WorldWideScience

Sample records for sub-nanometer racetrack laser

  1. Displacement laser interferometry with sub-nanometer uncertainty

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  2. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  3. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  4. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  5. Short-wave radiation in a free-electron laser based on the racetrack microtron RM-100 of MSU NIIYaF

    International Nuclear Information System (INIS)

    Grishin, V.K.; Darenskaya, L.V.

    1991-01-01

    Possibility of producing electromagnetic radiation in a free-electron laser (FEL), using beam of the racetrack microtron RM-100 of MSU NIIYaF, is evaluated. Two modes of FEL operation are considered. Single-particle mode with minimal amplification factor is possible at assigned electron beam parameters and maximal energy up to 20-50 MeV. Device specifications are presented. Collective radiation mode becomes possible due to the affect of electromagnetic wave channeling. Channeling occurs under auxillary transverse compression of 10A electron beam, permitted by RM-100 parameters. Possible parameters of FEL in UV range are presented. 20 refs.; 4 figs.; 5 tabs

  6. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Feng, Guang [Clemson University

    2010-01-01

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  7. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  8. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    Science.gov (United States)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  9. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  10. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  11. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  12. The FIAN racetrack microtron based irradiation complex

    International Nuclear Information System (INIS)

    Belovintsev, K.A.; Bukin, A.I.; Gaskevich, E.B.; Karev, A.I.; Kuznetsov, V.A.; Kurakin, V.G.

    1993-01-01

    The paper presents the results of development, assembling and tests of a distant IR-range free electron laser (FEL) based on a racetrack microtron. The power of FEL will constitute tens of kilowatts, duration of bunches -maximum 30 ks. Possibility of smooth recombination of radiation within 80-160 μm range is available. 250 mA current and 30 MeV energy electron beam was produced in the racetrack microtron. Undulator represents a bi-phase spiral made of 2.2 mm thickness copper. Length of optical resonator - 166 cm, the resonator covers metallic mirrors with apertures. Characteristics of free electron laser and of its main systems are presented. 4 refs.; 1 fig.; 4 tabs

  13. Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Tomoki; Hayashi, Itsuho; Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kimura, Kenjiro, E-mail: kimura@gold.kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Tamura, Atsuo [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► Peptide nanotubes were aligned on highly oriented pyrolytic graphite surface. ► We visualized sub-nanometer-scale structure on peptide nanotube surface in water. ► We observed hydration structure at a peptide nanotube/water interface. - Abstract: Peptide nanotubes are self-assembled fibrous materials composed of cyclic polypeptides. Recently, various aspects of peptide nanotubes have been studied, in particular the utility of different methods for making peptide nanotubes with diverse designed functions. In order to investigate the relationship between formation, function and stability, it is essential to analyze the precise structure of peptide nanotubes. Atomic-scale surface imaging in liquids was recently achieved using frequency modulation atomic force microscopy with improved force sensing. Here we provide a precise surface structural analysis of peptide nanotubes in water without crystallizing them obtained by imaging the nanotubes at the sub-nanometer scale in water. In addition, the local hydration structure around the peptide nanotubes was observed at the nanotube/water interface.

  14. Racetrack inflation and cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-05-15

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  15. Racetrack inflation and cosmic strings

    International Nuclear Information System (INIS)

    Brax, P.; Postma, M.

    2008-05-01

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  16. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  17. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  18. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  19. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.

    Science.gov (United States)

    McMullen, Angus J; Tang, Jay X; Stein, Derek

    2017-11-28

    We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.

  20. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  1. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    Science.gov (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  2. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    Science.gov (United States)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  3. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  4. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO 2 and CH 4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO 2 /CH 4 mixture, the graphene nanopores exhibit a trade-off between the CO 2 permeance and the CO 2 /CH 4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO 2 /CH 4 separation factors higher than 10 2 have CO 2 permeances per pore lower than 10 -22 mol s -1 Pa -1 , and pores with separation factors of ∼10 have CO 2 permeances per pore between 10 -22 and 10 -21 mol s -1 Pa -1 . Finally, we show that a pore density of 10 14 m -2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric

  5. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  6. Sub-nanometer emittance monitor for high brightness synchrotron radiation source

    International Nuclear Information System (INIS)

    Nakajima, K.

    1991-01-01

    Method of measuring a very small beam emittance in electron storage rings is presented. The monitor can sense an intrinsic emittance of beam particles by detecting the angular distribution of Compton scatterings of laser photons on beam electrons. It is possible to achieve measurement resolution smaller than 10 -9 m-rad without difficulty. (author)

  7. D-term uplifted racetrack inflation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [Unite de Recherche associee au CNRS, Gif sur Yvette (France). Service de Physique Theorique, CEA/DSM/SPhT; Davis, A.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Davis, S.C. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2007-10-15

    It is shown that racetrack inflation can be implemented in a moduli stabilisation scenario with a supersymmetric uplifting D-term. The resulting model is completely described by an effective supergravity theory, in contrast to the original racetrack models. We study the inflationary dynamics and show that the gaugino condensates vary during inflation. The resulting spectral index is n{sub s} {approx}0.95 as in the original racetrack inflation model. Hence extra fields do not appear to alter the predictions of the model. An equivalent, simplified model with just a single field is presented. (orig.)

  8. A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator

    Science.gov (United States)

    Wang, Senhao; Wang, Wei; Gu, Shangzhi; Zhang, Guoxin; Song, Ningning

    2018-05-01

    In this study, sulphur-modified reduced graphene oxide (S-rGO) was employed as substrate to investigate the growth mechanism of metal and metallic nanoparticles (NPs). It is observed that the monodispersed Au, SnO2, FeO(OH) and Co3S4 NPs in sub-nanometer (sub-nm) with narrow size distribution were successfully anchored on S-rGO, respectively. The results indicate that the S contained radicals, viz. the Cdbnd S and Csbnd Ssbnd C functional groups play an important role in determining the homogeneous distribution of NPs on S-rGO by providing active sites for the NPs anchoring and nucleation. In additional, as anode materials for lithium ion batteries (LIBs), the as-synthesized sub-nm sized Co3S4/S-rGO and SnO2/S-rGO composites show excellent Li storage performance. It could be stabilized at ca. 600 mAh/g after formation cycle with the coulombic efficiency of 98%. It is expected that the strategy of growing sub-nm sized metallic component onto graphene by applying sulphur functionalities could be utilized as a general method to prepare monodispersed graphene-based NPs with other metals, especially with transition metals in sub-nm sizes.

  9. Skyrmion-based multi-channel racetrack

    Science.gov (United States)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  10. NBS-LASL racetrack microtron

    International Nuclear Information System (INIS)

    Penner, S.; Debenham, P.H.; Green, D.C.

    1980-01-01

    The NBS-LASL racetrack microtron (RTM) is a joint project of the National Bureau of Standards (NBS) and the Los Alamos Scientific Laboratory (LASL). This is a new accelerator research project whose goal is to determine the feasibility of building a high-energy, high-current, cw electron accelerator using beam recirculation and room-temperature rf acceleration structures. The NBS-LASL RTM is being designed and built to develop the required technology for a large national 1 to 2 GeV cw accelerator for nuclear physics research and to prove experimentally that high currents can be accelerated successfully in an RTM. Some of the parameters of the NBS-LASL RTM are 185 MeV final energy, 550 μA maximum current, 15 passes, 12 MeV one-pass energy gain, and 2380 MHz frequency. One 450 kW cw klystron will supply rf power to both the 5 MeV injector and the 12 MeV linac in the RTM

  11. A high-current racetrack induction accelerator

    International Nuclear Information System (INIS)

    Mondelli, A.; Roberson, C.W.

    1983-01-01

    In this paper, the energy and system scaling laws of the Racetrack Induction Accelerator are determined and its operating principles are discussed. This device is a cyclic accelerator that is capable of multi-kiloamp operation. Long pulse induction linac technology is used to obtain short acceleration times. The accelerator consists of a long-pulse linear induction module and a racetrack beam transport system. For detailed studies of the particle dynamics in a racetrack, a numerical model is required to integrate the fully-relativistic single-particle equations of motion in an externally applied magnetic field. The numerical model is a compromise between the need for a large rotational transform and the need for a reasonable volume within the separatrix

  12. Racetrack lattices for the TRIUMF KAON factory

    International Nuclear Information System (INIS)

    Servranckx, R.V.; Wienands, U.; Craddock, M.K.; Rees, G.H.

    1989-03-01

    Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. In addition the new lattices have fewer depolarizing resonances than the old circular lattices

  13. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  14. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    Science.gov (United States)

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  15. MUON ACCELERATION WITH THE RACETRACK FFAG

    International Nuclear Information System (INIS)

    TRBOJEVIC, D.; EBERHARD, K.; SESSLER, A.

    2007-01-01

    Muon acceleration for muon collider or neutrino factory is still in a stage where further improvements are likely as a result of further study. This report presents a design of the racetrack non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator to allow fast muon acceleration in small number of turns. The racetrack design is made of four arcs: two arcs at opposite sides have a smaller radius and are made of closely packed combined function magnets, while two additional arcs, with a very large radii, are used for muon extraction, injection, and RF accelerating cavities. The ends of the large radii arcs are geometrically matched at the connections to the arcs with smaller radii. The dispersion and both horizontal and vertical amplitude fictions are matched at the central energy

  16. Focusing magnets for HIF based on racetracks

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N; Manahan, R R

    2000-09-11

    Heavy Ion Fusion (HIF) is considered a promising path to a practical fusion reactor. A driver for a HIF reactor will require a large number of quadrupole arrays to focus heavy ion beams. A conceptual design, and trade off studies of the quadrupole array based on racetracks are presented. A comparison with a conventional shell magnet is given and advantages and disadvantages are discussed. A more detailed design of a single quadrupole for the High Current experiment (HCX) is presented and discussed.

  17. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO{sub 2} transformation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)

    2017-02-28

    Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.

  18. Low-noise magnetic observatory variometer with race-track sensors

    International Nuclear Information System (INIS)

    Janošek, M; Petrucha, V; Vlk, M

    2016-01-01

    We present a low-noise, high-stability observatory magnetometer with race-track sensors, as developed by the Czech Technical University in Prague for National Observatory of Athens. As opposed to the standard instruments, we used our novel race-track fluxgate sensors with planar oval core which were cut by state-of-the art pico-second UV-laser. The noise performance of the complete electronics and sensor chain is below 6 pT/√Hz @ 1 Hz. The electronics uses 24-bit 200-Hz A/D converter with simultaneous sampling and all digital processing is done in FPGA. The variometer with the sensors mounted on a MACOR cube has been successfully calibrated by scalar method. (paper)

  19. Racetrack microtron radio-frequency system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Mitra, A.K.

    1981-01-01

    The design and construction progress of a prototype rf system to drive the Los Alamos-NBS racetrack microtron (RTM) electron accelerator is described. The rf system requires 450-kW cw at 2380 MHz from a single klystron. The output from the klystron is split three ways to drive a capture section, a preaccelerator section, and the main accelerator section. The fields in each section are phase- and amplitude-controlled to tight tolerances. Temperature control of the accelerator sections also is linked to the amplitude-control system, because the system's average power is so high

  20. Racetrack lattices for the TRIUMF KAON factory

    International Nuclear Information System (INIS)

    Servranckx, R.V.; Craddock, M.K.

    1989-05-01

    Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. In the small rings, γ t is kept high enough by choosing a sufficiently large phase advance in the arcs. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. The ion-optical properties of the lattices and the results from tracking studies are discussed

  1. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R; Puliafito, V; Martinez, E; Manchon, Aurelien; Ricci, M; Carpentieri, M; Finocchio, G

    2017-01-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study

  2. NBS/LANL racetrack microtron control system

    International Nuclear Information System (INIS)

    Ayres, R.L.; Martin, E.R.; Trout, R.E.; Wilson, B.L.; Yoder, N.R.

    1985-01-01

    The distributed intelligence control system for the NBS/LANL racetrack microtron (RTM) is now nearing completion, with all major subsystems implemented and tested, thus providing some operating experience with most of the control system innovations. These include a triple hierarchy of microprocessor-based control elements, consisting of a primary control station and multiple secondary and tertiary control stations; light-link coupling to a tertiary station which operates at a 100 kV potential; a common database shared by separate microprocessors for handling hardware control and operator interactions; and joy stick control of the entire system. A unique secondary station interpreter program was used to great advantage for testing and checkout of various control and monitoring subsystems. The hardware design of the control system is based on Multibus I crates containing commercial Multibus I boards and a few custom designed boards. The primary-secondary data link is a high speed, bidirectional, full-duplex, 8-bit, ''byte'' parallel link designed for this application. This link permits very fast updating of the monitored data (> 5 per second) and timely response to operator control inputs at the primary station

  3. Evolution of the racetrack microtron control system

    International Nuclear Information System (INIS)

    Martin, E.R.; Schneider, C.M.; Martinez, V.A.; Trout, R.E.; Gritzo, R.E.

    1982-01-01

    Ultimately, the true measure of a control system lies in how well initial decisions allow for exigencies, as the overall machine evolves and requirements solidify. Recognizing that advances in electronic technology virtually guarantee that any system will be technologically out of date by the time it is operational, the criteria really do not involve the state of the technological advancement, but instead legitimately ask whether the control-system design can adjust to the inevitable machine-design changes, whether the operators can use it to control the machine in a reasonable manner, whether it was built within budget constraints, or, in short, whether it works. On these bases, our initial decisions on the racetrack microtron (RTM) control system have been increasingly vindicated as the system has evolved, and we feel that our experiences have shed some light on just which criteria are of real importance, and which are merely a part of the lore of popular misinformation. Unless the basic requirements are met, technical elegance is no virtue, and when they are met, design simplicity is no vice

  4. NIST--Los Alamos racetrack microtron status

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Debenham, P.H.; Lindstrom, E.R.; Mohr, D.L.; Penner, S.; Rose, J.E.; Young, L.M.

