Gebouwde Omgeving

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    The Dutch government considers the transition process to be necessary and stimulates investments in energy innovations in the built environment. This innovation effort is the programme 'Energy Leap' (Energiesprong), which is being carried out by the Steering Group Experimental Housing (SEV) on behalf of the Dutch Ministry of the Interior and Kingdom Relations (BZK). The programme is derived from the Innovation Agenda for Energy in the Built Environment. The examples in this book are intended to inspire (potential) participants in the Experiment Energy Leap for Small-scale Urban Areas. The examples focus explicitly on the reduction of CO2 emissions in urban areas, and thus, in addition to CO2 reduction on a building level, the aspects of energy supply, (local) energy production and the energy infrastructure [Dutch] Het SEV-programma Energiesprong (SEV is Stuurgroep Experimenten Volkshuisvesting) beoogt een substantiele bijdrage te leveren aan de condities waaronder de energietransitie effectief tot stand kan komen. In dit basisplan wordt uiteengezet hoe de markt daartoe moet kunnen komen en welke activiteiten daarvoor worden ondersteund, opgezet en/of uitgevoerd vanuit Energiesprong. Het SEV-programma Energiesprong wordt in opdracht van het Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (BZK) uitgevoerd. Het programma is afgeleid van de Innovatie Agenda energie Gebouwde Omgeving. Dit voorbeeldenboek dient ter inspiratie van (potentiele) deelnemers aan het Experiment Energiesprong kleinschalige Binnenstedelijke Gebieden. De voorbeelden richten zich expliciet op de CO2-reductie van binnenstedelijke gebieden en daarmee, naast de CO2-reductie op woning- en gebouwniveau, op de aspecten energievoorziening, (locale) energieopwekking en energie-infrastructuur.

  13. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    Science.gov (United States)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1

  14. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.

    Science.gov (United States)

    Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong

    2017-09-06

    A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO3·H2O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm(2) C(-1)). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm(2)) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.

  15. Urban Scale Application of Solar PV to Improve Sustainability in the Building and the Energy Sectors of KSA

    Directory of Open Access Journals (Sweden)

    Muhammad Asif

    2016-11-01

    Full Text Available The Kingdom of Saudi Arabia (KSA is the largest country in the Gulf Cooperation Council (GCC region in terms of population, geographic area, economy, and construction and utility infrastructure. The rapid growth of the building sector in general and residential buildings in particular is creating huge energy and environmental challenges for the country. To address these problems and reduce its reliance on an oil-based energy infrastructure, the country aims to install 9.5 GW of renewable energy by 2030. Traditionally the emphasis has been on large-scale renewable projects. Globally, the recent success of solar energy has been significantly contributed by the application of photovoltaics (PV in buildings. This is an area that has been overlooked in KSA. This study investigates the prospects of application of PV in buildings to improve the sustainability standards in the building and energy sectors of the country by considering the King Fahd University of Petroleum and Minerals (KFUPM as a case study. PVsyst and RetScreen software programs have been used to model the application of PV on building rooftops in KFUPM. The study also discusses the concerned policy. It is found that the rooftop application of PV can annually produce 37,746 MWh of electricity, meeting over 16% of the KFUPM’s total energy requirements.

  16. ESTIMATION OF SOLAR ENERGY ON VERTICAL 3D BUILDING WALLS ON CITY QUARTER SCALE

    National Research Council Canada - National Science Library

    F Jaugsch; M-O Löwner

    2016-01-01

    ... parliament’s goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production...

  17. The Binding Energy of Diquark-Antidiquark System in Nanometer and Subnanometer Scales

    Directory of Open Access Journals (Sweden)

    P. Sadeghi-Alavijeh

    2012-03-01

    Full Text Available In this paper, using Monte Carlo Fortran code, we have obtained the binding energies for three different systems of diquark–antidiquark in distances from 0.01 to 15 nm. In [0.1 - 15] nm interval, we made use of Coulomb potential because in this interval, strong interaction is negligible. We have compared the binding energies of the systems with one another. The results of these comparisons were close to our anticipations. We also obtained the binding energy of one of the systems in the interval below 1 fm, where diquark-antidiquark systems comprise a tetraquark and the potential is of strong interaction type. Because of weak Coulomb interaction, strong interaction has been used as the basis of the calculations. The binding energy resulted is consistent with the existing references

  18. Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales.

    Science.gov (United States)

    Harel, Roi; Duriez, Olivier; Spiegel, Orr; Fluhr, Julie; Horvitz, Nir; Getz, Wayne M; Bouten, Willem; Sarrazin, François; Hatzofe, Ohad; Nathan, Ran

    2016-09-26

    Natural selection theory suggests that mobile animals trade off time, energy and risk costs with food, safety and other pay-offs obtained by movement. We examined how birds make movement decisions by integrating aspects of flight biomechanics, movement ecology and behaviour in a hierarchical framework investigating flight track variation across several spatio-temporal scales. Using extensive global positioning system and accelerometer data from Eurasian griffon vultures (Gyps fulvus) in Israel and France, we examined soaring-gliding decision-making by comparing inbound versus outbound flights (to or from a central roost, respectively), and these (and other) home-range foraging movements (up to 300 km) versus long-range movements (longer than 300 km). We found that long-range movements and inbound flights have similar features compared with their counterparts: individuals reduced journey time by performing more efficient soaring-gliding flight, reduced energy expenditure by flapping less and were more risk-prone by gliding more steeply between thermals. Age, breeding status, wind conditions and flight altitude (but not sex) affected time and energy prioritization during flights. We therefore suggest that individuals facing time, energy and risk trade-offs during movements make similar decisions across a broad range of ecological contexts and spatial scales, presumably owing to similarity in the uncertainty about movement outcomes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  19. Analysis of the electricity demand of Greece for optimal planning of a large-scale hybrid renewable energy system