    1988-01-01

    The NIST-Los Alamos Racetrack Microtron (RTM) is designed to deliver a low-emittance electron beam of up to 0.5 mA cw over an energy range of 17 MeV to 185 MeV. Fed by a 5 MeV injector, the RTM contains two 180 degree end magnets that recirculate the beam up to 15 times through a 12 MeV RF linac. The linac, which operates in a standing-wave mode at 2380 MHz, has been tested to nearly full RF power. At present, the injector has undergone beam tests, and the beam transport system is complete through the 12 MeV linac. A temporary beam line has been installed at the exit of one end magnet to measure the beam energy, energy spread, and emittance after one pass through the accelerator. Preliminary results indicate that the accelerated beam energy spread and emittance are within design goals. 4 refs., 7 figs

  5. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  6. Free spectral range adjustment of a silicon rib racetrack resonator

    International Nuclear Information System (INIS)

    Keča, T; Matavulj, P; Headley, W; Mashanovich, G

    2012-01-01

    One of the most important parameters that describe the quality of photonic components and devices is the free spectral range (FSR). In this paper, the measured outgoing power of a silicon rib racetrack resonator was compared with calculated transfer functions derived by coupled mode theory. The influence of geometric parameters on the FSR and resonant wavelength has been investigated. By altering the values of the coupling length and racetrack radius, derived transfer functions were adjusted to match experimental data. This procedure gives the possibility of estimating the FSR and resonant wavelength for different geometric parameters and predicting resonator functionality.

  7. Quench tests of Nb3Al small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; Fermilab; NIMC, Tsukuba; KEK, Tsukuba

    2007-01-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed

  8. Quench tests of Nb3Al small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  9. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    International Nuclear Information System (INIS)

    Tomasello, R; Puliafito, V; Martinez, E; Manchon, A; Ricci, M; Carpentieri, M; Finocchio, G

    2017-01-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s −1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions. (paper)

  10. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R

    2017-06-20

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  11. 27 CFR 6.53 - Advertising in ballparks, racetracks, and stadiums.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Advertising in ballparks, racetracks, and stadiums. 6.53 Section 6.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Advertising, Display Or Distribution Service § 6.53 Advertising in ballparks, racetracks, and stadiums. The...

  12. Racetrack resonator as a loss measurement platform for photonic components.

    Science.gov (United States)

    Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Starbuck, Andrew; Pomerene, Andrew T S; Norwood, Robert A

    2015-11-02

    This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.

  13. Control and manipulation of antiferromagnetic skyrmions in racetrack

    Science.gov (United States)

    Xia, Haiyan; Jin, Chendong; Song, Chengkun; Wang, Jinshuai; Wang, Jianbo; Liu, Qingfang

    2017-12-01

    Controllable manipulations of magnetic skyrmions are essential for next-generation spintronic devices. Here, the duplication and merging of skyrmions, as well as logical AND and OR functions, are designed in antiferromagnetic (AFM) materials with a cusp or smooth Y-junction structures. The operational time are in the dozens of picoseconds, enabling ultrafast information processing. A key factor for the successful operation is the relatively complex Y-junction structures, where domain walls propagate through in a controlled manner, without significant risks of pinning, vanishing or unwanted depinning of existing domain walls, as well as the nucleation of new domain walls. The motions of a multi-bit, namely the motion of an AFM skyrmion-chain in racetrack, are also investigated. Those micromagnetic simulations may contribute to future AFM skyrmion-based spintronic devices, such as nanotrack memory, logic gates and other information processes.

  14. Comments on Racetrack playa: Rocks moved by wind alone

    Science.gov (United States)

    Sanz-Montero, M. E.; Cabestrero, Ó.; Rodríguez-Aranda, J. P.

    2016-03-01

    The mechanisms by which rocks move across the beds of playa lakes leaving tracks continue to be debated (Sanz-Montero and Rodríguez-Aranda, 2013; Norris et al., 2014; Sanz-Montero et al., 2015a,b; Baumgardner and Shaffer, 2015; Jones and Hooke, 2015). In this regard, the article by Jones and Hooke (Aeolian Research 19, 2015) is particularly interesting since it provides a description of these mechanisms by R. Jones who, during a storm event in 1972, was probably the first person to witness movement of rocks. The dominant meteorological conditions described by Jones during the period when the tracks were formed are, significantly, rather similar to those previously described by Clements (1952) at Little Bonnie Claire Playa (Nevada, USA). The storm conditions referred to in the article also coincide with the observations, measurements and deductions made by Sanz-Montero and Rodríguez-Aranda (2013) and Sanz-Montero et al. (2015a,b) at Altillo Chica playa lake, Central Spain. Furthermore, we were able to carry out an on-site analysis of the sedimentary structures at Racetrack playa in June 2015, allowing us to verify the similarity of the features present at both sites. Together with the important role played by gusty winds in the formation of the tracks, all the above mentioned studies point to the presence of a thin veneer of water, just a few millimeters deep, in the area of the playa lake where the rock movements occur. However, Jones and Hooke (2015) disregard the force exerted by moving water and analyze the coefficient of friction assuming that the rocks are moved by wind alone. We offer an alternative explanation for the movement of rocks both at Racetrack and Altillo Chica playa lake which considers not only the wind but also the role played by moving water in conjunction with other parameters which modify the erosion thresholds (rocks acting as obstacles) and reduce friction (benthic microorganisms).

  15. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  16. DAW structure for the NBS/Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Potter, J.M.

    1981-01-01

    The results of a testing program on the disk-and-washer (DAW) structure with tee supports are presented. These results have led to the design of a 2.4-m DAW linac for use as the preaccelerator section of the National Bureau of Standards (NBS)/Los Alamos racetrack microtron (RTM). This structure uses two tee supports for each pair of washers, instead of four, and the structure has a larger diameter than earlier test structures. Two properties of this structure, which make it appear to be ideal for the RTM application, are a high shunt impedance and a high cell-to-cell coupling factor. This coupling factor eases construction tolerances and reduces sensitivity to thermal effects from the high rf heating load that will be imposed upon it. The structure is designed to operate at a 100% duty factor with a 1.5-MV/m accelerating gradient at 2380 MHz. This load would detune most accelerating structures. The tuning procedures, the transverse modes, and their effect on the structures design also are presented

  17. Effects of a Picture Racetrack Game on the Expressive Vocabulary of Deaf Preschoolers.

    Science.gov (United States)

    Davenport, Carrie A; Alber-Morgan, Sheila R; Clancy, Shannon M; Kranak, Michael P

    2017-07-01

    This study examined the effects of a picture racetrack game on the acquisition, maintenance, and generalization of picture labeling for 2 preschool students who are deaf. The game consisted of placing photographs representing individualized target vocabulary around a racetrack board and prompting the participant to sign each photo. A multiple baseline design across picture sets demonstrated that playing the picture racetrack game was functionally related to acquisition of vocabulary to 100% mastery on at least 3 consecutive sessions for each participant. Additionally, both participants maintained most of the vocabulary they acquired for at least 4 weeks after intervention, and they generalized picture labeling to a different presentation mode (i.e., a photo album). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  19. Annular-cathode electron gun for in-line injection in a racetrack microtron

    International Nuclear Information System (INIS)

    Manca, J.J.; Edmonds, D.S. Jr.; Froelich, H.R.

    1976-01-01

    A compact annular-cathode electron gun which allows direct, efficient injection into the accelerating structure of a racetrack microtron was designed, built, and tested. The gun operates under pulsed conditions with applied high voltages of 40 kV or more and delivers an output current in excess of 1 A. Design and construction details are presented for both a basic gun and a gun with built-in output current monitor. Gun performance in a test chamber and in the multicavity racetrack microtron at the University of Western Ontario is described

  20. Preliminary study of insertion device effect on dynamic aperture using RACETRACK

    International Nuclear Information System (INIS)

    Chae, Yong-chul; Crosbie, E.A.

    1992-01-01

    We studied the effects of an insertion device (ID) on the dynamic aperture using the new version of RACETRACK. We found that the nonlinear effect of the ID is the dominant effect on the dynamic aperture reduction compared to the other multipole errors which exist in the otherwise ideal lattice. The previous study of dynamic aperture was based on the assumption that the effect of the fast oscillating terms in L. Smith's Hamiltonian is small, and hence can be neglected in the simulation. The remarkable agreement between the previous study and the current results using RACETRACK, including all effects of the fast oscillating terms, justified those assumptions at least for the APS ring

  1. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  2. Optical switching at 1.55um in silicon racetrack resonators using phase change materials

    NARCIS (Netherlands)

    Rudé, M.; Pello, J.; Simpson, R.E.; Osmond, J.; Roelkens, G.C.; Tol, van der J.J.G.M.; Pruneri, V.

    2013-01-01

    An optical switch operating at a wavelength of 1.55¿µm and showing a 12 dB modulation depth is introduced. The device is implemented in a silicon racetrack resonator using an overcladding layer of the phase change data storage material Ge2Sb2Te5, which exhibits high contrast in its optical

  3. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  4. Development and test of a Nb3Sn racetrack magnet using the react and wind technology

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.; Carcagno, R.; Chichili, D.; Ewald, K.; Feher, S.; Imbasciati, L.; Kashikhin, V. V.; Limon, P.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Yadav, S.; Zlobin, A.V.

    2002-01-01

    Fermilab is involved in the development of a high field accelerator magnet for future hadron colliders using Nb 3 Sn superconductor and the react-and-wind technology. The magnet design is based on single-layer common coils wound simultaneously into a laminated mechanical structure and impregnated with epoxy. In order to develop and optimize the fabrication techniques and to study the conductor performance, a magnet with flat racetrack type coils in a common coil configuration was assembled and tested. The coils were wound in the mechanical structure and in situ impregnated following a procedure that will be used in the single-layer common coil. The magnetic and mechanical design of the racetrack magnet, the fabrication techniques and the test results are presented and discussed in this paper

  5. Development of a large aperture Nb3Sn racetrack quadrupole magnet

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steven A.; Hannaford, Charles R.; Hafalia, AurelioR.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Nyman, Mark; Sabbi, Gianluca

    2005-01-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb 3 Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb 3 Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are prestressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed

  6. A FODO racetrack ring for nuSTORM: design and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.

  7. RF cavity for the Novosibirsk race-track microtron-recuperator

    International Nuclear Information System (INIS)

    Gavrilov, N.; Kuptsov, I.; Kurkin, G.; Mironenko, L.; Petrov, V.; Sedlyarov, I.; Veshcherevich, V.

    1994-01-01

    Geometry, engineering design and characteristics of a 181 MHz RF cavity are described. The cavity has copper clad stainless steel walls and has a Q of 42,000 and a shunt impedance of 8.5 MOhm. The cavities of that type are parts of an RF system of a CW race-track microtron-recuperator (RTMR). 10 refs.; 16 figs.; 1 tab

  8. Racetrack coil instability resulting from friction-heat generation at fixtures

    International Nuclear Information System (INIS)

    Yazawa, T.; Urata, M.; Chandratilleke, G.R.; Maeda, H.

    1993-01-01

    This paper describes racetrack coil instability resulting from friction-heat generation at fixtures and a preventive measure against it using a thermal barrier. Epoxy impregnated racetrack coils sometimes experience premature quenches due to frictional heat produced by coil slides at fixtures that are essential for the coil straight part to withstand the electromagnetic force. Experimentally, we confirmed for a small-sized racetrack coil that coil slides were actually occurring. The coil movements coupled with acoustic emissions were observed several times when the coil was energized. Each of them was about 10 μm, an equivalent of 20 mJ in frictional heat. This frictional heat was almost comparable with the analytical and experimental coil stability margins when an insulation layer was thin. One of the effective measures against the frictional heat is the thermal barrier, which is a thick insulation layer at the interface between the coil and the fixtures. By thickening the insulation layer from 0.36 to 1.00 mm, the coil stability margin increased from 100 to 200 mJ. (orig.)

  9. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.

    2008-01-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb 3 Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb 3 Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb 3 Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb 3 Al Rutherford cable is compared with that of the Nb 3 Sn Rutherford cable and the advantages of Nb 3 Al Rutherford cable are discussed

  10. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.; /Fermilab /Tsukuba Magnet Lab. /KEK, Tsukuba

    2008-12-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb{sub 3}Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb{sub 3}Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb{sub 3}Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb{sub 3}Al Rutherford cable is compared with that of the Nb{sub 3}Sn Rutherford cable and the advantages of Nb{sub 3}Al Rutherford cable are discussed.

  11. Complex study of transport AC loss in various 2G HTS racetrack coils

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiran, E-mail: yc315@cam.ac.uk [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2013-04-15

    Highlights: ► Comparing transport AC losses of two types of 2G HTS racetrack coils. ► The magnetic substrate in the MAG RABITS coil is the main difference. ► Experimental data agree well with simulation results. ► The transport AC loss in the MAG RABITS coil is 36% higher than that in the IBAD coil. ► It is better to keep all the substrate non-magnetic. -- Abstract: HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  12. Distal hindlimb kinematics of galloping Thoroughbred racehorses on dirt and synthetic racetrack surfaces.

    Science.gov (United States)

    Symons, J E; Garcia, T C; Stover, S M

    2014-03-01

    The effect of racetrack surface (dirt or synthetic) on distal hindlimb kinematics of racehorses running at competition speeds is not known. To compare distal hindlimb and hoof kinematics during stance of breezing (unrestrained gallop) racehorses between dirt and synthetic surfaces. Two-dimensional kinematic video analysis of 5 Thoroughbred racehorses galloping at high speeds (12-17 m/s) on a dirt racetrack and a synthetic racetrack. The positions of kinematic markers applied to the left hindlimb were recorded at 500 Hz. Position, velocity and acceleration of joint angles and hoof translation during stance were calculated in the sagittal plane. Peak translational and angular kinematic values were compared between the dirt and synthetic race surfaces using mixed model analyses of covariance. Maximum and heel-strike metatarsophalangeal (fetlock) angles were greater (Pdirt surface than on the synthetic surface. Maximum fetlock angle occurred earlier during stance on the dirt surface (Pdirt surface (Pdirt surface than on a synthetic surface. Synthetic race surfaces may mitigate risk of injury to hindlimb fetlock structures by reducing fetlock hyperextension and associated strains in fetlock support structures. Differences in hoof slide may contribute to different distal hindlimb kinematics between surfaces. © 2013 EVJ Ltd.

  13. Humeral stress remodelling locations differ in Thoroughbred racehorses training and racing on dirt compared to synthetic racetrack surfaces.

    Science.gov (United States)

    Dimock, A N; Hoffman, K D; Puchalski, S M; Stover, S M

    2013-03-01

    Veterinarians have observed a putative change in the location of humeral stress remodelling in Thoroughbred racehorses with change from dirt to synthetic racetrack surfaces. To determine whether the location and severity of humeral stress remodelling differs between Thoroughbred racehorses exercising on dirt and synthetic racetrack surfaces, the potential significance of different locations of stress remodelling, and the potential usefulness of scintigraphy for prevention of complete humeral fracture. Scintigraphic images of humeri from 841 Thoroughbred racehorses at 3 racetracks during 2 years before and after conversion from dirt to synthetic surfaces were evaluated for location and severity of lesions. The effects of surface on lesion distributions were examined using Chi-square or Fisher's exact tests. Archived fractured humeri were examined to determine the location and severity of stress remodelling associated with complete fracture. Databases were queried to determine whether racehorses with scintigraphic lesions suffered humeral fracture and whether racehorses with a complete humeral fracture had had a scintigraphic examination. Horses at synthetic racetracks had a greater proportion of distal humeral lesions, whereas horses at dirt racetracks had a greater proportion of caudoproximal lesions (Pdirt surfaces, and, by inference, for horses examined using scintigraphy. © 2012 EVJ Ltd.

  14. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  15. Development and fabrication of a Bi-2223 racetrack coil for generator applications

    International Nuclear Information System (INIS)

    Herd, K.G.; Salasoo, L.; Laskaris, E.T.; Ranze, R.A.; King, C.G.

    1996-01-01

    The development and fabrication of a layer-wound, epoxy-impregnated Bi-2223 high-temperature superconducting (HTS) racetrack coil which generates 40,000 ampere-turns of magnetomotive force (MMF) at 25 K is described. The coil was wound using Ag-sheathed Bi-2223 tape conductor laminated with copper foils for strength enhancement and insulated using a paper-wrap method. After epoxy impregnation, the coil was tested over a range of 16--25 K in a vacuum dewar using a closed-cycle helium refrigeration system. Descriptions of the tape lamination and insulation processing, the coil winding and impregnation, and the experimental test setup are given

  16. Performance of an rf beam monitor on the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Cutler, R.I.

    1985-01-01

    A prototype rf beam-position, current, and phase monitor has been used on the 100-keV injector beamline of the racetrack microtron (RTM) where performance was measured with the chopped and bunched beam. This monitor works with both a pulsed beam and a cw beam. The pulsed beam consists of beam pulses with a FWHM of 40 ns. The rf beam monitor was tested with beam currents from approx. 50 to 600 μA. The rf beam monitor will be described and its performance will be reported. 6 refs., 5 figs

  17. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-06-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb{sub 3}Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented.

  18. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-01-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb 3 Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  19. Sliding stones of Racetrack Playa, Death Valley, USA: The roles of rock thermal conductivity and fluctuating water levels

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Hooke, R. L.; Ryan, A.; Fercana, G.; McKinney, E.; Schwebler, K. P.

    2013-01-01

    Roč. 195, 1 August (2013), s. 110-117 ISSN 0169-555X Institutional support: RVO:67985831 Keywords : Endorheic * Finite element modeling * hydrogeology * Racetrack playa * sliding stones Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.577, year: 2013

  20. Experimental study on TiN coated racetrack-type ceramic pipe

    Science.gov (United States)

    Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-11-01

    TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)

  1. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  2. Moscow University race-track microtron control system: ideas and development

    International Nuclear Information System (INIS)

    Chepurnov, A.S.; Gribov, I.V.; Morozov, S.Yu.; Shumakov, A.V.; Zinoviev, S.V.

    1992-01-01

    Moscow University race-track microtron (RTM) control system is a star-shape network of LSI-11 compatible microcomputers. Each of them is connected with RTM systems via CAMAC; optical fiber coupling is also used. Control system software is designed on Pascal-1, supplemented with real time modules and Macro. A unified real time technique and reenterable data acquisition drivers allow to simplify development of control drivers and algorithms. Among the latter three main types are used: DDC methods, those, based on optimization technique and algorithms, applying models of microtron's systems. Man-machine interface is based on concept of the 'world of accelerator'. It supports means to design, within hardware possibilities, various computer images of the RTM. (author)

  3. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  4. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  5. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    Science.gov (United States)

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  6. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  7. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.

    2017-01-01

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2

  8. Circular lasers for telecommunications and rf/photonics applications

    Science.gov (United States)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  9. A design study of a 100 MeV race-track microtron/pulse-stretcher accelerator system

    International Nuclear Information System (INIS)

    Alvinsson, R.; Eriksson, M.

    1976-04-01

    A proposed design of an accelerator system with large duty-factor is described. The system is composed of a race-track microtron and a pulse-stretcher. The maximum particle energy is 100 MeV and the beam current is estimated to be up to 10 μA within +- 100 keV. The intended use is mainly for nuclear physics experiments with high precision, where the combination of large mean current and limited pulse intensity is essential. (Auth.)

  10. submitter 16 T Nb$_{3}$Sn Racetrack Model Coil Test Result

    CERN Document Server

    Perez, J C; Bajko, M; Bottura, L; Bordini, B; Chiuchiolo, A; De Rijk, G; Ferracin, P; Feuvrier, J; Grosclaude, P; Juchno, M; Rochepault, E; Rysti, J; Sarasola, X

    2016-01-01

    In the framework of the European project EuCARD, the High Field Magnet project, led by a CERN-CEA collaboration, implied the development of a large aperture Nb$_{3}$Sn dipole magnet called FRESCA2. The magnet uses four double-pancake block-type coils, each about 1.5 m long. In order to characterize strand and cable properties, as well as to qualify the coil fabrication process, CERN started in 2012 the design and fabrication of the Racetrack Model Coil (RMC) magnet, a short model magnet using the same cable as FRESCA2 magnet with only two flat double-pancake coils about 0.8 m long. In 2013, two superconducting coils have been fabricated, making use of two different types of superconductor. In 2014 and 2015, the coils were tested both in a single and in a double-coil configuration in a support structure based on an external aluminum shell pre-loaded with water-pressurized bladders. In this paper, we describe the design of the RMC magnet and its coils, provide the main parameters of the superconductor, and repo...

  11. Mathematical Modeling Of The Acceleration Process In Race-track Microtron

    CERN Document Server

    Gromov, A M; Vasilev, A A

    2004-01-01

    The precise calculations of beam dynamics are needed to make choice of optimal design parameters of race-track microtron. As a result, the necessary physical require-ments to the accelerator systems become found. For cal-culation of the magnetic field, POISSON LANL code is used. Acceleration of the beam is investigated with the help of the program of MathCad. Nonlinear distribution of the field in magnets of micro-tron with adjustable reverse field was simulated. The equation of motion of a beam in bending magnets of re-circulation system are found and solved by a numerical method. Trajectories of the beam for all orbits in a micro-tron are received. The recursive equation for calculation of the largest area of injected beam phase and power spreads providing steady acceleration process is written. The acceleration of the beam with maximal phase-energy area through all orbits of microtron was simulated. The velocity of accelerated particles on first orbits dif-fers from velocity of light. The minimal energy ...

  12. Quench Analysis of High Current Density Nb$_{3}$Sn Conductors in Racetrack Coil Configuration

    CERN Document Server

    Bajas, H; Bordini, B; Bottura, L; Izquierdo Bermudez, S; Feuvrier, J; Chiuchiolo, A; Perez, J C; Willering, G

    2015-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of new type of superconducting cables based on advanced Nb$_{3}$Sn strands. In the framework of the FP7 European project EUCARD the cables foreseen for the HL-LHC project have been tested recently in a simplified racetrack coil configuration, the so-called Short Model Coil (SMC). In 2013 to 2014, two SMCs wound with 40-strand (RRP 108/127) cables, with different heat treatment processes, reached during training at 1.9 K a current and peak magnetic field of 15.9 kA, 13.9T,and 14.3 kA, 12.7 Trespectively. Using the measured signals from the voltage taps, the behavior of the quenches is analyzed in terms of transverse and longitudinal propagation velocity and hot spot temperature. These measurements are compared with both analytical and numerical calculations from adiabatic models.The coherence of the results from the presented independent methods helps in estimating the relevance of the material properties and the adiabatic a...

  13. Performance of the BATMAN RF source with a large racetrack shaped driver

    Science.gov (United States)

    Kraus, W.; Schiesko, L.; Wimmer, C.; Fantz, U.; Heinemann, B.

    2017-08-01

    In the negative ion sources in neutral beam injection systems (NBI) of future fusion reactors the plasma is generated in up to eight cylindrical RF sources ("drivers") from which it expands into the main volume. For these large sources, in particular those used in the future DEMO NBI, a high RF efficiency and operational reliability is required. To achieve this it could be favorable to substitute each pair of drivers by one larger one. To investigate this option the cylindrical driver of the BATMAN source at IPP Garching has been replaced by a large source with a racetrack shaped base area and tested using the same extraction system. The main differences are a five times larger source volume and another position of the Cs oven which is mounted onto the driver`s back plate and not onto the expansion volume. The conditioning characteristics and the plasma symmetry in front of the plasma grid were very similar. The extracted H- current densities jex are comparable to that achieved with the small driver at the same power. Because no saturation of jex occurred at 0.6 Pa at high power and the source allows high power operation, a maximum value 45.1 mA/cm2 at 103 kW has been reached. Sputtered Cu from the walls of the expansion volume affected the performance at low pressure, particularly in deuterium. The experiments will be therefore continued with Mo coating of all inner walls.

  14. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  15. High-power rf controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kW cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. A block diagram of this system is shown, as is a subset of the complete system on which the measurements reported in this paper were performed. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference. 4 refs., 8 figs

  16. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    Directory of Open Access Journals (Sweden)

    Richard D Norris

    Full Text Available The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice.

  17. Field driven magnetic racetrack memory accompanied with the interfacial Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol

    2018-06-01

    The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.

  18. Using the integral equations method to model a 2G racetrack coil with anisotropic critical current dependence

    Science.gov (United States)

    Martins, F. G. R.; Sass, F.; Barusco, P.; Ferreira, A. C.; de Andrade, R., Jr.

    2017-11-01

    Second-generation (2G) superconducting wires have already proved their potential in several applications. These materials have a highly nonlinear behavior that turns an optimized engineering project into a challenge. Between several numerical techniques that can be used to perform this task, the integral equations (IE) method stands out for avoiding mesh problems by representing the 2G wire cross-sectional area by a line. While most applications need to be represented in a 3D geometry, the IE is limited to longitudinal or axisymmetric models. This work demonstrates that a complex 3D geometry can be modeled by several coupled simulations using the IE method. In order to prove this statement, the proposed technique was used to simulate a 2G racetrack coil considering the self-field magnitude (B) and incidence angle (θ) on the tape. The J c characteristic was modeled in terms of parallel and normal to the tape plane magnetic field components (J c(B ∥ , B ⊥)) obtained from a V-I(B, θ) characterization of a tape segment. This result was implemented using commercial software with both A-V (vector magnetic potential and scalar voltage potential) and IE coupled simulations solved by finite elements. This solution bypasses the meshing problem due to the tapes slim geometry, considering each turn a single 1D model, all magnetically interacting in two 2D models. The simulations results are in good agreement to what was both expected and observed in the literature. The simulation is compared to the measured V-I characteristic for a single pancake racetrack coil built with same geometry as its simulation models, and a theoretical study demonstrates the possibilities of the proposed tool for analyzing a racetrack coil current density and electric field behavior in each of its turns.

  19. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  20. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  1. Design Modifications, Fabrication and Test of HFDB-03 Racetrack Magnet Wound with Pre-Reacted Nb3Sn Rutherford Cable

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bhashyam, S.; Carcagno, R.; Feher, S.; Imbasciati, L.; Lamm, M.; Pischalnikov, Y.; Tartaglia, M.; Tompkins, J.; Zlobin, A.V.

    2004-01-01

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb3Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78 % of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results

  2. Evaluation of a 50-MV photon therapy beam from a racetrack microtron using MCNP4B Monte Carlo code

    International Nuclear Information System (INIS)

    Gudowska, I.; Svensson, R.

    2001-01-01

    High energy photon therapy beam from the 50 MV racetrack microtron has been evaluated using the Monte Carlo code MCNP4B. The spatial and energy distribution of photons, radial and depth dose distributions in the phantom are calculated for the stationary and scanned photon beams from different targets. The calculated dose distributions are compared to the experimental data using a silicon diode detector. Measured and calculated depth-dose distributions are in fairly good agreement, within 2-3% for the positions in the range 2-30 cm in the phantom, whereas the larger discrepancies up to 10% are observed in the dose build-up region. For the stationary beams the differences in the calculated and measured radial dose distributions are about 2-10%. (orig.)

  3. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  4. Dynamic properties of a dirt and a synthetic equine racetrack surface measured by a track-testing device.