    Science.gov (United States)

    Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos

    2015-04-01

    The Greek electricity system is examined for the period 2002-2014. The demand load data are analysed at various time scales (hourly, daily, seasonal and annual) and they are related to the mean daily temperature and the gross domestic product (GDP) of Greece for the same time period. The prediction of energy demand, a product of the Greek Independent Power Transmission Operator, is also compared with the demand load. Interesting results about the change of the electricity demand scheme after the year 2010 are derived. This change is related to the decrease of the GDP, during the period 2010-2014. The results of the analysis will be used in the development of an energy forecasting system which will be a part of a framework for optimal planning of a large-scale hybrid renewable energy system in which hydropower plays the dominant role. Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  20. Estimation of high-pT Jet Energy Scale Uncertainty from single hadron response with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration

    2016-01-01

    The jet energy scale (JES) uncertainty is estimated using different methods at different pT ranges. In situ techniques exploiting the pT balance between a jet and a reference object (e.g. Z or gamma) are used at lower pT, but at very high pT (> 2.5 TeV) there is not enough statistics for in-situ techniques. The JES uncertainty at high-pT is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest pT range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy depositions belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.

  1. A benchmarking approach to NETPLAN using MARKAL/TIMES in analysis of large scale and long-term energy systems

    Science.gov (United States)

    Villarreal Marimon, Jose Ignacio

    Long-term and large scale investment planning decisions in two interdependent infrastructures, energy and transportation, will have increasingly overarching impacts on each other, due to rising interdependencies between the two systems such as plug-in hybrid electric vehicles and hybrid electric trains. Motivated by this interdependency, the National Energy and Transportation Planning Tool (NETPLAN) is developed. A benchmarking methodology is designed and then executed in order to compare the developing software with MARKAL and TIMES, which are existing investment planning tools that expand beyond one sector and are most closely related to the scope of NETPLAN. The designed stages of the benchmarking approach involve the philosophy, the model, and the mathematical formulation, and a case study is conducted in MARKAL using a consistent set of data that was used in NETPLAN. Results are obtained and then compared, and it is demonstrated how the interdependency between energy and transportation affects the investment decisions in NETPLAN.

  2. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Krishnan, Venkat [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  3. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten, Clayton [Colorado State Univ., Fort Collins, CO (United States); Hollinger, Reed [Colorado State Univ., Fort Collins, CO (United States); Capeluto, Maria Gabriela [Univ. of Buenos Aires (Argentina); Kaymak, Vural [Heinrich Heine Univ., Dusseldorf (Germany); Pukhov, Alexander [Heinrich Heine Univ., Dusseldorf (Germany); Wang, Shoujun [Colorado State Univ., Fort Collins, CO (United States); Rockwood, Alex [Colorado State Univ., Fort Collins, CO (United States); Wang, Yong [Colorado State Univ., Fort Collins, CO (United States); Keiss, David [Colorado State Univ., Fort Collins, CO (United States); Tommasini, Riccardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, Jaebum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Busquet, Michel [ARTEP Inc., Ellicott City, MD (United States); Klapisch, M [ARTEP Inc., Ellicott City, MD (United States); Shlyaptsev, Vyacheslav N. [Colorado State Univ., Fort Collins, CO (United States); Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  4. Technical Note: A comparison of model and empirical measures of catchment-scale effective energy and mass transfer

    Directory of Open Access Journals (Sweden)

    C. Rasmussen

    2013-09-01

    Full Text Available Recent work suggests that a coupled effective energy and mass transfer (EEMT term, which includes the energy associated with effective precipitation and primary production, may serve as a robust prediction parameter of critical zone structure and function. However, the models used to estimate EEMT have been solely based on long-term climatological data with little validation using direct empirical measures of energy, water, and carbon balances. Here we compare catchment-scale EEMT estimates generated using two distinct approaches: (1 EEMT modeled using the established methodology based on estimates of monthly effective precipitation and net primary production derived from climatological data, and (2 empirical catchment-scale EEMT estimated using data from 86 catchments of the Model Parameter Estimation Experiment (MOPEX and MOD17A3 annual net primary production (NPP product derived from Moderate Resolution Imaging Spectroradiometer (MODIS. Results indicated positive and significant linear correspondence (R2 = 0.75; P −2 yr−1. Modeled EEMT values were consistently greater than empirical measures of EEMT. Empirical catchment estimates of the energy associated with effective precipitation (EPPT were calculated using a mass balance approach that accounts for water losses to quick surface runoff not accounted for in the climatologically modeled EPPT. Similarly, local controls on primary production such as solar radiation and nutrient limitation were not explicitly included in the climatologically based estimates of energy associated with primary production (EBIO, whereas these were captured in the remotely sensed MODIS NPP data. These differences likely explain the greater estimate of modeled EEMT relative to the empirical measures. There was significant positive correlation between catchment aridity and the fraction of EEMT partitioned into EBIO (FBIO, with an increase in FBIO as a fraction of the total as aridity increases and percentage of

  5. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    Science.gov (United States)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  6. Novel approach toward the large-scale stable interacting dark-energy models and their astronomical bounds

    Science.gov (United States)

    Yang, Weiqiang; Pan, Supriya; Mota, David F.