    Science.gov (United States)

    Setterbo, J J; Fyhrie, P B; Hubbard, M; Upadhyaya, S K; Stover, S M

    2013-01-01

    Racetrack surface is a risk factor for Thoroughbred racehorse injury and death that can be engineered and managed. To investigate the relationship between surface and injury, the mechanical behaviour of dirt and synthetic track surfaces must be quantified. To compare dynamic properties of a dirt and a synthetic surface in situ using a track-testing device designed to simulate equine hoof impact; and to determine the effects of impact velocity, impact angle and repeated impact on dynamic surface behaviour. A track-testing device measured force and displacement during impact into a dirt and a synthetic surface at 3 impact velocities (1.91, 2.30, 2.63 m/s), 2 impact angles (0°, 20° from vertical), and 2 consecutive impacts (initial, repeat). Surfaces were measured at 3 locations/day for 3 days. The effects of surface type, impact velocity, impact angle and impact number on dynamic surface properties were assessed using analysis of variance. Synthetic surface maximum forces, load rates and stiffnesses were 37-67% of dirt surface values. Surfaces were less stiff with lower impact velocities, angled impacts and initial impacts. The magnitude of differences between dirt and synthetic surfaces increased for repeat impacts and higher impact velocities. The synthetic surface was generally softer than the dirt surface. Greatly increased hardness for repeat impacts corroborates the importance of maintenance. Results at different impact velocities suggest that surface differences will persist at higher impact velocities. For both surfaces it is clearly important to prevent horse exposure to precompacted surfaces, particularly during high-speed training when the surface has already been trampled. These data should be useful in coordinating racetrack surface management with racehorse training to prevent injuries. © 2012 EVJ Ltd.

  5. Proposal for a race-track microtron with high peak current

    NARCIS (Netherlands)

    Ernst, G.J.; Haselhoff, E.H.; Witteman, W.J.; Botman, J.I.M.; van Genderen, W.; Hagedoorn, H.L.; van der Heide, J.A.; Kleeven, W.J.G.M.

    1989-01-01

    In order to obtain high gain in a free electron laser a high-quality electron beam with high peak current is required. It is well-known that a microtron is able to produce a high-quality beam having low emittance and small energy spread (1%). Because a circular microtron has a limited high-current

  6. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    Science.gov (United States)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  7. Measurements on Subscale Y-Ba-Cu-O Racetrack Coils at 77 K and Self-Field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Godeke, A.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Sabbi, G.

    2009-10-19

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) tapes carry significant amount of current at fields beyond the limit of Nb-based conductors. This makes the YBCO tapes a possible conductor candidate for insert magnets to increase the bore field of Nb{sub 3}Sn high-field dipoles. As an initial step of the YBCO insert technology development, two subscale racetrack coils were wound using Kapton-insulated commercial YBCO tapes. Both coils had two layers; one had 3 turns in each layer and the other 10 turns. The coils were supported by G10 side rails and waxed strips and not impregnated. The critical current of the coils was measured at 77 K and self-field. A 2D model considering the magnetic-field dependence of the critical current was used to estimate the expected critical current. The measured results show that both coils reached 80%-95% of the expected values, indicating the feasibility of the design concept and fabrication process.

  8. Physical and Visual Accessibilities in Intensive Care Units: A Comparative Study of Open-Plan and Racetrack Units.

    Science.gov (United States)

    Rashid, Mahbub; Khan, Nayma; Jones, Belinda

    2016-01-01

    This study compared physical and visual accessibilities and their associations with staff perception and interaction behaviors in 2 intensive care units (ICUs) with open-plan and racetrack layouts. For the study, physical and visual accessibilities were measured using the spatial analysis techniques of Space Syntax. Data on staff perception were collected from 81 clinicians using a questionnaire survey. The locations of 2233 interactions, and the location and length of another 339 interactions in these units were collected using systematic field observation techniques. According to the study, physical and visual accessibilities were different in the 2 ICUs, and clinicians' primary workspaces were physically and visually more accessible in the open-plan ICU. Physical and visual accessibilities affected how well clinicians' knew their peers and where their peers were located in these units. Physical and visual accessibilities also affected clinicians' perception of interaction and communication and of teamwork and collaboration in these units. Additionally, physical and visual accessibilities showed significant positive associations with interaction behaviors in these units, with the open-plan ICU showing stronger associations. However, physical accessibilities were less important than visual accessibilities in relation to interaction behaviors in these ICUs. The implications of these findings for ICU design are discussed.

  9. The effects of using flashcards with reading racetrack to teach letter sounds, sight words, and math facts to elementary students with learning disabilities

    Directory of Open Access Journals (Sweden)

    Rachel Erbey

    2011-07-01

    Full Text Available The purpose of this study was to measure the effects of reading racetrack and flashcards when teaching phonics, sight words, and addition facts. The participants for the sight word and phonics portion of this study were two seven-year-old boys in the second grade. Both participants were diagnosed with a learning disability. The third participant was diagnosed with attention deficit hyperactivity disorder by his pediatrician and with a learning disability and traumatic brain injury by his school’s multi-disciplinary team.. The dependent measures were corrects and errors when reading from a first grade level sight word list. Math facts were selected based on a 100 add fact test for the third participant. The study demonstrated that racetracks paired with the flashcard intervention improved the students’ number of corrects for each subject-matter area (phonics, sight words, and math facts. However, the results show that some students had more success with it than others. These outcomes clearly warrant further research.

  10. EDDIE RICKENBACKER: RACETRACK ENTREPRENEUR

    Directory of Open Access Journals (Sweden)

    W. David Lewis

    2000-01-01

    Full Text Available Edward V. (Eddie Rickenbacker (1890-1973 is best remembered for hisrecord as a combat pilot in World War I, in which he shot down 26 Germa naircraft and won fame as America’s "Ace of Aces." From 1934 until 1963 he was general manager, president, and board chairman of Eastern Air Lines, which was for a time the most profitable air carrier in the United States. This paper shows how Rickenbacker’s fiercely entrepreneurial style of management was born in his early involvement in the automobile industry, and particularly in his career as an automobile racing driver from 1909 through 1916.

  11. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    Science.gov (United States)

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  12. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor; Rondelli, Manuel; Krause, Maximilian; Rö tzer, Marian David; Hedhili, Mohamed N.; Heiz, Ulrich; Basset, Jean-Marie; Schweinberger, Florian; D'Elia, Valerio

    2018-01-01

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  13. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution

    International Nuclear Information System (INIS)

    Kosmata, Marcel

    2011-01-01

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the highresolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO 2 -Si 3 N 4 O x -SiO 2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

  14. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor

    2018-01-22

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  15. Multilayer X-ray mirrors for formation of sub-nanometer wavelength range beams

    International Nuclear Information System (INIS)

    Akhsakhalyan, A.A.; Akhsakhalyan, A.D.; Klyuenkov, E.B.; Murav'ev, V.A.; Salashchenko, N.N.; Kharitonov, A.I.

    2005-01-01

    Paper reviews the efforts undertaken in the RF Academy of Sciences IPM within recent 5 years to design multilayer mirror systems to produce X-ray wavelength subnanometer range beams. Paper describes a process to fabricate the mentioned systems covering the procedures to obtain supersmooth surfaces of the specified shape, to deposit gradient multilayer structures on the mentioned surfaces and describes the rules to calculate the optimal parameters of mirrors. Paper presents characteristics of mirror system two types: a mirror in the shape of a parabolic cylinder to collimate radiation in the DRON-4, DRON-6 production-type X-ray diffractometers and in the shape of a quadraelliptic reflector - a new wide-aperture four-corner focusing system [ru

  16. How to measure atomic diffusion processes in the sub-nanometer range

    International Nuclear Information System (INIS)

    Schmidt, H.; Gupta, M.; Gutberlet, T.; Stahn, J.; Bruns, M.

    2008-01-01

    Self-diffusion of the atomic constituents in the solid state is a fundamental transport process that controls various materials properties. With established methods of diffusivity determination it is only possible to measure diffusion processes on a length scale down to 10 nm at corresponding diffusivities of 10 -23 m 2 s -1 . However, for complex materials like amorphous or nano-structured solids the given values are often not sufficient for a proper characterization. Consequently, it is necessary to detect diffusion length well below 1 nm. Here, we present the method of neutron reflectometry on isotope multilayers. For two model systems, an amorphous semiconductor and an amorphous metallic alloy, the efficiency of this method is demonstrated to detect minimum diffusion lengths of only 0.6-0.7 nm. It is further shown that diffusivities can be derived which are more than two orders of magnitude lower than those obtainable with conventional methods. Prospects of this method in order to solve actual kinetic problems in materials science are given

  17. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  18. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  19. Coherent stacking of picosecond laser pulses in a high-Q optical cavity for accelerator applications

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2007-01-01

    We have performed the harmonic analysis of the steady-state coherent pulse-stacking process in a high-Q Fabry-Perot cavity. The expression for the stacked pulse shape is obtained as a function of both the laser cavity and pulse-stacking cavity parameters. We have also estimated the pulse power gains attainable in the laser-optical system of NESTOR storage ring, which is under development at Kharkov Institute of Physics and Technology. It is shown that high power gains (∼10 4 ) can be, in principle, achieved in a cavity, formed with low-absorption, high reflectivity (R ∼ 0.9999) mirrors, if the laser cavity length will differ exactly by half wavelength from the pulse-stacking cavity length. It implies development of the sophisticated frequency stabilization loop for maintaining the cavity length constant within a sub-nanometer range. At the same time, power gains of ∼10 3 can be obtained with medium reflectivity mirrors (R ∼ 0.999) at considerably lower cost

  20. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    Science.gov (United States)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  1. Fabrication of a Scaled MgB2 Racetrack Demonstrator Pole for a 10-MW Direct-Drive Wind Turbine Generator

    DEFF Research Database (Denmark)

    Magnusson, Niklas; Eliassen, Jan Christian; Abrahamsen, Asger Bech

    2018-01-01

    Field windings made of MgB2 wires or tapes are considered for their potential to reduce volume, weight, and cost of large offshore wind turbine generators. To gain experience of how to use this relatively new material in full-scale generators, tests of different winding methodologies and techniques...... are needed. In this paper, we describe in detail the steps used to wind a racetrack coil with a length of 1 m and a width of 0.5 m out of 4.5 km of MgB2 superconducting tape. The width corresponds to a full-scale pole of a 10-MW generator, whereas the length of the straight section is shorter than...... the corresponding full-scale pole. The coil was built up of ten double pancake coils. Each double pancake coil was wet wound using a semiautomatic winding process, where Stycast 2850 was applied directly to the MgB2 tape without any other dedicated electrical insulation. The strengths and weaknesses of the winding...

  2. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  3. First Observation of Rock Motion on Racetrack Playa, Death Valley National Park—Role of a Persistent Pool, Sun, Zephyrs, Windowpane Ice, and Tugboats

    Science.gov (United States)

    Norris, R. D.; Norris, J. M.

    2014-12-01

    Trails in the mud-cracked surface of Racetrack Playa have been scored by hundreds of rocks up to 320 kg, but the mechanism of movement is debated. In Winter 2013-2014, we observed rocks in motion associated with a transient pool formed by winter precipitation. The pond was 7 cm deep on the southern edge of the playa, tapering to a mud flat to the north. Freezing during cold winter nights formed floating "windowpane" ice 3-5 mm thick. Rocks repeatedly moved on sunny days under light winds of 3-5 m/second, as the ice broke up near midday and was set into motion by wind stress on melt pools and the ice surface. Ice panels shoved rocks along the mud like a tugboat, sometimes forming moving imbricated ice piles upstream of the rocks and in other cases moving faster than the rocks and forming brash-filled leads downstream. GPS units mounted in experimental rocks recorded a creeping pace of 2-6 m/minute, a speed that made it difficult to observe trail formation visually. The 2013-2014 pond formed on November 20-24 and persisted through early February 2014. During this time rocks were observed moving at least five times, and studies of "stiz marks" formed by rocks at the ends of trail segments show that there were likely 3-5 additional move events. Observed travel times ranged from a few seconds to 16 minutes. In one event, two experimental rocks 153 m apart began moving simultaneously and traveled 64.1 and 65.6 m respectively, ultimately moving 157-162 m in subsequent events. Rock motion depends on the creation of winter pools sufficiently deep to allow the formation of floating ice and exposed to the light winds and sun needed for ice breakup. The combination of these events is extremely rare, leading to highly episodic trail formation. Our observations differ from previous hypotheses in that the rocks were moved by thinner ice, at slower speeds, and by lighter winds than predicted.

  4. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  5. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  6. Laser Therapy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  7. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  8. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  9. Laser sampling

    International Nuclear Information System (INIS)

    Gorbatenko, A A; Revina, E I

    2015-01-01

    The review is devoted to the major advances in laser sampling. The advantages and drawbacks of the technique are considered. Specific features of combinations of laser sampling with various instrumental analytical methods, primarily inductively coupled plasma mass spectrometry, are discussed. Examples of practical implementation of hybrid methods involving laser sampling as well as corresponding analytical characteristics are presented. The bibliography includes 78 references

  10. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  11. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  12. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  13. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  14. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  15. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  16. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  17. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  18. Il laser

    CERN Document Server

    Smith, William V

    1974-01-01

    Verso il 1960, il laser era ancora "una soluzione alla ricerca di un problema", ma fin dagli anni immediatamente successivi si è rivelato uno strumento insostituibile per le applicazioni più svariate.

  19. Laser Refractography

    CERN Document Server

    Rinkevichyus, B.S; Raskovskaya, I.L

    2010-01-01

    This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest t...

  20. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  1. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  2. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  3. Laser Resurfacing

    OpenAIRE

    Janik, Joseph P.; Markus, Jodi L.; Al-Dujaili, Zeena; Markus, Ramsey F.