    2017-12-01

    Stability analysis of interacting dark-energy models generally divides its parameters space into two regions, (i) wx≥-1 and ξ ≥0 and (ii) wx≤-1 and ξ ≤0 , where wx is the dark-energy equation of state and ξ is the coupling strength of the interaction. Because of this separation, crucial information about the cosmology and phenomenology of these models may be lost. In a recent study, it has been shown that one can unify the two regions with a coupling function that depends on the dark-energy equation of state. In this work, we introduce a new coupling function that also unifies the two regions of the parameter space and generalizes the previous proposal. We analyze this scenario considering the equation of state of dark energy to be either constant or dynamical. We study the cosmology of such models and constrain both scenarios with the use of the latest astronomical data from both the background evolution as well as large-scale structures. Our analysis shows that a nonzero value of the coupling parameter ξ as well as the dark-energy equation of state other than -1 are allowed. However, within 1 σ confidence level, ξ =0 and the dark-energy equation of state equal to -1 are compatible with the current data. In other words, the observational data allow a very small but nonzero deviation from the Λ cosmology; however, within the 1 σ confidence region, the interacting models can mimic the Λ cosmology. In fact, we observe that the models both at the background and perturbative levels are very hard to distinguish from each other and from Λ cosmology as well. Finally, we offer a rigorous analysis on the current tension on H0, allowing different regions of the dark-energy equation of state, which shows that interacting dark-energy models reasonably solve the current tension on H0.

  7. Evaluating free energies in different scale systems: Chemical reactions and nanopatterns

    Science.gov (United States)

    Asciutto, Eliana K.

    All the thermodynamical properties of a given system can be obtained from the knowledge of the free energy of such system and its derivatives. Thus, a study of different methods to evaluate free energies is of considerable importance for physical, chemical and biological systems. However, free energy calculations are not straightforward in practice. For chemical systems for example, the complication is mainly due to the difficulty of calculating the entropy of the system. In order to overcome this difficulty, special methodologies have been introduced to provide some tools in the estimation of relative free energies for molecular systems via computer simulations. Another example where free energy calculations are challenging is the physics of phase transitions, i.e. the boiling of a liquid, the transition from paramagnetic to ferromagnetic behavior of a metal, etc. This thesis is divided in two parts. In the first part, the evaluation of free energy differences in chemical reactions is investigated through a novel method developed by Laio et al called Metadynamics (1). This method not only allows for the evaluation of free energy differences but also accelerates the reactions, driving the system through high free energy barriers and sampling regions of low probability. As an application, two important carboxylic acids, malonic and formic acid, were studied and their structure, energetics, intramolecular reactions and solvent interactions were determined. The deprotonation of the formic acid in presence of water was also fully investigated. In the second part, phase transition phenomena are considered, using the phenomenological Laundau-Ginsburg-Wilson Free Energy Functional. We investigated self-assembled domain patterns of modulated systems. They appear as a result of competing short-range attractive and long-range repulsive interactions found in diverse physical and chemical systems. From an application point of view, there is considerable interest in this domain

  8. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  9. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    Science.gov (United States)

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  10. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    Science.gov (United States)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm-3, 2 g sulfur in a single cell), high volumetric energy density (135 Wh L-1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  11. Small-scale automated biomass energy heating systems: a viable option for remote Canadian communities?

    Energy Technology Data Exchange (ETDEWEB)

    McCallum, B. [Canadian Forest Service, Ottawa, ON (Canada). Industry, Economics and Programs Branch

    1997-12-31

    The potential benefits of wood energy (forest biomass) for space heating in Canada`s remote communities was discussed. Diesel fuel and heating oil must be transported into these communities to produce electricity and to heat large public buildings. Below the treeline, roundwood is often used to heat private homes. The move toward environmentally sustainable development has focussed much attention on renewable energy technologies such as biomass energy, (i.e. any form of energy derived from plant or animal materials). Wood is the most readily available biomass fuel in remote communities. Woodchips and sawmill waste can be burned in automated biomass heating systems which provide a convenient way to use low-grade wood to heat large buildings or groups of buildings which would not be feasible to heat with roundwood. It was shown that one cord of spruce can produce 1.5 tonnes of woodchips to ultimately displace 300 litres of heating oil. A description of a small-commercial and small-industrial biomass system was presented. The benefits of biomass were described as: (1) direct savings compared to high-cost oil heat, (2) increased circulation of energy dollars inside the community, and (3) employment opportunities in harvesting, processing and operating biomass systems. A steady supply of good quality woodchips to the heating plant must be ensured. 1 ref., 3 figs.