    2007-01-01

    In a society desiring images of beauty and youthfulness, the world of cutaneous surgery offers the gifts of facial rejuvenation for those determined to combat the signs of aging. With the development of novel laser and plasma technology, pigmentary changes, scarring, and wrinkles can be conquered providing smoother, healthier, younger-looking skin. This review highlights five of the most popular resurfacing technologies in practice today including the carbon dioxide (CO2) laser, the erbium:yt...

  4. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  5. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  6. Laser therapy for cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  7. Lasers in Cancer Treatment

    Science.gov (United States)

    ... the advantages of laser therapy? What are the disadvantages of laser therapy? What does the future hold ... therapy is appropriate for them. What are the disadvantages of laser therapy? Laser therapy also has several ...

  8. Practical laser safety

    International Nuclear Information System (INIS)

    Winburn, D.C.

    1985-01-01

    This book includes discussions of the following topics: characteristics of lasers; eye components; skin damage thresholds; classification of lasers by ANSI Z136.1; selecting laser-protective eyewear; hazards associated with lasers; and, an index

  9. A tuning procedure for a racetrack microtron

    NARCIS (Netherlands)

    Theuws, W.H.C.; de Wit, F.F.; Weijers, S.R.; Weiss, M.; Botman, J.I.M.; Hammen, A.F.J.

    1999-01-01

    The electron-optical system of the Eindhoven RTM has been designed and constructed with non-stringent alignment and machining tolerances in the order of 0.1-1 mm and 0.1-1 mrad. The alignment and machining errors that are present can and must be counteracted with slightly different settings of the

  10. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  11. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  12. Analysis of free electron laser performance utilizing the National Bureau of Standards' CW microtron

    International Nuclear Information System (INIS)

    Tang, C.M.; Sprangle, P.; Penner, S.; Maruyama, X.K.

    1987-01-01

    The National Bureau of Standards' (NBS) CW racetrack microtron (RTM) will be utilized as a driver for a free electron laser (FEL) oscillator. The NBS RTM possesses many exceptional properties of value for the FEL: i) CW operation, ii) energy from 20-185 MeV, iii) small energy spread and emittance, iv) excellent energy stability, and v) high average power. The 1-D FEL gain formula predicts that the FEL would oscillate at the fundamental approximately from 0.25 μm to 10 μm when up-grading the peak current to ≥ 2 A. In this paper, the authors present 3-D self-consistent numerical results including several realistic effects, such as emittance, betatron oscillations, diffraction and refraction. The results indicate that the design value of the transverse emittance is small enough that it does not degrade the FEL performance for intermediate to long wavelengths, and only slightly degrades the performance at the shortest wavelength under consideration. Due to the good emittance, the current density is high enough that focusing, or guiding, begins to manifest itself for wavelengths > 2.0 μm

  13. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  14. Laser polarimetry

    International Nuclear Information System (INIS)

    Goldstein, D.H.

    1989-01-01

    Polarimetry, or transmission ellipsometry, is an important experimental technique for the determination of polarization properties of bulk materials. In this technique, source radiation of known polarization is passed through bulk samples to determine, for example, natural or induced birefringence and dichroism. The laser is a particularly appropriate source for this technique because of its monochromaticity, collimation, and radiant intensity. Lasers of many different wavelengths in different spectral regions are now available. Laser polarimetry can be done in any of these wavelength regions where polarizing elements are available. In this paper, polarimetry is reviewed with respect to applications, sources used, and polarization state generator and analyzer configurations. Scattering ellipsometry is also discussed insofar as the forward scattering measurement is related to polarimetry. The authors then describe an infrared laser polarimeter which we have designed and constructed. This instrument can operate over large wavelength regions with only a change in source. Polarization elements of the polarimeter are in a dual rotating retarder configuration. Computer controlled rotary stages and computer monitored detectors automate the data collection. The Mueller formulation is used to process the polarization information. Issues and recent progress with this instrument are discussed

  15. excimer laser

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... is necessary to deposit one order higher input electric power into gas medium than ... cross-sectional view of the laser system is shown in figure 2A. The system mainly consists ... Considering the simplicity and reliability of the.

  16. Laser device

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material...

  17. An EELS sub-nanometer investigation of the dielectric gate stack for the realization of InGaAs based MOSFET devices

    International Nuclear Information System (INIS)

    Longo, P; Paterson, G W; Craven, A J; Holland, M C; Thayne, I G

    2010-01-01

    In this paper, a subnanometer investigation of the Ga 2 O 3 /GdGaO dielectric gate stack deposited onto InGaAs is presented. Results regarding the influence of the growth conditions on the interface region from a chemical and morphological point of view are presented. The chemical information reported in this paper has been obtained using electron energy loss spectroscopy (EELS) that was carried out in a scanning transmission electron microscope ((S)TEM) showing both spatial and depth resolution.

  18. Sub-nanometer distances and cluster shapes in dense hydrogen and in higher levels of hydrogen Rydberg matter by phase-delay spectroscopy

    International Nuclear Information System (INIS)

    Holmlid, Leif

    2011-01-01

    The inter-atomic distances in potassium clusters of Rydberg matter (RM) at excitation levels n B = 4–8 were recently measured by phase-delay spectroscopy (Holmlid, J Nanopart Res 12: 273, 2010). Excitation levels n B B = 1, 2, and 3 is found. Close-packing is the main structure both in planar and 3D clusters. Planar clusters are only observed for n B = 1 and 3, while 3D clusters are found in excitation levels n B = 1, 2 and 3. The cluster–cluster distance in stacks of planar clusters for n B = 2 and 3 is now observed for the first time.

  19. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the highresolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO{sub 2}-Si{sub 3}N{sub 4}O{sub x}-SiO{sub 2} on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

  20. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  1. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  2. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  3. Dermatological laser treatment

    International Nuclear Information System (INIS)

    Moerk, N.J.; Austad, J.; Helland, S.; Thune, P.; Volden, G.; Falk, E.

    1991-01-01

    The article reviews the different lasers used in dermatology. Special emphasis is placed on the treatment of naevus flammeus (''portwine stain'') where lasers are the treatment of choice. Argon laser and pulsed dye laser are the main lasers used in vascular skin diseases, and the article focuses on these two types. Copper-vapour laser, neodymium-YAG laser and CO 2 laser are also presented. Information is provided about the availability of laser technology in the different health regions in Norway. 5 refs., 2 figs

  4. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  5. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  6. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  7. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  8. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  9. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  10. Bleaching Dengan Teknologi Laser

    OpenAIRE

    Eliwaty

    2008-01-01

    Penulisan tentang bleaching dengan laser dimaksudkan untuk menambah wawasan serta pengetahuan dari pembaca di bidang kedokteran gigi. Macam-macam laser yang dipergunakan dalam bleaching yaitu argon, CO2 serta dioda laser. Contoh merek produk laser yaitu Blulaze, Dentcure untuk argonlaser, Novapulse untuk C02 serta Opus 5 untuk dioda laser. Laser bleaching hasilnya dapat dicapai dalam satu kunjungan saja, cepat, efisien namun biayanya relatif mahal, dapat menimbulkan burn, sensitivitas se...

  11. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  12. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  13. Laser Protection TIL

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  14. Laser Photochemistry.

    Science.gov (United States)

    1981-07-01

    inverted by the first, i.e., at the moment of time t = T, such that i = (2n+)lT, where 0 is the Rabi frequency (Oraevski et al., 1976). . classical... anisotropic molecule present. CW HeNe, Ar+ and Kr+ lasers are used, and the filter method is necessary because of time-scales lo8 - 10ll Hz. Some general...e.g., truncated harmonic oscillator, square well, spherically symmetric Morse or Lennard-Jones, anisotropic (angle-dependent) Morse or Lennard-Jones

  15. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  16. Laser safety and practice

    International Nuclear Information System (INIS)

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  17. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  18. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  19. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  20. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  1. Laser Microdissection.

    Science.gov (United States)

    Frost, Andra R; Eltoum, Isam-Eldin; Siegal, Gene P; Emmert-Buck, Michael R; Tangrea, Michael A

    2015-10-01

    Laser microdissection (LM) offers a relatively rapid and precise method of isolating and removing specified cells from complex tissues for subsequent analysis of their RNA, DNA, protein or metabolite content, thereby allowing assessment of the role of different cell types in the normal physiological or disease processes being studied. In this unit, protocols for the preparation of mammalian frozen tissues, fixed tissues, and cytologic specimens for LM, including tissue freezing, tissue processing and paraffin embedding, histologic sectioning, cell processing, hematoxylin and eosin staining, immunohistochemistry, and image-guided cell targeting are presented. Also provided are recipes for generating lysis buffers for the recovery of nucleic acids and proteins. The Commentary section addresses the types of specimens that can be utilized for LM and approaches to staining of specimens for cell visualization. Emphasis is placed on the preparation of tissue or cytologic specimens as this is critical to effective LM. Copyright © 2015 John Wiley & Sons, Inc.

  2. Laser EXAFS

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Schwenzel, R.E.; Campbell, B.E.

    1983-01-01

    Apparatus for obtaining EXAFS data of a material, comprising means for directing radiant energy from a laser onto a target in such manner as to produce X-rays at the target of a selected spectrum and intensity, suitable for obtaining the EXAFS spectrum of the material, means for directing X-rays from the target onto spectral dispersive means so located as to direct the spectrally resolved X-rays therefrom onto recording means, and means for positioning a sample of material in the optical path of the X-rays, the recording means providing a reference spectrum of X-rays not affected by the sample and absorption spectrum of X-rays modified by transmission through the sample

  3. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  4. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  5. History and principle of lasers

    International Nuclear Information System (INIS)

    Townes, Ch.H.; Schwob, C.; Julien, J.; Forget, S.; Robert-Philip, I.; Balcou, Ph.

    2010-01-01

    In the first article C.H. Townes, the inventor of the maser, describes the work and ideas that led to the invention of the laser. The second article explains how a laser operate and the third article reviews the main different types of laser: solid lasers, gas lasers, diode lasers and dye lasers

  6. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  7. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  8. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  9. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  10. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  11. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  12. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  13. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  14. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  15. Lasers in periodontics.

    Science.gov (United States)

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  16. Excimer laser applications

    International Nuclear Information System (INIS)

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  17. Lasers in chemical processing

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-01-01

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  18. Laser in urology. Laser i urologien

    Energy Technology Data Exchange (ETDEWEB)

    Breisland, H.O. (Aker Sykehus, Oslo (Norway))

    1991-09-01

    The neodymium YAG laser is particularly suited for endoscopic urologic surgery because the YAG laser light can be conducted in flexible fibers. Superficial bladder tumours can be treated under local anaesthesia in the outpatient department. The frequency of local recurrences is low, significantly lower than after electrosection or electrocoagulation. Selected cases of T2-muscle invasive bladder tumours can be cured with laser coagulation applied subsequently to transurethral resection. Combined treatment with electrosection and laser coagulation of localized prostatic cancer is a promising method which compares favourably with results obtained by other treatment modalities. Tumours in the upper urinary tract can be laser-treated through ureteroscopes or nephroscopes, but the treatment should be limited to low stage, low grade tumours. Laser is the treatment of choice for intraurethral condylomatas. Laser treatment of penil carcinoma gives excellent cosmetic and functional results and few local recurrences. Laser lithotripsy is a new technique for treatment of ureteric stones and photodynamic laser therapy is a promising tecnique for treatment of carcinoma in situ in the bladder empithelium. However, neither of these techniques are available for clinical use in Norway as yet. 17 refs., 3 figs., 1 tabs.

  19. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  20. 1982 laser program annual report

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications

  1. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  2. Laser in operative dentistry

    Directory of Open Access Journals (Sweden)

    E. Yasini

    1994-06-01

    Full Text Available Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry, etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks around the region of laser radiation. Also due to high temperature of these lasers, pulp damage is inevitable. So today, by using the Excimer laser especially the argon floride type with a wavelength of 193 nm, the problem of heat stress have been solved, but the use of lasers in dentistry, especially for cavity preparation needs more researches and evaluations.

  3. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  4. Radiological protection against lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ballereau, P

    1974-04-01

    A brief description of the biological effects of laser beams is followed by a review of the factors involved in eye and skin damage (factors linked with the nature of lasers and those linked with the organ affected) and a discussion of the problems involved in the determination of threshold exposure levels. Preventive measures are recommended, according to the type of laser (high-energy pulse laser, continuous laser, gas laser). No legislation on the subject exists in France or in Europe. Types of lasers marketed, threshold exposure levels for eye and skin, variations of admissible exposure levels according to wavelength, etc. are presented in tabular form. Nomogram for determination of safe distance for direct vision of a laser is included.

  5. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  6. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  7. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  8. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  9. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  10. Laser surgery - skin

    Science.gov (United States)

    ... Bleeding Problem not going away Infection Pain Scarring Skin color changes Some laser surgery is done when you are asleep and ... TG, Elston DM, eds. Andrews' Diseases of the Skin: Clinical ... lasers, lights, and tissue interactions. In: Hruza GJ, Avram ...

  11. Laser in operative dentistry

    OpenAIRE

    E. Yasini; Gh. Rahbari; A. Matorian

    1994-01-01

    Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy) and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry), etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks...

  12. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  13. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  14. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  15. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  16. Laser induced pyrolysis techniques

    International Nuclear Information System (INIS)

    Vanderborgh, N.E.

    1976-01-01

    The application of laser pyrolysis techniques to the problems of chemical analysis is discussed. The processes occurring during laser pyrolysis are first briefly reviewed. The problems encountered in laser pyrolysis gas chromatography are discussed using the analysis of phenanthrene and binary hydrocarbons. The application of this technique to the characterization of naturally occurring carbonaceous material such as oil shales and coal is illustrated

  17. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  18. Introducing the Yellow Laser

    Science.gov (United States)

    Lincoln, James

    2018-01-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye…

  19. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  20. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  1. LaserFest Celebration

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  2. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  3. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  4. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  5. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  6. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  7. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  8. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  9. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  10. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  11. Advanced lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  12. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  13. Laser Applications in Orthodontics

    Science.gov (United States)

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  14. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  15. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  16. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  17. Laser safety in dentistry

    Science.gov (United States)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  18. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  19. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  20. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  1. Lasers: principles, applications and energetic measures

    International Nuclear Information System (INIS)

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  2. Lasers in space

    Science.gov (United States)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  3. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  4. Designing of Raman laser

    International Nuclear Information System (INIS)

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  5. Laser program overview

    International Nuclear Information System (INIS)

    Storm, E.; Coleman, L.W.

    1985-01-01

    The objectives of the Lawrence Livermore National Laboratory Laser Fusion program are to understand and develop the science and technology of inertial confinement fusion (ICF), and to utilize ICF in short- and long-term military applications, and, in the long-term, as a candidate for central-station civilian power generation. In 1984, using the Novette laser system, the authors completed experiments showing the very favorable scaling of laser-plama interactions with short-wavelength laser light. Their Novette experiments have unequivocally shown that short laser wavelength, i.e., less than 1 μm, is required to provide the drive necessary for efficient compression, ignition, and burn of DT fusion fuel. In other experiments with Novette, the authors made the first unambiguous observation of amplified spontaneous emission in the soft x-ray regime. The authors also conducted military applications and weapons physics experiments, which they discuss in detail in the classified volume of our Laser Program Annual Report. In the second thrust, advanced laser studies, they develop and test the concepts, components, and materials for present and future laser systems. Over the years, this has meant providing the technology base and scientific advances necessary to construct and operate a succession of six evermore-powerful laser systems. The latest of these, Nova, a 100-TW/100-kJ-class laser system, was completed in 1984. The Nd:glass laser continues to be the most effective and versatile tool for ICF and weapons physics because of its scalability in energy, the ability to efficiently convert its 1=μm output to shorter wavelengths, its ability to provide flexible, controlled pulse shaping, and its capability to adapt to a variety of irradiation and focusing geometries. For these reasons, many of our advanced laser studies are in areas appropriate to solid state laser technologies

  6. Laser pumped lasers for isotope separation

    International Nuclear Information System (INIS)

    Fry, S.M.

    1976-01-01

    A study of the isotope separation laser requirements reveals that high pressure polyatomic molecular gas laser pumped lasers can attain the necessary characteristics including tunability, energy output, pulse width, and repetition rate. The results of a search, made for molecules meeting the appropriate requirements for one of several pump schemes utilizing a CO 2 laser and with output in the 12 μm or 16μm wavelength range, are presented. Several methods of pumping are reviewed and two novel pump schemes are presented. A laser pumped laser device design is given, and operation of this device and associated diagnostic equipment is confirmed by repeating experiments in OCS and NH 3 . The results of OCS laser experiments show that an improvement in pump rate and output per unit length is obtained with the device, using a wedged transverse pumping scheme. A new multi-line laser system in NH 3 pumped by a TEA CO 2 laser is reported. More than forty transitions spanning the wavelength range of 9.2 to 13.8 μm are observed and identified. A strong output at 12.08 μm is one of the closest lines yet found to the required laser isotope separation wavelength. Far infrared emission near 65 μm is observed and is responsible for populating levels which lase in pure ammonia near 12.3 μm. Buffer gas (e.g., N 2 or He) pressures of approximately 40--800 torr cause energy transfer by collision-induced rotationaltransitions from the pumped antisymmetric to the lasing symmetric levels in the nu 2 = 1 band of ammonia. Most of the observed lines are aP(J,K) transitions which originate from the nu 2 /sup s/ band. Measurements of the pressure dependence of the laser output shows that some lines lase at pressures greater than one atmosphere. Transient behavior of the 12.08 μm line is calculated from a simplified analytic model and these calculations are compared to the experimental results

  7. Pattern Laser Annealing by a Pulsed Laser

    Science.gov (United States)

    Komiya, Yoshio; Hoh, Koichiro; Murakami, Koichi; Takahashi, Tetsuo; Tarui, Yasuo

    1981-10-01

    Preliminary experiments with contact-type pattern laser annealing were made for local polycrystallization of a-Si, local evaporation of a-Si and local formation of Ni-Si alloy. These experiments showed that the mask patterns can be replicated as annealed regions with a resolution of a few microns on substrates. To overcome shortcomings due to the contact type pattern annealing, a projection type reduction pattern laser annealing system is proposed for resistless low temperature pattern forming processes.

  8. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  9. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  10. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  11. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  12. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  13. Laser induced nuclear reactions

    International Nuclear Information System (INIS)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  14. Lasers for isotope separation

    International Nuclear Information System (INIS)

    O'Hair, E.A.; Piltch, M.S.

    1976-01-01

    The Los Alamos Scientific Laboratory is conducting research on uranium enrichment. All processes being studied employ uranium molecules and use lasers to provide isotopic selectivity and enrichment. There are four well-defined infrared frequencies and two ultraviolet frequency bands of interest. The infrared frequencies are outside the range of the available lasers and an extensive research and development activity is currently underway. Lasers are available in the uv bands, however, much development work remains. The specification for the commercial uranium enrichment plant lasers will depend upon the results of the current enrichment experiments, the laser capital cost, reliability, and maintenance cost. For the processes under investigation there are specific photon requirements but latitude in how these requirements can be met. The final laser selections for the pilot plant need not be made until the mid-1980's. Between now and that time as extensive as possible a research and development effort will be maintained

  15. Inertial fusion by laser

    International Nuclear Information System (INIS)

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  16. Principles of Lasers

    CERN Document Server

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  17. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  18. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  19. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  20. Shiva laser system performance

    International Nuclear Information System (INIS)

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  1. Lasers in Ophthalmology

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    In recent years,lasers have entered every fieldof medicine and especially so in ophthalmol-ogy.The scientific basis of lasers in ophthal-mology is based on three mechanisms:1.Photothermal effectLasers:argon,krypton,dye and diodeA thermal effect is generated when laserenergy is absorbed by pigment leading to in-creased vibration and therefore heat content.A

  2. Laser Journal (Selected Articles),

    Science.gov (United States)

    1982-09-10

    laser is described. The apparatus structure and some experimental results are reported. MATERIAL AND ELEMENT MAGNETO -OPTIC PROPERTIES OF Pr dYb),(1oAI...with a magneto -optical modulator. The measuring system is simple and sensitive, with reading accuracy of ±0.0050 and error 45%. STUDY ON EXPERIMENTAL...laser radiation therapy . He Fang de East Chiia Hospital APPLICATION OF N4d,:Y q LASER TO TREAT INTERNAL HEMERRHOID Zhuo Ruilin Zu Songlin (Shanghai

  3. Laser precision microfabrication

    CERN Document Server

    Sugioka, Koji; Pique, Alberto

    2010-01-01

    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  4. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  5. High power lasers

    CERN Document Server

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  6. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  7. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  8. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  9. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  10. Lasers in materials processing

    International Nuclear Information System (INIS)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  11. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  12. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  13. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  14. Principles of laser dynamics

    CERN Document Server

    Khanin, YI

    1995-01-01

    This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the stea

  15. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  16. Laser in urology

    International Nuclear Information System (INIS)

    Breisland, H.O.

    1991-01-01

    The neodymium YAG laser is particularly suited for endoscopic urologic surgery because the YAG laser light can be conducted in flexible fibers. Superficial bladder tumours can be treated under local anaesthesia in the outpatient department. The frequency of local recurrences is low, significantly lower than after electrosection or electrocoagulation. Selected cases of T2-muscle invasive bladder tumours can be cured with laser coagulation applied subsequently to transurethral resection. Combined treatment with electrosection and laser coagulation of localized prostatic cancer is a promising method which compares favourably with results obtained by other treatment modalities. Tumours in the upper urinary tract can be laser-treated through ureteroscopes or nephroscopes, but the treatment should be limited to low stage, low grade tumours. Laser is the treatment of choice for intraurethral condylomatas. Laser treatment of penil carcinoma gives excellent cosmetic and functional results and few local recurrences. Laser lithotripsy is a new technique for treatment of ureteric stones and photodynamic laser therapy is a promising tecnique for treatment of carcinoma in situ in the bladder empithelium. However, neither of these techniques are available for clinical use in Norway as yet. 17 refs., 3 figs., 1 tabs

  17. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  18. Trends in laser micromachining

    Science.gov (United States)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  19. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  20. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  1. Laser adaptive holographic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2016-03-31

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  2. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff

    2012-01-01

    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  3. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  4. Jet laser ion source

    International Nuclear Information System (INIS)

    Dem'yanov, A.V.; Sidorov, S.V.

    1994-01-01

    External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs

  5. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  6. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  7. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  8. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  9. Laser Program annual report 1987

    International Nuclear Information System (INIS)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  10. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  11. LASERS: A cryogenic slab CO laser

    Science.gov (United States)

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  12. Power balancing of multibeam laser fusion lasers

    International Nuclear Information System (INIS)

    Seka, W.; Morse, S.; Letzring, S.; Kremens, R.; Kessler, T.J.; Jaanimagi, P.; Keck, R.; Verdon, C.; Brown, D.

    1989-01-01

    The success of laser fusion depends to a good degree on the ability to compress the target to very high densities of ≥1000 times liquid DT. To achieve such compressions require that the irradiation nonuniformity must not exceed ∼1% rms over the whole time of the compression, particularly during the early phases of irradiation. The stringent requirements for the irradiation uniformity for laser fusion have been known for quite some time but until recently the energy balance was mistakenly equated to power balance. The authors describe their effort on energy balance and irradiation patterns on the target. They significantly improved the laser performance with respect to overall intensity distributions on target including the implementation of distributed (random) phase plates in each high power beam. However, the slightly varying performance of the third harmonic conversion crystals in the twenty-four beams of their laser system was generally compensated for by appropriately adjusted 1.054μm input laser energy. Computational analysis of the results of the recent high density campaign are shown

  13. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  14. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  15. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  16. Laser biostimulation in pediatrics

    Science.gov (United States)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  17. Metallic DFB lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Nötzel, R.; Smit, M.K.; Hill, M.T.; Pozo, J.; Mortensen, M.; Urbach, P.; Leijtens, X.; Yousefi, M.

    2010-01-01

    In this paper we present our latest results on the design, fabrication and characterization of metal coated DFB lasers. These devices are based on a specialform of the metal-insulator-metal waveguides, which support plasmon gap modes. The distributed feedback provides control over the laser ~

  18. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The initial foundation of laser theory was laid by Einstein [11]. ..... general definition and scope of the processes as understood in conventional practice, but is ..... [54]. Laser welding of Ti-alloys. Welding. 2001 TiNi shape memory alloys. CW–CO2. Study corrosion, mechanical and shape memory properties of weldments.

  19. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  20. Laser trabeculotomy versus trabeculoplasty

    International Nuclear Information System (INIS)

    Ticho, U.; Frucht, J.

    1984-01-01

    Although laser trabeculotomy has failed in glaucoma management, the laser trabeculoplasty (LTP) procedure has proved to be helpful. LTP was found to improve glaucoma control in 80-90% of open angle glaucoma patients, and less in secondary glaucoma and low tension glaucoma (50%). The procedure is more successful in dark iris eyes and complications are transient. (Auth.)

  1. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  2. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  3. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  4. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  5. Coaxial short pulsed laser

    Science.gov (United States)

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  6. LASER EN LARYNGOLOGIE

    African Journals Online (AJOL)

    9 mai 2013 ... permettant selon les besoins, coagulation, section ou vaporisation. ... tés par laser au service d'ORL et de chirurgie cervico-. LASER EN .... nose était de siège glottique pur à type de palmure dans. 3 cas et supra glottique ...

  7. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  8. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  9. Electrodeless excimer laser

    International Nuclear Information System (INIS)

    Lisi, N.

    2001-01-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse ( 2 excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field [it

  10. Auricular Acupuncture with Laser

    Science.gov (United States)

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  11. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  12. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  13. Introducing the yellow laser

    Science.gov (United States)

    Lincoln, James

    2018-02-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye protection for the young and inexperienced. It is important to note that 589 nm is the same wavelength as the Sodium-D line (doublet). This allows for the laser to serve as a replacement for sodium lamps, and, considering its rather high price, this added value should be balanced against its cost. What follows is a list of activities that showcase the yellow laser's unique promise as an engaging piece of technology that can be used in the teaching of physics.

  14. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  15. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  16. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  17. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  18. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K.

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks

  19. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  20. Measurements of laser parameters for the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  1. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  2. Laser diode technology and applications

    International Nuclear Information System (INIS)

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  3. 1982 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  4. Fractional laser skin resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  5. The argon excimer laser

    International Nuclear Information System (INIS)

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  6. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  7. Excimer laser decontamination

    Science.gov (United States)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  8. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  9. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  10. Temperature stabilization of injection lasers

    International Nuclear Information System (INIS)

    Albanese, A.

    1987-01-01

    Apparatus which stabilizes the temperature, and thereby the output wavelength, of an injection laser. Means monitor the laser terminal voltage across a laser and derive a voltage therefrom which is proportional to the junction voltage of the laser. Means compares the voltage to a reference value from source and a temperature controller adjusts the laser temperature in response to the results of the comparison. Further embodiments of the present invention vary the output wavelength of the laser by varying the reference value from source against which the laser junction voltage is compared. (author)

  11. Latest development of laser cutting

    OpenAIRE

    Wetzig, Andreas; Herwig, Patrick; Hauptmann, Jan; Goppold, Cindy; Baumann, Robert; Fürst, Andreas; Rose, Michael; Pinder, Thomas; Mahrle, Achim; Beyer, Eckhard

    2016-01-01

    Laser cutting was one of the first applications of laser material processing. Today, laser cutting is the most widespread application among laser material processing besides laser marking. Meanwhile, nearly each material can be cut by means of a laser, in particular since ultra short pulse lasers are available in the power range of up to 100 W. The to be cut material can come with thicknesses from a few microns till tens of millimeters as flat stock or as free form shapes. The paper will conc...