  12. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  13. Energy scaling for multi-exciton complexes in semiconductor quantum dots

    Science.gov (United States)

    Ipatov, Andrey; Gerchikov, Leonid; Christiano, Jordan

    2017-08-01

    The ground state properties of an multi-exciton (ME) complex localized in a nanoscale semiconductor quantum dot (QD) have been studied. The calculations have been performed using the envelope function approximation for electron and hole motion in the QD. The many-body quantum mechanical treatment of the electron-hole dynamics was done within the Density Functional Theory approach. The ground state energy dependencies upon QD radius, number of electron-hole pairs, QD dielectric function and effective masses of electron and holes have been analyzed. It is demonstrated that when multi-exciton complex is strongly localized within the QD, the physical properties of the system are determined by a single parameter, the ratio of QD and free exciton radii, and its binding energy is given by the function of this parameter multiplied by the binding energy of an isolated exciton in bulk semiconductor.

  14. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces

    DEFF Research Database (Denmark)

    Calle-Vallejo, F.; Martínez, J. I.; García Lastra, Juan Maria

    2012-01-01

    Despite their importance in physics and chemistry, the origin and extent of the scaling relations between the energetics of adsorbed species on surfaces remain elusive. We demonstrate here that scalability is not exclusive to adsorbed atoms and their hydrogenated species but rather a general phen...

  15. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation

    DEFF Research Database (Denmark)

    Nagaraj, Nagarjuna; D'Souza, Rochelle C J; Cox, Juergen

    2010-01-01

    of about 3 s making the method compatible with chromatographic time scales. Fragment mass accuracy increased about 50-fold compared to the "high-low" strategy. Unexpectedly, the HCD approach mapped up to 16,000 total phosphorylation sites in one day's measuring time--the same or better than the standard...

  16. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II (Dow Chemical Co., Midland, MI (USA)); Carta, G. (Virginia Univ., Charlottesville, VA (USA). Dept. of Chemical Engineering); Byers, C.H. (Oak Ridge National Lab., TN (USA))

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  17. Evaluation of the energy fluence in the small scale gap test

    NARCIS (Netherlands)

    Verbeek, R.P.; Bouma, R.H.B.

    2011-01-01

    The Small Scale Gap Test is a relatively simple experimental tool to obtain a measure of the shock sensitivity of explosives. An evaluation of this test is carried out with use of a computer simulation. The simulated pressures in the water gap compare to experimental data and justify the obtained

  18. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  19. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    Science.gov (United States)

    Maresh, J L; Adachi, T; Takahashi, A; Naito, Y; Crocker, D E; Horning, M; Williams, T M; Costa, D P

    2015-01-01

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging

  20. Improving Wind Farm Dispatchability Using Model Predictive Control for Optimal Operation of Grid-Scale Energy Storage

    Directory of Open Access Journals (Sweden)

    Douglas Halamay

    2014-09-01

    Full Text Available This paper demonstrates the use of model-based predictive control for energy storage systems to improve the dispatchability of wind power plants. Large-scale wind penetration increases the variability of power flow on the grid, thus increasing reserve requirements. Large energy storage systems collocated with wind farms can improve dispatchability of the wind plant by storing energy during generation over-the-schedule and sourcing energy during generation under-the-schedule, essentially providing on-site reserves. Model predictive control (MPC provides a natural framework for this application. By utilizing an accurate energy storage system model, control actions can be planned in the context of system power and state-of-charge limitations. MPC also enables the inclusion of predicted wind farm performance over a near-term horizon that allows control actions to be planned in anticipation of fast changes, such as wind ramps. This paper demonstrates that model-based predictive control can improve system performance compared with a standard non-predictive, non-model-based control approach. It is also demonstrated that secondary objectives, such as reducing the rate of change of the wind plant output (i.e., ramps, can be considered and successfully implemented within the MPC framework. Specifically, it is shown that scheduling error can be reduced by 81%, reserve requirements can be improved by up to 37%, and the number of ramp events can be reduced by 74%.

  1. Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy

    Directory of Open Access Journals (Sweden)

    Stefano Verani

    2015-06-01

    Full Text Available The sustainability of a small-scale self-consumption wood-energy chain for heat generation in central Italy was analyzed from a technical, economic and energetic point of view. A micro-chain was developed within the CRA-ING farm at Monterotondo (Rome, Italy: The purpose of this system was to produce biomass for supplying a heating plant within the CRA-ING property as a substitute for diesel fuel. A poplar short rotation coppice, established with clones AF2, AF6 and Monviso, fed the micro-chain. The rotation was biennial. The average plantation production (Mgd.m.·ha−1·year−1 was 10.2, with a maximum of 13.53 for the twin-rows AF2 and a minimum of 8.00 for the single-row Monviso. The economic assessment was based on the Net Present Value (NPV method and the equivalent annuity cost, and found an average saving of 15.60 €·GJ−1 of heat generated by the wood chips heating system in comparison with the diesel heating system over a 10 year lifetime of the thermal power plant. The energy assessment of the poplar plantation, carried out using the Gross Energy Requirements method, reported an energy output/input ratio of 12.3. The energy output/input ratio of the whole micro-chain was 4.5.

  2. Interdigitated-electrode-based MEMS-scale piezoelectric energy harvester modeling and optimization using finite element method.

    Science.gov (United States)

    Toprak, Alperen; Tigli, Onur

    2013-10-01

    This paper presents a novel optimization method for interdigitated electrode (IDE)-based, cantilever-type piezoelectric energy harvesters at microelectromechanical system (MEMS) scale. A new two-stage approach based on the finite element method is proposed to examine the performance of such devices. First, detailed electrostatic poling simulations are presented. The results of these poling orientation simulations are used while calculating electrical energy and conversion efficiency in response to a constant external force. The proposed approach is used to find the optimum piezoelectric material thickness and IDE geometry for a cantilever beam which is constructed on top of a 4-μm Si structural layer and a 1-μm SiO2 isolation layer. Cantilever and IDE lengths are fixed at 320 μm and 240 μm, respectively, whereas the lead zirconate titanate (PZT) thickness, IDE finger widths, and number of finger pairs are varied. Maximum output energy of 0.37 pJ for a 15-μN force is obtained at a PZT thickness of 0.6 μm and an IDE consisting of 12 finger pairs. This energy is reduced to 1.5 fJ for 5 μm PZT thickness with 2 electrode finger pairs, which shows that device geometry has a significant impact on device performance. The proposed method presents an accurate framework for the rapid design and performance prediction of novel piezoelectric energy harvester structures.

  3. Energy

    CERN Document Server

    Graybill, George

    2007-01-01

    Unlock the mysteries of energy! Energy is more than ""the ability to do work""; we present these concepts in a way that makes them more accessible to students and easier to understand. The best way to understand energy is to first look at all the different kinds of energy including: What Is Energy, Mechanical Energy, Thermal, Sound Energy and Waves, as well as Light Energy.

  4. Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch-scale and farm-scale evaluation.

    Science.gov (United States)

    Kaparaju, P; Luostarinen, S; Kalmari, E; Kalmari, J; Rintala, J

    2002-01-01

    The possible co-digestion of energy crops and industrial confectionery by-products with cow manure was evaluated firstly, through long-term batch experiments and secondly, in a farm-scale digester. In batch assays, digestion with mesophilically digested cow manure as inoculum resulted in specific methane yields (m3 kg(-1) VS added waste) of 0.35 for grass hay (particle size confectionery by-products were 0.37 for chocolate, 0.39 for black candy and 0.32 for confectionery raw material. Out the three particle sizes (2.0, 1.0 and 0.5 cm) tested, particle size of 1.0 cm was found ideal for digestion of grass hay and clover while, particle size reduction did not influence methane production from oats. Stage of the crop influenced the methane yields, with clover harvested at vegetative stage yielding 33% higher methane than when harvested at flowering stage. An approximate 60% enhancement in methane yield was noticed with the co-digestion of industrial confectionery wastes with cow manure in a full-scale farm digester.

  5. Folding Free Energies of 5'-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5'-untranslated regions (UTRs of mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory effects of mRNA 5'-UTR folding free energies. We performed computations of secondary structures in 5'-UTRs and their folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free energies of 5'-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs with weakly folded 5'-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 5'-UTRs have significantly higher folding free energies than other genomic regions and randomized sequences. We also found a positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived transcripts, which supports a picture of competition between translation and degradation. Among the genes with strongly folded 5'-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our analysis, we conclude that (i there is a widespread bias for 5'-UTRs to be weakly folded, (ii folding free energies of 5'-UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii transcripts with strongly folded 5'-UTRs are often rare and hard to find experimentally.

  6. Energy transduction on the nanosecond time scale : early structural events in a xanthopsin photocycle

    NARCIS (Netherlands)

    Perman, B; Srajer, V; Ren, Zhaochun; Teng, T Y; Pradervand, C; Ursby, T; Bourgeois, Dominique; Schotte, Friedrich; Wulff, Michael; Kort, R; Hellingwerf, K; Moffat, K.

    1998-01-01

    Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately transduces the energy contained in a light signal into an altered biological response. Nanosecond time-resolved x-ray

  7. Multi-scale model of the U.S. transportation energy market for policy assessment.

    Science.gov (United States)

    2013-06-01

    Across the globe, issues related to energy, its sources, uses, and impacts on climate change are at the forefront : of political and environmental debates (e.g., the 2012 United Nations Climate Change Conference at Doha, : http://unfccc.int). Current...

  8. Scaling Relations and Optimization of Excitonic Energy Transfer Rates between One-Dimensional Molecular Aggregates

    NARCIS (Netherlands)

    Chuang, Chern; Knoester, Jasper; Cao, Jianshu

    2014-01-01

    We theoretically study the distance, chain length, and temperature dependence of the electronic couplings as well as the excitonic energy transfer rates between one-dimensional (1D) chromophore aggregates. In addition to the well-known geometry dependent factor that leads to the deviation from

  9. The Dependence of Ammonal Detonation Product Energy on Cylinder Test Scale

    Science.gov (United States)

    Anderson, Eric; Jackson, Scott

    2017-06-01

    For a detonation to propagate steadily, the compression shock must be supported by a sufficient amount of energy from the chemical reaction zone. Flow divergence reduces the available energy to drive the detonation forward, resulting in the diameter-effect and eventually detonation failure as charge size is reduced. Similarly, product energy tends to decrease with decreasing charge size. Non-ideal explosives such as Ammonium Nitrate blended with Aluminum Powder (Ammonal) are particularly sensitive to flow divergence. To quantify the effect of flow divergence on Ammonal performance, we applied an analytic method to examine cylinder test wall velocity profiles from Ammonal tests with inner diameters of 12.7 mm up to 76.2 mm. For these tests, we report detonation velocity and detonation product isentropes and energies. In addition, analysis of the velocity profiles revealed an experimental measurement of the Rayleigh line, which agreed well with the theoretical Rayleigh line for all experiments. Using this feature we are able to report inferred reaction zone times.