  12. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  13. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  14. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  15. Laser Hazards Bibliography

    Science.gov (United States)

    1989-10-31

    light on mandibular fracture healing, Stomatologiia, 57(5): 5-9 (1978). 42 Laser Hazards Bibliography 177. Van Gemert, M.J.C., Schets, G.A.C.M., Bishop...U., Laser-coagulation of ruptured fixation suture after lens implantation, J Am Intraocul Implant Soc, 4(2): 54 (1978). 49. Federman, J. L., Ando, F...laser in pediatric surgery, J Ped Surg, 3: 263-270 (April 1968). 82. Hennessy, R. T., and Leibowitz, H., Subjective measurement of accommodation with

  16. Optimising laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Kabir Sardana

    2015-01-01

    Full Text Available Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  17. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  18. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  19. Regenerative laser system

    International Nuclear Information System (INIS)

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  20. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  1. Diatomic gasdynamic lasers.

    Science.gov (United States)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  2. Gas dynamic lasers

    International Nuclear Information System (INIS)

    Hill, R.J.; Jewell, N.T.

    1975-01-01

    In a high powered laser system it is proposed that combustion gases be bled off from a gas turbine engine and their composition adjusted by burning extra fuel in the bleed gases or adding extra substances. Suitable aerodynamic expansion produces a population inversion resulting in laser action in the CO 2 species. Alternatively, bleed gases may be taken from the high pressure compressor of the gas turbine engine and an appropriate fuel burned therein. If required, other adjustments may also be made to the composition and the resulting gaseous mixture subjected to aerodynamic expansion to induce laser action as before. (auth)

  3. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  4. Simulations of laser undulators

    Science.gov (United States)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  5. Diatomic gasdynamic lasers

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1971-12-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant over-populations of upper vibrational states. When mixtures of CO and N 2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N 2 expansions. The resulting CO-N 2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO 2 lasers

  6. High power excimer laser

    International Nuclear Information System (INIS)

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  7. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  8. Optimising Laser Tattoo Removal

    Science.gov (United States)

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  9. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  10. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  11. Laser applications in neurosurgery

    Science.gov (United States)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  12. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  13. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  14. Lasers and holography

    CERN Document Server

    Kock, Winston E

    1981-01-01

    Accessible, illustrated introduction covers wave patterns and coherence, summarizes the development of lasers and the phenomenon of wave diffraction, and describes zone plates and properties of holograms. 1981 edition.

  15. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  16. Blackbody metamaterial lasers

    KAUST Repository

    Liu, Changxu

    2015-01-01

    We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.

  17. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  18. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  19. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  20. Laser therapy for periodontitis

    Science.gov (United States)

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  1. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  2. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  3. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  4. Physics of laser plasma

    International Nuclear Information System (INIS)

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  5. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  6. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  7. YAG Laser or bur

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... for the clinical durability of resin-based dental restorations.[1]. Microleakage ... studies evaluating the use of laser systems in primary teeth for cavity ... sealed with glass ionomer restorative material (Fuji. II LC, GC Corporation ...

  8. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  9. Thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Delpech, J.-F.; Fabre, Edouard.

    1978-01-01

    This paper is intended to describe the principle of inetia containment by laser and the research effort undertaken for this purpose. After having enumerated the principal thermonuclear reactions useful for fusion, the authors derive the rhoR criterion that characterizes inertia containment, as well as the Lawson criterion in the case of magnetic containment. The main physics problems involved in inertia containment by laser are enunciated and the article ends with a review of means resorted to in France and abroad for studying this problem. This review also reports C.N.R.S. bustling in this field, within the scope of competence of G.I.L.M. (Groupement de Recherches Coordonnees sur l'Interaction Laser-Matiere = Group for coordinated investigation of matter-laser interaction) established in Paris at the Ecole Polytechnique [fr

  10. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  11. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  12. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  13. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  14. Transurethral vaporesection of prostate: diode laser or thulium laser?

    Science.gov (United States)

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  15. Pulsed chemical laser

    International Nuclear Information System (INIS)

    Jacobson, T.V.; Kimbell, G.H.

    1975-01-01

    A hydrogen fluoride laser capable of operating super radiantly and at atmospheric pressure is described. A transverse electrical discharge is utilized to energize the reaction of a hydrogen donor to provide hydrogen fluoride in a metastable energy state which reverts to a stable state by laser action. A large range of hydrogen and fluorine donors is disclosed. A preferred pair of donors is sulphur hexafluoride and propane. Helium is frequently added to the gas mix to act as a buffer. (U.S.)

  16. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  17. Laser Resurfacing Pearls

    OpenAIRE

    Shah, Sonia; Alam, Murad

    2012-01-01

    Ablative skin resurfacing using the carbon dioxide laser was long considered the gold standard for treatment of photoaging, acne scars, and rhytids. However, conventional full-face carbon dioxide resurfacing is associated with significant risk of side effects and a prolonged postoperative recovery period. Fractional resurfacing has recently revolutionized laser surgery by offering close to comparable results with minimal side effects and a more rapid recovery. Although fractional devices have...

  18. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  19. Laser radiation protection

    International Nuclear Information System (INIS)

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  20. SHIVA laser: nearing completion

    International Nuclear Information System (INIS)

    Glaze, J.A.; Godwin, R.O.

    1977-01-01

    Construction of the Shiva laser system is nearing completion. This laser will be operating in fall 1977 and will produce over 20 terawatts of focusable power in a subnanosecond pulse. Fusion experiments will begin early in 1978. It is anticipated that thermonuclear energy release equal to one percent that of the incident light energy will be achieved with sub-millimeter deuterium-tritium targets. From other experiments densities in excess of a thousand times that of liquid are also expected

  1. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  2. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  3. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  4. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  5. Greco Laser-matter interaction

    International Nuclear Information System (INIS)

    1986-01-01

    Research program in 1985 at GRECO ILM (Group of Coordinated Research: Interaction Laser Matter) continued with its principal direction in fundamental physics of laser inertial confinement; also researches on X-ray lasers hare been undergone and new high power laser application fields with particle acceleration, material processing and X-ray sources. A six beam laser was operated. Wavelength effects were studied. Atomic physics was deeply stressed as dense medium diagnostics from multicharged ions. Research development in ultra-dense medium was also important X-ray laser research gave outstanding results. New research fields were developed this year: laser acceleration of particles by wave beating or Raman instability; dense laser produced plasma use as X-ray source; material processing by laser shocks [fr

  6. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  7. Lasers in endodontics: an overview

    Science.gov (United States)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  8. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  9. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  10. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  11. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  12. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  13. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  14. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  15. Theoretical studies of solar-pumped lasers

    Science.gov (United States)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  16. Laser-based additive manufacturing of metals

    CSIR Research Space (South Africa)

    Kumar, S

    2010-11-01

    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  17. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  18. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    Directory of Open Access Journals (Sweden)

    Sanjiv K Gupta

    2012-01-01

    Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate.

  19. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  20. Laser marking method and device

    International Nuclear Information System (INIS)

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  1. Proceedings of national laser symposium (NLS-2000)

    International Nuclear Information System (INIS)

    Mallik, Amitav; Srivastava, K.N.; Pal, Suranjan

    2000-01-01

    This proceedings comprise of a series of invited talks on selected topics in lasers and wide range of contributed papers. The main topics are laser physics and research, laser devices and technology, laser materials and spectroscopy, quantum optics, non-linear optics ultra-fast phenomenon, laser produced plasma, high power lasers, laser instrumentation, medical applications and industrial applications of lasers and fiber optics. The papers relevant to INIS Database are indexed separately

  2. Laser tissue interactions: an update for otolaryngology

    Science.gov (United States)

    Reinisch, Lou

    2000-05-01

    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  3. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  4. HF-laser program

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Sandia's HF-laser program for FY 77 and FY 78 was revised in June 1977 in order to meet several new program milestones. Research progress is reported on: objective of HF oscillator-amplifier studies using H 2 -F 2 gas mixtures; characteristics of large-volume oscillator using H 2 -F 2 mixtures; characteristics of large-volume amplifier using H 2 -F 2 mixtures; experimental results of the oscillator-amplifier study; objective of high-quality discharge-initiated SF 6 -HI oscillator-preamplifier system; pin-discharge-initiated oscillator and first beam expander; fast-discharge-initiated preamplifiers; reflecting beam expanders for oscillator-preamplifier system; beam quality of discharge-initiated oscillator-preamplifier system; short pulse option for discharge initiated SF 6 -HI system; H 2 -F 2 electron-beam-initiated oscillator-preamplifier system; chamber for HF-laser focusing experiments; computer study of parasitic oscillations in HF amplifiers and oscillators; kinetics upgrade of HF-laser code; repetitivey ignited flowing H 2 -F 2 -O 2 mixtures; spontaneous detonations in multiatmosphere H 2 -F 2 -O 2 mixtures; high-pressure H 2 -F 2 laser studies; and time sequenced energy extraction on the high xenon laser

  5. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  6. Industrial lasers in Japan

    Science.gov (United States)

    Karube, Norio

    1991-03-01

    I am to report on some aspects of industrial lasers in Japan. Mostly centering on the market. In Japan, the history of laser developnent is rather profound. And long. Ever since the first invention of the laser in this country in 1960. This is partly because of the fact that in Japan the spectroscopic studies of the ruby was very popular in the late 1950's. Ever since niost of the work has been done in the research laboratories of the industry, not in the universities or not in the governmental laboratories. And since that time our first activity was mainly centering on the basic research, but after that time we have the evolution of the technology. One of the features in Japan is that the activity of developement and research of laser technology from the very basic phase up to the present commercialization has been done by the same group of people, including ine. We had a national project which ended about six years ago which was sponsored by MITI. MITI is Ministry of International Trade and Industry in Japan. And because of this national project, the effect of this project had a very enlightening effect in Japan. And after that our Japanese laser market became very flourishing.

  7. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  8. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  9. Lasers in atomic, molecular and nuclear physics

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1986-01-01

    This book presents papers on laser applications in atomic, molecular and nuclear physics. Specifically discussed are: laser isotope separation; laser spectroscopy of chlorophyll; laser spectroscopy of molecules and cell membranes; laser detection of atom-molecule collisions and lasers in astrophysics

  10. The application of laser plasma in ophthalmology

    International Nuclear Information System (INIS)

    He Yujiang; Luo Le; Sun Yabing

    2000-01-01

    The production and development of laser plasma are introduced, and the contribution of laser biomedicine and laser plasma technology to ophthalmology is analyzed. The latest three progresses (laser photocoagulation, photo-refractive keratotomy and laser iridectomy) of laser plasma applications in ophthalmology are presented

  11. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  12. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  13. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  14. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  15. Laser sources for object illumination

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  16. Polarisation effects in fibre lasers

    OpenAIRE

    Lin, J.T.; Morkel, P.R.; Reekie, L.; Payne, D.N.

    1987-01-01

    Two orthogonal polarisation eigenmodes have been observed in a single-mode fibre laser. Experimental investigation shows good agreement with theoretical analysis. Both Nd3+ and Er3+-doped single-polarisation single-mode fibre lasers have been demonstrated

  17. Flashlamp excited fluid laser amplified

    International Nuclear Information System (INIS)

    1976-01-01

    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  18. XeBr exciplex laser

    International Nuclear Information System (INIS)

    Searles, S.K.

    1976-01-01

    Laser emission from the recently discovered XeBr exciplex laser was investigated as a function of the partial pressures of Xe and Br 2 . An optical loss process appears to limit high-pressure operation

  19. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  20. Laser Diagnostics for Reacting Flows

    National Research Council Canada - National Science Library

    Hanson, Ronald K

    2007-01-01

    ... (UV) or infrared (IR) wavelengths. The cw lasers were spectrally narrow, allowing study of innovative diagnostics based on spectral lineshapes, while the pulsed lasers provided intense bursts of photons needed for techniques based on LIF...

  1. Primer on laser scattering diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1978-07-01

    The theory of laser scattering is presented in abbreviated format, with emphasis on physical interpretation, followed by sections on laser sources, practical considerations in designing experiments, and current developments in extending the techniques to multispace and multitime point measurements

  2. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  3. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  4. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  5. Excimer laser technology

    International Nuclear Information System (INIS)

    Mace, P.N.

    1980-01-01

    Scaling presently available excimer laser systems to lasers designed to operate at high average power and high pulse repetition rates for long periods of time requires advances in many areas of engineering technology. For economical application to industrial processes, the efficiency must be increased. This leads to more stringent requirements on preionization techniques, energy delivery systems, and system chemistry. Long life operation (> 10 9 to 10 10 pulses) requires development of new pulse power components, optical elements and flow system components. A broad-based program underway at the Los Alamos Scientific Laboratory is addressing these key technology issues, with the help of advanced component and systems development programs in industry. A prototype XeCl laser meeting all requirements for efficiency, system performance and life is scheduled for completion in 1984

  6. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  7. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  8. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  9. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  10. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  11. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  12. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    Science.gov (United States)

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P laser (P laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine

  13. Laser vaccine adjuvants

    Science.gov (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  14. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  15. Power Play, Laser Style

    Science.gov (United States)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  16. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  17. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  18. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  19. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  20. Use of water vapor for suppressing the growth of unstable low-{kappa} interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.P. [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zou, X. [School of Electromachine and Architecture Engineering, Jianghan University, Wuhan, 430056 (China); Lai, P.T. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)], E-mail: laip@eee.hku.hk; Li, C.X.; Chan, C.L. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-03-02

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N{sub 2}, NH{sub 3}, NO and N{sub 2}O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO{sub x} interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N{sub 2} anneal, the wet NH{sub 3}, NO and N{sub 2}O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO{sub x}N{sub y} interlayer. Among the eight anneals, the wet N{sub 2} anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10{sup 11} eV{sup -1} cm{sup -2} and gate leakage current of 2.7 x 10{sup -4} A/cm{sup 2} at V{sub g} = 1 V.

  1. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale; Etude des vibrations et de la stabilisation a l'echelle sous-nanometrique des doublets finaux d'un collisionneur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, B

    2007-11-15

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  2. Use of water vapor for suppressing the growth of unstable low-κ interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    International Nuclear Information System (INIS)

    Xu, J.P.; Zou, X.; Lai, P.T.; Li, C.X.; Chan, C.L.

    2009-01-01

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N 2 , NH 3 , NO and N 2 O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO x interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N 2 anneal, the wet NH 3 , NO and N 2 O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO x N y interlayer. Among the eight anneals, the wet N 2 anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10 11 eV -1 cm -2 and gate leakage current of 2.7 x 10 -4 A/cm 2 at V g = 1 V

  3. Direct solar-pumped lasers

    Science.gov (United States)

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  4. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  5. New laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    New types of lasers must be developed to provide the desired energy per pulse, pulse length, pulse shape, wavelength, and efficiency for laser-fusion applications. This advanced laser research has focused on rare-gas oxides and on Hg 2 excimers

  6. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  7. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  8. Laser Physics and Physics with Lasers - Recent Advances

    International Nuclear Information System (INIS)

    Marowsky, G.

    2008-01-01

    This contribution reviews the development as well as recent technological advances in the field of optics with lasers and laser-related applications. Topics ranging from 'attoscience' to 'zero-modes' shall be dealt with in this presentation. Further reading in the following references is suggested: Springer Handbook of Lasers and Optics (F. Trager, ed.), 2007, ISBN-13: 978-0-387-95579-7; Chapter 11.7, Part C: Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2), pp. 764-776; Excimer Laser Technology (D. Basting, G. Marowsky, eds.) 2005, Springer, ISBN-13 978-3-540-20056-7

  9. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  10. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  11. Laser propulsion for orbit transfer - Laser technology issues

    Science.gov (United States)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  12. Laser technologies. KrF laser

    International Nuclear Information System (INIS)

    Owadano, Yoshiro; Okuda, Isao; Matsushima, Isao; Yashiro, Hidehiko; Matsumoto, Yuji

    1994-01-01

    Krypton-fluoride (KrF) laser is one of the promising driver for inertial confinement fusion because of its short wavelength, broad band width, high efficiency and capability of high repetition-rate operation. A high gain double-pass amplifier can yield a high, heavily saturated output intensity (5 to 6 times saturation intensity, > 10MW/cm 2 ) with nearly maximum efficiency (> 10%) and high stage gain (> 50) at the same time. The high gain can be achieved by cylindrical electron-beam pumping configuration without external magnetic field. Angular pulse multiplexing enables efficient pulse compression and amplification of beams with broad spectral width. The broad band width is required for irradiation smoothing methods, BRP (broad-band Random Phase Irradiation) or ISI (Induced Spatial Incoherence). Multi-kJ KrF laser, Super-ASHURA (Electrotechnical Laboratory, 8kJ), NIKE (at Naval Research Laboratory, 3kJ) and TITANIA (Rutherford Appleton Laboratory, 2kJ) are being developed and close to completion. (author)

  13. Joint Laser Interoperability, Tomorrow's Answer to Precision Engagement

    National Research Council Canada - National Science Library

    Neuenswander, David

    2001-01-01

    .... This includes a brief discussion of how a laser works and what constitutes the basic parts of a laser system, laser range finders, laser designators, laser spot trackers, and laser guided weapons...

  14. Proceedings of the conference on lasers and electro-optics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  15. Laser etching as an alternative

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Kelly, R.

    1989-01-01

    Atoms and molecules are removed from surfaces by intense laser beams. This fact has been known almost since the discovery of the laser. Within the present overall area of interest, namely understanding ion-beam-induced sputtering, it is equally important both to contrast laser etching to ion sputtering and to understand the underlying physics taking place during laser etching. Beyond some initial broad observations, the specific discussion is limited to, and aimed at, two areas: (i) short wavelength, UV, laser-pulse effects and (ii) energy fluences sufficiently small that only monolayers (and not microns) of material are removed per pulse. 38 refs.; 13 figs.; 5 tabs

  16. Laser Program annual report 1984

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs

  17. Lasers and uranium isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, L

    1987-12-01

    The use of lasers by the electronuclear industry to enrich uranium is discussed, particularly economic aspects. The SILMO and SILVA processes (chosen by France for industrial development) are presented. Criteria which lead to the choice of lasers and to their set-up (architecture of the chain) are described. For electricity - consumption linked to the use of lasers of 40 kWh/STU, a laser uranium enrichment plant with 10 STU/yr capacity requires 50kW of light from copper vapor lasers, i.e., 500 units each having 100W capacity, compared with the 40W units currently marketed.

  18. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  19. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  20. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  1. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  2. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  3. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  4. Laser Soap Fountain

    Science.gov (United States)

    Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.

    2015-01-01

    We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which…

  5. Laser microirradiation of cells

    International Nuclear Information System (INIS)

    Berns, M.W.; Kitzes, M.; Rattner, J.B.; Burt, J.; Meredith, S.

    1979-01-01

    The brief review outlines the technique of laser microbeam irradiation (260 - 700 nm) of cells to study ultrastructural changes. In combination with other techniques such as optical microscopy, electron microscopy and autoradiography structure and organization of chromosomes and nucleoli, chromosome stability, mechanisms of mitosis, gene mapping, cytoplasmic functions, and structure of nucleic acids are investigated

  6. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    The development progress during the reporting period 1988 of the laser surveillance system of spent fuel pools is summarized. The present engineered system comes close to a final version for field application as all technical questions have been solved in 1988. 14 figs., 1 tab. (Author)

  7. LASIK - Laser Eye Surgery

    Science.gov (United States)

    ... Refractive Surgery Procedures What Is Photorefractive Keratectomy (PRK)? LASIK — Laser Eye Surgery Leer en Español: LASIK—Cirugía ocular con láser ... loss of close-up focusing power. How the LASIK procedure works LASIK is performed while the patient ...

  8. Laser particulate spectrometer

    Science.gov (United States)

    Boyd, B. A.; Linford, R. M. F.; Schmitt, R. J.

    1977-01-01

    Hybrid laser scattering and extinction technique measures particle diameters from 0.8 to 2.75 micrometers and speeds from 0.2 to 20 m/s. Operating pressures range from ambient to ultra-high vacuum, and temperatures range from 77 to 300 K. Potential applications include air pollution, clean room, and particle size monitoring.

  9. Laser therapy in sinusitis

    International Nuclear Information System (INIS)

    Hernandez Diaz, Adel; Orellana Molina, Alina; Larrea Cox, Pedro; Combarro Romero, Andres; Corcho Corcho, Carlos; Morales Valdes, Omar; Gonzalez Mendez, Bianka M.

    2009-01-01

    The sinusitis is an inflammation of one or more breasts peri-nasals. It is common in the months of winter and it can last months or years if it is not treat. At the moment we have several means that try to offer our patients a better treatment. One of these instruments is the low power laser that for their properties to the interaction with the biological tissues offers therapeutic effects on the alive tissues, achieving at the level cellular important changes for a quick answer of the damaged tissue. We intended to demonstrate the effectiveness of the treatment with low power laser in patient with sinusitis. It was carried out an explanatory and retrospective study, where it was applied as treatment the low power laser, for that which a team of model Cuban production Fisser 21. The feminine sex, the affected age group prevailed it was among 36 to 50 years for both groups, the maxillary sinusitis prevailed regarding the frontal. The migraine, the nasal obstruction and the sensation of congestion of the head were present in most of the cases. 75% of the patients' treaties noticed improvement of the symptoms between the 1st and 3rd sessions. At the end 80% cured without necessity of a second treatment cycle. The accompanying symptoms almost disappeared in their entirety. We recommend using the treatment of low power laser, as therapy of first line for the treatment of sinusitis of infectious cause. (Author)

  10. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.

    1991-09-01

    Laser Surveillance System (LASSY) is a beam of laser light which scans a plane above the water or under-water in a spent-fuel pond. The system can detect different objects and estimates its coordinates and distance as well. LASSY can operate in stand-alone configuration or in combination with a video surveillance to trigger signal to a videorecorder. The recorded information on LASSY computer's disk comprises date, time, start and stop angle of detected alarm, the size of the disturbance indicated in number of deviated points and some other information. The information given by the laser system cannot be fully substituted by TV camera pictures since the scanning beam creates a horizontal surveillance plan. The engineered prototype laser system long-term field test has been carried out in Soluggia (Italy) and has shown its feasibility and reliability under the conditions of real spent fuel storage pond. The verification of the alarm table on the LASSY computer with the recorded video pictures of TV surveillance system confirmed that all alarm situations have been detected. 5 refs

  11. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  12. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  13. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  14. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  15. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  16. Laser therapy of muscle injuries.

    Science.gov (United States)

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  17. Endoscopic laser-urethroplasty

    Science.gov (United States)

    Gilbert, Peter

    2006-02-01

    The objective was to prove the advantage of endoscopic laser-urethroplasty over internal urethrotomy in acquired urethral strictures. Patients and Method: From January, 1996 to June, 2005, 35 patients with a mean age of 66 years were submitted to endoscopic laser-urethroplasty for strictures of either the bulbar (30) or membranous (5) urethra. The operations were carried out under general anesthesia. First of all, the strictures were incised at the 4, 8 and 12 o'clock position by means of a Sachse-urethrotom. Then the scar flap between the 4 and 8 o'clock position was vaporized using a Nd:YAG laser, wavelength 1060 nm and a 600 pm bare fiber, the latter always being in contact with the tissue. The laser worked at 40W power in continuous mode. The total energy averaged 2574 J. An indwelling catheter was kept in place overnight and the patients were discharged the following day. Urinalysis, uroflowmetry and clinical examination were performed at two months after surgery and from then on every six months. Results: No serious complications were encountered. Considering a mean follow-up of 18 months, the average peak flow improved from 7.3 ml/s preoperatively to 18.7 mVs postoperatively. The treatment faded in 5 patients ( 14.3% ) who finally underwent open urethroplasty. Conclusions: Endoscopic laser-urethroplasty yields better short-term results than internal visual urethrotomy. Long-term follow-up has yet to confirm its superiority in the treatment of acquired urethral strictures.

  18. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  19. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  20. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  1. Histologic effects of resurfacing lasers.

    Science.gov (United States)

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  3. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  4. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  5. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  6. Selective weed control using laser techniques

    OpenAIRE

    Marx, Christian; Pastrana-Perez, Julio; Hustedt, Michael; Barcikowski, Stephan; Haferkamp, Heinz; Rath, Thomas

    2012-01-01

    This contribution discusses technical and growth relevant aspects of using laser techniques for weed control. The research on thermal weed control via laser first focused on the interaction of laser beams and weed plants. Due to preliminary studies, a CO2-laser was selected for further studies with regard to the process factors laser energy, laser spot area, coverage of the weeds meristem, weed species (Amaranthus retroflexus), and weed growth stage. Thereby, the laser damage was modeled in o...

  7. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  8. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  9. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  10. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  11. Laser spectroscopy on organic molecules.

    Science.gov (United States)

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  12. Improving the laser brightness of a commercial laser system

    Science.gov (United States)

    Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2016-02-01

    We investigate the selection of a flat-top beam and a Gaussian beam inside a laser cavity on opposing mirrors. The concept is tested external to the laser cavity in a single pass and double pass regime where the latter mimics a single round trip in the laser. We implement this intra-cavity selection through the use of two 16 level diffractive optical elements. We consider a solid-state diode side-pumped laser resonator in a typical commercial laser configuration that consists of two planar mirrors where the DOEs are positioned at the mirrors. We out couple the Gaussian and flat-top distributions and we show that we improve the brightness of the laser with active mode control. We also demonstrate that the quality of the beam transformations determine the brightness improvement.

  13. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  14. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  15. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  16. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  17. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  18. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  19. Transluminal laser angioplasty

    Science.gov (United States)

    Otto, Wlodzimierz

    1996-03-01

    Twenty seven patients with femoral artery occlusion were treated by transluminal Nd:YAG laser angioplasty, in 16 patients the procedure was combined with intraarterial infusion of rTPA (actilyse-Boehringer Ing). In 5 out of 11 patients from the initial group recanalization was not successful. In 16 patients from the rTPA group satisfactory immediate results were achieved in all cases. In long time observations ranging from 9 to 24 months all patients remained free from symptoms, although in 4 of them angiography and Doppler ultrasound examination reveal no flow in the femoral artery. In the remaining 12 patients (75%), the previously occluded artery is patent. No complications of laser angioplasty nor intraarterial infusion of rTPA were noted in this series.

  20. PEP Laser Surveying System

    International Nuclear Information System (INIS)

    Lauritzen, T.; Sah, R.C.

    1979-03-01

    A Laser Surveying System has been developed to survey the beam elements of the PEP storage ring. This system provides automatic data acquisition and analysis in order to increase survey speed and to minimize operator error. Two special instruments, the Automatic Readout Micrometer and the Small Automatic Micrometer, have been built for measuring the locations of fiducial points on beam elements with respect to the light beam from a laser. These instruments automatically encode offset distances and read them into the memory of an on-line computer. Distances along the beam line are automatically encoded with a third instrument, the Automatic Readout Tape Unit. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compared them with desired parameters, and calculates the required adjustments to beam element support stands