  10. ESTIMATION OF SOLAR ENERGY ON VERTICAL 3D BUILDING WALLS ON CITY QUARTER SCALE

    Directory of Open Access Journals (Sweden)

    F. Jaugsch

    2016-10-01

    Full Text Available In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament’s goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  11. Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project

    Science.gov (United States)

    Caraccio, Anne

    2015-01-01

    As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.

  12. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    , in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present...

  13. Energy Analysis of a Small-Scale Combustion Driven Blast Tube

    Science.gov (United States)

    Janardhanraj, S.; Jagadeesh, G.

    There was a time when the term `Blast waves' was so synonymous with explosions, rapid destruction and injuries that it had assumed an increasingly negative stance in people's minds. It was not until researchers learnt to harness, alter and utilize the energy of blast waves that it was conceived from a different perspective and its importance was realized.

  14. Techno-economic optimization of a scaled-up solar concentrator combined with CSPonD thermal energy storage

    Science.gov (United States)

    Musi, Richard; Grange, Benjamin; Diago, Miguel; Topel, Monika; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    A molten salt direct absorption receiver, CSPonD, used to simultaneously collect and store thermal energy is being tested by Masdar Institute and MIT in Abu Dhabi, UAE. Whilst a research-scale prototype has been combined with a beam-down tower in Abu Dhabi, the original design coupled the receiver with a hillside heliostat field. With respect to a conventional power-tower setup, a hillside solar field presents the advantages of eliminating tower costs, heat tracing equipment, and high-pressure pumps. This analysis considers the industrial viability of the CSPonD concept by modeling a 10 MWe up-scaled version of a molten salt direct absorption receiver combined with a hillside heliostat field. Five different slope angles are initially simulated to determine the optimum choice using a combination of lowest LCOE and highest IRR, and sensitivity analyses are carried out based on thermal energy storage duration, power output, and feed-in tariff price. Finally, multi-objective optimization is undertaken to determine a Pareto front representing optimum cases. The study indicates that a 40° slope and a combination of 14 h thermal energy storage with a 40-50 MWe power output provide the best techno-economic results. By selecting one simulated result and using a feed-in tariff of 0.25 /kWh, a competitive IRR of 15.01 % can be achieved.

  15. Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Zolezzi, J.M.; Garay, A.; Reveco, M. [Universidad de Santiago de Chile, Rectoria, Santiago de Chile (Chile)

    2010-12-15

    The energy proposal of this research suggests the use of places with abundant wind resources for the production of H{sub 2} on a large scale to be transported and used in the central zone of Chile with the purpose of diversifying the country's energy matrix in order to decrease its dependence on fossil fuels, increase its autonomy, and cover the future increases in energy demand. This research showed that the load factor of the proposed wind park reaches a value of 54.5%, putting in evidence the excellent wind conditions of the zone. This implies that the cost of the electricity produced by the wind park located in the Chilean Patagonia would have a cost of 0.0213 US$ kWh{sup -1} in the year 2030. The low prices of the electricity obtained from the park, thanks to the economy of scale and the huge wind potential, represent a very attractive scenario for the production of H{sub 2} in the future. The study concludes that by the year 2030 the cost of the H{sub 2} generated in Magallanes and transported to the port of Quinteros would be 18.36 US$ MBTU{sup -1}, while by that time the cost of oil would be about 17.241 US$ MBTU{sup -1}, a situation that places H{sub 2} in a very competitive position as a fuel. (author)

  16. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    Science.gov (United States)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  17. Energy scales in YBaCuO grain boundary biepitaxial Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Tafuri, F., E-mail: tafuri@na.infn.it [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [DPMC, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Lucignano, P. [CNR-ISC, sede di Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Galletti, L. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (CE) (Italy); Massarotti, D. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Montemurro, D. [NEST and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa (Italy); Papari, G. [INPAC - Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Pulsed Fields Group, K.U. Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); Barone, A.; Tagliacozzo, A. [Dip. Scienze Fisiche, Universita di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli (Italy)

    2012-09-15

    Self-assembled nanoscale channels may naturally arise in the growth process of grain boundaries (GBs) in high critical temperature superconductor (HTS) systems, and deeply influence the transport properties of the GB Josephson junctions (JJs). By isolating nano-channels in YBCO biepitaxial JJs and studying their properties, we sort out specific fingerprints of the mesoscopic nature of the contacts. The size of the channels combined to the characteristic properties of HTS favors a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Thouless energy emerges as a characteristic energy of these types of Josephson junctions. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed, along with elements to take into account when designing HTS nanostructures.

  18. Energy from Agricultural and Animal Farming Residues: Potential at a Local Scale

    OpenAIRE

    Giorgio Guariso; Giulia Fiorese

    2012-01-01

    Animal wastes from high-density farming have severe impacts on the nitrogen cycle. According to current regulations, the disposal of manure on cropland is constrained by nitrogen content in the agricultural soils. On the contrary, anaerobic digestion (AD) of these wastes can produce energy and a digestate, which is easier to handle than manure and can be applied for agronomic uses. When herbaceous crops are co-digested with manure to increase the efficiency of biogas production, the nitrogen ...

  19. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    Science.gov (United States)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  20. An investigation of the utility scale wind energy for north‐eastern ...

    African Journals Online (AJOL)

    In the present study, the wind energy potential for Garissa (0°28S, 39°38'E) and Marsabit (2° 19N, 37° 58'E), both rural towns in north-eastern Kenya have been statistically analyzed on a 6-year measured hourly time series wind speed data. The probability distribution parameters are derived the time series data and the ...

  1. Force dependence of energy barriers in atomic friction and single-molecule force spectroscopy: critique of a critical scaling relation.

    Science.gov (United States)

    Evstigneev, M; Reimann, P

    2015-04-01

    Friction force microscopy and single-molecule force spectroscopy are experimental methods to explore multistable energy landscapes by means of a controlled reduction of the energy barriers between adjacent potential minima. This affects the system's interstate transition rates proportional to e(-ΔE(f)/kBT), with ΔE(f) being the barrier height, k(B)T the thermal energy, and f the elastic force applied. It is often assumed that, at large forces, the barrier height scales as (f(c) - f)(3/2), where f(c) is the critical force, at which the barrier vanishes. We show that, for the elastic forces produced by a pulling device of finite stiffness κ, this scaling relation is actually incorrect. Rather, the barrier is a double-valued function of force of the form E(f) ∝ (κ/κ(c) ±√1 − f/f(0))(3), where f(0) is the maximal force that the system potential can generate, and the characteristic stiffness κ(c) is not necessarily much larger than κ. In particular, for finite κ, the barrier vanishes at a certain force f(κ) force f0 can still be reached. We derive the relation between the most probable force at the moment of transition, fm, and the pulling velocity, v. The usually assumed scaling f(m) ∝ (ln v)(2/3) is recovered as the κ → 0 limit of our more general result, but becomes increasingly worse as κ grows. We introduce a new data analysis method that allows one to quantitatively characterize the system potential and evaluate the stiffness of the pulling device, κ, which is usually not known beforehand. We demonstrate the feasibility of our method by analyzing the results of a numerical experiment based on the standard Prandtl-Tomlinson model of nanoscale friction.

  2. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study.

    Science.gov (United States)

    Gülan, Utku; Binter, Christian; Kozerke, Sebastian; Holzner, Markus

    2017-05-03

    Today, the functional and risk assessment of stenosed arteries is mostly based on ultrasound Doppler blood flow velocity measurements or catheter pressure measurements, which rely on several assumptions. Alternatively, blood velocity including turbulent kinetic energy (TKE) may be measured using MRI. The aim of the present study is to validate a TKE-based approach that relies on the fact that turbulence production is dominated by the flow's shear to determine the total irreversible energy loss from MRI scans. Three-dimensional particle tracking velocimetry (3D-PTV) and phase-contrast magnetic resonance imaging (PC-MRI) simulations were performed in an anatomically accurate, compliant, silicon aortic phantom. We found that measuring only the laminar viscous losses does not reflect the true losses of stenotic flows since the contribution of the turbulent losses to the total loss become more dominant for more severe stenosis types (for example, the laminar loss is 0.0094±0.0015W and the turbulent loss is 0.0361±0.0015W for the Remax=13,800 case, where Remax is the Reynolds number based on the velocity in the vena-contracta). We show that the commonly used simplified and modified Bernoulli's approaches overestimate the total loss, while the new TKE-based method proposed here, referred to as "shear scaling" approach, results in a good agreement between 3D-PTV and simulated PC-MRI (mean error is around 10%). In addition, we validated the shear scaling approach on a geometry with post-stenotic dilatation using numerical data by Casas et al. (2016). The shear scaling-based method may hence be an interesting alternative for irreversible energy loss estimation to replace traditional approaches for clinical use. We expect that our results will evoke further research, in particular patient studies for clinical implementation of the new method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A metabolic and body-size scaling framework for parasite within-host abundance, biomass, and energy flux.

    Science.gov (United States)

    Hechinger, Ryan F

    2013-08-01

    Energetics may provide a useful currency for studying the ecology of parasite assemblages within individual hosts. Parasite assemblages may also provide powerful models to study general principles of ecological energetics. Yet there has been little ecological research on parasite-host energetics, probably due to methodological difficulties. However, the scaling relationships of individual metabolic rate with body or cell size and temperature may permit us to tackle the energetics of parasite assemblages in hosts. This article offers the foundations and initial testing of a metabolic theory of ecology (MTE) framework for parasites in hosts. I first provide equations to estimate energetic flux through observed parasite assemblages. I then develop metabolic scaling theory for parasite abundance, energetics, and biomass in individual hosts. In contrast to previous efforts, the theory factors in both host and parasite metabolic scaling, how parasites use host space, and whether energy or space dictates carrying capacity. Empirical tests indicate that host energetic flux can set parasite carrying capacity, which decreases as predicted considering the scaling of host and parasite metabolic rates. The theory and results also highlight that the phenomenon of "energetic equivalence" is not an assumption of MTE but a possible outcome contingent on how species partition resources. Hence, applying MTE to parasites can lend mechanistic, quantitative, predictive insight into the nature of parasitism and can inform general ecological theory.

  4. Energy from Agricultural and Animal Farming Residues: Potential at a Local Scale

    Directory of Open Access Journals (Sweden)

    Giorgio Guariso

    2012-08-01

    Full Text Available Animal wastes from high-density farming have severe impacts on the nitrogen cycle. According to current regulations, the disposal of manure on cropland is constrained by nitrogen content in the agricultural soils. On the contrary, anaerobic digestion (AD of these wastes can produce energy and a digestate, which is easier to handle than manure and can be applied for agronomic uses. When herbaceous crops are co-digested with manure to increase the efficiency of biogas production, the nitrogen content in the digestate further increases, unless these larger plants are equipped with nitrogen stripping technologies. We propose a model to compare larger (cooperative and smaller (single parcel AD conversion plants. The whole process is modeled: from the collection of manures, to the cultivation of energy crops, to the disposal of the digestate. The model maximizes the energy produced on the basis of available biomass, road network, local heat demand and local availability of land for digestate disposal. Results are the optimal size and location of the plants, their technology and collection basins. The environmental performances of such plants are also evaluated. The study has been applied to the province of Forlì-Cesena, an Italian district where animal farming is particularly relevant.

  5. Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and its Application to Sparse Coding

    Directory of Open Access Journals (Sweden)

    Sapan eAgarwal

    2016-01-01

    Full Text Available The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational advantages of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an NxN crossbar, these two kernels are at a minimum O(N more energy efficient than a digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1. These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N reduction in energy for the entire algorithm. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.

  6. Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1978-06-01

    The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

  7. Atomic scale study of surface orientations and energies of Ti 2 O 3 crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng [Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, Guangdong 518055, China; Wang, Zhiguo [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, People' s Republic of China; Wang, Chongmin [Environmental Molecular Science Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA; Zheng, Jianming [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA

    2017-10-30

    For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern the chemical behavior of the particle. The surface atomistic structure and termination of the Ti2O3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combining with density functional theory (DFT) calculations. STEM imaging reveals that the Ti2O3 crystal are most often faceted along (001), (012), (-114) and (1-20) planes. DFT calculation indicates that the (012) surface with TiO-termination have the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stable and prevalent surfaces in Ti2O3 nanocrystals. These observations provide insights for exploring the interfacial process involving Ti2O3 nanoparticles.

  8. Collisions of electrons with hydrogen atoms II. Low-energy program using the method of the exterior complex scaling

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    While collisions of electrons with hydrogen atoms pose a well studied and in some sense closed problem, there is still no free computer code ready for ;production use;, that would enable applied researchers to generate necessary data for arbitrary impact energies and scattering transitions directly if absent in on-line scattering databases. This is the second article on the Hex program package, which describes a new computer code that is, with a little setup, capable of solving the scattering equations for energies ranging from a fraction of the ionization threshold to approximately 100 eV or more, depending on the available computational resources. The program implements the exterior complex scaling method in the B-spline basis.

  9. Energy from the desert. Very large scale photovoltaic systems: socio-economic, financial, technical and environmental aspects. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, K.; Ito, M.; Komoto, K.; Vleuten, P. van der; Faiman, D. (eds.)

    2009-05-15

    This executive summary report for the International Energy Agency (IEA) summarises the objectives and concepts of very large scale photovoltaic power generation (VLS-PV) systems and takes a look at the socio-economic, financial and technical aspects involved as well as the environmental impact of such systems. Potential benefits for desert communities, agricultural development and desalination of water are topics that are looked at. The potential of VLS-PV, its energy payback time and CO{sub 2} emission rates are discussed. Case studies for the Sahara and the Gobi Dessert areas are discussed. A VLS-PV roadmap is proposed and scenarios are discussed. Finally, conclusions are drawn and recommendations are made.

  10. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling

  11. Relationships Among Canopy Scale Energy Fluxes and Isoprene Flux Using Eddy Covariance Measurements Over Multiple Growing Seasons

    Science.gov (United States)

    Pressley, S. N.; Lamb, B. K.; Westberg, H.

    2003-12-01

    Isoprene is one of the most abundant biogenic trace gases in the troposphere. Biogenic trace gases affect tropospheric chemistry by forming gaseous and particulate secondary products in conjunction with anthropogenic emissions that contribute to the degradation of air quality. Our understanding of the impact isoprene has on tropospheric photochemistry is hampered by our limited knowledge of the biosphere-atmosphere exchange process, and thus the inability to accurately quantify the biogenic emission inventory. Isoprene emissions are regulated by many environmental variables; the most important variables are known to be temperature and light. The research summarized here seeks to improve our understanding of biogenic emissions from forest ecosystems as a basis for advancing our ability to describe the role of biogenics in regional and global atmospheric chemical cycles. Biogenic emission models, such as BEIS (Biogenic Emission Inventory System) rely on above canopy environmental parameters and below canopy scaling factors to estimate canopy scale biogenic hydrocarbon fluxes. This type of model can predict biogenic emissions well, however, the required input is extensive, and for regional applications, it can be cumbersome. Based on the assumption that isoprene emission rates are enzymatic (a function of temperature, light, and historical temperature), we propose that sensible heat flux can be a surrogate for above canopy temperature and light when estimating isoprene fluxes at the canopy scale. In addition, sensible heat flux may be a better indicator of the canopy interaction with incoming energy, as opposed to scaling above canopy parameters. Thus, the use of surface energy fluxes such as sensible heat flux is an attempt to combine the biological (enzymatic) and meteorological processes that affect the biosphere-atmosphere exchange of isoprene. Since surface energy budgets are an integral part of mesoscale meteorological models, this could potentially be a useful

  12. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  13. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins.

    Science.gov (United States)

    Cao, Zheng; Bowie, James U

    2014-05-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as -7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by -4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall c