WorldWideScience

Sample records for sub-millimetre radiometer smr

  1. New Sub-Millimetre Light in the Desert

    Science.gov (United States)

    2005-07-01

    The Atacama Pathfinder Experiment (APEX) project has just passed another major milestone by successfully commissioning its new technology 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, has just performed its first scientific observations. This new front-line facility will provide access to the "Cold Universe" with unprecedented sensitivity and image quality. Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project is excited: " Among the first observations, we have obtained wonderful spectra, which took only minutes to take but offer a fascinating view of the highly complex organic chemistry in star-forming regions. In addition, we have also obtained exquisite images from the Magellanic Clouds and observed molecules in the active nuclei of several external galaxies. Traditionally, telescopes turn to weak extragalactic sources only after they are well in operation. With APEX, we could pick them amongst our first targets!" Because sub-millimetre radiation from space is heavily absorbed by water vapour in the Earth's atmosphere, APEX is located at an altitude of 5100 metres in the high Chilean Atacama desert on the Chajnantor plains, 50 km east of San Pedro de Atacama in northern Chile. The Atacama desert is one of the driest places on Earth, thus providing unsurpassed observing opportunities - at the costs of the demanding logistics required to operate a frontier science observatory at this remote place. Along with the Japanese 10-m ASTE telescope, which is operating at a neighbouring, lower altitude location, APEX is the first and largest sub-millimetre facility under southern skies. With its precise antenna and large collecting area, it will provide, at this exceptional location, unprecedented access to

  2. Far-infrared and sub-millimetre imaging of HD 76582's circumstellar disc

    Science.gov (United States)

    Marshall, Jonathan P.; Booth, Mark; Holland, Wayne; Matthews, Brenda C.; Greaves, Jane S.; Zuckerman, Ben

    2016-07-01

    Debris discs, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disc legacy survey `SCUBA-2 Observations of Nearby Stars' (SONS) observed 100 nearby stars, amongst them HD 76582, for evidence of such material. Here, we present imaging observations by JCMT/SCUBA-2 and Herschel/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disc providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850 μm reveals a steep fall-off that we interpret as a disc dominated by moderately sized dust grains (amin = 36 μm), perhaps indicative of a non-steady-state collisional cascade within the disc. A disc architecture of three distinct annuli, comprising an unresolved component at 20 au and outer components at 80 and 270 au, along with a very steep particle size distribution (γ = 5), is proposed to match the observations.

  3. Overview and sample applications of SMILES and Odin-SMR retrievals of upper tropospheric humidity and cloud ice mass

    Directory of Open Access Journals (Sweden)

    P. Eriksson

    2014-12-01

    Full Text Available Retrievals of cloud ice mass and humidity from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES and the Odin-SMR (Sub-Millimetre Radiometer limb sounder are presented and example applications of the data are given. SMILES data give an unprecedented view of the diurnal variation of cloud ice mass. Mean regional diurnal cycles are reported and compared to some global climate models. Some improvements in the models regarding diurnal timing and relative amplitude were noted, but the models' mean ice mass around 250 hPa is still low compared to the observations. The influence of the ENSO (El Niño–Southern Oscillation state on the upper troposphere is demonstrated using 12 years of Odin-SMR data. The same retrieval scheme is applied for both sensors, and gives low systematic differences between the two data sets. A special feature of this Bayesian retrieval scheme, of Monte Carlo integration type, is that values are produced for all measurements but for some atmospheric states retrieved values only reflect a priori assumptions. However, this "all-weather" capability allows a direct statistical comparison to model data, in contrast to many other satellite data sets. Another strength of the retrievals is the detailed treatment of "beam filling" that otherwise would cause large systematic biases for these passive cloud ice mass retrievals. The main retrieval inputs are spectra around 635/525 GHz from tangent altitudes below 8/9 km for SMILES/Odin-SMR, respectively. For both sensors, the data cover the upper troposphere between 30° S and 30° N. Humidity is reported as both relative humidity and volume mixing ratio. The vertical coverage of SMILES is restricted to a single layer, while Odin-SMR gives some profiling capability between 300 and 150 hPa. Ice mass is given as the partial ice water path above 260 hPa, but for Odin-SMR ice water content, estimates are also provided. Besides a smaller contrast between most dry and wet

  4. Measurement of Deformations by MEMS Arrays, Verified at Sub-millimetre Level Using Robotic Total Stations

    Directory of Open Access Journals (Sweden)

    Tomas Beran

    2014-06-01

    Full Text Available Measurement of sub-millimetre-level deformations of structures in the presence of ambienttemperature changes can be challenging. This paper describes the measurement of astructure moving due to temperature changes, using two ShapeAccelArray (SAAinstruments, and verified by a geodetic monitoring system. SAA is a geotechnicalinstrument often used for monitoring of displacements in soil. SAA uses micro-electro-mechanical system (MEMS sensors to measure tilt in the gravity field. The geodeticmonitoring system, which uses ALERT software, senses the displacements of targetsrelative to control points, using a robotic total station (RTS. The test setup consists of acentral four-metre free-standing steel tube with other steel tubes welded to most of itslength. The central tube is anchored in a concrete foundation. This composite “pole” isequipped with two SAAs as well as three geodetic prisms mounted on the top, in the middle,and in the foundation. The geodetic system uses multiple control targets mounted inconcrete foundations of nearby buildings, and at the base of the pole. Long-termobservations using two SAAs indicate that the pole is subject to deformations due to cyclicalambient temperature variations causing the pole to move by a few millimetres each day. Ina multiple-day experiment, it was possible to track this movement using SAA as well as theRTS system. This paper presents data comparing the measurements of the two instrumentsand provides a good example of the detection of two-dimensional movements of seeminglyrigid objects due to temperature changes.

  5. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements

    Directory of Open Access Journals (Sweden)

    Tongmei Wang

    2018-01-01

    Full Text Available Stable Water Isotopologues (SWIs are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002–2009 of retrievals from Odin/SMR (Sub-Millimetre Radiometer, the global climatological features of three SWIs, H216O, HDO and H218O, the isotopic composition δD and δ18O in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer–Dobson circulation. Furthermore, we found that more H216O is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in H216O is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.

  6. Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2008-06-01

    Full Text Available The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band, and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement. In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC and balloon flight missions conducted by the Canadian Space Agency (CSA, the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France, and the Service d'Aéronomie (SA, Paris, France. Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km within −0.3±0.2 ppmv (bias±standard deviation for SMR (v222, v2.1 and within −0.5±0.2 ppmv for OSIRIS (v3.0. Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv

  7. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    Science.gov (United States)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub-millimetre

  8. The EUMETSAT Polar System-Second Generation (EPS-SG) micro-wave and sub-millimetre wave imaging missions

    Science.gov (United States)

    Accadia, Christophe; Schlüssel, Peter; Phillips, Pepe L.; Wilson, J. Julian W.

    2013-10-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system, EPS-SG, in the 2020-2040 timeframe and contribute to the Joint Polar System being jointly set up with NOAA. Among the various missions which are part of EPS-SG, there are the Microwave Imager (MWI) and the Ice Cloud Imager (ICI). The MWI frequencies are from 18 GHz up to 183 GHz. All MWI channels up to 89 GHz measure both V and H polarisations. The primary objective of the MWI mission is to support Numerical Weather Prediction at regional and global scales. The MWI will not only provide continuity of measurements for some heritage microwave imager channels (e.g. SSM/I, AMSR-E) but will also include additional channels such as the 50-55 / 118 GHz bands. The combined use of these channels will provide more information on cloud and precipitation over sea and land. The ICI will provide measurements over the sub-millimetre spectral range contributing to an innovative characterisation of clouds over the whole globe. The ICI has channels at 183 GHz, 325 GHz and 448 GHz with single V polarisation and two channels at 243 GHz and 664 GHz with both V and H polarisation. The ICI's primary objectives are to support climate monitoring and validation of ice cloud models and the parameterisation of ice clouds in weather and climate models through the provision of ice cloud products.

  9. Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control

    Directory of Open Access Journals (Sweden)

    Bahar Haghighat

    2016-08-01

    for designing, modeling and controlling massively-distributed, stochastic self-assembling systems at different length scales, constituted of modules from centimetric down to sub-millimetric size. As a result, our work provides a solid milestone in structure formation through controlled self-assembly.

  10. Scattering-produced (sub)millimetre polarization in inclined discs: optical depth effects, near-far side asymmetry and dust settling

    Science.gov (United States)

    Yang, Haifeng; Li, Zhi-Yun; Looney, Leslie W.; Girart, Josep M.; Stephens, Ian W.

    2017-11-01

    Disc polarization at (sub)millimetre wavelengths is being revolutionized by ALMA observationally, but its origin remains uncertain. Dust scattering was recently recognized as a potential contributor to polarization, although its basic properties have yet to be thoroughly explored. Here, we quantify the effects of optical depth on the scattering-induced polarization in inclined discs through a combination of analytical illustration, approximate semi-analytical modelling using formal solution to the radiative transfer equation, and Monte Carlo simulations. We find that the near-side of the disc is significantly brighter in polarized intensity than the far-side, provided that the disc is optically thick and that the scattering grains have yet to settle to the mid-plane. This asymmetry is the consequence of a simple geometric effect: the near-side of the disc surface is viewed more edge-on than the far-side. It is a robust signature that may be used to distinguish the scattering-induced polarization from that by other mechanisms, such as aligned grains. The asymmetry is weaker for a geometrically thinner dust disc. As such, it opens an exciting new window on dust settling. We find anecdotal evidence from dust continuum imaging of edge-on discs that large grains are not yet settled in the youngest (Class 0) discs, but become more so in older discs. This trend is corroborated by the polarization data in inclined discs showing that younger discs have more pronounced near-far side asymmetry and thus less grain settling. If confirmed, the trend would have far-reaching implications for grain evolution and, ultimately, the formation of planetesimals and planets.

  11. Opportunities in SMR Emergency Planning

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Reactor Technologies Program

    2014-10-01

    Using year 2014 cost information gathered from twenty different locations within the current commercial nuclear power station fleet, an assessment was performed concerning compliance costs associated with the offsite emergency Planning Standards contained in 10 CFR 50.47(b). The study was conducted to quantitatively determine the potential cost benefits realized if an emergency planning zone (EPZ) were reduced in size according to the lowered risks expected to accompany small modular reactors (SMR). Licensees are required to provide a technical basis when proposing to reduce the surrounding EPZ size to less than the 10 mile plume exposure and 50 mile ingestion pathway distances currently being used. To assist licensees in assessing the savings that might be associated with such an action, this study established offsite emergency planning costs in connection with four discrete EPZ boundary distances, i.e., site boundary, 2 miles, 5 miles and 10 miles. The boundary selected by the licensee would be based on where EPA Protective Action Guidelines are no longer likely to be exceeded. Additional consideration was directed towards costs associated with reducing the 50 mile ingestion pathway EPZ. The assessment methodology consisted of gathering actual capital costs and annual operating and maintenance costs for offsite emergency planning programs at the surveyed sites, partitioning them according to key predictive factors, and allocating those portions to individual emergency Planning Standards as a function of EPZ size. Two techniques, an offsite population-based approach and an area-based approach, were then employed to calculate the scaling factors which enabled cost projections as a function of EPZ size. Site-specific factors that influenced source data costs, such as the effects of supplemental funding to external state and local agencies for offsite response organization activities, were incorporated into the analysis to the extent those factors could be

  12. The Radiometer

    Science.gov (United States)

    Stern, David P.

    1970-01-01

    The often observed and misunderstood phenomenon of movement of black and white vanes in toy radiometers under illumination is discussed in a generalized non-mathematical manner. Effects of light pressure, low gas density, friction, heat, and motion are illustrated. (JM)

  13. PHOCUS radiometer

    Directory of Open Access Journals (Sweden)

    O. Nyström

    2012-06-01

    Full Text Available PHOCUS – Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50–110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems.

    The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS backends with 67 kHz resolution.

    The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler.

    The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable

  14. Broadband radiometer

    Science.gov (United States)

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  15. An Evaluation of SMR Economic Attractiveness

    Directory of Open Access Journals (Sweden)

    Sara Boarin

    2014-01-01

    Full Text Available The nuclear “renaissance” that is taking place worldwide concerns the new build of GW size reactor plants, but smaller GenIII+ NPP (Small Modular Reactors, SMR are on the verge to be commercially available and are raising increasing public interest. These reactor concepts rely on the pressurized water technology, capitalizing on thousands of reactor-years operations and enhancing the passive safety features, thanks to the smaller plant and equipment size. On the other hand, smaller plant size pays a loss of economy of scale, which might have a relevant impact on the generation costs of electricity, given the capital-intensive nature of nuclear power technology. The paper explores the economic advantages/disadvantages of multiple SMR compared to alternative large plants of the same technology and equivalent total power installed. The metrics used in the evaluation is twofold, as appropriate for liberalized markets of capital and electricity: investment profitability and investment risk are assessed, from the point of view of the plant owner. Results show that multiple SMR deployed on the same site may prove competitive with investment returns of larger plants, while offering, in addition, unique features that mitigate the investment risk.

  16. Thermal hydraulic model descrition of TASS/SMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H

    2001-04-01

    The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.

  17. UV irradiance radiometers calibration procedure

    OpenAIRE

    Doctorovich I. V.; Butenko V. K.; Hodovaniouk V. N.; Fodchuk I. M.; Yuriev V. G.

    2008-01-01

    The paper deals with the problems arising at calibration of narrow-band spectral-sensitive radiometers. The procedure of irradiance unit transfer to UV radiometers — UV radiometers calibration procedure — is presented.

  18. Radiometer on a Chip

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Lee, Choonsup; Schlecht, Erich T.; Skalare, Anders; Ward, John S.; Siegel, Peter H.; Thomas, Bertrand C.

    2009-01-01

    The radiometer on a chip (ROC) integrates whole wafers together to p rovide a robust, extremely powerful way of making submillimeter rece ivers that provide vertically integrated functionality. By integratin g at the wafer level, customizing the interconnects, and planarizing the transmission media, it is possible to create a lightweight asse mbly performing the function of several pieces in a more conventiona l radiometer.

  19. Polarimetric Radiometer Configurations

    DEFF Research Database (Denmark)

    Skou, Niels; Laursen, Brian; Søbjærg, Sten Schmidl

    1998-01-01

    Ocean wind speed and direction can be assessed with a polarimetric radiometer system measuring the full set of Stokes parameters. The first and second Stokes parameters are the sum and difference of the usual vertical and horizontal brightness temperatures. The third and forth Stokes parameters can...... be found either by cross correlating the received vertical and horizontal electrical fields, or they can be found by a combination of properly polarized brightness temperature measurements. These considerations directly point at two fundamentally different ways of implementing the polarimetric radiometer...... airborne, imaging, polarimetric radiometer system is presently in its development phase. The design of the system is discussed...

  20. Solar-Collector Radiometer

    Science.gov (United States)

    Kendall, J. M., Jr

    1984-01-01

    Water-cooled Kendall radiometer measures output of solar energy concentrators. Unit measures irradiance up to 30,000 solar constants with 1 percent accuracy and responds to wavelengths from ultraviolet to far infrared.

  1. Small modular reactor (SMR) development plan in Korea

    Science.gov (United States)

    Shin, Yong-Hoon; Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon

    2015-04-01

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R&D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40˜70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  2. Aquarius Radiometer Status

    Science.gov (United States)

    Le Vine, D. M.; Piepmeier, J. R.; Dinnat, E. P.; de Matthaeis, P.; Utku, C.; Abraham, S.; Lagerloef, G.S.E.; Meissner, T.; Wentz, F.

    2014-01-01

    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

  3. Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study.

    Science.gov (United States)

    Kober, Silvia Erika; Witte, Matthias; Stangl, Matthias; Väljamäe, Aleksander; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. A Multifrequency Radiometer System

    DEFF Research Database (Denmark)

    Skou, Niels

    1977-01-01

    A radiometer system having four channels: 5 GHz, l7 GHz, 34 GHz, all vertical polarization, and a 34 GHz sky horn, will be described. The system which is designed for collecting glaciological and oceanographic data is intended for airborne use and imaging is achieved by means of a multifrequency...... elaborate processing later, using ground facilities. In conjunction with a side looking radar which is under development at present, the radiometers are intended as the remote sensing basis for an all-weather ice reconnaissance service in the Greenland seas....... conically scanning antenna. Implementation of the noise-injection technique ensures the high absolute accuracy needed for oceanographic purposes. The collected data can be preprocessed in a microcomputer system and displayed in real time. Simultaneously, the data are recorded digitally on tape for more...

  5. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  6. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  7. Ionization and NO production in the polar mesosphere during high-speed solar wind streams. Model validation and comparison with NO enhancements observed by Odin-SMR

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Urban, J.; Perot, K. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Radio and Space Science; Sinha, A.K. [Indian Institute of Geomagnetism, Navi Mumbai (India)

    2015-09-01

    Precipitation of high-energy electrons (EEP) into the polar middle atmosphere is a potential source of significant production of odd nitrogen, which may play a role in stratospheric ozone destruction and in perturbing large-scale atmospheric circulation patterns. High-speed streams of solar wind (HSS) are a major source of energization and precipitation of electrons from the Earth's radiation belts, but it remains to be determined whether these electrons make a significant contribution to the odd-nitrogen budget in the middle atmosphere when compared to production by solar protons or by lower-energy (auroral) electrons at higher altitudes, with subsequent downward transport. Satellite observations of EEP are available, but their accuracy is not well established. Studies of the ionization of the atmosphere in response to EEP, in terms of cosmic-noise absorption (CNA), have indicated an unexplained seasonal variation in HSS-related effects and have suggested possible order-of-magnitude underestimates of the EEP fluxes by the satellite observations in some circumstances. Here we use a model of ionization by EEP coupled with an ion chemistry model to show that published average EEP fluxes, during HSS events, from satellite measurements (Meredith et al., 2011), are fully consistent with the published average CNA response (Kavanagh et al., 2012). The seasonal variation of CNA response can be explained by ion chemistry with no need for any seasonal variation in EEP. Average EEP fluxes are used to estimate production rate profiles of nitric oxide between 60 and 100 km heights over Antarctica for a series of unusually well separated HSS events in austral winter 2010. These are compared to observations of changes in nitric oxide during the events, made by the sub-millimetre microwave radiometer on the Odin spacecraft. The observations show strong increases of nitric oxide amounts between 75 and 90 km heights, at all latitudes poleward of 60 S, about 10 days after the

  8. Zastosowanie SMR neurofeedbacku w padaczce lekoopornej

    Directory of Open Access Journals (Sweden)

    Marcin Kopka

    2015-08-01

    Full Text Available Padaczka to jedno z najczęstszych schorzeń neurologicznych. Głównym celem leczenia jest zmniejszenie liczby napadów, a co za tym idzie – poprawa jakości życia chorych. Jeżeli dwie próby odpowiednio dobranego, tolerowanego i zastosowanego leczenia farmakologicznego okazują się nieskuteczne, padaczkę określa się mianem lekoopornej. W Polsce na padaczkę choruje około 400 tysięcy osób, u około 30% z nich występuje postać lekooporna. Tylko część pacjentów może skorzystać z leczenia chirurgicznego, istnieje zatem potrzeba poszukiwania alternatywnych metod wspomagania terapii. Jedną z nich wydaje się SMR neurofeedback – metoda treningu oparta na zasadzie biologicznego sprzężenia zwrotnego, czyli dostarczania choremu informacji zwrotnej o zmianach wartości rejestrowanych parametrów fizjologicznych. Gdy podczas treningu rejestrowana jest i wykorzystywana czynność bioelektryczna mózgu (EEG, mówimy o neurofeedbacku. Artykuł ma na celu przedstawienie wiedzy na temat stosowania SMR neurofeedbacku w leczeniu osób z padaczką lekooporną. W 1972 roku Sterman i Friar, zachęceni pozytywnymi wynikami badań na zwierzętach, podjęli pierwszą próbę leczenia za pomocą neurofeedbacku pacjentki z padaczką lekooporną, zaś w ostatniej dekadzie opublikowano wyniki dwóch niezależnych metaanaliz. Wydaje się, że neurofeedback powinien być brany pod uwagę jako terapia uzupełniająca w przypadku chorych z padaczką lekooporną, zwłaszcza gdy zawiodły inne metody. Do potwierdzenia skuteczności neurofeedbacku konieczne są dalsze randomizowane badania kontrolowane – w pracy wskazano ich kierunki.

  9. Reliability of three dental radiometers.

    Science.gov (United States)

    Hansen, E K; Asmussen, E

    1993-04-01

    The light intensity from 80 different curing units was recorded on three dental radiometers. Even though the correlation between the recordings obtained with the three testers was rather high, some units were categorized as good units by one radiometer and poor ones by another. It was also found that, in some case, there was a pronounced difference between the output within the same type of new units. Cavities were made in extracted third molars, filled with a microfilled resin, irradiated for 40 s with 20 of the curing units, and the depth of cure was measured. The radiometers were not able to rank the 20 units in accordance with their depth of cure. We conclude that the three radiometers are not fully reliable. However, they may become very useful tools for monitoring the output from a curing unit if the radiometer and the unit are calibrated.

  10. Safety and international development of small modular reactors (SMR). A study of GRS

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Kruessenberg, Anne; Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Bereich Reaktorsicherheitsforschung

    2015-11-15

    The abbreviation SMR stands for Small Modular Reactor and describes reactors with low power output. One reactor module, composed of primary, secondary and, where necessary, intermediate circuit and auxiliary systems, may be transported to the construction site as a whole or in few parts only and can therefore be connected quickly to the grid. Various modules can form a larger nuclear power plant and additional modules may be added one by one, while the others are in operation. Designers develop SMR for the deployment mainly in remote, sparsely populated areas or near cities respectively. SMR may provide in both cases electricity, district heating and potable water.

  11. Repeatability of standard metabolic rate (SMR) in a small fish, the spined loach (Cobitis taenia).

    Science.gov (United States)

    Maciak, Sebastian; Konarzewski, Marek

    2010-10-01

    Significant repeatability of a trait of interest is an essential assumption for undertaking studies of phenotypic variability. It is especially important in studies on highly variable traits, such as metabolic rates. Recent publications suggest that resting/basal metabolic rate of homeotherms is repeatable across wide range of species. In contrast, studies on the consistency of standard metabolic rate (SMR) in ectotherms, particularly fish, are scarce. Here we present a comprehensive analysis of several important technical aspects of body mass-corrected SMR measurements and its repeatability in a small (average weight approximately 3g) fish, the spined loach (Cobitis taenia). First we demonstrated that release of oxygen from the walls of metabolic chambers exposed to hypoxic conditions did not confound SMR measurements. Next, using principle of propagation of measurement uncertainties we demonstrated that in aquatic systems, measurement error is significantly higher in open than closed respirometry setups. The measurement error for SMR of a small fish determined in a closed aquatic system is comparable to that obtainable using top-notch open-flow systems used for air-breathing terrestrial animals. Using a closed respirometer we demonstrated that body mass-corrected SMR in spined loaches was repeatable under both normoxia and hypoxia over a 5-month period (Pearson correlation r=0.68 and r=0.73, respectively) as well as across both conditions (intraclass correlation coefficient tau=0.30). In these analyses we accounted for possible effect of oxygen consumption of the oxygen electrode on repeatability of SMR. Significant SMR consistency was accompanied by significant repeatability of body mass (intraclass correlation coefficient tau=0.86). To our knowledge, this is the first study showing long-term repeatability of body mass and SMR in a small fish, and is consistent with the existence of heritable variation of these two traits. 2010 Elsevier Inc. All rights reserved.

  12. Digital signal processing in microwave radiometers

    Science.gov (United States)

    Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.

    1980-01-01

    A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.

  13. No Effects of Successful Bidirectional SMR Feedback Training on Objective and Subjective Sleep in Healthy Subjects.

    Science.gov (United States)

    Binsch, Olaf; Wilschut, Ellen S; Arns, Martijn; Bottenheft, Charelle; Valk, Pierre J L; Vermetten, Eric H G J M

    2017-10-31

    There is a growing interest in the application of psychophysiological signals in more applied settings. Unidirectional sensory motor rhythm-training (SMR) has demonstrated consistent effects on sleep. In this study the main aim was to analyze to what extent participants could gain voluntary control over sleep-related parameters and secondarily to assess possible influences of this training on sleep metrics. Bidirectional training of SMR as well as heart rate variability (HRV) was used to assess the feasibility of training these parameters as possible brain computer interfaces (BCI) signals, and assess effects normally associated with unidirectional SMR training such as the influence on objective and subjective sleep parameters. Participants (n = 26) received between 11 and 21 training sessions during 7 weeks in which they received feedback on their personalized threshold for either SMR or HRV activity, for both up- and down regulation. During a pre- and post-test a sleep log was kept and participants used a wrist actigraph. Participants were asked to take an afternoon nap on the first day at the testing facility. During napping, sleep spindles were assessed as well as self-reported sleep measures of the nap. Although the training demonstrated successful learning to increase and decrease SMR and HRV activity, no effects were found of bidirectional training on sleep spindles, actigraphy, sleep diaries, and self-reported sleep quality. As such it is concluded that bidirectional SMR and HRV training can be safely used as a BCI and participants were able to improve their control over physiological signals with bidirectional training, whereas the application of bidirectional SMR and HRV training did not lead to significant changes of sleep quality in this healthy population.

  14. Differential effects of Theta/Beta and SMR neurofeedback in ADHD on sleep onset latency

    Directory of Open Access Journals (Sweden)

    Martijn eArns

    2014-12-01

    Full Text Available Recent studies suggest a role for sleep and sleep problems in the etiology of ADHD and a recent model about the working mechanism of sensori-motor rhythm (SMR neurofeedback, proposed that this intervention normalizes sleep and thus improves ADHD symptoms such as inattention and hyperactivity/impulsivity. In this study we compared adult ADHD patients (N=19 to a control group (N=28 and investigated if differences existed in sleep parameters such as Sleep Onset Latency (SOL, Sleep Duration (DUR and overall reported sleep problems (PSQI and if there is an association between sleep-parameters and ADHD symptoms. Secondly, in 37 ADHD patients we investigated the effects of SMR and Theta/Beta (TBR neurofeedback on ADHD symptoms and sleep parameters and if these sleep parameters may mediate treatment outcome to SMR and TBR neurofeedback. In this study we found a clear continuous relationship between self-reported sleep problems (PSQI and inattention in adults with- and without-ADHD. TBR neurofeedback resulted in a small reduction of SOL, this change in SOL did not correlate with the change in ADHD symptoms and the reduction in SOL only happened in the last half of treatment, suggesting this is an effect of symptom improvement not specifically related to TBR neurofeedback. SMR neurofeedback specifically reduced the SOL and PSQI score, and the change in SOL and change in PSQI correlated strongly with the change in inattention, and the reduction in SOL was achieved in the first half of treatment, suggesting the reduction in SOL mediated treatment response to SMR neurofeedback. Clinically, TBR and SMR neurofeedback had similar effects on symptom reduction in ADHD (inattention and hyperactivity/impulsivity.These results suggest differential effects and different working mechanisms for TBR and SMR neurofeedback in the treatment of ADHD.

  15. Investigation of anal motor characteristics of the sensorimotor response (SMR) using 3-D anorectal pressure topography

    Science.gov (United States)

    Cheeney, Gregory; Remes-Troche, Jose M.; Attaluri, Ashok

    2011-01-01

    Desire to defecate is associated with a unique anal contractile response, the sensorimotor response (SMR). However, the precise muscle(s) involved is not known. We aimed to examine the role of external and internal anal sphincter and the puborectalis muscle in the genesis of SMR. Anorectal 3-D pressure topography was performed in 10 healthy subjects during graded rectal balloon distention using a novel high-definition manometry system consisting of a probe with 256 pressure sensors arranged circumferentially. The anal pressure changes before, during, and after the onset of SMR were measured at every millimeter along the length of anal canal and in 3-D by dividing the anal canal into 4 × 2.1-mm grids. Pressures were assessed in the longitudinal and anterior-posterior axis. Anal ultrasound was performed to assess puborectalis morphology. 3-D topography demonstrated that rectal distention produced an SMR coinciding with desire to defecate and predominantly induced by contraction of puborectalis. Anal ultrasound showed that the puborectalis was located at mean distance of 3.5 cm from anal verge, which corresponded with peak pressure difference between the anterior and posterior vectors observed at 3.4 cm with 3-D topography (r = 0.77). The highest absolute and percentage increases in pressure during SMR were seen in the superior-posterior portion of anal canal, reaffirming the role of puborectalis. The SMR anal pressure profile showed a peak pressure at 1.6 cm from anal verge in the anterior and posterior vectors and distinct increase in pressure only posteriorly at 3.2 cm corresponding to puborectalis. We concluded that SMR is primarily induced by the activation and contraction of the puborectalis muscle in response to a sensation of a desire to defecate. PMID:21109594

  16. Study on the safety and on international developments of small modular reactors (SMR). Final report; Studie zur Sicherheit und zu internationalen Entwicklungen von Small Modular Reactors (SMR). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Kruessenberg, Anne; Schaffrath, Andreas; Zipper, Reinhard

    2015-05-15

    This report documents the work and results of the project RS1521 Study of Safety and International Development of Small Modular Reactors (SMR). The aims of this study can be summarized as - setting-up of a sound overview on SMR, - identification of essential issues of reactor safety research and future R and D projects, - identification of needs for adaption of system codes of GRS used in reactor safety research. The sound overview consists of the descriptions of in total 69 SMR (Small and Medium Sized Rector) concepts (32 light water reactors (LWR), 22 liquid metal cooled reactors (LMR), 2 heavy water reactors, 9 gas cooled reactors (GCR) and 4 molten salt reactors (MSR)). It provides information about the core, the cooling circuits and the safety systems. The quality of the given specifications depends on their availability and public accessibility. Using the safety requirements for nuclear power plants and the fundamental safety functions, the safety relevant issues of the described SMR concepts were identified. The systems and measures used in the safety requirements were summarized in table form. Finally it was evaluated whether these systems and measures can be already simulated with the nuclear simulation chain of GRS and where further code development and validation is necessary. The results of this study can be summarized as follows: Many of the current SMR concepts are based on integral design. Here the main components like steam generators, intermediate heat exchangers or - in case of forced convection core cooling - main cooling pumps are located within the reactor pressure vessel. Most of the SMR fulfil highest safety standards and their safety concepts are mainly based on passive safety systems. The safety of theses reactors is achieved indefinitely without energy supply or additional measures of the operators. Since SMR's aim is not only to produce electricity but also couple them with chemical or physical process plants, the safety aspects of

  17. SMR-Based Adaptive Mobility Management Scheme in Hierarchical SIP Networks

    Directory of Open Access Journals (Sweden)

    KwangHee Choi

    2014-10-01

    Full Text Available In hierarchical SIP networks, paging is performed to reduce location update signaling cost for mobility management. However, the cost efficiency largely depends on each mobile node’s session-to-mobility-ratio (SMR, which is defined as a ratio of the session arrival rate to the movement rate. In this paper, we propose the adaptive mobility management scheme that can determine the policy regarding to each mobile node’s SMR. Each mobile node determines whether the paging is applied or not after comparing its SMR with the threshold. In other words, the paging is applied to a mobile node when a mobile node’s SMR is less than the threshold. Therefore, the proposed scheme provides a way to minimize signaling costs according to each mobile node’s SMR. We find out the optimal threshold through performance analysis, and show that the proposed scheme can reduce signaling cost than the existing SIP and paging schemes in hierarchical SIP networks.

  18. Compact Radiometers Expand Climate Knowledge

    Science.gov (United States)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  19. Radiometer Testbed Development for SWOT

    Science.gov (United States)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  20. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  1. Digital Array Gas Radiometer (DAGR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a digital array gas radiometer (DAGR), a new design for a gas filter correlation radiometer (GFCR) to accurately measure and monitor...

  2. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deibler, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States; Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States; Tucker, Joseph C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States; Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States; Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  3. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  4. [The accuracy and consistency of dental radiometers].

    Science.gov (United States)

    Rossouw, S

    2001-11-01

    Radiometers are used in dentistry to evaluate the intensity of light emitted by curing lights. This article discusses the accuracy and consistency of radiometers. The study was done as two experiments, dividing radiometers by age. In experiment 1, one Heliolux II curing light was tested nine times with each of four old radiometers. In experiment 2 the same curing light was tested with three very new radiometers, under identical circumstances. In experiment 1, the average intensities measured by the radiometers ranged between 262 and 348 mW/cm2, while the standard deviation varied between 7.59 and 42.03. In experiment 2, the average intensities measured by the radiometers ranged between 240 and 283.75 mW/cm2, while the standard deviation varied between 0.00 and 4.63. The seven radiometers differed significantly (P radiometers differs depending on the age of the unit, the state of repair of the unit, and how often it is standardised. In this study it was impossible to evaluate the accuracy of the radiometers.

  5. Simultaneous retrievals of temperature and volume mixing ratio constituents from nonoxygen odin submillimeter radiometer bands.

    Science.gov (United States)

    Baron, P; Merino, F; Murtagh, D

    2001-11-20

    We present the retrieval of temperature and O(3) volume mixing ratio profiles in the middle atmosphere from a single strong O(3) line. We performed the study using simulated limb-sounding measurements in the frame of the submillimeter radiometer (SMR) instrument that will be carried by the Odin satellite that is due to be launched in early 2001. This study is interesting for the Odin SMR data analysis because we first provide additional temperature measurements, and second reduce significantly the O(3) retrieval error that is due to the temperature and pressure uncertainties. Nonlinear retrievals are performed to retrieve the O(3), CO, H(2)O, and temperature profiles simultaneously from the spectral band 576.27-576.67 GHz. The pressure profile is deduced from the hydrostatic equilibrium equation after each iteration. Temperature and O(3) can be retrieved throughout the stratosphere from 15-50 and 20-50 km, respectively, with a vertical resolution of 3 km. The altitude domain corresponds to the parts of the atmosphere where the signal intensity saturates in some spectrometer channels. A total error of 4-6 K has been found in the temperature profile, mainly because of the instrumental thermal noise and to a lesser extent the calibration. The total error in the O(3) profile is 5-10% and is dominated by the O(3) line-broadening parameter. The total error on the retrieved pressure profile is 2-10% because of the errors in calibration and reference pressure.

  6. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...... is the second edition of a book originally published in 1989, attempts to fill this void. The background for this book is many years of work with radiometer systems including design and manufacture of airborne imaging radiometer systems, laboratory as well as airborne field experiments with the systems......, and design of future spaceborne imagers. This book would not have been possible without the support and encouragement of several colleagues. Søren Nørvang Madsen, who is working with synthetic aperture radar systems, and, before him, Finn søndergaard have both contributed much to the work with radiometer...

  7. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forester, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gertman, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medema, Heather [Idaho National Lab. (INL), Idaho Falls, ID (United States); Persensky, Julius [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whaley, April [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  8. Research gaps and technology needs in development of PHM for passive AdvSMR components

    Science.gov (United States)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  9. Shutting Down Sensorimotor Interferences after Stroke: A Proof-of-Principle SMR Neurofeedback Study

    Science.gov (United States)

    Reichert, Johanna L.; Kober, Silvia E.; Schweiger, Daniela; Grieshofer, Peter; Neuper, Christa; Wood, Guilherme

    2016-01-01

    Introduction: Neurofeedback training aims at learning self-regulation of brain activity underlying cognitive, emotional or physiological functions. Despite of promising investigations on neurofeedback as a tool for cognitive rehabilitation in neurological diseases, such as after stroke, there is still a lack of research on feasibility and efficiency of neurofeedback in this field. Methods: The present study aimed at investigating behavioral and electrophysiological effects of 10 sessions of sensorimotor rhythm (SMR) neurofeedback in a 74-years-old stroke patient (UG20). Based on previous results in healthy young participants, we hypothesized that SMR neurofeedback leads to a decrease in sensorimotor interferences and improved stimulus processing, reflected by changes in event-related potentials (ERPs) and electrophysiological coherence. To assess whether UG20 benefited from the training as much as healthy persons of a similar age, a healthy control group of N = 10 elderly persons was trained as well. Before and after neurofeedback training, participants took part in a multichannel electroencephalography measurement conducted during a non-verbal and a verbal learning task. Results: Both UG20 and the healthy controls were able to regulate their SMR activity during neurofeedback training. Moreover, in a non-verbal learning task, changes in ERPs and coherence were observed after training: UG20 showed a better performance in the non-verbal learning task and a higher P3 amplitude after training than before, and coherence between central and parietal electrodes decreased after training. The control group also showed a behavioral improvement in the non-verbal learning task and tendencies for higher P3 amplitudes and decreased central-parietal coherence after training. Single-case analyses indicated that the changes observed in UG20 were not smaller than the changes in healthy controls. Conclusion: Neurofeedback can be successfully applied in a stroke patient and in healthy

  10. Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study

    Directory of Open Access Journals (Sweden)

    Johanna Louise Reichert

    2016-07-01

    Full Text Available Introduction: Neurofeedback training aims at learning self-regulation of brain activity underlying cognitive, emotional or physiological functions. Despite of promising investigations on neurofeedback as a tool for cognitive rehabilitation in neurological diseases, such as after stroke, there is still a lack of research on feasibility and efficiency of neurofeedback in this field. Methods: The present study aimed at investigating behavioral and electrophysiological effects of 10 sessions of sensorimotor rhythm (SMR neurofeedback in a 74-year-old stroke patient (UG20. Based on previous results in healthy young participants, we hypothesized that SMR neurofeedback leads to a decrease in sensorimotor interferences and improved stimulus processing, reflected by changes in event-related potentials and electrophysiological coherence. To assess whether UG20 benefited from the training as much as healthy persons of a similar age, a healthy control group of N = 10 elderly persons was trained as well. Before and after neurofeedback training, participants took part in a multichannel EEG measurement conducted during a nonverbal and a verbal learning task. Results: Both UG20 and the healthy controls were able to regulate their SMR activity during neurofeedback training. Moreover, in a nonverbal learning task, changes in event-related potentials and coherence were observed after training: UG20 showed a better performance in the nonverbal learning task and a higher P3 amplitude after training than before, and coherence between central and parietal electrodes decreased after training. The control group also showed a behavioral improvement in the nonverbal learning task and tendencies for higher P3 amplitudes and decreased central-parietal coherence after training. Single-case analyses indicated that the changes observed in UG20 were not smaller than the changes in healthy controls. Conclusions: Neurofeedback can be successfully applied in a stroke patient and in

  11. The Radiometer Atmospheric Cubesat Experiment

    Science.gov (United States)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  12. Coordination Control of SMR-Based NSSS Modules Integrated by Feedwater Distribution

    Science.gov (United States)

    Dong, Zhe; Song, Maoxuan; Huang, Xiaojin; Zhang, Zuoyi; Wu, Zongxin

    2016-10-01

    Due to its strong safety feature, the small modular reactor whose electric output is no more than 300MWe has been seen as a promising trend in nuclear engineering. By adopting multi-modular scheme, i.e. the superheated steam flows produced by multiple SMR-based nuclear heating system (NSSS) modules are combined to drive a common thermal load, the strong safety feature of a SMR can be applied to large-scale nuclear plants. To improve the economic competitiveness, it is meaningful to integrate multiple NSSS modules by the scheme of feedwater distribution, i.e. sharing a common pump and distributing feedwater by adjusting the opening of regulating valve of each module. The module coordination control of multiple SMR-based NSSS modules coupled by feedwater distribution is essentially the flowrate-pressure control of the common secondary-loop fluid flow network (FFN). In this paper, the nonlinear differential-algebraic model for the FFNs with a single feedwater pump is first given. A novel distributed adaptive flowrate-pressure control is proposed, which is then applied to realize the module coordination. Numerical simulation results in the case of coordination control of two MHTGR-based NSSS modules integrated by feedwater distribution scheme show the feasibility as well as the satisfactory transient performance of this newly-built coordination control law.

  13. An Analysis of Modern Japanese Think Tank Prototype——SMR Investigation Organization and Its Operation Mechanism

    Directory of Open Access Journals (Sweden)

    Huang Wenyue

    2017-12-01

    Full Text Available [Purpose/significance] Through an analysis of SMR investigatory apparatus business and its operation mechanism, this paper discusses the development model of the investigation organ, the South Manchuria Railway think tank, and reveals the militarism influence on the early Japanese think tank development. [Method/process] This paper combed the SMR’s important survey agencies development pattern by the case study and literature survey and also discussed the key mechanism of operation system and organization characteristics. The evaluation of reports directed by the SMR provided references. [Result/conclusion] The SMR, as a colonial and aggressive policy tool, its surveys were done for the government and military authorities. With independent sources of information, the use of network intelligence structure and the combination of resident literature collection with field investigation, the collection of professional analysis personnel, the SMR investigation organization completes the decision-making through the scientific method and has reference value.

  14. Measuring the instrument function of radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R. [Univ. of Chicago, IL (United States); Littlejohn, R.G. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The instrument function is a function of position and angle, the knowledge of which allows one to compute the response of a radiometer to an incident wave field in any state of coherence. The instrument function of a given radiometer need not be calculated; instead, it may be measured by calibration with incident plane waves.

  15. Comparison of CMAM simulations of carbon monoxide (CO, nitrous oxide (N2O, and methane (CH4 with observations from Odin/SMR, ACE-FTS, and Aura/MLS

    Directory of Open Access Journals (Sweden)

    B. Barret

    2009-05-01

    Full Text Available Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, and Aura Microwave Limb Sounder (Aura/MLS. Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs. CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi

  16. SMEX03 Aircraft Polarimetric Scanning Radiometer (PSR) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  17. SMEX02 Aircraft Polarimetric Scanning Radiometer (PSR) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  18. SAFARI 2000 Cloud Absorption Radiometer BRDF, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Cloud Absorption Radiometer (CAR) is an airborne multi-wavelength scanning radiometer that can perform several functions including determining the...

  19. OCL SMR

    NARCIS (Netherlands)

    Herz, Martin

    2016-01-01

    A Case headnote + analysis and comment on Stichting Metalektro Recycling v WEEE Nederland B.V., judgment in first instance, case nr. C­05­269095 ­HZ ZA 14­336, ECLI:N:RBGEL:2015:3172, of 13 May 2015

  20. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR

    Directory of Open Access Journals (Sweden)

    Eva Maria Hammer

    2014-08-01

    Full Text Available Modulation of sensorimotor rhythms (SMR was suggested as a control signal for brain-computer interfaces (BCI. Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100% performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning. Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1 A measure for the accuracy of fine motor skills, i.e. a trade for a person’s visuo-motor control ability and (2 subject’s attentional impulsivity. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1 failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject the present predictors.

  1. Development of a Technical Basis and Guidance for Advanced SMR Function Allocation

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; David Gertman; Jeffrey Joe; Ronal Farris; April Whaley; Heather Medema

    2013-09-01

    This report presents the results from three key activities for FY13 that influence the definition of new concepts of operations for advanced Small Modular Reactors (AdvSMR: a) the development of a framework for the analysis of the functional environmental, and structural attributes, b) the effect that new technologies and operational concepts would have on the way functions are allocated to humans or machines or combinations of the two, and c) the relationship between new concepts of operations, new function allocations, and human performance requirements.

  2. How UK is preparing for major push towards world's first SMR

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Bruessel (Belgium)

    2017-01-15

    The UK Department of Business, Energy and Industrial Strategy is finalising a roadmap for the development of SMRs in the UK in parallel with the first phase of the competition. The roadmap will be published early in 2017, although whether it will be affected by the change in personnel at the top of government following the June 2016 vote for Brexit remains to be seen. The UK seems to be taking a lead in the development of SMRs. In its 2015 autumn budget statement, the government announced it would invest pound 250 m in an ''ambitious nuclear research and development programme'', including in the SMR competition.

  3. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...... that footprints are identical for the radar and the radiometer. The instrument will be flown in a pod under a Gulfstream G3 normally cruising with 240 m/sec at 12500 m, and will thus be able to sense clouds and precipitation from above...

  4. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V0

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) dataset was collected by the HIRAD instrument, which is a hurricane imaging, single-polarization passive C-band...

  5. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  6. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V0

    Data.gov (United States)

    National Aeronautics and Space Administration — HIRAD is a hurricane imaging, single-pol passive C-band radiometer with both cross-track and along-track resolution that measures strong ocean surface winds through...

  7. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  8. Diffusers in silicon-photodiode radiometers.

    Science.gov (United States)

    Boivin, L P

    1982-03-01

    The problems encountered when making radiometric measurements with silicon-photodiode radiometers not incorporating diffusers are discussed, with special attention given to the case where laser beams are involved. A diffuserless radiometer head design is presented which eliminates most of these problems. These problems can also be avoided by using a diffuser. A radiometer head incorporating a diffuser is described, and its properties are studied for three types of diffuser: flashed opal, type-2250 translucent Plexiglas, and a three-piece ground and etched quartz. Graphical data are given for the spatial uniformity, angular response variation, and spectral attenuation associated with radiometer heads incorporating these three types of diffuser. It is shown that, for a wide range of radiometric and photometric applications, the quartz diffuser is the most desirable, although its use results in a somewhat limited angular field of view.

  9. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  10. SMR and economics competitiveness in small grids. A real option analysis

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Giorgio [University of Lincoln - School of Engineering, Lincoln (United Kingdom). Faculty of Science; Mancino, Mauro; Lotti, Giovanni [Politecnico di Milano (Italy). Dept. of Management Economics and Industrial Engineering

    2014-03-15

    The optimal investment in power plants depends on many uncertain parameters (price of electricity, construction costs, cost of emissions, fuel cost..). Traditional approaches based on the Discounted Cash Flows methodologies, like the Net Present Value (NPV), do not properly take into account these uncertainties since they depend on the implicit assumption that all the decisions regarding the investment are evaluated in a specific moment (the time now) and cannot be postponed, waiting to acquire more information. An evolution of these methods is the Real Options Analysis (ROA) that considers a further value into the evaluation: the value of flexibility to choose when to invest. In this paper the ROA will be used to test a hypothesis made in literature, that small-medium sized plants (300-400 MWe) can be a suitable choice for small grids (or markets), thanks to their flexibility in the deployment. The assessment of this hypothesis is based on a ROA model that compares the investment in a Large Reactor (LR) vs. a group of Small Modular Reactors (SMR). Montecarlo simulations are used to approximate the probability distributions of the profitability indicators, both with a static approach, implying that investments are made immediately, and with a dynamic approach, letting the model decide when to invest (optimizing the profitability distribution). The result show as SMR, in small grid, can yield similar profitability in lower risky conditions. (orig.)

  11. NUMERICAL STUDY ON CONDENSATION IN IMMERSED CONTAINMENT SYSTEM OF ADVANCED SMR DURING UNCONTROLLED DEPRESSURIZATION

    Directory of Open Access Journals (Sweden)

    Susyadi Susyadi

    2017-11-01

    STUDI NUMERIK PROSES KONDENSASI PADA SISTEM PENGUNGKUNG TERENDAM UNTUK SMR SAAT DEPRESURISASI TAK TERKENDALI. Sejumlah disain reaktor modular daya kecil (SMR sedang dikembangkan dan dibangun oleh beberapa negara dan umumnya masing masing  reaktor tersebut memiliki  inovasi tersendiri. Salah satunya adalah reaktor NuScale yang menggunakan sistem penggungkung ukuran kecil berbahan logam yang terendam dalam kolam air. Pendekatan  baru ini memunculkan tantangan baru karena pengendalian  temperatur dan tekanan dalam pengungkung dilakukan tanpa sistem aktif (peralatan bertenaga listrik. Sehingga perpindahan panas dan kondensasi secara pasif merupakan parameter penting yang perlu diinvestigasi untuk disain pengungkung seperti ini.  Oleh karena itu, penelitian ini akan memeriksa kondensasi, tekanan dan pengaruh temperatur kolam terhadap kemampuan pengungkung memindahkan panas dan menjaga integritasnya. Investigasi dilakukan menggunakan simulasi numerik dengan memodelkan reaktor ke dalam program RELAP5. Hasil perhitungan menunjukkan bahwa selama depresurisasi, batas maksimum tekanan sebesar 5,5 MPa tidak terlampaui. Selain itu, disain pengungkung mampu memindahkan panas ke kolam reaktor secara pasif. Penelitian ini juga melakukan  analisis sensitivitas temperatur kolam reaktor dan hasilnya menunjukkan bahwa untuk kenaikan temperatur kolam sebesar 17 oC, pemindahan panas dari  pengungkung ke kolam hanya sedikit terpengaruh, yakni kurang dari 3 persen. Kata kunci : Pengungkung, Kondensasi, RELAP5, NuScale, Depresurisasi

  12. Bayesian bias adjustments of the lung cancer SMR in a cohort of German carbon black production workers

    Directory of Open Access Journals (Sweden)

    Morfeld Peter

    2010-08-01

    Full Text Available Abstract Background A German cohort study on 1,528 carbon black production workers estimated an elevated lung cancer SMR ranging from 1.8-2.2 depending on the reference population. No positive trends with carbon black exposures were noted in the analyses. A nested case control study, however, identified smoking and previous exposures to known carcinogens, such as crystalline silica, received prior to work in the carbon black industry as important risk factors. We used a Bayesian procedure to adjust the SMR, based on a prior of seven independent parameter distributions describing smoking behaviour and crystalline silica dust exposure (as indicator of a group of correlated carcinogen exposures received previously in the cohort and population as well as the strength of the relationship of these factors with lung cancer mortality. We implemented the approach by Markov Chain Monte Carlo Methods (MCMC programmed in R, a statistical computing system freely available on the internet, and we provide the program code. Results When putting a flat prior to the SMR a Markov chain of length 1,000,000 returned a median posterior SMR estimate (that is, the adjusted SMR in the range between 1.32 (95% posterior interval: 0.7, 2.1 and 1.00 (0.2, 3.3 depending on the method of assessing previous exposures. Conclusions Bayesian bias adjustment is an excellent tool to effectively combine data about confounders from different sources. The usually calculated lung cancer SMR statistic in a cohort of carbon black workers overestimated effect and precision when compared with the Bayesian results. Quantitative bias adjustment should become a regular tool in occupational epidemiology to address narrative discussions of potential distortions.

  13. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Directory of Open Access Journals (Sweden)

    Wyrwa Artur

    2017-01-01

    Full Text Available This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC and small modular reactors (SMR. For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE. The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  14. Fuel model Validation in the TASS/SMR-S code by Comparing with Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral pressurized water reactor, SMART (System-Integrated Modular Advanced ReacTor) has been developed by KAERI (Korea Atomic Energy Research and Institute). For the purpose of an electric power generation and seawater desalination by using nuclear energy, SMART has been developed by KAERI (KAERI, 2010). For the safety evaluation and performance analysis of the SMART, TASS/SMR-S (Transient And Setpoint Simulation/System- integrated Modular Reactor) code, has been developed. In this paper, the gap conductance model for the calculation of gap conductance has been validated by using experimental results. In the validation, the behaviors of fuel temperature and off-center temperature are selected as the major parameters

  15. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Science.gov (United States)

    Wyrwa, Artur; Suwała, Wojciech

    2017-11-01

    This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC) and small modular reactors (SMR). For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE). The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  16. Two blackbody radiometers of high accuracy.

    Science.gov (United States)

    Kendall, J M; Berdahl, C M

    1970-05-01

    Two cavity-type radiometers have been developed, based on first principles, having the capability of measuring an irradiance with an indicated error 0.3%. The prerequisites for this accuracy are a measuredaperture area, a measurement of electric voltages, and an effective absorptance of its blackbody cavity from 0.998 to 0.999 throughout the uv, visible, and ir spectral ranges. The first cavity-type radiometer is designed to operate only in a vacuum of radiometer in an evacuated cold chamber, an experimental determination of the Stefan-Boltzmann constant is obtained at a value that differs from the theoretical value by 0.3%, which indicates the degree of confidence that can be expected in measurements made with blackbody cavity radiometers. The second type of radiometer is designed to operate in either air or vacuum. Although its aperture opening is windowless, it is unaffected by wind. The range of intensities accurately measurable is from about 10 mW cm(-2) to 800 mW cm(-2); the indicated accuracy is also 0.3%.

  17. The macrophage activation marker sMR as a diagnostic and prognostic marker in patients with acute infectious disease with or without sepsis

    DEFF Research Database (Denmark)

    Marie Relster, Mette; Gaini, Shahin; Møller, Holger Jon

    2018-01-01

    Sepsis is a leading cause of mortality. This study aims to assess the utility of the soluble mannose receptor (sMR) as a biomarker of sepsis and mortality in patients hospitalized with suspected infection. Using an in-house ELISA assay the concentration of sMR was analyzed in the serum of patient...

  18. Desain Pengembangan Model Alat Uji Reaktor Nuklir Tipe Small Modular Reactor (Smr) Menggunakan Nanofluida Sebagai Fluida Pendingin

    OpenAIRE

    Dermawan, Erwin; Rasma, Rasma; Diniardi, Ery; Ramadhan, Anwar Ilmar

    2014-01-01

    Perkembangan dan penggunaan energi nuklir saat ini berkembang sangat pesat, untuk mencapaiteknologi yang semakin maju, baik dari segi desain, faktor ekonomi dan juga faktorkeselamatannya. Dari aspek termofluida reaktor nuklir harus dilakukan dengan perhitungan dankondisi yang mendekati sempurna. Termasuk saat ini mulai dikembangkannya reaktor nuklirdengan daya rendah dibawah 300 MW, atau biasa disebut dengan Small Modular Reactor (SMR).Salah satuny...

  19. THERMAL-HYDRAULIC ANALYSIS OF SMR WITH NATURALLY CIRCULATING PRIMARY SYSTEM DURING LOSS OF FEED WATER ACCIDENT

    Directory of Open Access Journals (Sweden)

    Susyadi Susyadi

    2016-09-01

    ABSTRAK Reaktor daya kecil modular (SMR memiliki beberapa keunggulan dibanding reaktor daya besar konvensional. Dengan disain yang lebih sederhana dan terintegrasi, penerapan hukum alamiah untuk sistem keselamatannya dan biaya modal yang rendah, reaktor ini sangat cocok untuk dibangun di Indonesia. Salah satunya disain SMR yang sedang dikembangkan menerapkan gaya penggerak alami untuk sistim pendingin primernya. Dengan disain seperti itu, adalah sangat penting untuk memahami implikasinya terhadap aspek keselamatan pada seluruh kondisi operasi. Salah satu yang perlu diinvestigasi adalah kecelakaan kehilangan air umpan (LoFW. Pada studi ini, dilakukan analisis kinerja thermal hidrolik SMR yang menggunakan sistim pendinginan primer sirkulasi alam saat kecelakaan LoFW. Tujuannya adalah untuk menginvestigasi karakteristik aliran sistem primer saat kecelakaan LoFW dan untuk memastikan apakah aliran sirkulasi alam cukup untuk memindahkan panas dari teras guna menjaga kondisi tetap aman selama kecelakaan tersebut. Metoda yang digunakan adalah dengan merepresentasikan sistem reaktor ke dalam model-model generik program RELAP5 dan melakukan simulasi numerik. Hasil perhitungan menunjukkan bahwa setelah kejadian pemicu dan trip reaktor, pada sisi primer laju alirnya berfluktuasi secara signifikan dan temperatur pendinginnya menurun secara bertahap sedangkan  pada sisi sekunder kondisi uap berubah menjadi uap jenuh. Laju alir turun dari ~711 kg/detik menjadi ~263 kg/detik sebelum kembali naik lagi pada t=~46 detik. Saat laju alir di titik terendah, temperatur pusat bahan bakar dan fluida pendingin adalah sekitar  ~565 K dan  ~554 K, yang menujukkan bahwa temperatur bahan bakar masih jauh di bawah batas disain dan temperatur fluidanya juga berada di bawah titik saturasi. Keadaan ini menunjukkan bahwa saat transien kedua parameter utama termohidrolik reaktor tetap dalam kondisi yang dapat diterima sehingga dapat disimpulkan  bahwa saat  kecelakaan kehilangan air umpan, SMR

  20. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  1. GRIP HIGH-ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP High-Altitude MMIC Sounding Radiometer (HAMSR) dataset was collectd by the High Altitude monolithic microwave integrated Circuit (MMIC) Sounding Radiometer...

  2. GPM Ground Validation Duke Microwave Radiometer (MWR) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Duke Microwave Radiometer (MWR) IPHEx dataset consists of data collected by the MWR, which is a sensitive microwave radiometer that detects...

  3. Time dependent accuracy of dental radiometers.

    Science.gov (United States)

    Marović, Danijela; Matić, Sanja; Kelić, Katarina; Klarić, Eva; Rakić, Mario; Tarle, Zrinka

    2013-06-01

    Inadequate intensity of the polymerization light source can compromise the quality and longevity of dental composite restorations. In order to maintain optimal strength of polymerization devices, regular control of polymerization units is necessary. The aim of this study was to compare the accuracy of two radiometers in the measurement of light intensity of photopolymerization devices concerning the time point of measurement. Light intensity measurements of 16 halogen and 8 LED curing lights were performed using three different devices at the beginning as well as 10 and 40 seconds after the start of illumination. Two were handheld radiometers: Bluephase meter (BM) and Cure Rite (CR), while an integrating sphere (IS) represented the reference device. Data were statistically analyzed using Friedman's test and Wilcoxon signed-rank test (p radiometers tended to overestimate the light intensity of LED and halogen curing units when compared to the reference device. The time point of measurement influences the output value. The heating of radiometers was proposed as a possible explanation for the inaccuracy.

  4. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  5. Dual Microwave Radiometer Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-09-01

    Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky

  6. Radiometer calibration methods and resulting irradiance differences: Radiometer calibration methods and resulting irradiance differences

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Laboratory, Golden CO 80401 USA; Sengupta, Manajit [National Renewable Energy Laboratory, Golden CO 80401 USA; Andreas, Afshin [National Renewable Energy Laboratory, Golden CO 80401 USA; Reda, Ibrahim [National Renewable Energy Laboratory, Golden CO 80401 USA; Robinson, Justin [GroundWork Renewables Inc., Logan UT 84321 USA

    2016-10-07

    Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference of +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.

  7. Methods of determining the spatial response nonlinearities of radiometers.

    Science.gov (United States)

    Reed, F A

    1970-09-01

    In many instances, a radiometer's responses are found to be nonuniform with respect to target positions within its field of view. This paper examines the effects of spatial nonuniformity for the case of a symmetrical uniform source boresighted in the radiometer's field of view and shows how these effects can be dealt with by relating the radiometer's output with its field of view unfilled to its output when its field of view is totally filled by a uniform source. By analysis of a Huggins Mark IX radiometer, it is shown that errors in excess of 18% can result through ignorance of the radiometer's nonlinearity caused by spatial response nonuniformity.

  8. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.

    Directory of Open Access Journals (Sweden)

    Fábio O Pedrosa

    2011-05-01

    Full Text Available The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.

  9. Using real options to evaluate the flexibility in the deployment of SMR

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool, Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Ruiz, F.; Solana, P. [Universidad Politecnica de Madrid, Dep. de Ingenieria de Organizacion, Administracion de Empresas y Estadistica, C/ Jose Gutierrez Abascal, 2, 28006-Madrid (Spain)

    2012-07-01

    According to recent estimations the financial gap between Large Reactors (LR) and Small Medium Reactors (SMRs) seems not as huge as the economy of scale would suggest, so the SMRs are going to be important players of the worldwide nuclear renaissance. POLIMIs INCAS model has been developed to compare the investment in SMR with respect to LR. It provides the value of IRR (Internal Rate of Return), NPV (Net Present Value), LUEC (Levelized Unitary Electricity Cost), up-front investment, etc. The aim of this research is to integrate the actual INCAS model, based on discounted cash flows, with the real option theory to measure flexibility of the investor to expand, defer or abandon a nuclear project, under future uncertainties. The work compares the investment in a large nuclear power plant with a series of smaller, modular nuclear power plants on the same site. As a consequence it compares the benefits of the large power plant, coming from the economy of scale, to the benefit of the modular project (flexibility) concluding that managerial flexibility can be measured and used by an investor to face the investment risks. (authors)

  10. Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates

    Science.gov (United States)

    Brisset, J.; Heißelmann, D.; Kothe, S.; Weidling, R.; Blum, J.

    2017-07-01

    Context. The experiment results presented apply to the very first stages of planet formation, when small dust aggregates collide in the protoplanetary disc and grow into bigger clusters. In 2011, before flying on the REXUS 12 suborbital rocket in 2012, the Suborbital Particle and Aggregation Experiment (SPACE) performed drop tower flights. We present the results of this first microgravity campaign. Aims: The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. Methods: The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes between 120 μm and 250 μm. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9 s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. Results: We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm s-1 to 20 cm s-1. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm s-1 for aggregates composed of monodisperse dust, with an average value of 2.1 ± 0.9 cm s-1 for reduced masses ranging from 1.2 × 10-6 to 1.8 × 10-3 g with an average value of 2.2+16-2.1 × 10-4 g. The velocities at which bouncing occurred ranged from 1.9 to 11.9 cm s-1 for the same aggregates with an average of 5.9 ± 3.2 cm s-1 for reduced masses ranging from 2.1 × 10-6 to 2.4 × 10-4 with an average of 7.8 ± 2.4 × 10-5 g. The velocities at which fragmentation occurred ranged from 4.9 to 23.8 cm s-1 for the same aggregates with an average of 10.1 ± 3.2 cm s-1 for reduced masses ranging from 1.2 × 10-5 to 1.2 × 10-3 with an average value of 4.2 ± 2.4 × 10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates ( 100 μm) following the model of Dominik & Tielens (1997, ApJ, 480, 647) developed for microscopic particles. We measured a critical rolling energy of 1.8 ± 0.9 × 10-13 J and a critical breaking energy of 3.5 ± 1.5 × 10-13 J for 100 μm-sized non-compacted aggregates. A movie associated to Fig. 3 is available at http://www.aanda.org

  11. Rationale for sub-millimetre per year ITRF accuracy for long-term sea level studies

    Science.gov (United States)

    Woppelmann, G.; Collilieux, X.; Gravelle, M.; Santamaria-Gomez, A.

    2012-04-01

    Vertical land movements arise from a wide range of natural and anthropogenic processes. They affect most coastlines and can significantly increase (or decrease) the rates of sea level rise expected from the sole climatic contributions of ocean thermal expansion and land-based ice melting, magnifying (or reducing) the impacts of sea level rise on the coast. Their knowledge represents a key step toward identifying the forcing factors contributing to sea level change at a particular coast, correctly quantifying their relative importance, and improving our understanding of the causes for robust predictions and full assessment of coastal vulnerability by sea level rise. Poor knowledge on land movements may profoundly hamper sea level rise projections, and ultimately lead to expensive mistakes in coastal management policies. Hence, high-quality measurements of vertical land movements have been given considerable attention over the past two decades. However, the accurate determination of these has remained a fundamental though elusive goal. The application is demanding. Sea level is estimated to have risen globally at around 1.7 mm/year over the past century. To be useful for long-term sea level trend studies, vertical land movements should be estimated with standard errors of one order of magnitude less. In this presentation, we will show that despite the remarkable advances made recently in the reanalysis of Global Positioning System (GPS) data, we are aiming at a level of performance where serious consideration of the reference frame and its long-term stability need to be addressed. Vertical velocity is a reference frame-dependent quantity, which is very sensitive to the origin and scale of the frame. The accuracy of its origin and scale is thus one of the main factors limiting the determination of accurate vertical velocities today, and subsequently the estimates of vertical land movements and geocentric sea level trends at the coast. A terrestrial reference frame accurate and stable at the sub-millimeter per year level is required.

  12. Planck intermediate results XVIII. The millimetre and sub-millimetre emission from planetary nebulae

    DEFF Research Database (Denmark)

    Cardoso, J.-F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    : ionized gas, traced by the free-free emission at cm-mm waves; and thermal dust, traced by the millimetre and far-IR emission. In particular, the amount of ionized gas and dust has been derived here. Such quantities have also been estimated for the very young PN CRL? 618, where the strong variability...... interesting of which is a very extended component (up to 1? pc) that may be related to a region where the slow expanding envelope is interacting with the surrounding interstellar medium....

  13. TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  14. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  15. Design and evaluation of net radiometers

    Science.gov (United States)

    Fritschen, Leo J.; Fritschen, Charles L.

    Net radiometer designs were evaluated with respect to long and short wave sensitivities and to the effect of ambient wind on the signal. The design features of the instrument with the best overall performance include: equal sensitivity to long and short wave radiation, a thermal pile which is thermally isolated from the frame, a white guard ring, pathways for internal circulation between the top and bottom hemispheres, and self-supporting windshields. The windshields have O-ring seals, a ball joint is provided for ease of leveling, and ample desiccant is enclosed in the mounting pipe. Under a high radiant load, the net radiometer signal decreased by 2.5, 3.7, and 4.3 percent at wind speeds of 12.5, 4.6, and 7.5 m/s.

  16. Accuracy of LED and halogen radiometers using different light sources.

    Science.gov (United States)

    Roberts, Howard W; Vandewalle, Kraig S; Berzins, David W; Charlton, David G

    2006-01-01

    To determine the accuracy of commercially available, handheld light-emitting diode (LED) and halogen-based radiometers using LED and quartz-tungsten-halogen (QTH) curing lights with light guides of various diameters. The irradiance of an LED curing light (L.E. Demetron 1, SDS/Kerr, Orange, CA, USA) and a QTH curing light (Optilux 501, SDS/Kerr) were measured using multiple units of an LED (Demetron L.E.D. Radiometer, SDS/Kerr) and a halogen radiometer (Demetron 100, SDS/Kerr) and compared with each other and to a laboratory-grade power meter (control). Measurements were made using five light guides with distal light guide diameters of 4, 7, 8, 10, and 12.5 mm. For each light guide, five readings were made with each of three radiometers of each radiometer type. Data were analyzed with two-way analysis of variance/Tukey; alpha = 0.05. In general, both handheld radiometer types exhibited significantly different irradiance readings compared with the control meter. Additionally, readings between radiometer types were found to differ slightly, but were correlated. In general, the LED radiometer provided slightly lower irradiance readings than the halogen radiometer, irrespective of light source. With both types of handheld radiometers, the use of the larger-diameter light guides tended to overestimate the irradiance values as seen in the control, while smaller-diameter light guides tended to underestimate. The evaluated LED or halogen handheld radiometers may be used interchangeably to determine the irradiance of both LED and QTH visible-light-curing units. Measured differences between the two radiometer types were small and probably not clinically significant. However, the diameter of light guides may affect the accuracy of the radiometers, with larger-diameter light guides overestimating and smaller-diameter guides underestimating the irradiance value measured by the control instrument.

  17. A new radiometer for earth radiation budget studies

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  18. GRIP HIGH-ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude monolithic microwave integrated Circuit (MMIC) Sounding Radiometer (HAMSR) is a microwave atmospheric sounder developed by JPL under the NASA...

  19. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  20. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  1. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset includes brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  2. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Radiometer GCPEx dataset contains retrievals of temperature, water vapor, relative humidity, liquid water profiles...

  3. Preliminary development of digital signal processing in microwave radiometers

    Science.gov (United States)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  4. PV-MCT working standard radiometer

    Science.gov (United States)

    Eppeldauer, George P.; Podobedov, V. B.

    2012-06-01

    Sensitive infrared working-standard detectors with large active area are needed to extend the signal dynamic range of the National Institute of Standards and Technology (NIST) pyroelectric transfer-standards used for infrared spectral power responsivity calibrations. Increased sensitivity is especially important for irradiance mode responsivity measurements. The noise equivalent power (NEP) of the NIST used pyroelectric transfer-standards is about 8 nW/Hz1/2, equal to a D*= 5.5 x 107 cm Hz1/2/W. A large-area photovoltaic HgCdTe (PV-MCT) detector was custom made for the 2.5 μm to 11 μm wavelength range using a 4-stage thermoelectric cooler. At least an order of magnitude lower NEP was expected than that of the pyroelectric transfer-standards to measure irradiance. The large detector area was produced with multiple p-n junctions. The periodical, multiple-junction structure produced a spatial non-uniformity in the detector response. The PV-MCT radiometer was characterized for spatial non-uniformity of response using different incident beam sizes to evaluate the uncertainty component caused by the spatial non-uniformity. The output voltage noise and also the current and voltage responsivities were evaluated at different signal gains and frequencies. The output voltage noise was decreased and the voltage responsivity was increased to lower the NEP of the radiometer. The uncertainty of the spectral power responsivity measurements was evaluated. It is recommended to use a bootstrap type trans-impedance amplifier along with a cold field-of-view limiter to improve the NEP of the PV-MCT radiometer.

  5. RF Reference Switch for Spaceflight Radiometer Calibration

    Science.gov (United States)

    Knuble, Joseph

    2013-01-01

    The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve

  6. Intra- and inter-brand accuracy of four dental radiometers.

    Science.gov (United States)

    Price, Richard Bengt; Labrie, Daniel; Kazmi, Sonya; Fahey, John; Felix, Christopher M

    2012-06-01

    This study measured the accuracy and precision of four commercial dental radiometers. The intra-brand accuracy was also determined. The light outputs from 14 different curing lights were measured three times using four brands of dental radiometers and the results were compared to two laboratory-grade power meters that were used as the "gold standard". To ensure proper representation, three examples of each brand of dental radiometer were used. Data collected was analyzed using ANOVA, with 95% confidence intervals, comparing the laboratory-grade meters to the dental radiometers. Bioequivalence was established where the confidence interval for the irradiance values was within ±20% of the "gold standard" reading. Forest plots were used to highlight bioequivalence values. The two laboratory-grade meters differed by less than 0.6%. Overall, all three examples of the Bluephase and SDI radiometers as well as two examples of the LEDRadiometer and one CureRite meter were bioequivalent to the gold standard. However, the type of curing light measured had a significant effect on the accuracy of the radiometer. There was significant variability of the irradiance readings between radiometer brands, and between irradiance values recorded by the three samples of each brand studied. This made it impossible to definitively rank the radiometer brands for accuracy. Within the ±20% bioequivalence limits of this study, there was a clinically significant difference in the irradiance readings between radiometer brands and the choice of curing light affected the results. There was also significant variation in irradiance readings reported by different examples of the same brand of radiometer. Whether in clinical practice or in research, dental radiometers should not be used when either the irradiance or energy delivered needs to be accurately known.

  7. Conceptual radiometer design studies for Earth observations from low Earth orbit

    Science.gov (United States)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  8. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  9. Novel multi-beam radiometers for accurate ocean surveillance

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2014-01-01

    Novel antenna architectures for real aperture multi-beam radiometers providing high resolution and high sensitivity for accurate sea surface temperature (SST) and ocean vector wind (OVW) measurements are investigated. On the basis of the radiometer requirements set for future SST/OVW missions...

  10. Measurement errors with low-cost citizen science radiometers

    OpenAIRE

    Bardají, R.; Piera Fernández, Jaume

    2016-01-01

    The KdUINO is a Do-It-Yourself buoy with low-cost radiometers that measure a parameter related to water transparency, the diffuse attenuation coefficient integrated into all the photosynthetically active radiation. In this contribution, we analyze the measurement errors of a novel low-cost multispectral radiometer that is used with the KdUINO. Peer Reviewed

  11. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  12. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  13. Optimization of Design for SMR via Data Assimilation and Uncertainty Quantification

    Science.gov (United States)

    Heo, Jaeseok

    This thesis presents work on reducing the uncertainty in thermal-hydraulic transient predictions for nuclear power plants (NPP) with a focus on SMRs characterized by the integral PWR design. The objective of a part of the study was to determine the economic benefit of conducting transient experiments on an SMR NPP. To accomplish this, a thermalhydraulic simulator is used to complete data assimilation for input parameters to the simulator using experimental data generated by the plant. Since no such experimental data exists, it was generated using an altered simulator, referred to as the virtual NPP facilitating the investigation of the benefits of conducting various experiments and sensor deployment. The mathematical approach that is used to complete this analysis depends upon whether the system responses, i.e. sensor signals, and the system attributes, e.g. DNBR, are or are not linearly dependent upon the parameters. A linearity test showed that there exist highly nonlinear as well as mildly nonlinear responses, hence both deterministic and probabilistic methods were used to complete data assimilation and uncertainty quantification. For the mildly nonlinear transient, the Bayesian approach was used to obtain the parameters posteriori distributions assuming Gaussian distributions for the input parameters and responses. In order to obtain the a posteriori, given measurements of the observables and a priori distributions of the parameters, one solves an inverse problem calibrating the parameter values to achieve better agreement between measured and predicted sensor response values. For the highly nonlinear transient, the Markov Chain Monte Carlo method was utilized based upon Bayes theorem to estimate the posteriori distributions of parameters. This thesis also discusses the optimization methodology used to design the plant's experiments so as to reduce a posteriori system attribute uncertainties. The optimization problem decision variables include the selection of

  14. Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor

    Directory of Open Access Journals (Sweden)

    Young-Jong Chung

    2014-01-01

    Full Text Available System-integrated modular advanced reactor (SMART is a small-sized advanced integral type pressurized water reactor (PWR with a rated thermal power of 330 MW. It can produce 100 MW of electricity or 90 MW of electricity and 40,000 ton of desalinated water concurrently, which is sufficient for 100,000 residents. The design features contributing to safety enhancement are basically inherent safety improvement and passive safety features. TASS/SMR code was developed for an analysis of design based events and accidents in an integral type reactor reflecting the characteristics of the SMART design. The main purpose of the code is to analyze all relevant phenomena and processes. The code should be validated using experimental data in order to confirm prediction capability. TASS/SMR predicts well the overall thermal-hydraulic behavior under various natural circulation conditions at the experimental test facility for an integral reactor. A pressure loss should be provided a function of Reynolds number at low velocity conditions in order to simulate the mass flow rate well under natural circulations.

  15. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  16. SMEX03 Aircraft Polarimetric Scanning Radiometer (PSR) Data, Alabama, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is an airborne microwave imaging radiometer developed and operated by the National Oceanic and Atmospheric Administration...

  17. The soluble mannose receptor (sMR) is elevated in alcoholic liver disease and associated with disease severity, portal hypertension, and mortality in cirrhosis patients

    DEFF Research Database (Denmark)

    Sandahl, Thomas Damgaard; Støy, Sidsel Hyldgaard; Laursen, Tea Lund

    2017-01-01

    BACKGROUND AND AIMS: Hepatic macrophages (Kupffer cells) are involved in the immunopathology of alcoholic liver disease (ALD). The mannose receptor (MR, CD206), expressed primarily by macrophages, mediates endocytosis, antigen presentation and T-cell activation. A soluble form, sMR, has recently......). Liver status was described by the Glasgow Alcoholic Hepatitis Score (GAHS), Child-Pugh (CP) and MELD-scores, and in AC patients the hepatic venous pressure gradient (HVPG) was measured by liver vein catheterisation. We used Kaplan-Meier statistics for short-term survival (84-days) in AH patients...... and long-term (4 years) in AC patients. We measured plasma sMR by ELISA. RESULTS: Median sMR concentrations were significantly elevated in AH 1.32(IQR:0.69) and AC 0.46(0.5) compared to HC 0.2(0.06) mg/L; p

  18. Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: radiometer standards

    Energy Technology Data Exchange (ETDEWEB)

    Estey, R.S.; Seaman, C.H.

    1981-07-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  19. Stable Targets for Spaceborne Microwave Radiometer Calibration

    Science.gov (United States)

    Njoku, Eni G.; Chan, S. K.; Armstrong, R. L.; Brodzik, M. J.; Savoie, M. H.; Knowles, K.

    2006-01-01

    Beginning in the 1970s, continuous observations of the Earth have been made by spaceborne microwave radiometers. Since these instruments have different observational characteristics, care must be taken in combining their data to form consistent long term records of brightness temperatures and derived geophysical quantities. To be useful for climate studies, data from different instruments must be calibrated relative to each other and to reference targets on the ground whose characteristics are stable and can be monitored continuously. Identifying such targets over land is not straightforward due to the heterogeneity and complexity of the land surface and cover. In this work, we provide an analysis of multi-sensor brightness temperature statistics over ocean, tropical forest, and ice sheet locations, spanning the period from 1978 to the present, and indicate the potential of these sites as continuous calibration monitoring targets.

  20. Ozone height profiles using laser heterodyne radiometer

    Science.gov (United States)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  1. Method for characterization of filter radiometers.

    Science.gov (United States)

    Toivanen, P; Manoochehri, F; Kärhä, P; Ikonen, E; Lassila, A

    1999-03-20

    We have developed a new method for characterizing the irradiance responsivity of filter radiometers. The method is based on a spatially uniform, known irradiance, generated by combining several identical laser beams. The measurement setup and the experimental demonstration at one wavelength are presented. The diffraction correction related to the generated irradiance is studied experimentally. The uncertainty analysis of the method indicates a relative standard uncertainty of 1 x 10(-3). The results with the new method are compared with the characterization measurements based on our present spectral-irradiance scale. The results have a relative deviation of 1 x 10(-3), which is well within the combined standard uncertainty of the comparison.

  2. Precision of hand-held dental radiometers.

    Science.gov (United States)

    Rueggeberg, F A

    1993-06-01

    The intensity of light within the wavelengths of 400 to 500 nm on a dental photocurable resin restorative material is a vital factor affecting many of the physical and chemical properties of the resulting restoration. This paper compares the precision of two recently introduced hand-held radiometers. The results indicate that the response of both hand-held meters was linear. For a given amount of decrease in light source intensity, both hand-held units responded with a corresponding decrement in measured intensity value. Both hand-held meters were found to limit their pass band of intensity readings between 400 and 515 nm, making them very useful clinical instruments. However, the absolute intensity readings between the two units were significantly different.

  3. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  4. Calibration of correlation radiometers using pseudo-random noise signals.

    Science.gov (United States)

    Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián

    2009-01-01

    The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers' outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called "baseline errors" associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver's output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  5. Calibration of electron cyclotron emission radiometer for KSTAR.

    Science.gov (United States)

    Kogi, Y; Jeong, S H; Lee, K D; Akaki, K; Mase, A; Kuwahara, D; Yoshinaga, T; Nagayama, Y; Kwon, M; Kawahata, K

    2010-10-01

    We developed and installed an electron cyclotron emission radiometer for taking measurements of Korea Superconducting Tokamak Advanced Research (KSTAR) plasma. In order to precisely measure the absolute value of electron temperatures, a calibration measurement of the whole radiometer system was performed, which confirmed that the radiometer has an acceptably linear output signal for changes in input temperature. It was also found that the output power level predicted by a theoretical calculation agrees with that obtained by the calibration measurement. We also showed that the system displays acceptable noise-temperature performance around 0.23 eV.

  6. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  7. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs......, followed by an image reconstruction based on an inverse Fourier transform, results in an imaging instrument without the need of mechanical scan. The thinned aperture and the non-scanning feature make the technique attractive for low frequency spaceborne radiometer systems, e.g. at L-band. Initial...

  8. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook With subsections for derivative instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Gary B. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Michalsky, Joseph J. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-03-01

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere’s aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  9. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  10. Multi-angle Imaging SpectroRadiometer (MISR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-angle Imaging SpectroRadiometer (MISR) was successfully launched into sun-synchronous polar orbit aboard Terra, NASA's first Earth Observing System (EOS)...

  11. GALILEO PROBE NET FLUX RADIOMETER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Galileo Probe Net Flux Radiometer (NFR) measured net and upward radiation fluxes in Jupiter's atmosphere between about 0.44 bars and 14 bars, using five spectral...

  12. NAMMA HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA High Altitude MMIC Sounding Radiometer (HAMSR) dataset consists of data collected by HAMSR, which is a 25-channel microwave atmospheric sounder operating...

  13. Effect of Chamber Wall Proximity on Radiometer Force Production (Preprint)

    National Research Council Canada - National Science Library

    Selden, N. P; Gimelshein, N. E; Gimelshein, S. F; Ketsdever, A. D

    2008-01-01

    ... on a given radiometer configuration in both the free molecule and transitional regimes. The contribution of the chamber walls to both the flowfield structure and radiometric force production were examined for helium, argon, and nitrogen test gases...

  14. Identification and characterization of PhbF: A DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1

    Directory of Open Access Journals (Sweden)

    Pedrosa Fabio O

    2011-10-01

    Full Text Available Abstract Background Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. Results In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Conclusions Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.

  15. The soluble mannose receptor (sMR) is elevated in alcoholic liver disease and associated with disease severity, portal hypertension, and mortality in cirrhosis patients.

    Science.gov (United States)

    Sandahl, Thomas Damgaard; Støy, Sidsel Hyldgaard; Laursen, Tea Lund; Rødgaard-Hansen, Sidsel; Møller, Holger Jon; Møller, Søren; Vilstrup, Hendrik; Grønbæk, Henning

    2017-01-01

    Hepatic macrophages (Kupffer cells) are involved in the immunopathology of alcoholic liver disease (ALD). The mannose receptor (MR, CD206), expressed primarily by macrophages, mediates endocytosis, antigen presentation and T-cell activation. A soluble form, sMR, has recently been identified in humans. We aimed to study plasma sMR levels and its correlation with disease severity and survival in ALD patients. We included 50 patients with alcoholic hepatitis (AH), 68 alcoholic cirrhosis (AC) patients (Child-Pugh A (23), B (24), C (21)), and 21 healthy controls (HC). Liver status was described by the Glasgow Alcoholic Hepatitis Score (GAHS), Child-Pugh (CP) and MELD-scores, and in AC patients the hepatic venous pressure gradient (HVPG) was measured by liver vein catheterisation. We used Kaplan-Meier statistics for short-term survival (84-days) in AH patients and long-term (4 years) in AC patients. We measured plasma sMR by ELISA. Median sMR concentrations were significantly elevated in AH 1.32(IQR:0.69) and AC 0.46(0.5) compared to HC 0.2(0.06) mg/L; p0.43 mg/l) was associated with increased mortality (p = 0.005). The soluble mannose receptor is elevated in alcoholic liver disease, especially in patients with AH. Its blood level predicts portal hypertension and long-term mortality in AC patients.

  16. In situ calibration technique for UV spectral radiometers.

    Science.gov (United States)

    Wilson, S R; Forgan, B W

    1995-08-20

    A technique for calibrating spectral radiometers measuring global (2π sr) irradiance using solar irradiance at the top of the atmosphere as the absolute irradiance reference is reported. In addition to providing a calibration at all measured wavelengths, the technique provides a direct measure of the angular response of the radiometer. For instruments that can be used to measure the ultraviolet-B region, the calibration also provides an estimate of the ozone column amount.

  17. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  18. Bolometric detectors: optimization for differential radiometers.

    Science.gov (United States)

    Glezer, E N; Lange, A E; Wilbanks, T M

    1992-12-01

    A differential radiometer can be constructed by placing two matched bolometric detectors in an ac bridge, thus producing a signal that is proportional to the difference in power incident on the two detectors. In conditions of large and time-varying common-mode radiative load, the common-mode response resulting from imperfectly matched detectors can limit the stability of the difference signal. For semiconductor thermistor bolometers we find that the bridge can always be trimmed to null the common-mode response for a given instantaneous value of the radiative load. However, subsequent changes in the commonmode radiative load change the operating point of the detectors, giving rise to a second-order common-mode response. This response can be minimized by increasing the electrical-power dissipation in the detectors at the cost of sensitivity. For the case that we are analyzing, and for mismatches in detector parameters that are typical of randomly paired detectors, common-mode rejection ratios in excess of 10(3) can be achieved under 20% changes in radiative load.

  19. Light curing unit effectiveness assessed by dental radiometers.

    Science.gov (United States)

    Shortall, A C; Harrington, E; Wilson, H J

    1995-08-01

    The purpose of this investigation was to assess the effectiveness of five commercially available hand-held dental radiometers and a computer-based experimental radiometer. Light intensity of five visible light activation units was determined using the dental radiometers. The influence of curing light intensity on depth of cure of a hybrid composite material was determined using a digital penetrometer. The radiometers evaluated varied with respect to sensor aperture diameter, scale readings (analogue or digital) and the units of measurement (arbitrary or mW cm2). The experimental computer-based radiometer allowed continuous recording of intensity against time; thus the light output could be monitored over the entire irradiation period. When light intensity readings were normalized with regard to a standardized light sensing device aperture of 4 mm diameter, a linear relationship was found between depth of cure and the logarithm of the intensity of the light. The results of this investigation support the use of dental radiometers for periodically monitoring visible light activation units.

  20. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Science.gov (United States)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  1. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; David Gertman; Jacques Hugo

    2014-03-01

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would

  2. APHID: A Wideband, Multichannel Radiometer for Phase Delay Correction

    Science.gov (United States)

    Staguhn, J.; Harris, A. I.; Munday, L. G.; Woody, D. P.

    Atmospheric phase fluctuations of mm and sub-mm signals are predominantly caused by line of sight fluctuations in the amount of water vapor. Measurements of the line emission from tropospheric water vapor can be used to track and correct these fluctuations. We present model calculations which led to the design of a multichannel water vapor radiometer for phase correction of millimeter arrays. Our particular emphasis is on designing a phase correction scheme for mid-latitude sites (BIMA, OVRO), and for high-altitude sites. The instrument being implemented at OVRO and BIMA is a cooled double-sideband heterodyne receiver centered on the 22.2GHz water vapor line with a 0.5 - 4.0GHz IF. The back end is a 16 channel analog lag correlator similar to the WASP spectrometer (Harris et al 1998). We present two applications for the multichannel radiometer. A line fit to the observed spectra is expected to provide sufficient accuracy for mm phase correction with the 22 GHZ line. The radiometer can also be used for the determination of the vertical water vapor distribution from the observed line shape. We discuss how this information can be used to improve the accuracy of water vapor radiometers which have too few channels to observe the line shape, and for phase correction schemes which are based on a 183 GHz water line radiometer.

  3. Recalibration and Validation of the SMAP L-Band Radiometer

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey; Le Vine, David M.; Dinnat, Emmanuel; Bindlish, Rajat; De amici, Giovanni; Mohammed, Priscilla; Misra, Sidharth; Yueh, Simon; Meissner, Thomas

    2017-01-01

    SMAP mission was launched on 31st January 2015 in a 6 AM 6 PM sun-synchronous orbit at 685 km altitude to measure soil moisture and freethaw globally. The passive instrument of SMAP is a fully polarimetric L-band radiometer (1.4GHz) operating with a bandwidth of 24MHz. The radiometer L1B data product version 3 has been released for public science activities. Post-launch calibration and validation activities are described in [4,5]. Validation results show that SMAP antenna temperature (TA) is 2.6 K warmer over galactic Cold Sky (CS), and land TB is 2.6 K colder comparing to SMOS land TB (compared at the top of the atmosphere) after the update of the reflectors thermal model. Due to the biases, the SMAP radiometer is under re-calibration for next data release in 2018.We present the updated calibration approaches for the SMAP radiometer product. We will discuss the various radiometer calibration parameters and part of the validation process and result.

  4. An Expert Elicitation of the Proliferation Resistance of Using Small Modular Reactors (SMR) for the Expansion of Civilian Nuclear Systems.

    Science.gov (United States)

    Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve

    2018-02-01

    To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.

  5. Self-shading correction for oceanographic upwelling radiometers.

    Science.gov (United States)

    Leathers, Robert; Downes, Trijntje; Mobley, Cutris

    2004-10-04

    We present the derivation of an analytical model for the self-shading error of an oceanographic upwelling radiometer. The radiometer is assumed to be cylindrical and can either be a profiling instrument or include a wider cylindrical buoy for floating at the sea surface. The model treats both optically shallow and optically deep water conditions and can be applied any distance off the seafloor. We evaluate the model by comparing its results to those from Monte Carlo simulations. The analytical model performs well over a large range of environmental conditions and provides a significant improvement to previous analytical models. The model is intended for investigators who need to apply self-shading corrections to radiometer data but who do not have the ability to compute shading corrections with Monte Carlo simulations. The model also can provide guidance for instrument design and cruise planning.

  6. Design and calibration of field deployable ground-viewing radiometers.

    Science.gov (United States)

    Anderson, Nikolaus; Czapla-Myers, Jeffrey; Leisso, Nathan; Biggar, Stuart; Burkhart, Charles; Kingston, Rob; Thome, Kurtis

    2013-01-10

    Three improved ground-viewing radiometers were built to support the Radiometric Calibration Test Site (RadCaTS) developed by the Remote Sensing Group (RSG) at the University of Arizona. Improved over previous light-emitting diode based versions, these filter-based radiometers employ seven silicon detectors and one InGaAs detector covering a wavelength range of 400-1550 nm. They are temperature controlled and designed for greater stability and lower noise. The radiometer systems show signal-to-noise ratios of greater than 1000 for all eight channels at typical field calibration signal levels. Predeployment laboratory radiance calibrations using a 1 m spherical integrating source compare well with in situ field calibrations using the solar radiation based calibration method; all bands are within ±2.7% for the case tested.

  7. Application of B{sub 4}C/Al{sub 2}O{sub 3} Burnable Absorber Rod to Control Excess Reactivity of SMR

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Boravy; Hah, C. J. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Soluble boron in a nuclear reactor coolant is one of the methods to control excess reactivity of the reactor. However, the use of soluble boron also causes some negative effects such as corrosion, more-positive tendency of Moderator Temperature Coefficient (MTC) and the requirement of Chemical Volume Control System (CVCS). One of the conceptual design features of SMR having been developed in Korea is soluble boron- free reactor to eliminate those drawbacks. Control rods and Burnable Absorber (BA) rods can be other methods than soluble to control excess reactivity. WABA (Wet Annular Burnable Absorber) and PYREX are such type. The other type is IFBA (Integral Fuel Burnable Absorber) in which fuel pellet surface is coated with BA. This paper compares nuclear characteristics of three types of BA as well as SLOBA in terms of k-infinite vs. burnup and explain design basis of SLOBA. This paper also presents the application of SLOBA rods to control long-term excess reactivity of SMR. The SMR loaded with SLOBA rods has been developed for the past few years in Korean. It is named as Bandi-50 with design features of 180 MWth, 37 FAs, fuel assembly height of 200 cm. Soluble-boron-free is one of nuclear design requirements of Bandi-50 and is achieved by controlling excess reactivity of the SMR using BAs and control rods only. To achieve this design requirement, LP is carefully determined in such way that CBC should be as low as possible. Fuel assembly cross-sections are generated by CASMO-3, and core depletion calculations are performed by MASTER.

  8. A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments

    Directory of Open Access Journals (Sweden)

    J. D. Rösevall

    2007-01-01

    Full Text Available The objective of this study is to demonstrate how polar ozone depletion can be mapped and quantified by assimilating ozone data from satellites into the wind driven transport model DIAMOND, (Dynamical Isentropic Assimilation Model for OdiN Data. By assimilating a large set of satellite data into a transport model, ozone fields can be built up that are less noisy than the individual satellite ozone profiles. The transported fields can subsequently be compared to later sets of incoming satellite data so that the rates and geographical distribution of ozone depletion can be determined. By tracing the amounts of solar irradiation received by different air parcels in a transport model it is furthermore possible to study the photolytic reactions that destroy ozone. In this study, destruction of ozone that took place in the Antarctic winter of 2003 and in the Arctic winter of 2002/2003 have been examined by assimilating ozone data from the ENVISAT/MIPAS and Odin/SMR satellite-instruments. Large scale depletion of ozone was observed in the Antarctic polar vortex of 2003 when sunlight returned after the polar night. By mid October ENVISAT/MIPAS data indicate vortex ozone depletion in the ranges 80–100% and 70–90% on the 425 and 475 K potential temperature levels respectively while the Odin/SMR data indicates depletion in the ranges 70–90% and 50–70%. The discrepancy between the two instruments has been attributed to systematic errors in the Odin/SMR data. Assimilated fields of ENVISAT/MIPAS data indicate ozone depletion in the range 10–20% on the 475 K potential temperature level, (~19 km altitude, in the central regions of the 2002/2003 Arctic polar vortex. Assimilated fields of Odin/SMR data on the other hand indicate ozone depletion in the range 20–30%.

  9. Measurements on Active Cold Loads for Radiometer Calibration

    DEFF Research Database (Denmark)

    Skou, Niels; Søbjærg, Sten Schmidl; Balling, Jan E.

    2008-01-01

    Two semi-conductor Active Cold Loads (ACLs) to be used as cold references in spaceborne microwave radiometers have been developed. An X-band frequency was chosen, and the target noise temperature value was in the 50 to 100 K range. The ACLs are characterized in the operating temperature range 0 50...... degrees C, and long term stability is assessed. To this end a Test Bed has been developed. This Test Bed is actually a stable radiometer, and its design is briefly reviewed. The test setup is described, and preliminary test campaign results indicate output temperatures of 77 K and 55 K for the two ACLs...

  10. Measurements on Active Cold Loads for Radiometer Calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels; Balling, Jan E.

    2009-01-01

    Two semiconductor active cold loads (ACLs) to be used as cold references in spaceborne microwave radiometers have been developed. An X-band frequency was chosen, and the target noise temperature value was in the 50-100-K range. The ACLs are characterized in the operating temperature range of 0deg......C-50degC, and long-term stability is assessed. To this end, a test bed has been developed. This test bed is actually a stable radiometer, and its design and performance are discussed. The test setup is described, and test campaign results indicate output temperatures of 77 and 56 K for the two ACLs...

  11. Performance Measurements on Active Cold Loads for Radiometer Calibration

    DEFF Research Database (Denmark)

    Skou, Niels; Søbjærg, Sten Schmidl; Balling, Jan E.

    2007-01-01

    Two semi-conductor Active Cold Loads (ACLs) to be used as cold references in spaceborne microwave radiometers have been developed. An X-band frequency has been chosen, and the target noise temperature value is in the 50 to 100 K range. The ACLs are to be characterized in the operating temperature...... range 0-50 degrees C, and long term stability must be assessed. To this end a Test Bed has been developed. This Test Bed is actually a stable radiometer, and its design and development is discussed. The test setup is described, and preliminary test campaign results indicate output temperatures of 73 K...

  12. Replication of elite music performance enhancement following alpha/theta neurofeedback and application to novice performance and improvisation with SMR benefits.

    Science.gov (United States)

    Gruzelier, J H; Holmes, P; Hirst, L; Bulpin, K; Rahman, S; van Run, C; Leach, J

    2014-01-01

    Alpha/theta (A/T) and sensory-motor rhythm (SMR) neurofeedback were compared in university instrumentalists who were novice singers with regard to prepared and improvised instrumental and vocal performance in three music domains: creativity/musicality, technique and communication/presentation. Only A/T training enhanced advanced playing seen in all three domains by expert assessors and validated by correlations with learning indices, strongest with Creativity/Musicality as shown by Egner and Gruzelier (2003). Here A/T gains extended to novice performance - prepared vocal, improvised vocal and instrumental - and were recognised by a lay audience who judged the prepared folk songs. SMR learning correlated positively with Technical Competence and Communication in novice performance, in keeping with SMR neurofeedback's known impact on lower-order processes such as attention, working memory and psychomotor skills. The importance of validation through learning indices was emphasised in the interpretation of neurofeedback outcome. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  14. Novel Low-Impact Integration of a Microwave Radiometer into Cloud Radar System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The radiometer channel will have significant filtering to reduce the contamination of the radar signal into the radiometer channels.The successful isolation between...

  15. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  16. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  17. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing.

    Science.gov (United States)

    Rosconi, Federico; de Vries, Stefan P W; Baig, Abiyad; Fabiano, Elena; Grant, Andrew J

    2016-11-15

    The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis of transposon (Tn) mutants has been hampered by the lack of genetic tools. Here we successfully employed a combination of in vivo high-density mariner Tn mutagenesis and targeted Tn insertion site sequencing (Tn-seq) in H. seropedicae SmR1. The analysis of multiple gene-saturating Tn libraries revealed that 395 genes are essential for the growth of H. seropedicae SmR1 in tryptone-yeast extract medium. A comparative analysis with the Database of Essential Genes (DEG) showed that 25 genes are uniquely essential in H. seropedicae SmR1. The Tn mutagenesis protocol developed and the gene-saturating Tn libraries generated will facilitate elucidation of the genetic mechanisms of the H. seropedicae endophytic lifestyle. A focal point in the study of endophytes is the development of effective biofertilizers that could help to reduce the input of agrochemicals in croplands. Besides the ability to promote plant growth, a good biofertilizer should be successful in colonizing its host and competing against the native microbiota. By using a systematic Tn-based gene-inactivation strategy and massively parallel sequencing of Tn insertion sites (Tn-seq), it is possible to study the fitness of thousands of Tn mutants in a single experiment. We have applied the combination of these techniques to the plant-growth-promoting endophyte Herbaspirillum seropedicae SmR1. The Tn mutant libraries generated will enable studies into the genetic mechanisms of H. seropedicae-plant interactions. The approach that we

  18. A New Way to Demonstrate the Radiometer as a Heat Engine

    Science.gov (United States)

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  19. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa

    2015-01-01

    Radio Frequency Interference (RFI) is an increasing threat to proper operation of space-borne Earth viewing microwave radiometer systems. There is a steady growth in active services, and tougher requirements to sensitivity and fidelity of future radiometer systems. Thus it has been decided...... to ground at the modest data rate usually associated with radiometer systems....

  20. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  1. Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control

    National Research Council Canada - National Science Library

    Haghighat, Bahar; Mastrangeli, Massimo; Mermoud, Grégory; Schill, Felix; Martinoli, Alcherio

    2016-01-01

    .... Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive...

  2. (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. III. Environments

    Science.gov (United States)

    Smolčić, V.; Miettinen, O.; Tomičić, N.; Zamorani, G.; Finoguenov, A.; Lemaux, B. C.; Aravena, M.; Capak, P.; Chiang, Y.-K.; Civano, F.; Delvecchio, I.; Ilbert, O.; Jurlin, N.; Karim, A.; Laigle, C.; Le Fèvre, O.; Marchesi, S.; McCracken, H. J.; Riechers, D. A.; Salvato, M.; Schinnerer, E.; Tasca, L.; Toft, S.

    2017-01-01

    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 μm and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts zspec > 4.5, and one at zspec = 2.49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of σΔz/ (1 + z) = 0.0067 (0.0155) at z 3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator δg as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can efficiently retrieve overdensities out to z ≈ 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S/N ≥ 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32″ aperture and our SMG positions, and find statistically significant detections. For our z 2 subsample yields an average flux of (1.3 ± 0.5) × 10-16 erg s-1 cm-2 and a corresponding total massof M200 = 2 × 1013M⊙. Our results suggest a higher occurrence of SMGs occupying overdense environments at z ≥ 3 than at z < 3. This may be understood if highly star-forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured sufficiently that more modest overdensities correspond to sufficiently massive haloes to form SMGs.

  3. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  4. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  5. Improved cavity-type absolute total-radiation radiometer

    Science.gov (United States)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  6. Planck-LFI radiometers' spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, A [INAF-IASF Milano, Via E. Bassini 15, 20133 Milano (Italy); Franceschet, C; Mennella, A; Bersanelli, M [Universita di Milano, Dipartimento di Fisica, Via G. Celoria 16, 20133 Milano (Italy); Battaglia, P; Silvestri, R [Thales Alenia Space Italia S.p.A., S.S. Padana Superiore 290, 20090 Vimodrone, Milano (Italy); Villa, F; Butler, R C; Cuttaia, F; Mandolesi, N [INAF-IASF Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); D' Arcangelo, O [IFP-CNR, via Cozzi 53, 20125 Milano (Italy); Artal, E [Departamento de IngenierIa de Comunicaciones, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander (Spain); Davis, R J [Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester, M13 9PL (United Kingdom); Galeotta, S; Maris, M [INAF-OATs, Via G.B. Tiepolo 11, I-34131, Trieste (Italy); Hughes, N; Jukkala, P; Kilpiae, V-H [DA-Design Oy, Keskuskatu 29, FI-31600, Jokioinen (Finland); Laaninen, M [Ylinen Electronics Oy, Teollisuustie 9A, FIN-02700, Kauniainen (Finland); Mendes, L, E-mail: andrea.zonca@fisica.unimi.i [ESA - ESAC, Camino bajo del Castillo, s/n, Villanueva de la Canada 28692 Madrid (Spain)

    2009-12-15

    The Low Frequency Instrument (LFI) is an array of pseudo-correlation radiometers on board the Planck satellite, the ESA mission dedicated to precision measurements of the Cosmic Microwave Background. The LFI covers three bands centred at 30, 44 and 70 GHz, with a goal bandwidth of 20% of the central frequency. The characterization of the broadband frequency response of each radiometer is necessary to understand and correct for systematic effects, particularly those related to foreground residuals and polarization measurements. In this paper we present the measured band shape of all the LFI channels and discuss the methods adopted for their estimation. The spectral characterization of each radiometer was obtained by combining the measured spectral response of individual units through a dedicated RF model of the LFI receiver scheme. As a consistency check, we also attempted end-to-end spectral measurements of the integrated radiometer chain in a cryogenic chamber. However, due to systematic effects in the measurement setup, only qualitative results were obtained from these tests. The measured LFI bandpasses exhibit a moderate level of ripple, compatible with the instrument scientific requirements.

  7. Moisture Retrievals from the Windsat spaceborne polarimetric microwave radiometer

    NARCIS (Netherlands)

    Parinussa, R.M.; Holmes, T.R.H.; de Jeu, R.A.M.

    2012-01-01

    An existing methodology to derive surface soil moisture from passive microwave satellite observations is applied to the WindSat multifrequency polarimetric microwave radiometer. The methodology is a radiative-transfer-based model that has successfully been applied to a series of (historical)

  8. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.; Jokela, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1996-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  9. The design of an in-water optical radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.; DeSa, E.J.

    and downwelling spectral irradiance over an effective dynamic range greater than six decades and with a spectral resolution of 2nm. The emergence of a new generation of radiometers is now practically possible with the advent of scientific grade CCD (charged couple...

  10. Determination of maritime snowfall from radar and microwave radiometer measurements

    Science.gov (United States)

    Weinman, James A.; Hakkarinen, Ida M.

    1990-01-01

    This study examines the effect of snowfall on high frequency microwave radiances measured from above the atmosphere by airborne radiometers. Attention is given to the analysis of a maritime snow storm so that snow accumulation on the surface would not introduce ambiguities into the analysis of the upwelling radiances.

  11. A comparison of ultraviolet radiometers' long-term performance ...

    African Journals Online (AJOL)

    In this paper we present a comparison of the performance characteristics of two types of broad-band ultraviolet radiometers. The first type of instrument is manufactured by Eppley Laboratories of the USA and the second type is manufactured by Kipp and Zonen of Holland. The results presented in this paper are for a ...

  12. Evolution and design characteristics of the microwave radiometer spacecraft

    Science.gov (United States)

    Wright, R. L.

    1981-01-01

    The evolution of the design of the microwave radiometer spacecraft from conception to preliminary design is described. Alternatives and tradeoff rationale are described, and the configuration and structural design features that were developed and refined during the design processes are presented for the three structural configurations studied (two geodesic trusses and a flexible catenary).

  13. DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE.

    Science.gov (United States)

    Klemetsen, O; Birkelund, Y; Jacobsen, S K; Maccarini, P F; Stauffer, P R

    2011-01-01

    We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25-3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with a low noise amplifier up front, damage would occur to the active components of the radiometer if used in presence of the microwave heating antenna. Nevertheless, this design showed significantly improved sensitivity of measured temperatures and merits further investigation to determine methods of protecting the radiometer for amplifier first front ends.

  14. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    Science.gov (United States)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  15. Landmine detection with an imaging 94-GHz radiometer

    NARCIS (Netherlands)

    Groot, J.S.; Dekker, R.J.; Ewijk, L.J.

    1996-01-01

    We analyzed a time series of 94 GHz radiometer images of a sandbox with buried and unburied, metal and plastic AP and AT dummy mines. The images covered almost a complete 24 hour cycle, with both clear sky and rain conditions occurring. The AP nor the buried mines were visible at any time. The

  16. The Use of Filtered Radiometers for Radiance Measurement.

    Science.gov (United States)

    Parr, Albert C; Johnson, B Carol

    2011-01-01

    A methodology for using a calibrated filter radiometer to measure and monitor the spectral radiance of calibration sources is described. An example is presented using the NIST calibration sphere source that is used to support the NASA Earth Observing remote-sensing program.

  17. The Use of Cryogenic HEMT Amplifiers in Wide Band Radiometers

    OpenAIRE

    Jarosik, Norman

    2000-01-01

    Advances in device fabrication, modelling and design techniques have made wide band, low noise cryogenic amplifiers available at frequencies up to 106 GHz. Microwave radiometry applications as used in radio astronomy capitalize on the low noise and large bandwidths of these amplifiers. Radiometers must be carefully designed so as to preclude sensitivity degradations caused by small, low frequency gain fluctuations inherent in these amplifiers.

  18. The airborne EMIRAD L-band radiometer system

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup; Balling, Jan E.

    2013-01-01

    This paper describes the EMIRAD L-band radiometer, developed in support of the ESA/SMOS mission. The instrument is a fully polarimetric, dual antenna system, built with special focus on antenna accuracy, receiver stability, and detection and mitigation of radio frequency interference (RFI...

  19. Temperature measurements of natural surfaces using infrared radiometers.

    Science.gov (United States)

    Lorenz, D

    1968-09-01

    The radiometric method for surface temperature measurements in meteorology and its airborne use are discussed, with emphasis on possible errors of this method. These are caused by the air layer between radiometer and target, by the nonblackbody characteristic, and by the nonuniformity of natural surfaces. Methods for correcting and reducing these errors are described. Examples of airborne surface temperature measurements are presented.

  20. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  1. Calibration of Hurricane Imaging Radiometer C-Band Receivers

    Science.gov (United States)

    Biswas, Sayak K.; Cecil, Daniel J.; James, Mark W.

    2017-01-01

    The laboratory calibration of airborne Hurricane Imaging Radiometer's C-Band multi-frequency receivers is described here. The method used to obtain the values of receiver frontend loss, internal cold load brightness temperature and injected noise diode temperature is presented along with the expected RMS uncertainty in the final calibration.

  2. Dense Focal Plane Arrays for Pushbroom Satellite Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2014-01-01

    Performance of a dense focal plane array feeding an offset toroidal reflector antenna system is studied and discussed in the context of a potential application in multi-beam radiometers for ocean surveillance. We present a preliminary design of the array feed for the 5-m diameter antenna at X-ban...

  3. The Odin satellite - II. Radiometer data processing and calibration

    NARCIS (Netherlands)

    Olberg, M; Frisk, U; Lecacheux, A; Olofsson, AOH; Baron, P; Bergman, P; Florin, G; Hjalmarson, A; Larsson, B; Murtagh, D; Olofsson, G; Pagani, L; Sandqvist, A; Teyssier, D; Torchinsky, SA; Volk, K

    The radiometer on-board the Odin satellite comprises four different sub-mm receivers covering the 486 - 581 GHz frequency range and one fixed frequency 119 GHz receiver. Two auto-correlators and one acousto-optical spectrometer serve as backends. This article gives an overview over the processing of

  4. Design and Development of the SMAP Microwave Radiometer Electronics

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  5. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  6. Underlying Surface Remote Sensing by the Microwave Radiometer with High Measurement Rate

    Directory of Open Access Journals (Sweden)

    Ubaichin Anton

    2016-01-01

    Full Text Available The paper describes a new approach to microwave radiometer design. The approach implies simultaneous using both modified zero measurement method and multi-receiver technique. Simultaneous using increases the operating characteristics of airborne microwave radiometers for aircrafts with self-contained power supply. The block diagram of the onboard Earth remote sensing microwave radiometric system is presented. The block diagram and operating timing diagrams of the designed radiometer are shown. An original technique to design a fiducial noise source for transfer characteristics is discussed. The advantages of the designed radiometer in comparison with the state of the art zero-type microwave radiometer are described.

  7. Wind direction over the ocean determined by an airborne, imaging, polarimetric radiometer system

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    2001-01-01

    The speed and direction of winds over the ocean can be determined by polarimetric radiometers. This has been established by theoretical work and demonstrated experimentally using airborne radiometers carrying out circle flights and thus measuring the full 360° azimuthal response from the sea...... surface. An airborne experiment, with the aim of measuring wind direction over the ocean using an imaging polarimetric radiometer, is described. A polarimetric radiometer system of the correlation type, measuring all four Stokes brightness parameters, is used. Imaging is achieved using a 1-m aperture...... in the radiometer imagery....

  8. DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE

    Science.gov (United States)

    Klemetsen, Ø.; Birkelund, Y.; Jacobsen, S. K.; Maccarini, P. F.; Stauffer, P. R.

    2011-01-01

    We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25–3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure. Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with a low noise amplifier up front

  9. Comparison of Sensorimotor Rhythm (SMR) and Beta Training on Selective Attention and Symptoms in Children with Attention Deficit/Hyperactivity Disorder (ADHD): A Trend Report

    OpenAIRE

    Mohammadi, Mohammad Reza; Malmir, Nastaran; Khaleghi, Ali; Aminiorani, Majd

    2015-01-01

    Objective: The aim of this study was to assess and compare the effect of two neurofeedback protocols (SMR/theta and beta/theta) on ADHD symptoms, selective attention and EEG (electroencephalogram) parameters in children with ADHD. Method: The sample consisted of 16 children (9-15 year old: 13 boys; 3 girls) with ADHD-combined type (ADHD-C). All of children used methylphenidate (MPH) during the study. The neurofeedback training consisted of two phases of 15 sessions, each lasting 45 minutes. I...

  10. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  11. Transmission of radiometer data from the Synchronous Meteorological Satellite

    Science.gov (United States)

    Davies, R. S.

    1973-01-01

    The Synchronous Meteorological Satellite uses a spin scanner radiometer which generates eight visual signals and two infrared signals. These signals are multiplexed and converted into a 28-Mbps data stream. This signal is transmitted to ground by quadriphase modulation at 1686.1 MHz. On the ground, the digital signal is reconstructed to an analog signal. To conserve bandwidth, an analog-to-digital converter with a nonlinear transfer function was used for the visual signals. The size of the quantization step was made proportional to the noise output of the scanner photomultiplier tube which increases as the square root of incident light. The radiometer data transmission link was simulated on a digital computer to determine the transfer function. Some results of the simulation are shown.

  12. An improved outdoor calibration procedure for broadband ultraviolet radiometers.

    Science.gov (United States)

    Cancillo, M L; Serrano, A; Antón, M; García, J A; Vilaplana, J M; de la Morena, B

    2005-01-01

    This article aims at improving the broadband ultraviolet radiometer's calibration methodology. For this goal, three broadband radiometers are calibrated against a spectrophotometer of reference. Three different one-step calibration models are tested: ratio, first order and second order. The latter is proposed in order to adequately reproduce the high dependence on the solar zenith angle shown by the other two models and, therefore, to improve the calibration performance at high solar elevations. The proposed new second-order model requires no additional information and, thus, keeps the operational character of the one-step methodology. The models are compared in terms of their root mean square error and the most qualified is subsequently validated by comparing its predictions with the spectrophotometer measurements within an independent validation data subset. Results show that the best calibration is achieved by the second-order model, with a mean bias error and mean absolute bias error lower than 2.2 and 6.7%, respectively.

  13. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  14. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiat...... radiation. The paper describes how such measurements are carried out as well as a suitable experimental set-up. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle...

  15. Analysis of Anechoic Chamber Testing of the Hurricane Imaging Radiometer

    Science.gov (United States)

    Fenigstein, David; Ruf, Chris; James, Mark; Simmons, David; Miller, Timothy; Buckley, Courtney

    2010-01-01

    The Hurricane Imaging Radiometer System (HIRAD) is a new airborne passive microwave remote sensor developed to observe hurricanes. HIRAD incorporates synthetic thinned array radiometry technology, which use Fourier synthesis to reconstruct images from an array of correlated antenna elements. The HIRAD system response to a point emitter has been measured in an anechoic chamber. With this data, a Fourier inversion image reconstruction algorithm has been developed. Performance analysis of the apparatus is presented, along with an overview of the image reconstruction algorithm

  16. Water Quality Models with Different Functions of Exotech Radiometer Bands

    OpenAIRE

    Rao, K. R.; Krishnan, R.; Chakraborty, A. K.; Deekshatulu, B. L.

    1981-01-01

    Surveillance of water quality by remote sensing technique can be pursued with advantage. An attempt has been made in this paper to obtain regional models of water quality of inland tanks and lakes. Stepwise multiple linear regression analysis between water quality parameters and several functions of Exotech radiometer band reflectance values, namely, bands alone, bands and their ratios, and, bands and their products are evaluated with respect to performance of the regression parameters. It is...

  17. A filter-wheel solar radiometer for atmospheric transmission studies

    Science.gov (United States)

    Shaw, G. E.; Peck, R. L.; Allen, G. R.

    1973-01-01

    A filter-wheel solar radiometer has been developed for monitoring the atmospheric optical depth at multiple narrow-wavelength intervals in the visible and near IR regions of the spectrum. Measurements of the direct solar radiations are converted to a digital format and stored in punched tape for eventual analysis by a computer. During stable clear weather condition, the instrument is capable of providing monochromatic optical depths to an estimated rms accuracy of 0.005.

  18. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  19. Fusion of synthetic aperture radiometer and noise waveform SAR images

    OpenAIRE

    Lukin, Konstantin A.; Kudriashov, V. V.

    2014-01-01

    Noise waveform SAR generates 2D SAR images of a scene. Advanced radiometric SAR imaging provides information on the objects thermal radiation, angular coordinates and even range. The brightness temperatures of rough and smooth surfaces are different. An active, noise waveform, operating mode of bistatic radiometer, based on antennae with beam synthesis, is considered with respect to the roughness criteria. The optimal and quasi-optimal algorithms for fusion of radiometric and SAR images are p...

  20. Jason Microwave Radiometer On Orbit Calibration, Validation and Performance

    Science.gov (United States)

    Ruf, C. S.; Brown, S. T.; Keihm, S. J.; Kitiyakara, A.

    2002-12-01

    The Jason Microwave Radiometer (JMR) on the Jason-1 altimeter satellite measures radiometric brightness temperature (TB) at 18.7, 23.8, and 34.0 GHz in the nadir direction, from which is estimated the excess path delay (PD) through the atmosphere experienced by the Jason radar altimeter signal due to water vapor and suspended cloud liquid water. JMR is an improved follow-on to the TOPEX Microwave Radiometer (TMR) on the earlier TOPEX/Poseidon altimeter satellite. Early work calibrating JMR and validating its performance during the first six months of the mission will be presented. Placement of Jason-1 into a virtually identical orbit with TOPEX/Poseidon, with approximately 70 s time displacement, has afforded unprecedented accuracy in the intercalibration of two satellite radiometers. The virtual elimination of spatial and temporal decorrelation errors between JMR and TMR TBs and PDs allows intercomparison fine tuning at a much more precise level, and with greatly reduced data averaging requirements, relative to the earlier TMR comparisons with other satellite instruments (SSM/I, ERS-1,2), island radiosondes, GPS, and ground-based water vapor radiometers. Calibration of the JMR TBs has been evaluated at the low end of its on-orbit range by comparing the differences between vicarious cold reference TBs of it and adjacent TMR channels with those predicted by theory. At the high end of the TB range, comparisons are made with TMR TBs over suitable regions of the Sahara desert and Amazon rain forest. Characterization of JMR performance at intermediate TB levels is possible using a variety of statistical intercomparison techniques.

  1. Application of pylon radon daughter standard for calibration of radiometers.

    Science.gov (United States)

    Chruścielewski, Wojciech; Olszewski, Jerzy; Bogusz, Malgorzata

    2002-01-01

    Radiometers for measurements of radon daughter potential energy used in the surveillance of the work environment need a systematic calibration. This paper presents how a commercially available device produced by the Pylon Company can be applied. This device allows to produce, simply and directly, standard sources of radon daughters, corresponding with the energy, geometry and properties of radiation originated from an air sample. The calibration yielded the results that proved to be in agreement with those obtained previously by means of radon chamber.

  2. Ocean Color Inferred from Radiometers on Low-Flying Aircraft.

    Science.gov (United States)

    Churnside, James H; Wilson, James J

    2008-02-08

    The color of sunlight reflected from the ocean to orbiting visible radiometers hasprovided a great deal of information about the global ocean, after suitable corrections aremade for atmospheric effects. Similar ocean-color measurements can be made from a lowflyingaircraft to get higher spatial resolution and to obtain measurements under clouds.A different set of corrections is required in this case, and we describe algorithms to correctfor clouds and sea-surface effects. An example is presented and errors in the correctionsdiscussed.

  3. Solar occultation sounding of pressure and temperature using narrowband radiometers.

    Science.gov (United States)

    Park, J H; Russell Iii, J M; Smith, M A

    1980-07-01

    A technique for simultaneously retrieving pressure and temperature profiles using satellite-based narrow-band radiometer measurements of absorption in the CO(2) 4.3-microm band is described. Pressure and temperature profiles for earth's upper atmosphere on a global scale can be obtained with errors <3% and 3 K, respectively. The p - T information can be used not only for improving the accuracy of inverted gas concentrations in the same absorption experiment but also for investigating the upper atmosphere circulation.

  4. Development and application of an automated precision solar radiometer

    Science.gov (United States)

    Qiu, Gang-gang; Li, Xin; Zhang, Quan; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    Automated filed vicarious calibration is becoming a growing trend for satellite remote sensor, which require a solar radiometer have to automatic measure reliable data for a long time whatever the weather conditions and transfer measurement data to the user office. An automated precision solar radiometer has been developed. It is used in measuring the solar spectral irradiance received at the Earth surface. The instrument consists of 8 parallel separate silicon-photodiode-based channels with narrow band-pass filters from the visible to near-IR regions. Each channel has a 2.0° full-angle Filed of View (FOV). The detectors and filters are temperature stabilized using a Thermal Energy Converter at 30+/-0.2°. The instrument is pointed toward the sun via an auto-tracking system that actively tracks the sun within a +/-0.1°. It collects data automatically and communicates with user terminal through BDS (China's BeiDou Navigation Satellite System) while records data as a redundant in internal memory, including working state and error. The solar radiometer is automated in the sense that it requires no supervision throughout the whole process of working. It calculates start-time and stop-time every day matched with the time of sunrise and sunset, and stop working once the precipitation. Calibrated via Langley curves and simultaneous observed with CE318, the different of Aerosol Optical Depth (AOD) is within 5%. The solar radiometer had run in all kinds of harsh weather condition in Gobi in Dunhuang and obtain the AODs nearly eight months continuously. This paper presents instrument design analysis, atmospheric optical depth retrievals as well as the experiment result.

  5. Experimental measurements and noise analysis of a cryogenic radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U. [National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States)

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/√(Hz) for the measured experimental parameters.

  6. Advanced modelling of the Planck-LFI radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, P [Thales Alenia Space Italia S.p.A., S.S. Padana Superiore 290, 20090 Vimodrone (Italy); Franceschet, C; Bersanelli, M; Maino, D; Mennella, A [Universita di Milano, Dipartimento di Fisica, Via G. Celoria 16, I-20133 Milano (Italy); Zonca, A [INAF-IASF Milano, Via E. Bassini 15, I-20133 Milano (Italy); Butler, R C; Mandolesi, N [INAF-IASF Bologna, Via P. Gobetti, 101, I-40129 Bologna (Italy); D' Arcangelo, O; Platania, P [IFP-CNR, via Cozzi 53, 20125 Milano (Italy); Davis, R J [Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester, M13 9PL (United Kingdom); Galeotta, S [INAF-OATs, Via G.B. Tiepolo 11, I-34131, Trieste (Italy); Guzzi, P [Numonyx, R and D Technology Center, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Hoyland, R [Instituto de AstrofIsica de Canarias, C/ Via Lactea S/N, E-38200, La Laguna (Tenerife) (Spain); Hughes, N; Jukkala, P [DA-Design Oy Jokioinen (Finland); Kettle, D [School of Electrical and Electronic Engineering, University of Manchester, Manchester, M60 1QD (United Kingdom); Laaninen, M [Ylinen Electronics Oy Kauniainen (Finland); Leonardi, R; Meinhold, P, E-mail: paola.battaglia@thalesaleniaspace.co [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2009-12-15

    The Low Frequency Instrument (LFI) is a radiometer array covering the 30-70 GHz spectral range on-board the ESA Planck satellite, launched on May 14th, 2009 to observe the cosmic microwave background (CMB) with unprecedented precision. In this paper we describe the development and validation of a software model of the LFI pseudo-correlation receivers which enables to reproduce and predict all the main system parameters of interest as measured at each of the 44 LFI detectors. These include system total gain, noise temperature, band-pass response, non-linear response. The LFI Advanced RF Model (LARFM) has been constructed by using commercial software tools and data of each radiometer component as measured at single unit level. The LARFM has been successfully used to reproduce the LFI behavior observed during the LFI ground-test campaign. The model is an essential element in the database of LFI data processing center and will be available for any detailed study of radiometer behaviour during the survey.

  7. Neonatal phototherapy radiometers: current performance characteristics and future requirements.

    Science.gov (United States)

    Clarkson, Douglas McG; Nicol, Ruth; Chapman, Phillip

    2014-04-01

    Hand held radiometers provide a convenient means of monitoring the output of neonatal phototherapy treatment devices as part of planned programs of device maintenance and output monitoring. It was considered appropriate to determine the wavelength and angular response of a selection of such meters and compare their indicated values with that derived from spectral analysis of phototherapy light sources. This was undertaken using a Bentham DMc150 double grating spectroradiometer and a series of 10nm band pass optical filters in the range 400-640 nm used in conjunction with a fiber optic light source. Specific meters investigated included a GE Biliblanket Light Meter II, a NeoBLUE radiometer and a Bio-TEK radiometer 74345 device. Comparisons were made of measurements made using the hand held meters and the Bentham DMc 150 system for a range of neonatal phototherapy treatment devices. The use of such meters is discussed in relation to applicable equipment standards and recommendations of intensive phototherapy from clinical groups such as the American Academy of Pediatrics and a specification for a spectroradiometer based measurement system is proposed. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  9. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  10. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  11. Ground registration of data from an airborne Multifrequency Microwave Radiometer (MfMR). [Colby, Kansas

    Science.gov (United States)

    Richter, J. C. (Principal Investigator)

    1981-01-01

    The agricultural soil moisture experiment was conducted near Colby, Kansas, in July and August 1978. A portion of the data collected was taken with a five band microwave radiometer. A method of locating the radiometer footprints with respect to a ground based coordinate system is documented. The procedure requires that the airplane's flight parameters along with aerial photography be acquired simultaneously with the radiometer data. The software which documented reads in data from the precision radiation thermometer (PRT Model 5) and attaches the scene temperature to the corresponding multifrequency microwave radiometer data. Listings of the programs used in the registration process are included.

  12. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  13. Nimbus-3 Medium-Resolution Infrared Radiometer (MRIR) Level 1 Meteorological Radiation Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-3 Medium-Resolution Infrared Radiometer (MRIR) Level 1 Meteorological Radiance Data contain radiances expressed as equivalent blackbody temperatures along...

  14. Calibration approach and plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter

    2014-01-01

    The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.

  15. Effect of curing-tip diameter on the accuracy of dental radiometers.

    Science.gov (United States)

    Leonard, D L; Charlton, D G; Hilton, T J

    1999-01-01

    The purpose of this study was to determine the accuracy of four commercially available radiometers when curing tips of different diameters were used. A visible-light curing unit (Optilux 500) with a new 80-watt quartz-halogen bulb (OptiBulb) was used as the light source for all measurements. The unit's irradiance value was measured using three hand-held radiometers (Demetron model #100, Cure-Rite model #644726, and Coltolux Light Meter) and a built-in visible-light curing unit radiometer (Optilux 500). Measurements were made with four curing tips of diameters 4 mm, 7.5 mm, 10.5 mm, and 12 mm. For each tip, trials were made with five radiometers of each model. Student's t-tests at the 0.05 level of significance were used to compare the mean irradiance measured by each model of radiometer, to the irradiance value measured by a laboratory-grade power meter. A one-way analysis of variance at the 0.05 level of significance was used to compare the irradiance values among the five samples of each commercially available radiometer model. Except for the Optilux 500 built-in radiometer with the 10.5-mm tip, all the commercially available radiometers exhibited irradiance values significantly different from those of the laboratory-grade power meter. There were no statistically significant differences among the five samples of each commercially available radiometer model.

  16. Superhigh-frequency radiometer with post-detector pulse-duration modulation

    CERN Document Server

    Filatov, A V

    2002-01-01

    Paper describes a superhigh-frequency radiometer with extra pulse-duration modulation of reference signal by low frequency. Pulse-duration modulation is realized due to various coefficients of reference signal sharing in resistive attenuators of a low-frequency unit. Design of radiometer makes use of modification of zero measurement method when automatic control is realized by variation of pulse-duration signal duration. Radiometer switching to zero balance in a low-frequency section enables to use high-frequency units of any modulating radiometer with symmetry modulation

  17. A New Approach for Radiometric Cross Calibration of Satellite-borne Radiometers

    National Research Council Canada - National Science Library

    Qu, John J; Hao, Xianjun; Hauss, Bruce; Wang, Chunming; Privette, Jeffrey

    2005-01-01

    Approaches for establishing the absolute calibration of a newly deployed, satellite-borne radiometer have varied from aircraft under flights with previously calibrated sensors to vicarious calibration...

  18. Boreal Inundation Mapping with SMAP Radiometer Data for Methane Studies

    Science.gov (United States)

    Kim, Seungbum; Brisco, Brian; Poncos, Valentin

    2017-04-01

    Inundation and consequent anoxic condition induce methane release, which is one of the most potent greenhouse gases. Boreal regions contain large amounts of organic carbon, which is a potentially major methane emission source under climatic warming conditions. Boreal wetlands in particular are one of the largest sources of uncertainties in global methane budget. Wetland spatial extent together with the gas release rate remains highly unknown. Characterization of the existing inundation database is poor, because of the inundation under clouds and dense vegetation. In this work, the inundation extent is derived using brightness temperature data acquired by the L-band Soil Moisture Active Passive (SMAP) satellite, which offers the L-band capabilities to penetrate clouds and vegetation at 3-day revisit. The fidelity of the SMAP watermask is assessed as a first step in this investigation by comparing with the following data sets: 3-m resolution maps derived using Radarsat synthetic aperture radar (SAR) data in northern Canada and multi-sensor climatology over Siberia. Because Radarsat coverages are limited despite its high spatial resolution, at the time and location where Radarsats are not available, we also compare with 3-km resolution SMAP SAR data that are concurrent with the SMAP radiometer data globally until July 2015. Inundation extents were derived with Radarsat, SMAP SAR, and SMAP radiometer over the 60 km x 60km area at Peace Athabasca Delta (PAD), Canada on 6 days in spring and summer 2015. The SMAP SAR results match the locations of Radarsat waterbodies. However, the SMAP SAR underestimates the water extent, mainly over mixed pixels that have subpixel land presence. The threshold value (-3 dB) applied to the SMAP SAR was determined previously over the global domain. The threshold is dependent on the type of local landcover within a mixed pixel. Further analysis is needed to locally optimize the threshold. The SMAP radiometer water fraction over Peace

  19. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    Science.gov (United States)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  20. The Diviner Lunar Radiometer Compositional Data Products: Description and Examples

    Science.gov (United States)

    Greenhagen, B. T.; Lucey, P. G.; Bandfield, J. L.; Hayne, P. O.; William, J. P.; Paige, D. A.

    2011-01-01

    The Diviner lunar radiometer has made the first direct global measurements of silicate mineralogy of the lunar surface using multispectral thermal emission mapping. By mid-March, 2011, the first derived compositional data products (level 3) will be released into the Planetary Data System (PDS) Geosciences Node. These products describe the Diviner Science Team's best efforts to determine the position of the Christiansen feature (CF), which is directly related to silicate mineralogy of lunar soils. The initial release of these products include data from the mission's primary mapping phase between 9/17/09 and 9/16/10. This work describes at a high level the creation of Diviner's compositional data products.

  1. COBE DMR results and implications. [Differential Microwave Radiometer

    Science.gov (United States)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  2. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    Science.gov (United States)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  3. Ocean Color Inferred from Radiometers on Low-Flying Aircraft

    Directory of Open Access Journals (Sweden)

    James J. Wilson

    2008-02-01

    Full Text Available The color of sunlight reflected from the ocean to orbiting visible radiometers hasprovided a great deal of information about the global ocean, after suitable corrections aremade for atmospheric effects. Similar ocean-color measurements can be made from a lowflyingaircraft to get higher spatial resolution and to obtain measurements under clouds.A different set of corrections is required in this case, and we describe algorithms to correctfor clouds and sea-surface effects. An example is presented and errors in the correctionsdiscussed.

  4. A study of the directional response of ultraviolet radiometers: I. Practical evaluation and implications for ultraviolet measurement standards.

    Science.gov (United States)

    Pye, S D; Martin, C J

    2000-09-01

    The directional responses of a range of ultraviolet radiometers commonly used for irradiance measurements of UVB and UVC have been studied. Radiometers with 24 diffuser/filter combinations were assessed using a deuterium source, and three different diffuser/filter designs were assessed using a monochromatic source. The directional responses of the radiometers have been calculated and expressed in terms of figures of merit similar to those described for (photopic) illuminance meters in BS 667 and CIE 69. Those radiometers that performed best for the measurement of both small and extended sources of UVB and UVC had raised PTFE diffusers. We conclude that UV radiometers with a directional response error f2 radiometer.

  5. Modeling the frequency response of microwave radiometers with QUCS

    Science.gov (United States)

    Zonca, A.; Roucaries, B.; Williams, B.; Rubin, I.; D'Arcangelo, O.; Meinhold, P.; Lubin, P.; Franceschet, C.; Jahn, S.; Mennella, A.; Bersanelli, M.

    2010-12-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  6. Modeling the frequency response of microwave radiometers with QUCS

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P [Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Roucaries, B [Universite Paris-Est, Laboratoire Central des Ponts et Chaussees, 75732 Paris (France); D' Arcangelo, O [IFP-CNR, via Cozzi 53, 20125 Milano (Italy); Franceschet, C; Mennella, A; Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Jahn, S, E-mail: zonca@deepspace.ucsb.edu [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Munich (Germany)

    2010-12-15

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  7. Aquarius Radiometer RFI Detection, Mitigation, and Impact Assessment

    Science.gov (United States)

    Ruf, Christopher; Chen, David; Le Vine, David; de Matthaeis, Paolo; Piepmeier, Jeffrey

    2012-01-01

    The Aquarius/SAC-D satellite was launched on 10 June 2011 into a sun-synchronous polar orbit and the Aquarius microwave radiometers [1] became operational on 25 August 2011. Since that time, it has been measuring brightness temperatures at 1.4 GHz with vertical, horizontal and 3rd Stokes polarizations . Beginning well before the launch, there has been the concern that Radio Frequency Interference (RFI) could have an appreciable presence. This concern was initiated by, among other things, its prevalence in both early [2] and more recent [3,4] aircraft field experiments using 1.4 GHz radiometers, as well as by the strong RFI environment encountered during the recent ESA SMOS mission, also at 1.4 GHz [5]. As a result, a number of methods for RFI detection and mitigation have been developed and tested. One in particular, "glitch detection" and "pulse blanking" mitigation has been adapted for use by Aquarius [6, 7]. The early on-orbit performance of the Aquarius RFI detection and mitigation algorithm is presented here, together with an assessment of the global RFI environment at 1.4 GHz which can be derived from the Aquarius results.

  8. First national intercomparison of solar ultraviolet radiometers in Italy

    Directory of Open Access Journals (Sweden)

    H. Diémoz

    2011-08-01

    Full Text Available A blind intercomparison of ground-based ultraviolet (UV instruments has been organized for the first time in Italy. The campaign was coordinated by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta and took place in Saint-Christophe (45.8° N, 7.4° E, 570 m a.s.l., in the Alpine region, from 8 to 23 June 2010. It involved 8 institutions, 10 broadband radiometers, 2 filter radiometers and 2 spectroradiometers. Synchronized measurements of downward global solar UV irradiance at the ground were collected and the raw series were then individually processed by the respective operators on the base of their own procedures and calibration data. A radiative transfer model was successfully applied as an interpretative tool. The input parameters and output results are described in detail. The comparison was performed in terms of global solar UV Index and integrated UV-A irradiance against a well-calibrated double monochromator spectroradiometer as reference. An improved algorithm for comparing broadband data and spectra has been developed and is discussed in detail. For some instruments, we found average deviations ranging from −16 % up to 20 % relative to the reference and diurnal variations as large as 15 % even in clear days. Remarkable deviations were found for the instruments calibrated in the manufacturers' facilities and never involved in field intercomparison. Finally, some recommendations to the UV operators based on the campaign results are proposed.

  9. Physical, biological, and chemical data from radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution as part of the SeaWiFS/SIMBIOS project from 13 September 1981 to 16 December 1999 (NODC Accession 0000632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, biological, and chemical data were collected using radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution from 13...

  10. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  11. A simple method to minimize orientation effects in a profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; SrinivasaKumar, T.; Lotlikar, A.

    -fall radiometer is found to be a better option for measuring underwater light parameters as it avoids the effects of ship shadow and is easy to operate, the measurements demand profiling the radiometer vertical in water with minimum tilt. Here we present...

  12. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  13. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  14. A spaceborne synthetic aperture radiometer simulated by the TUD demonstration model

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1994-01-01

    The TUD synthetic aperture radiometer demonstration model consists of a 2-channel X-band correlation radiometer with two horn antennas and an antenna mounting structure enabling the horns to be mounted in relevant positions within a certain aperture. The cross correlation of the signals from the 2...

  15. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21......The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed...... flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight...

  16. Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Wilcox, Stephen; Stoffel, Thomas

    2016-08-01

    Accurate solar radiation measurements require properly installed and maintained radiometers with calibrations traceable to the World Radiometric Reference. This study analyzes the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with an internal shading mask deployed at the National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012), and their measurements were compared under clear-sky, partly cloudy, and mostly cloudy conditions to reference values of low estimated measurement uncertainties. The intent of this paper is to present a general overview of each radiometer's performance based on the instrumentation and environmental conditions available at NREL.

  17. Macrophage-related serum biomarkers soluble CD163 (sCD163) and soluble mannose receptor (sMR) to differentiate mild liver fibrosis from cirrhosis in patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Andersen, E S; Rødgaard-Hansen, S; Moessner, B

    2014-01-01

    with hepatitis C virus (HCV). Forty patients with chronic hepatitis C were included from two hospital clinics. On the day of inclusion, transient elastography (TE) was performed to assess the fibrosis stage, and blood samples were collected for the measurement of sCD163 and sMR. The plasma concentrations of both...

  18. Ability of four dental radiometers to measure the light output from nine curing lights.

    Science.gov (United States)

    Shimokawa, Carlos Alberto Kenji; Harlow, Jessie Eudora; Turbino, Míriam Lacalle; Price, Richard Bengt

    2016-11-01

    To evaluate the accuracy of four dental radiometers when measuring the output from nine light curing units (LCUs). The light output from nine light-emitting diode LCUs was measured with a laboratory-grade power meter (PowerMax-Pro 150 HD) and four dental radiometers (Bluephase Meter II, SDI LED Radiometer, Kerr LED Radiometer, and LEDEX CM4000). Ten measurements were made of each LCU with each radiometer. Analysis of variance (ANOVA) followed by Tukey tests (α=0.05) were used to determine if there was a difference between the calculated irradiance values from the power meter and those from the radiometers. Where applicable, the LCUs were ranked according to their power and irradiance values. The emission spectra from the LCUs was measured using an integrating sphere attached to a fiber-optic spectrometer (N=10). The beam profile of the LCUs was measured with a beam profiler camera. Of the dental radiometers, only the Bluephase Meter II could measure power. ANOVA showed no significant difference between power values measured with the laboratory-grade meter and the Bluephase Meter II (p=0.527). The difference between the mean irradiance reported by the various radiometers for the same LCU was up to 479mW/cm 2 . The ranking of the power values obtained using the laboratory-grade meter was the same for the Bluephase Meter II. When compared to the calculated irradiance values from the laboratory-grade power meter, the Bluephase Meter II provided the most accurate data. Considering the great variation between the irradiance values provided by radiometers and their overall inaccuracy when compared to a laboratory-grade meter, dentists should not place too much faith in the absolute irradiance value. However, hand-held radiometers can be used to monitor changes in the light output of LCUs over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Global ultraviolet spectra derived directly from observations with multichannel radiometers.

    Science.gov (United States)

    Fuenzalida, H A

    1998-11-20

    Some general features of multichannel filter radiometers operating in the UV region of the solar spectrum are reviewed with emphasis on calibration problems that are due to incomplete knowledge of responsivity in the UV-B region. An alternative calibration procedure that is able to generate a full UV spectrum obtained by a constrained inversion method is presented. Accuracy of such spectra is assessed with simulated and with real data. A comparison between customary calibration and an alternative procedure is made in terms of monochromatic UV-B irradiance and CIE dose rate (CIE is the Commission Internationale de l'Eclairage) and indicates that irradiances are estimated within 8% accuracy with solar zenith angles as great as 60 degrees and that dose rates are within 6% for any solar zenith angle. The advantage of having an additional channel in the UV-B region is considered.

  20. The infrared imaging radiometer for PICASSO-CENA

    Science.gov (United States)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  1. Carbon monoxide mixing ratio inference from gas filter radiometer data

    Science.gov (United States)

    Wallio, H. A.; Reichle, H. G., Jr.; Casas, J. C.; Saylor, M. S.; Gormsen, B. B.

    1983-01-01

    A new algorithm has been developed which permits, for the first time, real time data reduction of nadir measurements taken with a gas filter correlation radiometer to determine tropospheric carbon monoxide concentrations. The algorithm significantly reduces the complexity of the equations to be solved while providing accuracy comparable to line-by-line calculations. The method is based on a regression analysis technique using a truncated power series representation of the primary instrument output signals to infer directly a weighted average of trace gas concentration. The results produced by a microcomputer-based implementation of this technique are compared with those produced by the more rigorous line-by-line methods. This algorithm has been used in the reduction of Measurement of Air Pollution from Satellites, Shuttle, and aircraft data.

  2. Data processing for the DMSP microwave radiometer system

    Science.gov (United States)

    Rigone, J. L.; Stogryn, A. P.

    1977-01-01

    A software program was developed and tested to process microwave radiometry data to be acquired by the microwave sensor (SSM/T) on the Defense Meteorological Satellite Program spacecraft. The SSM/T 7-channel microwave radiometer and systems data will be data-linked to Air Force Global Weather Central (AFGWC) where they will be merged with ephemeris data prior to product processing for use in the AFGWC upper air data base (UADB). The overall system utilizes an integrated design to provide atmospheric temperature soundings for global applications. The fully automated processing at AFGWC was accomplished by four related computer processor programs to produce compatible UADB soundings, evaluate system performance, and update the a priori developed inversion matrices. Tests with simulated data produced results significantly better than climatology.

  3. Calibrating ground-based microwave radiometers: Uncertainty and drifts

    Science.gov (United States)

    Küchler, N.; Turner, D. D.; Löhnert, U.; Crewell, S.

    2016-04-01

    The quality of microwave radiometer (MWR) calibrations, including both the absolute radiometric accuracy and the spectral consistency, determines the accuracy of geophysical retrievals. The Microwave Radiometer Calibration Experiment (MiRaCalE) was conducted to evaluate the performance of MWR calibration techniques, especially of the so-called Tipping Curve Calibrations (TCC) and Liquid Nitrogen Calibrations (LN2cal), by repeatedly calibrating a fourth-generation Humidity and Temperature Profiler (HATPRO-G4) that measures downwelling radiance between 20 GHz and 60 GHz. MiRaCalE revealed two major points to improve MWR calibrations: (i) the necessary repetition frequency for MWR calibration techniques to correct drifts, which ensures stable long-term measurements; and (ii) the spectral consistency of control measurements of a well known reference is useful to estimate calibration accuracy. Besides, we determined the accuracy of the HATPRO's liquid nitrogen-cooled blackbody's temperature. TCCs and LN2cals were found to agree within 0.5 K when observing the liquid nitrogen-cooled blackbody with a physical temperature of 77 K. This agreement of two different calibration techniques suggests that the brightness temperature of the LN2 cooled blackbody is accurate within at least 0.5 K, which is a significant reduction of the uncertainties that have been assumed to vary between 0.6 K and 1.5 K when calibrating the HATPRO-G4. The error propagation of both techniques was found to behave almost linearly, leading to maximum uncertainties of 0.7 K when observing a scene that is associated with a brightness temperature of 15 K.

  4. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  5. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  6. Radio Frequency Interference Mitigation for the Planned SMAP Radar and Radiometer

    Science.gov (United States)

    Spencer, Michael; Chan, Samuel; Belz, Eric; Piepmeier, Jeffrey; Mohammed, Priscilla; Kim, Edward; Johnson, Joel T.

    2011-01-01

    NASA's planned SMAP mission will utilize a radar operating in a band centered on 1.26 GHz and a co-observing radiometer operating at 1.41 GHz to measure surface soil moisture. Both the radar and radiometer sub-systems are susceptible to radio frequency interference (RFI). Any significant impact of such interference requires mitigation in order to avoid degradation in the SMAP science products. Studies of RFT detection and mitigation methods for both the radar and radiometer are continuing in order to assess the risk to mission products and to refine the performance achieved.

  7. Filter-radiometer-based realization of candela and establishment of photometric scale at UME

    Science.gov (United States)

    Samedov, Farhad; Durak, Murat; Bazkır, Özcan

    2005-11-01

    The luminous intensity unit of candela was realized based on filter-radiometer, which is traceable to detector-based primary standard electrical substitution cryogenic radiometer (ESCR). In that realization the traditional Osram Wi41/G-type incandescent lamp and filter-radiometer consisting of an aperture, a V(λ) filter and a silicon photodiode based trap detector were used as light source and detection element, respectively. Measurement techniques of effective aperture area, spectral transmittance of V(λ) filter and absolute responsivity of trap detector are also presented.

  8. Spectral Power and Irradiance Responsivity Calibration of InSb Working-Standard Radiometers.

    Science.gov (United States)

    Eppeldauer, G; Rácz, M

    2000-11-01

    New, improved-performance InSb power-irradiance meters have been developed and characterized to maintain the National Institute of Standards and Technology (NIST) spectral responsivity scale between 2 and 5.1 mum. The InSb radiometers were calibrated against the transfer-standard cryogenic bolometer that is tied to the primary-standard cryogenic radiometer of the NIST. The InSb radiometers serve as easy-to-use working standards for routine spectral power and irradiance responsivity calibrations. The spectral irradiance responsivities were derived from the spectral power responsivities by use of the measured area of the apertures in front of the InSb detectors.

  9. Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance.

    Science.gov (United States)

    Hülsen, Gregor; Gröbner, Julian

    2007-08-10

    An ultraviolet calibration center has been established in Davos, Switzerland. It provides a laboratory for characterizing the spectral and angular response of broadband radiometers. The absolute calibration of these instruments is performed through the comparison to the reference spectroradiometer QASUME. We present what we believe to be a novel calibration methodology that explicitly includes the information of the angular and spectral response functions. From the results of the latest broadband intercomparison campaign, the typical uncertainties of these instruments could be obtained. Most radiometers have an expanded uncertainty of approximately 7%. The angular response introduces an uncertainty of 0.9%-7.2%, depending on the cosine error of the radiometer.

  10. Measurement of Ocean Wind Vector by an Airborne, Imaging Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Laursen, Brian

    1998-01-01

    Airborne measurements of the sea surface have been carried out with an imaging polarimetric 16-GHz radiometer system, aimed at determining the wind direction. The radiometer system features a high-speed digital correlator, and it measures all four parameters of the brightness temperature Stokes...... vector simultaneously. Preliminary experiments have confirmed the directional signatures of the sea brightness temperature as reported by other researchers and have led to development of improved instrumentation with the intention of determining the wind vector pixel by pixel in the radiometer imagery....

  11. Digital processor breadboard for RFI detection and mitigation in spaceborne radiometers

    DEFF Research Database (Denmark)

    Kristensen, Steen Savstrup; Skou, Niels; Kovanen, Arhippa

    2014-01-01

    The increasing problem with Radio Frequency Interference (RFI) in protected radiometer frequency bands has inspired the development and implementation of methods for detecting RFI. With increasing demands for next generation spaceborne radiometers, it becomes necessary to include RFI detection...... in such systems. Since input to these methods require much more data than traditional radiometer data, and since the downlink capacity for spaceborne systems are limited, RFI detection and mitigation must be implemented on-board thereby maintaining the low downlink data rate. The development of such a system...

  12. Comparison of Sensorimotor Rhythm (SMR) and Beta Training on Selective Attention and Symptoms in Children with Attention Deficit/Hyperactivity Disorder (ADHD): A Trend Report.

    Science.gov (United States)

    Mohammadi, Mohammad Reza; Malmir, Nastaran; Khaleghi, Ali; Aminiorani, Majd

    2015-06-01

    The aim of this study was to assess and compare the effect of two neurofeedback protocols (SMR/theta and beta/theta) on ADHD symptoms, selective attention and EEG (electroencephalogram) parameters in children with ADHD. The sample consisted of 16 children (9-15 year old: 13 boys; 3 girls) with ADHD-combined type (ADHD-C). All of children used methylphenidate (MPH) during the study. The neurofeedback training consisted of two phases of 15 sessions, each lasting 45 minutes. In the first phase, participants were trained to enhance sensorimotor rhythm (12-15 Hz) and reduce theta activity (4-8 Hz) at C4 and in the second phase; they had to increase beta (15-18 Hz) and reduce theta activity at C3. Assessments consisted of d2 attention endurance test, ADHD rating scale (parent form) at three time periods: before, middle and the end of the training. EEG signals were recorded just before and after the training. Based on parents' reports, inattention after beta/theta training, and hyperactivity/impulsivity were improved after the end of the training. All subscales of d2 test were improved except for the difference between maximum and minimum responses. However, EEG analysis showed no significant differences. Neurofeedback in conjunction with Methylphenidate may cause further improvement in ADHD symptoms reported by parents and selective attention without long-term impact on EEG patterns. However, determining the exact relationship between EEG parameters, neurofeedback protocols and ADHD symptoms remain unclear.

  13. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).

    Science.gov (United States)

    Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A

    2017-11-01

    Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    observation) obtained dur - ing the validation period are given T a ble 2. Day and night match - ups are separated for studying the nature of the diurnal relationship. Spurious M SMR values were discar - ded to safeguard the relationship by following a..., period of observation and collocated datapoints. Day and night match - ups are displayed sep a rately No. of match - ups obtained Platform Parameter Period Day Night Both SST 18...

  15. GPM GROUND VALIDATION ADVANCED MICROWAVE PRECIPITATION RADIOMETER (AMPR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Precipitation Radiometer (AMPR) instrument played a key role in the Midlatitude Continental Convective Clouds Experiment (MC3E). The AMPR...

  16. A satellite-based multichannel infrared radiometer to sound the atmosphere

    Science.gov (United States)

    Esplin, Roy W.; Batty, J. Clair; Jensen, Mark; McLain, Dave; Jensen, Scott; Stauder, John; Stump, Charles W.; Roettker, William A.; Vanek, Michael D.

    1995-01-01

    This paper describes a 12-channel infrared radiometer with the acronym SABER (Sounding of the Atmosphere using Broadband Emission radiometry) that has been selected by NASA to fly on the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) mission.

  17. Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory

    Science.gov (United States)

    Smith, G. L.; Green, R. N.

    1981-01-01

    The theory of deconvolution of wide field-of-view (WFOV) radiometer measurements of earth-emitted radiation provides a technique by which the resolution of such measurements can be enhanced to provide radiant exitance at the top of the atmosphere with a finer resolution than the field of view. An analytical solution for the earth-emitted radiant exitance in terms of WFOV radiometer measurements is derived for the nonaxisymmetric (or regional) case, in which the measurements and radiant exitance are considered to be functions of both latitude and longitude. This solution makes it possible to deconvolve a set of WFOV radiometer measurements of earth-emitted radiation and obtain information with a finer resolution than the instantaneous field of view of the instrument. It is shown that there are tradeoffs involved in the selection between WFOV and scanning radiometers.

  18. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) dataset for the GPM Cold-season Precipitation Experiment (GCPEx) plays the role as an airborne...

  19. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) dataset for the Midlatitude Continental Convective Clouds Experiment (MC3E) plays the role as an...

  20. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) IPHEx dataset includes data gathered during the Integrated Precipitation and...

  1. GPM GROUND VALIDATION ADVANCED MICROWAVE PRECIPITATION RADIOMETER (AMPR) IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) IPHEx dataset was acquired by the AMPR instrument during the IPHEx field campaign in...

  2. GPM GROUND VALIDATION ADVANCED MICROWAVE PRECIPITATION RADIOMETER (AMPR) IPHEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) IPHEx dataset was acquired by the AMPR instrument during the IPHEx field campaign in...

  3. AVHRR Orbital Segment = NOAA's Advanced Very High Resolution Radiometer Files: 1992 - 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Advanced Very High Resolution Radiometer (AVHRR) data set is comprised of data collected by the AVHRR sensor and held in the archives of the USGS Earth Resources...

  4. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Integrated Water Vapor (IWV) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_IWV_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Integrated Water Vapor (IWV) data by Prabhakara.The Scanning Multichannel...

  5. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  6. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive soil moisture estimates onto a 36-km global Earth-fixed grid, based on radiometer measurements acquired when the SMAP spacecraft is travelling from North to...

  7. Nimbus-2 Level 2 Medium Resolution Infrared Radiometer (MRIR) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus II Medium Resolution Infrared Radiometer (MRIR) was designed to measure electromagnetic radiation emitted and reflected from the earth and its atmosphere...

  8. AVHRR Composites = Advanced Very High Resolution Radiometer U.S. Alaska: 1989 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Normalized Difference Vegetation Index (NDVI) Composites are produced from multiple Advanced Very High Resolution Radiometer (AVHRR) daily observations that have...

  9. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Quasi-Analytical Algorithm (GSM) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  10. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Quasi-Analytical Algorithm (GSM) Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  11. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of cloud masks from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard...

  12. Realization of photometric base unit of candela traceable to cryogenic radiometer at UME

    Science.gov (United States)

    Samedov, F.; Bazkır, Ö.

    2005-06-01

    At National Metrology Institute of Turkey (UME, Ulusal Metroloji Enstitüsü), luminous intensity unit of candela was realized using detector-based approach and photometric scale was re-established depending on this new realization. Candela was measured on photometric bench using interferometric distance measurement system and filter-radiometer traceable to UME primary level electrical-substitution cryogenic radiometer. Thermally stabilized filter radiometer, which has been designed for spectral irradiance measurements, is consists of trap detector, filter housing and precision aperture. Different measurement techniques were used to fully characterize each parameter of filter-radiometer; like effective aperture area, spectral transmittance of V(λ) filter and responsivity of trap detector.

  13. Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements

    National Research Council Canada - National Science Library

    Burrage, Derek M; Wesson, Joel C; Goodberlet, Mark A; Miller, Jerry L

    2007-01-01

    Airborne microwave radiometers for salinity remote sensing have advanced to a point where operational surveys can be conducted over the inner continental shelf to observe the evolution of freshwater...

  14. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Remote-Sensing Reflectance (RRS) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  15. Intersatellite Calibration of Polar-orbiting Radiometers using the SNO/SCO Method

    National Research Council Canada - National Science Library

    Cao, Changyong; Weng, Fuzhong; Goldberg, Mitch; Wu, Xiangqian; Xu, Hui; Ciren, Pubu

    2005-01-01

    There is an increasing demand for intercalibrating the polar-orbiting radiometers on different satellites to achieve the consistency and traceability required for long-term climate studies with the 25...

  16. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using...... subharmonic sampling to sample directly at the RF-frequency, this radiometer obtains a fully polarimetric response and enables detection and removal of radio frequency interference (RFI). A more compact AFE will enable various desired features, as for example the ability to use the front-end with antenna...... arrays needing one receiver per antenna (Synthetic Aperture Radiometer, SARad), reduced weight for airborne missions and an easy temperature stabilization, i.e. improved instrument stability. The new front-end possesses an improved system noise temperature of only 76 K (roughly 40 K improvement) measured...

  17. Analysis of Radiometer Data from the Volga SA-2 Static Firing

    National Research Council Canada - National Science Library

    Emery, Jonathan

    2000-01-01

    ...) Test Area 5 on September 15, 1999. Signatures were measured using a non-imaging radiometer and a suite of imaging instruments ranging from the ultraviolet through long wave infrared, as well as laser backscatter and transmission measurements...

  18. A multipoint correction method for environmental temperature changes in airborne double-antenna microwave radiometers.

    Science.gov (United States)

    Sun, Jian; Zhao, Kai; Jiang, Tao

    2014-04-29

    This manuscript describes a new type Ka-band airborne double-antenna microwave radiometer (ADAMR) designed for detecting atmospheric supercooled water content (SCWC). The source of the measurement error is investigated by analyzing the model of the system gain factor and the principle of the auto-gain compensative technique utilized in the radiometer. Then, a multipoint temperature correction method based on the two-point calibration method for this radiometer is proposed. The multipoint temperature correction method can eliminate the effect of changes in environmental temperature by establishing the relationship between the measurement error and the physical temperatures of the temperature-sensitive units. In order to demonstrate the feasibility of the correction method, the long-term outdoor temperature experiment is carried out. The multipoint temperature correction equations are obtained by using the least square regression method. The comparison results show that the measuring accuracy of the radiometer can be increased more effectively by using the multipoint temperature correction method.

  19. Experimental and Computational Study of Area and Perimeter Contributions to Radiometer Forces (Preprint)

    National Research Council Canada - National Science Library

    Selden, N. P; Muntz, E. P; Gimelshein, S. F; Alexeenko, A; Ketsdever, A. D

    2008-01-01

    .... Gas pressure was varied from .006 to 6 Pa, which was a broad enough range to observe the characteristic peak force production of a radiometer in the transition regime, where the peak occurs at Kn approximately 0.1...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Detection Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of suspended matter from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of snow cover from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  2. An optical scanning subsystem for a UAS-enabled hyperspectral radiometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hyperspectral visible radiometer instrument system has been developed for use on UAS platforms.  It has been successfully flown on three previous UAS field...

  3. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Chlorophyll (CHL) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  4. CAMEX-4 CONICALLY-SCANNING TWO-LOOK AIRBORNE RADIOMETER (C-STAR) V1a

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conically-Scanning Two-look Airborne Radiometer (C-STAR) was deployed during the Fourth Convection and Moisture Experiment (CAMEX-4). C-STAR data were collected...

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE is a weekly product derived from the VIIRS...

  6. GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) OLYMPEX dataset was collected by the AMPR instrument flown on the high altitude ER-2...

  7. GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) OLYMPEX dataset consists of brightness temperatures from 9 channels as...

  8. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sensor Data Records (SDRs), or Level 1b data, from the Visible Infrared Imaging Radiometer Suite (VIIRS) are the calibrated and geolocated radiance and reflectance...

  10. The TSI Radiometer Facility: absolute calibrations for total solar irradiance instruments

    Science.gov (United States)

    Kopp, Greg; Heuerman, Karl; Harber, Dave; Drake, Ginger

    2007-09-01

    The total solar irradiance (TSI) climate data record includes overlapping measurements from 10 spaceborne radiometers. The continuity of this climate data record is essential for detecting potential long-term solar fluctuations, as offsets between different instruments generally exceed the stated instrument uncertainties. The risk of loss of continuity in this nearly 30-year record drives the need for future instruments with solar power levels to these needed accuracy levels. The new TSI Radiometer Facility (TRF) is intended to provide such calibrations. Based on a cryogenic radiometer with a uniform input light source of solar irradiance power levels, the TRF allows direct comparisons between a TSI instrument and a reference cryogenic radiometer viewing the same light beam in a common vacuum system. We describe here the details of this facility designed to achieve 0.01% absolute accuracy.

  11. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-11-21

    Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibration service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These

  12. Development of a Miniature L-band Radiometer for Education Outreach in Remote Sensing

    Science.gov (United States)

    King, Lyon B.

    2004-01-01

    Work performed under this grant developed a 1.4-Mhz radiometer for use in soil moisture remote sensing from space. The resulting instrument was integrated onto HuskySat. HuskySat is a 30-kg nanosatellite built under sponsorship from the Air Force Research Laboratory and NASA. This report consists of the interface document for the radiometer (the Science Payload of HuskySat) as detailed in the vehicle design report.

  13. SMOS calibration and validation activities with airborne interferometric radiometer HUT-2D during spring 2010

    DEFF Research Database (Denmark)

    Kainulainen, J.; Rautiainen, K.; Sievinen, P.

    2010-01-01

    In this paper we present calibration and validation activities of European Space Agency’s SMOS mission, which utilize airborne interferomentric L-band radiometer system HUT-2D of the Aalto University. During spring 2010 the instrument was used to measure three SMOS validation target areas, one...... in Denmark and two in Germany. We present these areas shortly, and describe the airborne activities. We show some exemplary measurements of the radiometer system and demonstrate the studies using the data....

  14. Results from the 4th WMO Filter Radiometer Comparison for aerosol optical depth measurements

    OpenAIRE

    Kazadzis, Stelios; Kouremeti, Natalia; Diémoz, Henri; Gröbner, Julian; Forgan, Bruce W.; Campanelli, Monica; Estellés, Victor; Lantz, Kathleen; Michalsky, Joseph; Carlund, Thomas; Cuevas, Emilio; Toledano, Carlos; Becker, Ralf; Nyeki, Stephan; Kosmopoulos, Panagiotis G.

    2017-01-01

    This study presents the results of the 4th Filter Radiometer Comparison that was held in Davos, Switzerland, between September 28 and October 16, 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the WMO criterion defined as 95 % of the measured data has to be within 0.005 ± 0.001/...

  15. A concept for global crop forecasting. [using microwave radiometer satellites

    Science.gov (United States)

    Lovelace, U. M.; Wright, R. L.

    1983-01-01

    The mission, instrumentation, and design concepts for microwave radiometer satellites for continuous crop condition forecasting and monitoring on a global basis are described. Soil moisture affects both crop growth and the dielectric properties of the soil, and can be quantified by analysis of reflected radiance passively received by orbiting spacecraft. A dedicated satellite reading a swath 200 km across, with 1 km and 1 K temperature resolution, could track the time-varying changes of solid moisture, sea ice, and water surface temperature. Launched by the Shuttle into an interim orbit, a boost would place the satellite in a 400 or 700 km orbit. Resolution requirements indicate a 45-725 m diam antenna, with 70 dB gain, operating at frequencies of 1.08, 2.03, and 4.95 GHz to ensure atmospheric transparency. Alternative structural concepts include either double-layer tetrahedral or single-layer geodesic trusses as the basic structural members. An analysis of the electrostatic positioning of the parabolic antenna membrane is outlined.

  16. Time series inversion of spectra from ground-based radiometers

    Directory of Open Access Journals (Sweden)

    O. M. Christensen

    2013-07-01

    Full Text Available Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument, which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the Onsala Space Observatory (OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.

  17. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  18. Jupiter's global ammonia distribution inferred from Juno Microwave Radiometer Observations

    Science.gov (United States)

    Li, Cheng; Ingersoll, Andrew; Ewald, Shawn; Oyafuso, Fabiano; Janssen, Michael

    2017-04-01

    The Juno microwave radiometer (Juno/MWR) has made several observations of Jupiter's atmosphere by measuring the thermal emission from pressure levels down to a few hundred bars. The main objective of Juno/MWR is to determine Jupiter's deep water abundance because water is the key to understand Jovian meteorology that we observe at the cloud level, and because the deep water abundance hints at a giant planet's volatile and heavy element history. Since ammonia is the major opacity source in the Juno/MWR channels, it is especially important to figure out the ammonia distribution before we can conclude anything on the water abundance. At this stage of our analysis, we have inverted a global map (vertical and latitudinal) of ammonia distribution from the observed brightness temperatures at six wavelengths using the Markov Chain Monte Carlo technique. This method fully calibrates error and explores a wide range of the parameter space to avoid falling into a local minimum. The robustness of the retrieval is explained by matching the features in the ammonia distribution with the features in the microwave spectra. We will also announce the initial result of the retrieval of water abundance using the same technique.

  19. Polarimetric characteristics of a class of hyperspectral radiometers.

    Science.gov (United States)

    Talone, Marco; Zibordi, Giuseppe

    2016-12-10

    The polarimetric characteristics of a class of hyperspectral radiometers commonly applied for above-water radiometry have been investigated by analyzing a sample of sensors. Results indicate polarization sensitivity increasing with wavelength and exhibiting values varying from sensor to sensor. In the case of radiance sensors, the maximum differences increase from approximately 0.4% at 400 nm to 1.3% at 750 nm. In the case of irradiance sensors, due to depolarizing effects of the diffusing collector, the maximum differences between horizontal and vertical polarization sensitivities vary from approximately 0.3% at 400 nm to 0.6% at 750 nm. Application of the previous results to above-water radiometry measurements performed in sediment dominated waters indicates that neglecting polarization effects may lead to uncertainties not exceeding a few tenths of a percent in remote sensing reflectance RRS determined in the 400-570 nm spectral interval. Conversely, uncertainties spectrally increase toward the near infrared, reaching several percent at 750 nm in the case of oligotrophic waters.

  20. Effect of emitted wavelength and light guide type on irradiance discrepancies in hand-held dental curing radiometers.

    Science.gov (United States)

    Kameyama, Atsushi; Haruyama, Akiko; Asami, Masako; Takahashi, Toshiyuki

    2013-01-01

    The purpose of this study was to determine any discrepancies in the outputs of five commercial dental radiometers and also to evaluate the accuracy of these devices using a laboratory-grade spectroradiometer. The power densities of 12 different curing light sources were repeatedly measured for a total of five times using each radiometer in a random order. The emission spectra of all of the curing light sources were also measured using the spectroradiometer, and the integral value of each spectrum was calculated to determine the genuine power densities, which were then compared to the displayed power densities measured by the dental radiometers. The displayed values of power density were various and were dependent on the brand of radiometer, and this may be because each radiometer has a different wavelength sensitivity. These results cast doubt upon the accuracy of commercially available dental radiometers.

  1. Comparison of Sensorimotor Rhythm (SMR and Beta Training on Selective Attention and Symptoms in Children with Attention Deficit/Hyperactivity Disorder (ADHD: A Trend Report

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mohammadi

    2015-11-01

    Full Text Available  Objective: The aim of this study was to assess and compare the effect of two neurofeedback protocols (SMR/theta and beta/theta on ADHD symptoms, selective attention and EEG (electroencephalogram parameters in children with ADHD.  Method:The sample consisted of 16 children (9-15 year old: 13 boys; 3 girls with ADHD-combined type (ADHD-C. All of children used methylphenidate (MPH during the study. The neurofeedback training consisted of two phases of 15 sessions, each lasting 45 minutes. In the first phase, participants were trained to enhance sensorimotor rhythm (12-15 Hz and reduce theta activity (4-8 Hz at C4 and in the second phase; they had to increase beta (15-18 Hz and reduce theta activity at C3. Assessments consisted of d2 attention endurance test, ADHD rating scale (parent form at three time periods: before, middle and the end of the training. EEG signals were recorded just before and after the training . Result:Based on parents’ reports, inattention after beta/theta training, and hyperactivity/impulsivity were improved after the end of the training. All subscales of d2 test were improved except for the difference between maximum and minimum responses. However, EEG analysis showed no significant differences . Conclusion:Neurofeedback in conjunction with Methylphenidate may cause further improvement in ADHD symptoms reported by parents and selective attention without long-term impact on EEG patterns. However, determining the exact relationship between EEG parameters, neurofeedback protocols and ADHD symptoms remain unclear.

  2. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.

    Science.gov (United States)

    Ducatti, Diogo R B; Carroll, Madison A; Jakeman, David L

    2016-11-29

    A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (Km = 0.24 mM, kcat = 1.2 s-1, kcat/Km = 5.0 mM-1s-1) than pNP-beta-D-Glcp (Km = 33 mM, kcat = 3.3 × 10-3 s-1, kcat/Km = 9 × 10-4 mM-1s-1). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  4. LYRA, a solar UV radiometer on Proba2

    Science.gov (United States)

    Hochedez, J.-F.; Schmutz, W.; Stockman, Y.; Schühle, U.; Benmoussa, A.; Koller, S.; Haenen, K.; Berghmans, D.; Defise, J.-M.; Halain, J.-P.; Theissen, A.; Delouille, V.; Slemzin, V.; Gillotay, D.; Fussen, D.; Dominique, M.; Vanhellemont, F.; McMullin, D.; Kretzschmar, M.; Mitrofanov, A.; Nicula, B.; Wauters, L.; Roth, H.; Rozanov, E.; Rüedi, I.; Wehrli, C.; Soltani, A.; Amano, H.; van der Linden, R.; Zhukov, A.; Clette, F.; Koizumi, S.; Mortet, V.; Remes, Z.; Petersen, R.; Nesládek, M.; D'Olieslaeger, M.; Roggen, J.; Rochus, P.

    LYRA is the solar UV radiometer that will embark in 2006 onboard Proba2, a technologically oriented ESA micro-mission. LYRA is designed and manufactured by a Belgian Swiss German consortium (ROB, PMOD/WRC, IMOMEC, CSL, MPS and BISA) with additional international collaborations. It will monitor the solar irradiance in four UV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and Space Weather: (1) the 115 125 nm Lyman-α channel, (2) the 200 220 nm Herzberg continuum range, (3) the Aluminium filter channel (17 70 nm) including He II at 30.4 nm and (4) the Zirconium filter channel (1 20 nm). The radiometric calibration will be traceable to synchrotron source standards (PTB and NIST). The stability will be monitored by onboard calibration sources (LEDs), which allow to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of a pioneering UV detectors program. Diamond sensors make the instruments radiation-hard and solar-blind: their high bandgap energy makes them insensitive to visible light and, therefore, make dispensable visible light blocking filters, which seriously attenuate the desired ultraviolet signal. Their elimination augments the effective area and hence the signal-to-noise, therefore increasing the precision and the cadence. The SWAP EUV imaging telescope will operate next to LYRA on Proba2. Together, they will establish a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  5. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  6. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2014-09-01

    Full Text Available We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2 polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea–land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.

  7. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  8. MWR: Microwave Radiometer for the Juno Mission to Jupiter

    Science.gov (United States)

    Janssen, M. A.; Oswald, J. E.; Brown, S. T.; Gulkis, S.; Levin, S. M.; Bolton, S. J.; Allison, M. D.; Atreya, S. K.; Gautier, D.; Ingersoll, A. P.; Lunine, J. I.; Orton, G. S.; Owen, T. C.; Steffes, P. G.; Adumitroaie, V.; Bellotti, A.; Jewell, L. A.; Li, C.; Li, L.; Misra, S.; Oyafuso, F. A.; Santos-Costa, D.; Sarkissian, E.; Williamson, R.; Arballo, J. K.; Kitiyakara, A.; Ulloa-Severino, A.; Chen, J. C.; Maiwald, F. W.; Sahakian, A. S.; Pingree, P. J.; Lee, K. A.; Mazer, A. S.; Redick, R.; Hodges, R. E.; Hughes, R. C.; Bedrosian, G.; Dawson, D. E.; Hatch, W. A.; Russell, D. S.; Chamberlain, N. F.; Zawadski, M. S.; Khayatian, B.; Franklin, B. R.; Conley, H. A.; Kempenaar, J. G.; Loo, M. S.; Sunada, E. T.; Vorperion, V.; Wang, C. C.

    2017-03-01

    The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA's New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter's subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ˜12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter's brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one

  9. MWR: Microwave Radiometer for the Juno Mission to Jupiter

    Science.gov (United States)

    Janssen, M. A.; Oswald, J. E.; Brown, S. T.; Gulkis, S.; Levin, S. M.; Bolton, S. J.; Allison, M. D.; Atreya, S. K.; Gautier, D.; Ingersoll, A. P.; Lunine, J. I.; Orton, G. S.; Owen, T. C.; Steffes, P. G.; Adumitroaie, V.; Bellotti, A.; Jewell, L. A.; Li, C.; Li, L.; Misra, S.; Oyafuso, F. A.; Santos-Costa, D.; Sarkissian, E.; Williamson, R.; Arballo, J. K.; Kitiyakara, A.; Ulloa-Severino, A.; Chen, J. C.; Maiwald, F. W.; Sahakian, A. S.; Pingree, P. J.; Lee, K. A.; Mazer, A. S.; Redick, R.; Hodges, R. E.; Hughes, R. C.; Bedrosian, G.; Dawson, D. E.; Hatch, W. A.; Russell, D. S.; Chamberlain, N. F.; Zawadski, M. S.; Khayatian, B.; Franklin, B. R.; Conley, H. A.; Kempenaar, J. G.; Loo, M. S.; Sunada, E. T.; Vorperion, V.; Wang, C. C.

    2017-11-01

    The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA's New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter's subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ˜12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter's brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one

  10. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin

    2012-03-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  11. ELBARA II, an L-band radiometer system for soil moisture research.

    Science.gov (United States)

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.

  12. Optical depth measurements by shadow-band radiometers and their uncertainties.

    Science.gov (United States)

    Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  13. The Compact Lightweight Absolute Radiometer (CLARA) for Total Solar Irradiance Measurements on the NORSAT-1 Satellite

    Science.gov (United States)

    Walter, Benjamin; Finsterle, Wolfgang; Koller, Silvio; Levesque, Pierre-Luc; Pfiffner, Daniel; Schmutz, Werner

    2017-04-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar variability on the Earth's energy budget. The existence of a potential long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA was designed and built by PMOD/WRC and characterized and calibrated by PMOD/WRC as part of the "European Metrology Research Program" (EMRP) project "European Metrology for Earth Observation and Climate" (MetEOC-2) funded by the European Commission. The main goals of the CLARA experiment are to continue the TSI data record with high accuracy and precision and to facilitate monitoring with its compact and adaptable design. CLARA will be one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. The launch of NORSAT-1 is planned for March 2017. We present the design and calibration of CLARA, a new generation of Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-detector design for degradation tracking and redundancy, ii) a digital control system, iii) a new reference block and detector design to minimize size and weight of the instrument. The characterization of the CLARA instrument components provides an overview on the improvements that were achieved with the latest radiometer developments. An end-to-end calibration of CLARA against the SI-traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder (Colorado) results in a combined measurement uncertainty of 0.05% (k = 1

  14. Using High-Resolution Hand-Held Radiometers To Measure In-Situ Thermal Resistance

    Science.gov (United States)

    Burch, Douglas M.; Krintz, Donald F.

    1984-03-01

    A field study was carried out to investigate the accuracy of using high-resolution radiometers to determine the in situ thermal resistance of building components having conventional residential construction. Two different types of radiometers were used to determine the thermal resistances of the walls of six test buildings located at the National Bureau of Standards. These radiometer thermal resistance measurements were compared to reference thermal resistance values determined from steady-state series resistance predictions, time-averaged heat-flow-sensor measurements, and guarded-hot-box measurements. When measurements were carried out 5 hours after sunset when the outdoor temperature was relatively steady and the heating plant was operated in a typical cyclic fashion, the following results were obtained: for lightweight wood-frame cavity walls, the radiometer procedures were found to distinguish wall thermal resistance 4.4 h.ft2- °F/Btu (0.77 m2•K/W) systematically higher than corresponding reference values. Such a discrimination will per-mit insulated and uninsulated walls to be distinguished. However, in the case of walls having large heat capacity (e.g., masonry and log), thermal storage effects produced large time lags between the outdoor diurnal temperature variation and the heat-flow response at the inside surface. This phenomenon caused radiometer thermal resistances to deviate substantially from corresponding reference values. This study recommends that the ANSI/ASHRAE Standard 101-1981 be modified requiring the heating plant to be operated in a typical cyclic fashion instead of being turned off prior to and during radiometer measurements.

  15. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  16. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... (FPA) in push-broom radiometers. This algorithm is formulated as an optimization procedure that maximizes the beam efficiency, while minimizing the side-lobe and cross-polarization power in the area of Earth, subject to a constraint on the beamformer dynamic range. The proposed algorithm is applied...

  17. On-board digital RFI and polarimetry processor for future spaceborne radiometer systems

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Ruokokoski, T.

    2012-01-01

    Man-made Radio Frequency Interference (RFI) is an increasingly threatening problem for passive microwave radiometry from space. The problem is presently very evident in L-band data from SMOS, but it is realized that it is already now a problem at other traditional radiometer bands at C, X, and Ku...... bands. Studies of data from existing radiometer systems have revealed this, and clearly indicates increasing RFI intensity over time. Thus, future missions have to take this into consideration, and dedicated hardware and algorithms to safely detect and mitigate RFI must be included. The design...

  18. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  19. Estimation of optimal size of plots for experiments with radiometer in ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-29

    Jul 29, 2015 ... Estimation of optimal size of plots for experiments with radiometer in beans. Roger Nabeyama Michels1*, Marcelo Giovanetti Canteri2, Inês Cristina de Batista Fonseca2,. Marcelo ... with beans, the size of the portions differ according to the ... obtained through the minor form: 0.45 m × 1 m (Table 1). The.

  20. Retrieval of physical properties of interference filters integrated in radiometer instruments by using reverse engineering process

    Science.gov (United States)

    Álvarez-Ríos, F. Javier; Jiménez, Juan José; Gonzalez-Guerrero, Miguel; Martin, Israel

    2017-11-01

    The Solar Irradiance flux experiment a spectral filtering process as the irradiance flux propagates from the source to the sensor. When using radiometer sensors for optical measurement both the atmospheric transmittance, sensor's filter and the responsivity of the detector produces a spectral filtering.

  1. Airborne L-band radiometer mapping of the dome-C area in Antarctica

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2015-01-01

    A 350 km × 350 km area near the Concordia station on the high plateau of Dome-C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature (TB) close to the yearly mean temperature-well suited for calibration...

  2. Mapping of the DOME-C area in Antarctica by an airborne L-band radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2014-01-01

    A 350 × 350 km area near the Concordia station on the high plateau of Dome C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature close to the yearly mean temperature — well suited for calibration checks...

  3. First Results from the Microwave Radiometer (MWR) on Aquarius/SAC-D

    Science.gov (United States)

    Jones, L.; Gallo, J.; Rocca, D.; Rabolli, M.; Madero, F.; Kuba, J.; Masuelli, S.; Heredia, S. D.; Biswas, S. K.; Hejazin, Y.

    2011-12-01

    This paper presents first results from the Microwave Radiometer (MWR) instrument on the Aquarius/SAC-D satellite launched in June 2011. The MWR is a three channel pushbroom microwave radiometer with 8 antenna beams/channel that provides a measurement swath of approximately 380 Km. These channels provide 36.5 GHz dual horizontal and vertical polarized and 23.8 GHz horizontal polarized radiance measurements in an overlapping swath with the L-band Aquarius radiometer/scatterometer. From these microwave brightness temperatures, MWR provides ancillary geophysical measurements of columnar water vapor, ocean surface wind speed, oceanic rain rate and sea ice cover, which support the Aquarius mission objective of global sea surface salinity measurements. Results are presented showing MWR measurements compared to similar measurements made by the WindSat polarimetric radiometer on the US Navy's Coriolis satellite. The orbits of Aquarius and Windsat are very similar and provide about 60% overlap within a ± 45 minute window. First, inter-satellite radiometric comparisons of MWR brightness temperature with the WindSat are discussed. Also comparisons are made of MWR geophysical parameter retrievals with collocated WindSat environmental data records and the NOAA Global Data Assimilation System (GDAS) atmospheric and ocean surface parameters.

  4. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  5. A New Algorithm to Determine the Spectral Aerosol Optical Depth from Satellite Radiometer Measurements

    NARCIS (Netherlands)

    Veefkind, J.P.; Leeuw, G. de

    1998-01-01

    A new aerosol retrieval algorithm is presented which computes the spectral optical depth over the ocean from spaceborne radiometers. It includes both multiple scattering and the bi-directional reflectance of the ocean surface. The previous termalgorithmnext term is applied to data from the Along

  6. Estimation of optimal size of plots for experiments with radiometer in ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-29

    Jul 29, 2015 ... radiometer in beans. Roger Nabeyama Michels1*, Marcelo Giovanetti Canteri2, Inês Cristina de Batista Fonseca2,. Marcelo Augusto de Aguiar e Silva2 and José Alexandre de França2. 1Universidade Tecnológica Federal do Paraná, Avenida dos Pioneiros, 3131, CEP 86036-370, Londrina, PR, Brasil.

  7. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...

  8. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard.

    Science.gov (United States)

    Fedchak, James A; Carter, Adriaan C; Datla, Raju

    2006-01-01

    The Low Background Infrared calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) presently maintains four absolute cryogenic radiometers (ACRs) which serve as standard reference detectors for infrared calibrations performed by the facility. The primary standard for optical power measurements at NIST-Gaithersburg has been the High Accuracy Cryogenic Radiometer (HACR). Recently, an improved radiometer, the Primary Optical Watt Radiometer (POWR), has replaced the HACR as the primary standard. In this paper, we present the results of comparisons between the radiometric powers measured by the four ACRs presently maintained by the LBIR facility to that measured by the HACR and POWR. This was done by using a Si photodiode light-trapping detector as a secondary transfer standard to compare the primary national standards to the ACRs maintained by the LBIR facility. The technique used to compare an ACR to the trap detector is described in detail. The absolute optical power measurements are found to be within 0.1 % of the primary standard for all the ACRs examined in this study.

  9. Considerations About Antenna Pattern Measurements of 2-D Aperture Synthesis Radiometers

    OpenAIRE

    Camps Carmona, Adriano José; Skou, Neils; Torres Torres, Francisco; Corbella Sanahuja, Ignasi; Duffo Ubeda, Núria

    2006-01-01

    Accurate measurement of the antenna voltage patterns of large-aperture synthesis radiometers is critical in order to achieve good radiometric accuracy, and a very time consuming and expensive task. Measurement requirements and a tradeoff study relating radiometric accuracy degradation and number of elements to be measured are presented. Peer Reviewed

  10. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  11. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...... with independent backscattering radiometer data....

  12. Considerations About Antenna Pattern Measurements of 2-D Aperture Synthesis Radiometers

    DEFF Research Database (Denmark)

    Camps, Adreano; Skou, Niels; Torres, Francesc

    2006-01-01

    Accurate measurement of the antenna voltage patterns of large-aperture synthesis radiometers is critical in order to achieve good radiometric accuracy, and a very time consuming and expensive task. Measurement requirements and a tradeoff study relating radiometric accuracy degradation and number...

  13. Measurement of Wind Signatures on the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Rotbøll, Jesper; Skou, Niels

    2002-01-01

    A series of circle flights have been carried out over the wind driven sea, using the EMIRAD L-band polarimetric radiometer, described in J. Rotboll et al. (2001). Data are calibrated and corrected for aircraft attitude, and 360 degrees azimuth profiles are generated. The results show some variation...

  14. The 1997 North American Interagency Intercomparison of Ultraviolet Spectroradiometers Including Narrowband Filter Radiometers.

    Science.gov (United States)

    Lantz, Kathleen; Disterhoft, Patrick; Early, Edward; Thompson, Ambler; DeLuisi, John; Berndt, Jerry; Harrison, Lee; Kiedron, Peter; Ehramjian, James; Bernhard, Germar; Cabasug, Lauriana; Robertson, James; Mou, Wanfeng; Taylor, Thomas; Slusser, James; Bigelow, David; Durham, Bill; Janson, George; Hayes, Douglass; Beaubien, Mark; Beaubien, Arthur

    2002-01-01

    The fourth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 15 to 25, 1997 at Table Mountain outside of Boulder, Colorado, USA. Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NIST and NOAA, and included participants from the ASRC, EPA, NIST, NSF, SERC, USDA, and YES. The UV measuring instruments included scanning spectroradiometers, spectrographs, narrow band multi-filter radiometers, and broadband radiometers. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity. The spectral irradiance responsivity was determined two to three times outdoors to assess temporal stability. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST traceable standard lamp, and a simple convolution technique with a Gaussian slit-scattering function to account for the different bandwidths of the instruments, the measured solar irradiance from the spectroradiometers excluding the filter radiometers at 16.5 h UTC had a relative standard deviation of ±4 % for wavelengths greater than 305 nm. The relative standard deviation for the solar irradiance at 16.5 h UTC including the filter radiometer was ±4 % for filter functions above 300 nm.

  15. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  16. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  17. Future spaceborne ocean missions using high sensitivity multiple-beam radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup

    2014-01-01

    Design considerations concerning a scanning as well as a push-broom microwave radiometer system are presented. Strict requirements to spatial and radiometric resolution leads to a multiple-beam scanner achieving good sensitivity through integration over many beams, or to a push-broom system where...

  18. The Atmospheric radiation measurement (ARM program network of microwave radiometers: instrumentation, data, and retrievals

    Directory of Open Access Journals (Sweden)

    M. P. Cadeddu

    2013-09-01

    Full Text Available The Climate Research Facility of the US Department of Energy's Atmospheric Radiation Measurement (ARM Program operates a network of ground-based microwave radiometers. Data and retrievals from these instruments have been available to the scientific community for almost 20 yr. In the past five years the network has expanded to include a total of 22 microwave radiometers deployed in various locations around the world. The new instruments cover a frequency range between 22 and 197 GHz and are consistently and automatically calibrated. The latest addition to the network is a new generation of three-channel radiometers, currently in the early stage of deployment at all ARM sites. The network has been specifically designed to achieve increased accuracy in the retrieval of precipitable water vapor (PWV and cloud liquid water path (LWP with the long-term goal of providing the scientific community with reliable, calibrated radiometric data and retrievals of important geophysical quantities with well-characterized uncertainties. The radiometers provide high-quality, continuous datasets that can be utilized in a wealth of applications and scientific studies. This paper presents an overview of the microwave instrumentation, calibration procedures, data, and retrievals that are available for download from the ARM data archive.

  19. Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers.

    Science.gov (United States)

    Talone, Marco; Zibordi, Giuseppe; Ansko, Ilmar; Banks, Andrew Clive; Kuusk, Joel

    2016-05-20

    Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from -1% to +1% in the 400-700 nm spectral region for downward irradiance and sky radiance, and from -1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between -0.5% and +1% in the blue-green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue-green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.

  20. Page 1 um- SST measurements with IR radiometer 207 neglect of ...

    Indian Academy of Sciences (India)

    SST measurements with IR radiometer 207 neglect of reflectiºn by assuming unity emissivity would cause an error A.T. --. (T, T, pr where T, is the radiation temperature of the atmosphere, T, is the bulk temperature ºf the scº, * is the reflectivity and p is the atmospheric trans- missivity. ("lºnges in surface temperature ; T range ...

  1. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  2. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  3. Improved characterization of scenes with a combination of MMW radar and radiometer information

    Science.gov (United States)

    Dill, Stephan; Peichl, Markus; Schreiber, Eric; Anglberger, Harald

    2017-05-01

    For security related applications MMW radar and radiometer systems in remote sensing or stand-off configurations are well established techniques. The range of development stages extends from experimental to commercial systems on the civil and military market. Typical examples are systems for personnel screening at airports for concealed object detection under clothing, enhanced vision or landing aid for helicopter and vehicle based systems for suspicious object or IED detection along roads. Due to the physical principle of active (radar) and passive (radiometer) MMW measurement techniques the appearance of single objects and thus the complete scenario is rather different for radar and radiometer images. A reasonable combination of both measurement techniques could lead to enhanced object information. However, some technical requirements should be taken into account. The imaging geometry for both sensors should be nearly identical, the geometrical resolution and the wavelength should be similar and at best the imaging process should be carried out simultaneously. Therefore theoretical and experimental investigations on a suitable combination of MMW radar and radiometer information have been conducted. First experiments in 2016 have been done with an imaging linescanner based on a cylindrical imaging geometry [1]. It combines a horizontal line scan in azimuth with a linear motion in vertical direction for the second image dimension. The main drawback of the system is the limited number of pixel in vertical dimension at a certain distance. Nevertheless the near range imaging results where promising. Therefore the combination of radar and radiometer sensor was assembled on the DLR wide-field-of-view linescanner ABOSCA which is based on a spherical imaging geometry [2]. A comparison of both imaging systems is discussed. The investigations concentrate on rather basic scenarios with canonical targets like flat plates, spheres, corner reflectors and cylinders. First

  4. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  5. Millimeter wave radiometer installation in Río Gallegos, southern Argentina

    Science.gov (United States)

    Orte, P. F.; Salvador, J.; Wolfram, E.; D'Elia, R.; Nagahama, T.; Kojima, Y.; Tanada, R.; Kuwahara, T.; Morihira, A.; Quel, E.; Mizuno, A.

    2011-05-01

    With the aim of contribution to the study of atmospheric ozone layer, a new sensitive radiometer for atmospheric minor constituents has been installed in the Observatorio Atmosférico de la Patagonia Austral, División LIDAR, CEILAP (CITEDEF-CONICET), in October 2010. This observatory is established in the city of Rio Gallegos (51° 36' S, 69° 19' W), Argentina, close to the spring ozone hole. The millimeter wave radiometer was developed in STEL (Solar Terrestrial Environment Laboratory), Nagoya University, Japan. This passive remote sensing instrument is able to measure the ozone (O3) amount in the high stratosphere and mesosphere continuously and automatically with a high time resolution. The millimeter wave radiometer ozone profiles will be supplemented with the ozone profiles obtained from the DIAL system existent in the observatory. The millimeter wave radiometer is based on the spectral signal detection from the atmosphere due to the molecular rotational transition of molecules under study. The operation is based on a superheterodyne system which uses a Superconductor-Insulator-Superconductor (SIS) mixer receiver operating at 203.6GHz. The SIS mixer junction consists of a sandwich structure of Nb/AlOx/Nb, and is cooled to 4.2K with a closed cycle He-gas refrigerator. Two additional heterodyne-mixed stages are realized with the aim to shift the measured spectral line until a frequency around of 500 MHz. A FFT (Fast Fourier Transform) spectrometer system is used as a back end. The aims of this work are to show the potential of the millimeter wave radiometer installed in the subpolar latitudes close to the polar ozone hole and to present the preliminary result of the first measurements.

  6. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    Science.gov (United States)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  7. Potential soil moisture products from the aquarius radiometer and scatterometer using an observing system simulation experiment

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2013-02-01

    Full Text Available Using an observing system simulation experiment (OSSE, we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA Aquarius radiometer (L-band 1.413 GHz and scatterometer (L-band, 1.260 GHz. We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i a land surface model in the NASA Land Information System, (ii a radiative transfer and backscatter model, (iii a realistic orbital sampling model, and (iv an inverse soil moisture retrieval model. We execute the OSSE over a 1000 × 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

  8. Potential Soil Moisture Products from the Aquarius Radiometer and Scatterometer Using an Observing System Simulation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yan [I.M. Systems Group at NOAA/NCEP/EMC; Feng, Xia [George Mason University; Houser, Paul [George Mason University; Anantharaj, Valentine G [ORNL; Fan, Xingang [Western Kentucky University, Bowling Green; De Lannoy, Gabrielle [Ghent University, Belgium; Zhan, Xiwu [NOAA/NESDIS Center for Satellite Applications and Research; Dabbiru, Lalitha [Mississippi State University (MSU)

    2013-01-01

    Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

  9. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  10. Development of the Soil Moisture Active Passive (SMAP) radiometer derived landscape freeze/thaw product

    Science.gov (United States)

    Colliander, A.; Xu, X.; Dunbar, R. S.; Derksen, C.; Kim, Y.; Kimball, J. S.

    2016-12-01

    A baseline SMAP mission objective was to determine the land surface binary freeze/thaw (FT) state for northern (>45°N) regions with 80% spatial classification accuracy at 3 km resolution and 2-day average intervals. These requirements were initially achieved from the SMAP radar until the sensor failed in July 2015. The FT algorithm is now transitioning to using SMAP radiometer inputs. The main compromises of this change are a coarse (36 km) radiometer footprint, enhanced noise and potential FT signal degradation from seasonal vegetation biomass, soil moisture and surface inundation changes. The new daily passive FT product (L3_FT_P) is based on the same seasonal threshold algorithm as the radar derived product (L3_FT_A): instantaneous SMAP measurements are compared to reference signatures acquired during seasonal frozen and thawed states. Instead of radar inputs, the normalized polarization ratio (NPR) is calculated from SMAP radiometer measurements. The L3_FT_P algorithm is applied using NPR inputs, whereby NPR decreases and increases are associated with respective landscape freezing and thawing. A lower NPR under frozen conditions is due to smaller V-pol brightness temperature increases and larger H-pol increases. Using in situ measurements from core validation sites, the temporal behavior of backscatter and NPR measurements were evaluated during the spring 2015 radar and radiometer overlap period. The transition from frozen to thawed states produced a NPR response similar in timing and magnitude to the radar response, resulting in similar freeze to thaw seasonal transition dates. While the post-thaw radar backscatter consistently remained at elevated values relative to the frozen state, the NPR drifted downwards following the main thaw transition (due to de-polarization of the scene), which may introduce false freeze classification errors. Both radar and radiometer results tended to lead observed soil thawing due to strong sensitivity of the microwave

  11. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Temperature (CTT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery (not Near Constant Contrast) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Near Constant Contrast (NCC) Imagery Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  14. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Land Surface Temperature (LST) from the Visible Infrared Imaging Radiometer Suite...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Surface Temperature (IST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  16. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Volcanic Ash Detection and Height Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of volcanic ash from the Visible Infrared Imaging Radiometer (VIIRS) instrument...

  17. Nimbus-2 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN2IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-2 High-Resolution Infrared Radiometer. The images contain...

  18. Nimbus-1 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN1IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-1 High-Resolution Infrared Radiometer. The images contain...

  19. Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) data product contains daily...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Ice Characterization (SIC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an Environmental Data Record (EDR) of Sea Ice Characterization (SIC) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Base Heights (CBH) from the Visible Infrared Imaging Radiometer Suite...

  2. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) PASSIVE MICROWAVE RADIOMETER AND SOIL MOISTURE-TEMPERATURE DATA GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Passive Microwave Radiometer and Soil Moisture-Temperature Data GCPEx dataset gathered data during the GPM...

  3. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  4. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Thickness and Age Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ice Thickness and Age from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Type and Phase Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud type and phase from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color/Chlorophyll (OCC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ocean Color/Chlorophyll (OCC) from the Visible Infrared Imaging Radiometer Suite...

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Height (CTH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Cover Layer (CCL) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality Environmental Data Record (EDR) of Cloud Cover Layers (CCL) from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  10. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    Science.gov (United States)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  11. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) dataset includes measurements gathered by the HAMSR...

  12. Development of Breakthrough Technology for Spaceflight Microwave Radiometers? RFI Noise Detection and Mitigation Based on the HHT2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microwave active/passive radiometer is the premier instrument for remote sensing of Earth. However, it carries the price of non-linear response by its horn-receiver...

  13. Airborne radar and radiometer experiment for quantitative remote measurements of rain

    Science.gov (United States)

    Kozu, Toshiaki; Meneghini, Robert; Boncyk, Wayne; Wilheit, Thomas T.; Nakamura, Kenji

    1989-01-01

    An aircraft experiment has been conducted with a dual-frequency (10 GHz and 35 GHz) radar/radiometer system and an 18-GHz radiometer to test various rain-rate retrieval algorithms from space. In the experiment, which took place in the fall of 1988 at the NASA Wallops Flight Facility, VA, both stratiform and convective storms were observed. A ground-based radar and rain gauges were also used to obtain truth data. An external radar calibration is made with rain gauge data, thereby enabling quantitative reflectivity measurements. Comparisons between path attenuations derived from the surface return and from the radar reflectivity profile are made to test the feasibility of a technique to estimate the raindrop size distribution from simultaneous radar and path-attenuation measurements.

  14. Characteristic of a Digital Correlation Radiometer Back End with Finite Wordlength

    Science.gov (United States)

    Biswas, Sayak K.; Hyde, David W.; James, Mark W.; Cecil, Daniel J.

    2017-01-01

    The performance characteristic of a digital correlation radiometer signal processing back end (DBE) is analyzed using a simulator. The particular design studied here corresponds to the airborne Hurricane Imaging radiometer which was jointly developed by the NASA Marshall Space Flight Center, University of Michigan, University of Central Florida and NOAA. Laboratory and flight test data is found to be in accord with the simulation results. Overall design seems to be optimum for the typical input signal dynamic range. It was found that the performance of the digital kurtosis could be improved by lowering the DBE input power level. An unusual scaling between digital correlation channels observed in the instrument data is confirmed to be a DBE characteristic.

  15. Design and first plasma measurements of the ITER-ECE prototype radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Austin, M. E.; Brookman, M. W.; Rowan, W. L. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Danani, S. [ITER-India/Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bryerton, E. W.; Dougherty, P. [Virginia Diodes, Inc., Charlottesville, Virginia 22902 (United States)

    2016-11-15

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T{sub e}). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T{sub e} plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  16. Analysis of RFI Identification and Mitigation in CAROLS Radiometer Data Using a Hardware Spectrum Analyser

    Directory of Open Access Journals (Sweden)

    Christophe Caudoux

    2011-03-01

    Full Text Available A method to identify and mitigate radio frequency interference (RFI in microwave radiometry based on the use of a spectrum analyzer has been developed. This method has been tested with CAROLS L-band airborne radiometer data that are strongly corrupted by RFI. RFI is a major limiting factor in passive microwave remote sensing interpretation. Although the 1.400–1.427 GHz bandwidth is protected, RFI sources close to these frequencies are still capable of corrupting radiometric measurements. In order to reduce the detrimental effects of RFI on brightness temperature measurements, a new spectrum analyzer has been added to the CAROLS radiometer system. A post processing algorithm is proposed, based on selective filters within the useful bandwidth divided into sub-bands. Two discriminant analyses based on the computation of kurtosis and Euclidian distances have been compared evaluated and validated in order to accurately separate the RF interference from natural signals.

  17. The Cubesat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) Mission

    Science.gov (United States)

    Misra, S.; Johnson, J. T.; Ball, C.; Chen, C. C.; Smith, G.; McKelvey, C.; Andrews, M.; O'Brien, A.; Kocz, J.; Jarnot, R.; Brown, S. T.; Piepmeier, J. R.; Lucey, J.; Miles, L. R.; Bradley, D.; Mohammed, P.

    2016-12-01

    Passive microwave measurements made below 40GHz have experienced increased amounts of man-made radio frequency interference (RFI) over the past couple of decades. Such RFI has had a degenerative impact on various important geophysical retrievals such as soil-moisture, sea-surface salinity, atmospheric water vapor, precipitation etc. The commercial demand for spectrum allocation has increased over the past couple of years - infringing on frequencies traditionally reserved for scientific uses such as Earth observation at passive microwave frequencies. With the current trend in shared spectrum allocations, future microwave radiometers will have to co-exist with terrestrial RFI sources. The CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) mission is developing a 6U Cubesat system to demonstrate RFI detection and filtering technologies for future microwave radiometer remote sensing missions. CubeRRT will operate between 6-40GHz, and demonstrate on-board real-time RFI detection on Earth brightness temperatures tuned over 1GHz steps. The expected launch date for CubeRRT is early 2018. Digital subsystems for higher frequency microwave radiometry require a larger bandwidth, as well as more processing power and on-board operation capabilities for RFI filtering. Real-time and on-board RFI filtering technology development is critical for future missions to allow manageable downlink data volumes. The enabling CubeRRT technology is a digital FPGA-based spectrometer with a bandwidth of 1 GHz that is capable of implementing advanced RFI filtering algorithms that use the kurtosis and cross-frequency RFI detection methods in real-time on board the spacecraft. The CubeRRT payload consists of 3 subsystems: a wideband helical antenna, a tunable analog radiometer subsystem, and a digital backend. The following presentation will present an overview of the system and results from the latest integration and test.

  18. Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks

    Science.gov (United States)

    Dipirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-01

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  19. A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers

    Science.gov (United States)

    Bosch-Lluis, Xavier; Ramos-Perez, Isaac; Camps, Adriano; Rodriguez-Alvarez, Nereida; Valencia, Enric; Park, Hyuk

    2011-01-01

    This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period. PMID:22163943

  20. Tropical Cyclones Wind Measurements with the SMAP L-Band Radiometer

    Science.gov (United States)

    Ricciardulli, L.; Meissner, T.; Wentz, F. J.

    2016-12-01

    The Soil Moisture Active Passive Mission SMAP was launched in January 2015 and has been providing science data since April 2015. Though designed to measure soil moisture, the SMAP radiometer has an excellent capability to measure ocean winds in tropical cyclones at a resolution of 40 km, with a swath width of 1000 km. The L-band radiometer V-pol and H-pol channels keep very good sensitivity to ocean surface wind speed even at very high wind speeds and they are only little impacted by rain. We briefly discuss the major features of the SMAP sensor, the geophysical model function that is used in the ocean vector wind retrieval and the basic steps of the retrieval algorithm. We will then illustrate the capability of this instrument to observe very high surface winds by comparing them to other validation datasets. The most important validation source is NOAA's airborne Step Frequency Microwave Radiometer SFMR, whose wind speeds were collocated with SMAP in space and time and resampled to the SMAP resolution. A comparison between SMAP and SFMR winds in hurricanes of the 2015 season, including Patricia, shows excellent correlation over a wide wind speed range (15 - 70 m/s) and no degradation in rain. This agreement is unique and gives SMAP a distinct advantage over many other space-borne sensors such as C-band or Ku-band scatterometers or radiometers, which either lose sensitivity at very high winds or degrade in rainy conditions. We will analyze the SMAP surface winds during the full evolution of the storms in recent intense tropical cyclones (Patricia, Winston, Fantala, and Nepartak) and compare them with wind measurements from ASCAT, RapidScat, and WindSat, with the NCEP wind fields, and with the best track data from the Joint Typhoon Warning Center.The SMAP wind data are available as twice-daily 0.25 deg gridded maps at www.remss.com.

  1. Development of microwave radiometer sensor technology for geostationary earth science platforms

    Science.gov (United States)

    Campbell, T. G.; Lawrence, R. W.; Schroeder, L. C.; Kendall, B. M.; Harrington, R. F.

    1991-01-01

    A new research and technology program has been initiated at the Langley Research Center of the National Aeronautics and Space Administration (NASA) for developing advanced, high resolution microwave radiometer (HI-RES) sensors suitable for Mission to Planet Earth (MPE) remote sensing applications. The objective of this program is to provide the technology needed to enable and enhance the long-term observations, documentation, and understanding of the earth as a system.

  2. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    Science.gov (United States)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  3. A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers

    Directory of Open Access Journals (Sweden)

    Hyuk Park

    2011-06-01

    Full Text Available This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period.

  4. A general analysis of the impact of digitization in microwave correlation radiometers.

    Science.gov (United States)

    Bosch-Lluis, Xavier; Ramos-Perez, Isaac; Camps, Adriano; Rodriguez-Alvarez, Nereida; Valencia, Enric; Park, Hyuk

    2011-01-01

    This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period.

  5. SHADOWS: spectrogonio radiometer for bidirectional reflectance studies of dark meteorites and terrestrial analogues

    Science.gov (United States)

    Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.

    2017-09-01

    A new spectrogonio radiometer SHADOWS is designed for the spectral bidirectional reflectance study of dark surfaces. Its official delivery as an European simulation facility within the Europlanet 2020 RI program is set late August 2017. This abstract presents a general description of the instrument, and some of its measurements modes. Test spectra measured with the instrument's prototype on challenging dark surfaces (Spectral Black, Metal Velvet and Vantablack) are then presented.

  6. Intercomparison of monochromatic source facilities for the determination of the relative spectral response of erythemal broadband filter radiometers.

    Science.gov (United States)

    Schreder, Josef; Gröbner, Julian; Los, Alexander; Blumthaler, Mario

    2004-07-01

    The relative spectral responses of erythemally weighted broadband radiometers determined at three different laboratories are compared, and the systems are described. The results of measurements of four different broadband radiometers are discussed. Although the common dynamic range of the measured relative spectral responses is approximately 10(4), the differences in the relative spectral response functions are lower than 20%. These differences are related mostly to measurement uncertainties and differences in the spectral response facilities.

  7. Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology

    Directory of Open Access Journals (Sweden)

    J. Urban

    2009-09-01

    Full Text Available The Sub-Millimetre Radiometer (SMR on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3 originating from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements of the global distribution of nitric acid in the stratosphere were performed approximately on two observation days per week. An HNO3 climatology based on more than 7 years of observations from August 2001 to April 2009 covering the vertical range between typically ~19 and 45 km (~1.5–60 hPa or ~500–1800 K in terms of potential temperature was created. The study highlights the spatial and seasonal variation of nitric acid in the stratosphere, characterised by a pronounced seasonal cycle at middle and high latitudes with maxima during late fall and minima during spring, strong denitrification in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible removal of NOy by the sedimentation of cloud particles containing HNO3, as well as large quantities of HNO3 formed every winter at high-latitudes in the middle and upper stratosphere. A strong inter-annual variability is observed in particular at high latitudes. A comparison with a stratospheric HNO3 climatology, based on over 7 years of UARS/MLS (Upper Atmosphere Research Satellite/Microwave Limb Sounder measurements from the 1990s, shows good consistency and agreement of the main morphological features in the potential temperature range ~465 to ~960 K, if the different characteristics of the data sets such as the better altitude resolution of Odin/SMR as well as the slightly different altitude ranges are considered. Odin/SMR reaches higher up and UARS/MLS lower down in the stratosphere. An overview from 1991 to 2009 of stratospheric nitric acid is provided (with a short gap between 1998 and 2001, if the global measurements of both experiments are taken together.

  8. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Schranz, Franziska; Steinbrecht, Wolfgang; Haefele, Alexander

    2017-11-01

    In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA) has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014-September 2016) from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland). In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9) in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair) in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  9. Vitamin D synthesis measured with a multiband filter radiometer in Río Gallegos, Argentina

    Science.gov (United States)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Bulnes, Daniela; Leme, N. Paes; Quel, Eduardo

    2013-05-01

    Vitamin D plays an important role in human health. Vitamin D production from the sun is affected by UVB solar radiation. This paper presents a simple method for retrieving vitamin D-weighted UV by using a multiband filter radiometer GUV-541 installed at the Atmospheric Observatory of Southern Patagonia (OAPA) (51 ° 33' S, 69° 19' W), Río Gallegos. The methodology used combines irradiance measurements from a multiband filter radiometer with spectral irradiance modeled by the SOS radiative transfer code (developed by Lille University of Science and Technology (USTL)). The spectrum modeled is weighted with vitamin D action spectra published by the International Commission on Illumination (CIE), which describes the relative effectiveness of different wavelengths in the generation of this particular biological response. This method is validated using the vitamin D-weighted UV derived from a Brewer MKIII spectrophotometer (SN 124) belonging to the National Institute for Spatial Research (INPE), Brazil, which is able to measure solar spectra between 290 and 325nm. The method presents a good correlation between the two independent instruments. This procedure increases the instrumental capabilities of the multiband filter radiometer. Moreover, it evaluates the annual variation of vitamin D-weighted UV doses from exposure to ultraviolet radiation. These values are likely to be lower than suitable levels of vitamin D during winter and part of spring and autumn at these latitudes.

  10. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  11. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Science.gov (United States)

    Ramos-Perez, Isaac; Camps, Adriano; Bosch-Lluis, Xavi; Rodriguez-Alvarez, Nereida; Valencia-Domènech, Enric; Park, Hyuk; Forte, Giuseppe; Vall-llosera, Merce

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA). Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA) instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS), the Precipitation and All-weather Temperature and Humidity (PATH) and the Geostationary Interferometric Microwave Sounder (GIMS). Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS's design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions. PMID:22969371

  12. The use of clinical broadband UV radiometers for optical radiation hazard measurements.

    Science.gov (United States)

    Foy, Trevelyan

    2011-12-01

    The implementation of the UK Control of Artificial Optical Radiation at Work Regulations 2010 requires the employer to perform a risk assessment of workers' exposure to UV radiation from phototherapy equipment in the hospital environment. The objective of this study was to demonstrate that, where the source spectrum is known, an assessment of exposure to UV sources commonly used in hospitals, including assessment of reflections and transmission through personal protective equipment, may be performed with sufficient reliability by radiometer measurement rather than by complex spectroradiometric measurements. An intercomparison of radiometer and spectroradiometer measurements of exposure to UV sources was carried out. Direct exposure was considered, as well as exposure to reflected or scattered beams and that transmitted through eyewear. Assessment by radiometer of direct exposure and exposure to reflections demonstrated an acceptable measurement error in the context of the inherent uncertainty in the assumptions of the exposure scenario. Assessment of transmitted beams may result in a greater measurement error due to spectral mismatch; however, for typical exposure scenarios the error remained acceptable in comparison with the exposure limit value. The methodology presented reduces the complexity of the measurement of UV hazard levels for common phototherapy equipment.

  13. Evaluation of the Validated Soil Moisture Product from the SMAP Radiometer

    Science.gov (United States)

    O'Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; hide

    2016-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am/6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAP's radiometer-derived soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36 km fixed Earth grid using brightness temperature observations from descending (6 am) passes and ancillary data. A beta quality version of L2_SM_P was released to the public in September, 2015, with the fully validated L2_SM_P soil moisture data expected to be released in May, 2016. Additional improvements (including optimization of retrieval algorithm parameters and upscaling approaches) and methodology expansions (including increasing the number of core sites, model-based intercomparisons, and results from several intensive field campaigns) are anticipated in moving from accuracy assessment of the beta quality data to an evaluation of the fully validated L2_SM_P data product.

  14. Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers.

    Science.gov (United States)

    Boivin, L P

    1980-08-15

    A method for calibrating incandescent lamps for spectral irradiance by means of absolute radiometers is described in which a secondary radiometer is calibrated spectrally against absolute radiometers and then used in conjunction with a series of filters to calibrate the lamps. Considering both narrowband and wideband filters, an extensive mathematical error analysis is performed. The use of narrowband filters (20-25-nm halfwidth) is found to be advantageous because very little information is required on the spectral distribution of the lamp being measured. The most serious source of error is a wavelength shift in the measured spectral transmittances of the filters, especially at shorter avelengths; for example, at 400 nm, a wavelength shift error of 1 nm can cause an error approaching 3%. It is estimated that the accuracy of spectral irradiance measurements made using the method described here will vary between +/-1 and +/-0.5% from ~350 to 800 nm. Measurements on 500-W quartz-bromine spectral irradiance standards are described. With such lamps, only four or five narrowband filters are required to cover the spectral range from the near UV to the near IR. The measured and calibration values agreed to ~ +/-0.5% on average with a maximum difference of ~1%.

  15. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2008-01-01

    An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

  16. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  17. A study of the directional response of ultraviolet radiometers: II. Implications for ultraviolet phototherapy derived from computer simulations.

    Science.gov (United States)

    Martin, C J; Pye, S D

    2000-09-01

    A theoretical model has been used to simulate irradiances for ultraviolet (UV) phototherapy cabinets and other sources. The accuracy of the simulation results has been checked by comparison with experimental measurements. The simulations have been used to study the influence of different factors on UV phototherapy exposure and to develop recommendations for the operation and calibration of phototherapy cabinets. Many radiometers used in the evaluation of skin doses have input optics with directional responses that are not proportional to the cosine of the angle of incidence for the UV radiation. Data on radiometer directional responses have been incorporated into the simulations, which show that the poor directional responses for some radiometers currently in use will give errors of 20-50% in the assessment of irradiance. The influence of lamp source geometries employed for radiometer calibration has been investigated. UV phototherapy dosimetry commonly uses a spectroradiometer and a radiometer in the transfer of irradiance calibrations from a small standard UV lamp to a large-area source with a different UV spectrum. Recommendations are given on the range of acceptability for radiometer directional responses and a method is described for determining whether these are fulfilled. Recommendations are made on the techniques that should be used for calibration.

  18. Spatiotemporal Variability of Earth's Radiation Balance Components from Russian Radiometer IKOR-M

    Science.gov (United States)

    Cherviakov, M.

    2016-12-01

    The radiometer IKOR-M was created in National Research Saratov State University for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurement in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. The scale relationship of the IKOR-M radiometers on "Meteor - M" No 1 and No 2 satellites found by comparing of the global distribution maps for monthly averaged albedo values. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. The reported study was funded by

  19. A New Generation of Micro Satellite Radiometers for Atmospheric Remote Sensing

    Science.gov (United States)

    He, jieying

    2017-04-01

    The need for low-cost, mission-flexible, and rapidly deployable space borne sensors that meet stringent performance requirements pervades the extreme weather monitoring programs, including especially the strong rainfall and typhoon. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of radiometers on a Micro-sized Microwave Atmospheric Satellite (Microsat), which operates in the type of constellation, and enable the capabilities of rapidly progressing. Recent work has involved the design and development of highly integrated radiometer component technologies that would enable the realization of a high-performance, multi-band sounder that would conform to the 3U CubeSat size (10 x 10 x 30 cm), weight, and power requirements. This paper partly focuses on the constellation to realize a scalable CubeSat-based system that will pave the path towards improved revisit rates over critical earth regions, and achieve state-of-the-art performance relative to current systems with respect to spatial, spectral, and radiometric resolution. As one of the important payloads on the platform, sub-millimeter radiometer is advised to house for providing atmospheric and oceanographic information all weather and all day. The first portion of the radiometer comprises a horn-fed reflector antenna, with a full-width at half-maximum (FWHM) beamwidth of 1.2°. Hence, the scanned beam has an approximate footprint diameter of 9.6 km at nadir incidence from a nominal altitude of 500 km. The antenna system is designed for a minimum 95% beam efficiency. Approximately 98 pixels are sampled for every scanning line, which covers a range of 1500km. The period of a round is about 94.47 minutes and re-visit period is four days. For the radiometer, which is a passive cross-track-scanning microwave spectrometer operating near the 118.75-GHz oxygen absorption

  20. Towards a long-term Science Exploitation Plan for the Sea and Land Surface Temperature Radiometer on Sentinel-3 and the Along-Track Scanning Radiometers

    Science.gov (United States)

    Remedios, John J.; Llewellyn-Jones, David

    2014-05-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3 is the latest satellite instrument in a series of dual-angle optical and thermal sensors, the Along-Track Scanning Radiometers (ATSRs). Operating on Sentinel-3, the SLSTR has a number of significant improvements compared to the original ATSRs including wider swaths for nadir and dual angles, emphasis on all surface temperature domains, dedicated fire channels and additional cloud channels. The SLSTR therefore provides some excellent opportunities to extend science undertaken with the ATSRs whilst also providing long-term data sets to investigate climate change. The European Space Agency, together with the Department of Energy and Climate Change, sponsored the production of an Exploitation Plan for the ATSRs. In the last year, this been extended to cover the SLSTR also. The plan enables UK and European member states to plan activities related to SLSTR in a long-term context. Covering climate change, oceanography, land surface, atmosphere and cryosphere science, particular attention is paid to the exploitation of long-term data sets. In the case of SLSTR, relevant products include sea, land, lake and ice surface temperatures; aerosols and clouds; fires and gas flares; land surface reflectances. In this presentation, the SLSTR and ATSR science Exploitation Plan will be outlined with emphasis on SLSTR science opportunities, on appropriate co-ordinating mechanisms and on example implementation plans. Particular attention will be paid to the challenges of linking ATSR records with SLSTR to provide consistent long-term data sets, and on the international context of such data sets. The exploitation plan approach to science may prove relevant and useful for other Sentinel instruments.

  1. Bias characteristics of temperature and relative humidity retrieved by microwave radiometer in Naqu region over the Tibetan Plateau

    Science.gov (United States)

    Zhuang, W.

    2016-12-01

    Radiosonde is the most basic method to measure the atmospheric temperature and humidity profiles with very coarse temporal resolution (2-4 times per day for conventional observation). But multiple simultaneous profiles of temperature, humidity, and so on can be obtained in 2-3 minutes temporal resolution with the microwave radiometer. In the third Tibetan Plateau experiment of Atmospheric Scientific organized by the Chinese Academy of Meteorological Sciences, synergic observations by ground-based multi-band radars and other detection equipments were used to study the microphysical processes of cloud and precipitation in Naqu area on the Tibetan Plateau. In this paper, profiles of temperature and relative humidity retrieved by microwave radiometer in different observation modes (zenith observation and off-zenith observation modes) are compared with collocated radiosondes during the summer period from 2014 to 2015 in Naqu region for different weather conditions defined by the data of millimeter wave cloud radar and raindrop spectrum. Three methods to compare the observation between microwave radiometer and radiosonde are temporal-spatial precision matching method, nearest temporal matching method and average profile method. The results show that: 1. Average profile method has the minimum difference between microwave radiometer retrievals and collocated sounding observation. 2. Profiles of temperature and relative humidity retrieved by microwave radiometer under zenith observation model and collocated sounding observation are more consistent under the condition of non-precipitation cloud than other weather conditions (clear sky and precipitation cloud). 3. Compared to zenith observation mode, the retrievals from the off-zenith observation mode of the microwave radiometer has a reasonable accuracy against the sounding observation. 4. In contract with cloudy sky, the retrievals by microwave radiometer and the sounding observation has the highest bias under the weather

  2. On the importance of spectral responsivity of Robertson-Berger-type ultraviolet radiometers for long-term observations.

    Science.gov (United States)

    di Sarra, Alcide; Disterhoft, Patrick; DeLuisi, John J

    2002-07-01

    A system to determine the spectral responsivity of ultraviolet (UV) radiometers has been developed and is routinely operated at the Central Ultraviolet Calibration Facility, at the National Oceanic and Atmospheric Administration. The instrument and the measurement methodologies are described. Results of measurements from thermally controlled broadband UV radiometers of the Robertson-Berger (R-B)-type are described. Systematic differences in the spectral response curves for these instruments have been detected. The effect of these differences on the field operation of UV-B radiometers has been studied by calculating the instrumental response from modeled UV spectra. The differences of the weighted spectral UV irradiances, measured by two radiometers with different spectral response functions, caused by the daily variation in the position of the sun were estimated for fixed values of total ozone, altitude and albedo, and for cloud-free conditions. These differences increase with the solar zenith angle and are as large as 8%. Larger differences in the instrumental response may be produced by ozone variations. Thus, care must be taken when analyzing data from R-B radiometers and comparing results from different instruments. Routine cycling of UV-B radiometers in operative networks without a careful determination of the spectral responsivity, or small drifts of the spectral responsivity, may strongly affect the accuracy of UV radiation measurements and produce an erroneous trend. Because of the possible differences among radiometers, it would not be practical to derive the long-term behavior of UV radiation without routine and thorough characterization of the spectral responsivities of the instruments.

  3. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius

    Science.gov (United States)

    Epeloa, Javier; Meza, Amalia

    2018-02-01

    The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.

  4. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  5. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  6. Characterizing L-band Radio-Frequency Interference (RFI) Using SMAP Microwave Radiometer Data

    Science.gov (United States)

    Mohammed, P.; Piepmeier, J. R.; Bringer, A.; Johnson, J. T.; Soldo, Y.; de Matthaeis, P.

    2016-12-01

    The L-band microwave radiometer on NASA's Soil Moisture Active Passive (SMAP) satellite measures electromagnetic radiation upwelling from Earth within the 1400-1427 MHz band. This relatively low microwave frequency is used to achieve penetration through vegetation and first few centimeters of soil. This frequency band is specifically selected, however, because it is exclusively allocated, on a primary basis, to passive sensing in the Earth Exploration Satellite and Radio Astronomy Services by international treaty. Thus, local administrations prohibit intentional transmissions within the band, and any non-natural signal in this band is considered to be radio-frequency interference (RFI). The SMAP radiometer has an advanced radiometer receiver providing time, frequency, polarization, and statistical diversity information on observed signals for RFI detection and filtering. Here we use this signal information to characterize the RFI environmental on local, regional, and global bases. RFI environment assessment is of interest for several reasons: 1) Reporting instances of interference harmful to SMAP performance to the appropriate regulators; 2) Informing spectrum managers and regulators of the state of the spectrum; and 3) Alerting SMAP users and future developers of trouble spots. We find the RF environment is highly variable around the globe. Global maps of RFI rate-of-occurrence exhibit a contrast in detected RFI between Eastern and Western Hemispheres and between Northern and Southern Hemispheres. Peak-hold maps show both isolated and distributed regions of severe RFI, some of which correspond to populated areas and others to geographically isolated long-range radars. Maps of kurtosis-excess reveal much RFI likely due to terrestrial radar systems, although other analysis indicates proliferation of low-level non-radar sources. In one case of intense RFI there is no kurtosis-excess indicating noise-like behavior due to either the use advanced digital modulation

  7. MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral-Instrument Description, Calibration and Performance.

    Science.gov (United States)

    Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano

    2017-05-10

    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.

  8. Reflectance properties of West African savanna trees from ground radiometer measurements. II - Classification of components

    Science.gov (United States)

    Hanan, N. P.; Prince, S. D.; Franklin, J.

    1993-01-01

    A pole-mounted radiometer was used to measure the reflectance properties in the red and near-IR of three Sahelian tree species. These properties are classified depending on their location over the canopy. A geometrical description of the patterns of shadow and sunlight on and beneath a model tree when viewed from above is given, and six components are defined. Tree canopies are found to be dark in the red waveband with respect to the soil, but have little or no effect on the near-IR.

  9. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    Science.gov (United States)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw

  10. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    Science.gov (United States)

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  11. Modelling of the L-band brightness temperatures measured with ELBARA III radiometer on Bubnow wetland

    Science.gov (United States)

    Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw

    2017-04-01

    Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation

  12. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  13. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  14. Preliminary Design of the Brazilian's National Institute for Space Research Broadband Radiometer for Solar Observations

    Science.gov (United States)

    Berni, L. A.; Vieira, L. E. A.; Savonov, G. S.; Dal Lago, A.; Mendes, O.; Silva, M. R.; Guarnieri, F.; Sampaio, M.; Barbosa, M. J.; Vilas Boas, J. V.; Branco, R. H. F.; Nishimori, M.; Silva, L. A.; Carlesso, F.; Rodríguez Gómez, J. M.; Alves, L. R.; Vaz Castilho, B.; Santos, J.; Silva Paula, A.; Cardoso, F.

    2017-10-01

    The Total Solar Irradiance (TSI), which is the total radiation arriving at Earth's atmosphere from the Sun, is one of the most important forcing of the Earths climate. Measurements of the TSI have been made employing instruments on board several space-based platforms during the last four solar cycles. However, combining these measurements is still challenging due to the degradation of the sensor elements and the long-term stability of the electronics. Here we describe the preliminary efforts to design an absolute radiometer based on the principle of electrical substitution that is under development at Brazilian's National Institute for Space Research (INPE).

  15. Latest Results on Jupiter's Atmosphere and Radiation Belts from the Juno Microwave Radiometer

    Science.gov (United States)

    Janssen, M.

    2017-09-01

    The Juno Microwave Radiometer (MWR) was designed to investigate Jupiter's atmosphere and radiation belts as one of a suite of instruments that form the core of the Juno mission. The traces of absolute nadir brightness temperature for the first six perijove pass has been used to infer a striking variation in the distribution of NH3, which traces a previously unexpected deep circulation. The accumulation of data from all perijove passes obtained to date demonstrate the longitudinal, temporal, and depth dependencies of observed structures. Partial 3D maps show the structure and depths of specific features on Jupiter, notably the polar regions and the Great Red Spot.

  16. Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications

    Science.gov (United States)

    Bianco, Laura; Friedrich, Katja; Wilczak, James M.; Hazen, Duane; Wolfe, Daniel; Delgado, Ruben; Oncley, Steven P.; Lundquist, Julie K.

    2017-05-01

    To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature (T) and relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature (Tv) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5 km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m-3 in the lowest

  17. L-band Radiometer Calibration Consistency Assessment for the SMOS, SMAP, and Aquarius Instruments

    Science.gov (United States)

    Dinnat, Emmanuel; Le Vine, David

    2016-01-01

    Three L-band radiometers have been observing the Earth in order to retrieve soil moisture and ocean salinity. They use different instrument configurations and calibration and retrieval algorithms. In any case, the brightness temperature retrieved at the Earth surface should be consistent between all instruments. One reason for inconsistency would be the use of different approaches for the instrument calibration or the use of different models to retrieve surface brightness temperature. We report on the different approaches used for the SMOS, SMAP and Aquarius instruments and their impact on the observations consistency.

  18. Transient conduction-radiation analysis of an absolute active cavity radiometer using finite elements

    Science.gov (United States)

    Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.

    1987-01-01

    A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.

  19. Response time and noise power gain of electrical substitution radiometers with feedback control.

    Science.gov (United States)

    Clare, J F; White, D R

    1989-08-15

    We present criteria for choosing filter and control parameters for absolute radiometers and true RMS meters that employ feedback controlled electrical substitution. Expressions are obtained for the response of the electrical heating power to radiation and to detector noise. The gains and time constants that minimize the response time for a given variance in a single power measurement are obtained from analyses of second- and third-order systems. Near optimal behavior is obtained in the third-order system comprising a first-order filter and a proportional-plus-integral controller with an integration time equal to the detector time constant. A procedure for tuning the control system is presented.

  20. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  1. Sentinel-3 MWR Microwave Radiometer – Our contribution to the success of the Copernicus programme

    Directory of Open Access Journals (Sweden)

    M.A. Palacios

    2014-06-01

    Full Text Available The MWR builds, together with the SRAL altimeter, the S3 topography mission. The MWR, developed by EADS CASA Espacio as prime contractor, provides information for tropospheric path correction of SRAL measurements. MWR data can also be used for determining surface emissivity and soil moisture over land, surface energy budget investigations and ice characterization. The MWR instrument is a Noise Injection Radiometer (NIR, working at two frequencies (23.8/36.5 GHz, embarking a dual frequency horn antenna pointing to the cold sky for embedded autonomous calibration.

  2. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  3. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.

    Science.gov (United States)

    Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael

    2016-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.

  4. Design Study of a Synthetic Thinned Aperture Radiometer for Hurricane Impact Prediction

    Science.gov (United States)

    Ruf, Christopher S.

    2003-01-01

    The principle accomplishments involve a conceptual design of an airborne Hurricane Imaging (microwave) Radiometer (HiRad) instrument for use in operational hurricane surveillance. The basis of the HiRad design is the Stepped Frequency Microwave Radiometer (SFMR) that has successfully measured surface wind speed and rain rate in hurricanes from the NOAA Hurricane Research Division s P-3 aircraft. Unlike the SFMR that views only at nadir, the HiRad provides wide-swath measurements between +/- 45 deg. in incidence angle with a spot-beam spatial resolution of approximately 1-3 km. The system operates at four equally spaced frequency channels that cover a range between 4 GHz and 6 GHz. The final report consists of two parts. Part 1 is a reprint of a conference proceeding presented at the 2002 International Geoscience and Remote Sensing Symposium and authored by the principle members of the HiRad design team. Part 2 is a summary of the MMIC receiver design developed to support the HiRad sensor.

  5. Development and qualification of the conveyable thermal infrared field radiometer CLIMAT

    Science.gov (United States)

    Pietras, Christophe M.; Haeffelin, Martial P.; Legrand, Michel; Brogniez, Gerard; Abuhassan, Nader K.; Buis, Jean P.

    1995-12-01

    The radiometer CLIMAT is a highly sensitive field instrument designed for multispectral thermal infrared measurements. Ground-based measurements can be performed. but the instrument has capabilities for operating from aircraft or balloon. The optics consist of an objective lens and a condenser mounted according to the Koehler principle to provide uniform irradiation over the detector surface. The radiometric signal is treated by a fast thermopile detector characterized by a low noise and a very weak temperature dependence of its responsivity. The managing system allows either manual or automated measurements. The energy consumption of the instrument is optimized for a maximum autonomy. The optical and electrical units of the instrument are described. Different experimental studies for measuring the sensitivity accuracy, spectral characteristics, thermal behavior and, field of view of the instrument are described. The instrument is dedicated to ground and vegetation on the one hand. and on the other hand, clouds and atmospheric soundings. The radiometer is also designed for calibrations or analyses of satellite radiometry data. Some atmospheric measurements obtained with a prototype are presented. Prospects are the development and the qualification of a narrow field-of-view instrument adapted to inhomogeneous targets such as cirrus clouds. A 3.7-tim channel and an internal blackbody are under study.

  6. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  7. Effects of cosine error in irradiance measurements from field ocean color radiometers.

    Science.gov (United States)

    Zibordi, Giuseppe; Bulgarelli, Barbara

    2007-08-01

    The cosine error of in situ seven-channel radiometers designed to measure the in-air downward irradiance for ocean color applications was investigated in the 412-683 nm spectral range with a sample of three instruments. The interchannel variability of cosine errors showed values generally lower than +/-3% below 50 degrees incidence angle with extreme values of approximately 4-20% (absolute) at 50-80 degrees for the channels at 412 and 443 nm. The intrachannel variability, estimated from the standard deviation of the cosine errors of different sensors for each center wavelength, displayed values generally lower than 2% for incidence angles up to 50 degrees and occasionally increasing up to 6% at 80 degrees. Simulations of total downward irradiance measurements, accounting for average angular responses of the investigated radiometers, were made with an accurate radiative transfer code. The estimated errors showed a significant dependence on wavelength, sun zenith, and aerosol optical thickness. For a clear sky maritime atmosphere, these errors displayed values spectrally varying and generally within +/-3%, with extreme values of approximately 4-10% (absolute) at 40-80 degrees sun zenith for the channels at 412 and 443 nm. Schemes for minimizing the cosine errors have also been proposed and discussed.

  8. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study †

    Science.gov (United States)

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  9. Design of Small-sized and Low-cost Front End to Medical Microwave Radiometer

    Science.gov (United States)

    Klemetsen, O.; Birkelund, Y.; Maccarini, P. F.; Stauffer, P.; Jacobsen, S. K.

    2013-01-01

    We have investigated the possibility of building a Dicke radiometer that is inexpensive, small-sized, stable, high sensitivity and consists of readily available microwave components. The selected frequency band is at 3–4 GHz and can be used for breast cancer detection, with sufficient spatial resolution. We have found microwave components that are small (radiometers: One is of conventional design with Dicke switch at front end to select antenna or noise rererence and the other with a low noise amplifier before the Dicke Switch. We have tested this concept with simulations and built prototypes. The two designs provide a gain of approximately 50 dB, and bandwidth of about 500 MHz. One of the designs has a stability μ > 1 and the other design provide instability μ < 1 for a part of the pass band. The prototypes are tested for sensitivity after calibration in two different known temperature waterbaths. The results show that the design with the low noise amplifier before the Dicke switch has 36% higher sensitivity than the other design with Dicke switch in front. PMID:25324916

  10. Development of electronics and data acquisition system for independent calibration of electron cyclotron emission radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Praveena, E-mail: praveena@ipr.res.in; Raulji, Vismaysinh; Mandaliya, Hitesh; Patel, Jignesh; Siju, Varsha; Pathak, S.K.; Rajpal, Rachana; Jha, R.

    2016-11-15

    Highlights: • Indigenous development of an electronics and data acquisition system to digitize signals for a desired time and automatization of calibration process. • 16 bit DAQ board with form factor of 90 × 89 mm. • VHDL Codes written for generating control signals for PC104 Bus, ADC and RAM. • Averaging process is done in two ways single point averaging and additive averaging. - Abstract: Signal conditioning units (SCU) along with Multichannel Data acquisition system (DAS) are developed and installed for automatization and frequent requirement of absolute calibration of ECE radiometer system. The DAS is an indigenously developed economical system which is based on Single Board Computer (SBC). The onboard RAM memory of 64 K for each channel enables the DAS for simultaneous and continuous acquisition. A Labview based graphical user interface provides commands locally or remotely to acquire, process, plot and finally save the data in binary format. The microscopic signals received from radiometer are strengthened, filtered by SCU and acquired through DAS for the set time and at set sampling frequency. Stored data are processed and analyzed offline with Labview utility. The calibration process has been performed for two hours continuously at different sampling frequency (100 Hz to 1 KHz) at two set of temperature like hot body and the room temperature. The detailed hardware and software design and testing results are explained in the paper.

  11. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2016-06-01

    Full Text Available This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  12. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study.

    Science.gov (United States)

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-06-17

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  13. Variability of Earth's radiation budget components during 2009 - 2015 from radiometer IKOR-M data

    Science.gov (United States)

    Cherviakov, Maksim

    2016-04-01

    This report describes a new «Meteor-M» satellite program which has been started in Russia. The first satellite of new generation "Meteor-M» № 1 was put into orbit in September, 2009. The radiometer IKOR-M - «The Measuring instrument of short-wave reflected radiation" was created in Saratov State University. It was installed on Russian hydrometeorological satellites «Meteor-M» № 1 and № 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and also in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. Satellite «Meteor-M» № 1 and № 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the «Meteor-M» № 1 measurements in August, 2014 show very good agreement with the fluxes determined from «Meteor-M» № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation

  14. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  15. Comparing the Accuracy of AMSRE, AMSR2, SSMI and SSMIS Satellite Radiometer Ice Concentration Products with One-Meter Resolution Visible Imagery in the Arctic

    Science.gov (United States)

    Peterson, E. R.; Stanton, T. P.

    2016-12-01

    Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.

  16. The Advanced Microwave Scanning Radiometer-Earth Observing System Data Products from the Aqua Mission

    Science.gov (United States)

    Conway, D.; Troisi, V.; Marquis, M.; Armstrong, R.; Stroeve, J.; Maslanik, J.; Axford, Y.; Wolfe, J.

    2001-12-01

    The Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) is scheduled to launch on NASA's Aqua Satellite in early 2002. The Aqua mission is an important part of the NASA Earth Science Enterprise (ESE). The Aqua mission provides a multi-disciplinary study of the Earth's atmospheric, oceanic, cryospheric, and land processes and their relationship to global change. With six instruments aboard, the Aqua Satellite will travel in a polar, sun-synchronous orbit. The AMSR-E will measure passive microwave radiation, allowing for derivation of many geophysical parameters, including cloud properties, radiative energy flux, precipitation, land surface wetness, sea surface temperatures, sea ice, snow cover, and sea surface wind fields. The AMSR-E has much greater spatial resolution than previous passive microwave radiometers: approximately double the spatial resolution of the Scanning Multichannel Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I). Further, the AMSR-E combines in one sensor all the channels that SMMR and SSM/I had individually. The AMSR-E has the following frequencies (in GHz): 6.9, 10.7, 18.7, 23.8, 36.5, and 89. The level 1A data product will contain chronological antenna temperature count data. The level 2A data product will contain spatially-resampled brightness temperatures (in global swath format) at resolutions of 56, 38, 21, 12 and 5.4 km. Level 2B data will include ocean, soil moisture, and rain products. Level 3 data will include gridded ocean, soil moisture, and rain products; gridded snow water equivalent products; gridded brightness temperatures; and gridded sea ice concentration and snow depth products. The National Space Agency of Japan (NASDA) will process level 0 data to level 1A data. The AMSR-E Science Investigator-led Processing System (SIPS) will process the level 1A data product to level 2 and 3 data products. The National Snow and Ice Data Center (NSIDC) will archive and distribute all AMSR

  17. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Jacob, Maria Marta; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    The NASA Hurricane and Severe Storm Sentinel (HS3) mission is an aircraft field measurements program using NASA's unmanned Global Hawk aircraft system for remote sensing and in situ observations of Atlantic and Caribbean Sea hurricanes. One of the principal microwave instruments is the Hurricane Imaging Radiometer (HIRAD), which measures surface wind speeds and rain rates. For validation of the HIRAD wind speed measurement in hurricanes, there exists a comprehensive set of comparisons with the Stepped Frequency Microwave Radiometer (SFMR) with in situ GPS dropwindsondes [1]. However, for rain rate measurements, there are only indirect correlations with rain imagery from other HS3 remote sensors (e.g., the dual-frequency Ka- & Ku-band doppler radar, HIWRAP), which is only qualitative in nature. However, this paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when HIRAD flew over an intense tropical squall line that was simultaneously observed by the Tampa NEXRAD meteorological radar (Fig. 1). During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. Using the well-documented NEXRAD Z-R relationship, 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. A preliminary comparison of HIRAD rain rate retrievals (image) for the first pass and the corresponding closest NEXRAD rain image is presented in Fig. 2 & 3. This paper describes the HIRAD instrument, which 1D synthetic-aperture thinned array radiometer (STAR) developed by NASA Marshall Space Flight Center [2]. The rain rate retrieval algorithm, developed by Amarin et al. [3], is based on the maximum likelihood estimation (MLE) technique, which compares the observed Tb's at the HIRAD operating frequencies of 4, 5, 6 and 6.6 GHz with

  18. Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign

    Science.gov (United States)

    In this paper we investigate retrieval of soil moisture based on L-band brightness temperature under diverse conditions and land cover types. We apply the PALS (Passive Active L-band System) radiometer data collected in the SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) field ex...

  19. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat

    NARCIS (Netherlands)

    Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.

    2006-01-01

    The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are

  20. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer

    Science.gov (United States)

    Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters

    2008-01-01

    A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...

  1. Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

    Science.gov (United States)

    Mark Chopping; Anne Nolin; Gretchen G. Moisen; John V. Martonchik; Michael Bull

    2009-01-01

    In this study retrievals of forest canopy height were obtained through adjustment of a simple geometricoptical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression...

  2. An Assessment of Scatterometer Observations for Disaggregation of Radiometer derived Soil Moisture Estimates over the NAFE’06 Study Area

    NARCIS (Netherlands)

    Mladenova, I.; Lakshmi, V.; Walker, J.P.; Long, D.; de Jeu, R.A.M.

    2009-01-01

    The QuikSCAT enhanced (2.225-km) backscattering product is investigated for sensitivity to changes in soil moisture and its potential for spatial disaggregation of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture. Specifically, an activepassive methodology based on temporal change

  3. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  4. Blackbody source in the -50 to +200 degrees C range for the calibration of radiometers and radiation thermometers.

    Science.gov (United States)

    Quinn, T J; Martin, J E

    1991-11-01

    A high-accuracy, large-aperture calibration source for radiometers and infrared radiation pyrometers operating in the range from -50 to +200 degrees C is described. It is shown that by means of reflecting surfaces inside the blackbody the requirements for temperature uniformity can be substantially relaxed while high accuracy in the characterization of the effectivet emperaturei s maintained.

  5. Diagnostics of the SMOS radiometer antenna system at the DTU-ESA spherical near-field antenna test facility

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey

    2007-01-01

    The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...

  6. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise...

  7. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    NARCIS (Netherlands)

    Bongers, W. A.; van Beveren, V.; Thoen, D. J.; Nuij, Pjwm; M.R. de Baar,; Donne, A. J. H.; Westerhof, E.; Goede, A. P. H.; Krijger, B.; van den Berg, M. A.; Kantor, M.; M. F. Graswinckel,; Hennen, B.A.; Schüller, F. C.

    2011-01-01

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the

  8. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    NARCIS (Netherlands)

    Bongers, WA.; Van Beveren, V.; Thoen, D.J.; Nuij, P.J.W.M.; De Baar, M.R.; Donné, A.J.H.; Westerhof, E.; Goede, A.P.H.; Krijger, B.; Van den Berg, M.A.; Kantor, M.; Graswinckel, M.F.; Hennen, B.A.; Schüller, F.C.

    2011-01-01

    An intermediate frequency (IF) band digitizing radiometer system in the 100–200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the

  9. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  10. The CLARA/NORSAT-1 solar absolute radiometer: instrument design, characterization and calibration

    Science.gov (United States)

    Walter, Benjamin; Levesque, Pierre-Luc; Kopp, Greg; Andersen, Bo; Beck, Ivo; Finsterle, Wolfgang; Gyo, Manfred; Heuerman, Karl; Koller, Silvio; Mingard, Nathan; Remesal Oliva, Alberto; Pfiffner, Daniel; Soder, Ricco; Spescha, Marcel; Suter, Markus; Schmutz, Werner

    2017-10-01

    The compact lightweight absolute radiometer (CLARA) experiment aims at measuring the total solar irradiance (TSI) in space and is scheduled to fly on the Norwegian NORSAT-1 micro satellite. The CLARA experiment will contribute to the long term monitoring of the TSI variability to support the analysis of potential long term trends in the Sun’s variability. CLARA is traceable to the National Institute of Standards and Technology radiometric scale and will provide further evidence for the TSI value on an absolute scale. In this paper we present the design, characterization, and calibration details of the CLARA instrument. The combined measurement uncertainty for the calibrated SI-traceable CLARA flight instrument is 567-912 ppm (k  =  1) depending on the measuring channel.

  11. Errors from Rayleigh-Jeans approximation in satellite microwave radiometer calibration systems.

    Science.gov (United States)

    Weng, Fuzhong; Zou, Xiaolei

    2013-01-20

    The advanced technology microwave sounder (ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a total power radiometer and scans across the track within a range of ±52.77° from nadir. It has 22 channels and measures the microwave radiation at either quasi-vertical or quasi-horizontal polarization from the Earth's atmosphere. The ATMS sensor data record algorithm employed a commonly used two-point calibration equation that derives the earth-view brightness temperature directly from the counts and temperatures of warm target and cold space, and the earth-scene count. This equation is only valid under Rayleigh-Jeans (RJ) approximation. Impacts of RJ approximation on ATMS calibration biases are evaluated in this study. It is shown that the RJ approximation used in ATMS radiometric calibration results in errors on the order of 1-2 K. The error is also scene count dependent and increases with frequency.

  12. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    Science.gov (United States)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  13. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pazmany, Andrew

    2006-11-09

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  14. A Compact, Multi-view Net Flux Radiometer for Future Uranus and Neptune Probes

    Science.gov (United States)

    Aslam, S.; Amato, M.; Atkinson, D. H.; Hewagama, T.; Jennings, D. E.; Nixon, C. A.; Mousis, O.

    2017-01-01

    A Net Flux Radiometer (NFR) is presented that can be included in an atmospheric structure instrument suite for future probe missions to the icy giants Uranus and Neptune. The baseline design has two spectral channels i.e., a solar channel (0.4-to-3.5 m) and a thermal channel (4-to-300 m). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with band-pass filters are used for each spectral channel and to define a 5 angular acceptance. Uncooled thermopile detectors are used in each spectral channel and are read out using a custom radiation hard application specific integrated circuit (ASIC). The baseline design can easily be changed to increase the number of detector channels from two to seven.

  15. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    Energy Technology Data Exchange (ETDEWEB)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  16. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  17. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  18. Maturation and Hardening of the Stabilized Radiometer Platforms (STRAPS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Bucholtz, A. [U.S. Naval Research Lab. Washington, DC (United States); Bluth, R. [U.S. Naval Postgraduate School, Monterey, CA (United States); Pfaff, B. [L-3 Communications, New York, NY (United States)

    2016-04-01

    Measurements of solar and infrared irradiance by instruments rigidly mounted to an aircraft have historically been plagued by the introduction of offsets and fluctuations into the data that are solely due to the pitch and roll movements of the aircraft. Two STabilized RAdiometer Platforms (STRAPs) were developed for the U.S. Navy in the early to mid-2000s to address this problem. The development was a collaborative effort between the Naval Research Laboratory (NRL), the Naval Postgraduate School Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), and the U.S. Department of Energy (DOE) Sandia National Laboratories. The STRAPs were designed and built by L-3 Communications Sonoma EO (formerly the small business Sonoma Design Group).

  19. Development of improved electrical-substitution radiometers at the National Research Council of Canada.

    Science.gov (United States)

    Gibb, K; Decker, J E; Boivin, L P; Das, S R; Buchanan, M A

    1996-07-01

    We describe the development of a third generation of electrical-substitution radiometers (ESR's) at the National Research Council of Canada. The new ESR's follow the same general design as before, but incorporate improved thermopiles and electrical heating elements. The ESR's have a responsivity between 0.6 and 1.0 VW(-1), a time constant of approximately 2.0 s, a uniformity of 0.1% over a 6-mm-diameter region, and a noise level of approximately 6 nW. Performance characteristics of the new ESR's are discussed. It is shown that calibrations performed with these ESR's agree with those made with the previous generation of ESR's to better than 0.05%.

  20. Calibration and uncertainty estimation of erythemal radiometers in the argentine ultraviolet monitoring network.

    Science.gov (United States)

    Cede, Alexander; Luccini, Eduardo; Nuñez, Liliana; Piacentini, Rubén D; Blumthaler, Mario

    2002-10-20

    The erythemal radiometers of the Ultraviolet Monitoring Network of the Argentine Servicio Meteorológico Nacional were calibrated in an extensive in situ campaign from October 1998 to April 1999 with Austrian reference instruments. Methods to correct the influence of the location's horizon and long-term detector changes are applied. The different terms that contribute to the measurement uncertainty are analyzed. The expanded uncertainty is estimated to be +/- 10% at 70 degrees solar zenith angle (SZA) and +/-6% for a SZA of <50 degrees. We observed significant changes for some detectors over hours and days, reaching a maximum diurnal drift of +/-5% at a SZA of 70 degrees and a maximum weekly variation of +/-4%.

  1. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    Science.gov (United States)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  2. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  3. Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers.

    Science.gov (United States)

    Foukal, P V; Hoyt, C; Kochling, H; Miller, P

    1990-03-01

    The dramatic improvement in heat diffusivity of pure copper at liquid helium temperatures makes possible very important advances in the absolute accuracy, reproducibility, sensitivity, and time constant of cryogenic electrical substitution radiometers (ESRs), relative to conventional ESRs. The design and characterization of a table top cryogenic ESR now available for detector calibration work to the 0.01% level of absolute accuracy under laser illumination is discussed. A sensitive cryogenic ESR recently delivered to the NIST for radiometric calibrations of black bodies is also described, along with the design and testing of a very fast cryogenic ESR developed for NASA's remote sensing studies of the earth's radiation budget. Finally, the improvements that could be achieved in total and UV solar irradiance measurement using cryogenic ESRs are mentioned.

  4. Iapetus' near surface thermal emission modeled and constrained using Cassini RADAR Radiometer microwave observations

    Science.gov (United States)

    Le Gall, A.; Leyrat, C.; Janssen, M. A.; Keihm, S.; Wye, L. C.; West, R.; Lorenz, R. D.; Tosi, F.

    2014-10-01

    Since its arrival at Saturn, the Cassini spacecraft has had only a few opportunities to observe Iapetus, Saturn's most distant regular satellite. These observations were all made from long ranges (>100,000 km) except on September 10, 2007, during Cassini orbit 49, when the spacecraft encountered the two-toned moon during its closest flyby so far. In this pass it collected spatially resolved data on the object's leading side, mainly over the equatorial dark terrains of Cassini Regio (CR). In this paper, we examine the radiometry data acquired by the Cassini RADAR during both this close-targeted flyby (referred to as IA49-3) and the distant Iapetus observations. In the RADAR's passive mode, the receiver functions as a radiometer to record the thermal emission from planetary surfaces at a wavelength of 2.2-cm. On the cold icy surfaces of Saturn's moons, the measured brightness temperatures depend both on the microwave emissivity and the physical temperature profile below the surface down to a depth that is likely to be tens of centimeters or even a few meters. Combined with the concurrent active data, passive measurements can shed light on the composition, structure and thermal properties of planetary regoliths and thus on the processes from which they have formed and evolved. The model we propose for Iapetus' microwave thermal emission is fitted to the IA49-3 observations and reveals that the thermal inertias sensed by the Cassini Radiometer over both CR and the bright mid-to-high latitude terrains, namely Ronceveaux Terra (RT) in the North and Saragossa Terra (ST) in the South, significantly exceed those measured by Cassini's CIRS (Composite Infrared Spectrometer), which is sensitive to much smaller depths, generally the first few millimeters of the surface. This implies that the subsurface of Iapetus sensed at 2.2-cm wavelength is more consolidated than the uppermost layers of the surface. In the case of CR, a thermal inertia of at least 50 J m-2 K-1 s-1/2, and

  5. Mineral identification from orbit - Initial results from the Shuttle multispectral infrared radiometer

    Science.gov (United States)

    Goetz, A. F. H.; Rowan, L. C.; Kingston, M. J.

    1982-01-01

    The Shuttle multispectral IR radiometer (SMIRR) was designed to obtain surface reflectance data in ten spectral bands in order to evaluate the usefulness of a future imaging system for remote mineral identification. Attention was given to the 2.0-2.4 micron region, which has a wealth of spectral absorption features and appeared to have potential for the identification of CO3- and OH-bearing minerals such as the kaolinite and montmorillonite clays. SMIRR radiances were normalized by using a spectrum for dune sand collected in the Kharga Depression in Egypt. Direct identifications have been made of kaolinite-containing and carbonate material, indicating an exceptional potential for future orbital platform narrowband spectral imaging systems for mineralogical mapping.

  6. Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

    Science.gov (United States)

    Foth, Andreas; Pospichal, Bernhard

    2017-09-01

    In this work, a two-step algorithm to obtain water vapour profiles from a combination of Raman lidar and microwave radiometer is presented. Both instruments were applied during an intensive 2-month measurement campaign (HOPE) close to Jülich, western Germany, during spring 2013. To retrieve reliable water vapour information from inside or above the cloud a two-step algorithm is applied. The first step is a Kalman filter that extends the profiles, truncated at cloud base, to the full height range (up to 10 km) by combining previous information and current measurement. Then the complete water vapour profile serves as input to the one-dimensional variational (1D-VAR) method, also known as optimal estimation. A forward model simulates the brightness temperatures which would be observed by the microwave radiometer for the given atmospheric state. The profile is iteratively modified according to its error bars until the modelled and the actually measured brightness temperatures sufficiently agree. The functionality of the retrieval is presented in detail by means of case studies under different conditions. A statistical analysis shows that the availability of Raman lidar data (night) improves the accuracy of the profiles even under cloudy conditions. During the day, the absence of lidar data results in larger differences in comparison to reference radiosondes. The data availability of the full-height water vapour lidar profiles of 17 % during the 2-month campaign is significantly enhanced to 60 % by applying the retrieval. The bias with respect to radiosonde and the retrieved a posteriori uncertainty of the retrieved profiles clearly show that the application of the Kalman filter considerably improves the accuracy and quality of the retrieved mixing ratio profiles.

  7. Study of high frequency MHD modes from ECE radiometer in Tore Supra

    Directory of Open Access Journals (Sweden)

    Dubuit N.

    2012-09-01

    Full Text Available Tore Supra ECE diagnostic has been recently upgraded to study MHD modes driven by energetic particles up to 400 kHz. To improve the measurement sensitivity, the ECE signals of the 32 channels radiometer were amplified just below the saturation limit and sources of noise were investigated in order to keep it as low as possible. With such an improvement, fast particle driven modes with frequencies up to 200 kHz were detected. A 4-channel correlation ECE system using YIG filters with tuneable frequency was also installed. It allows fine radial scans of MHD modes and correlation length measurements. For the two kinds of YIG filter in use, the minimum frequency separation between two ECE channels that could be achieved was established measuring the correlation coefficient between the respective radiation noises. Finally, by modelling the ECE radiometer taking into account the antenna radiation pattern and the vertical position of the ECE beam relative to the plasma centre we improved the data analysis tools, thus giving a better determination of the phase radial structure of ECE oscillations. The poloidal structure of MHD modes can then be identified from ECE data and, for off axis ECE lines of sight, the direction of the plasma rotation can also be determined. This method allows identifying the occurrence of an inverse cascade of electron fishbone modes ranging from m/n=4/4 to 1/1 (m and n are the poloidal and toroidal mode numbers, respectively which appears in lower hybrid current drive plasmas.

  8. Observations of water vapor by ground-based micro-wave radiometers and Raman lidar

    Science.gov (United States)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-09-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 2-min measurements of brightness temperature (Tb) with calculations of Tb that were based on the Liebe and Lay ton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  9. Selection of suitable wavelengths for estimating total ozone column with multifilter UV radiometers

    Science.gov (United States)

    Piedehierro, A. A.; Cancillo, M. L.; Serrano, A.; Antón, M.; Vilaplana, J. M.

    2017-07-01

    The complete recovery of the ozone layer is expected by mid-century but projections depend on the greenhouse scenario and the possible interaction with other atmospheric constituents. Therefore, enlarging the ground-based measuring network is necessary in order to accurately monitor the foreseeable recovery of the ozone layer in the next decades. Multifilter instruments can be used to complement the networks of Dobson and Brewer spectroradiometers. Total ozone column (TOC) can be retrieved from spectral or narrowband global ultraviolet (UV) measurements by comparing the ratio of two close wavelengths with significantly different ozone cross-sections against ratios simulated using a radiative transfer code. This methodology has been widely applied to multifilter radiometers but some unsolved discrepancies between the analyses of different authors regarding which pair of channels to use still remain, even for studies involving the same instrument. The present work aims to analyze TOC estimations derived using different pairs of wavelengths in the UV range (spectral and weighted by the filter response) as it would be recorded by the two main families of multifilter instruments (NILU-UV and GUV). Their spectral responses have been used for determining the response-weighted quantities from Brewer spectra. Validation against TOC values retrieved from direct solar measurements by a reference Brewer spectroradiometer shows that 340:305 wavelengths/channels result in the most accurate TOC estimations. According to our results, TOC values retrieved using response-weighted irradiance are more robust than those obtained using spectral irradiances at certain nominal wavelengths. This finding suggests calibrating multifilter radiometers towards the accurate measurement of response-weighted irradiances, being necessary to characterize the spectral response of each channel.

  10. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  11. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  12. MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns

    Directory of Open Access Journals (Sweden)

    C. Straub

    2010-09-01

    Full Text Available In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

  13. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  14. Informal Preliminary Report on Comparisons of Prototype SPN-1 Radiometer to PARSL Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Long, Charles N.

    2014-06-17

    The prototype SPN-1 has been taking measurements for several months collocated with our PNNL Atmospheric Remote Sensing Laboratory (PARSL) solar tracker mounted instruments at the Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, USA. The PARSL radiometers used in the following comparisons consist of an Eppley Normal Incident Pyrheliometer (NIP) and a shaded Eppley model 8-48 “Black and White” pyrgeometer (B&W) to measure the direct and diffuse shortwave irradiance (SW), respectively. These instruments were calibrated in mid-September by comparison to an absolute cavity radiometer directly traceable to the world standard group in Davos, Switzerland. The NIP calibration was determined by direct comparison, while the B&W was calibrated using the shade/unshade technique. All PARSL data prior to mid-September have been reprocessed using the new calibration factors. The PARSL data are logged as 1-minute averages from 1-second samples. Data used in this report span the time period from June 22 through December 1, 2006. All data have been processed through the QCRad code (Long and Shi, 2006), which itself is a more elaborately developed methodology along the lines of that applied by the Baseline Surface Radiation Network (BSRN) Archive (Long and Dutton, 2004), for quality control. The SPN-1 data are the standard total and diffuse SW values obtained from the analog data port of the instrument. The comparisons use only times when both the PARSL and SPN-1 data passed all QC testing. The data were further processed and analyzed by application of the SW Flux Analysis methodology (Long and Ackerman, 2000; Long and Gaustad, 2004, Long et al., 2006) to detect periods of clear skies, calculate continuous estimates of clear-sky SW irradiance and the effect of clouds on the downwelling SW, and estimate fractional sky cover.

  15. Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade

    Science.gov (United States)

    Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.

    2009-04-01

    The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.

  16. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  17. Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%.

    Science.gov (United States)

    Fox, N P; Martin, J E

    1990-11-01

    To substantiate the NPL primary standard cryogenic radiometer as an absolute instrument it has been compared with the cryogenic radiometer which was successfully used to determine the Stefan-Boltzmann constant. The comparison was carried out with an accuracy of better than 0.02% by the independent determination of the spectral responsivity of silicon photodiodes with each radiometer. Only a detector comprising a number of silicon photodiodes (a trap device) had the required stability to achieve the desired accuracy. Four trap devices were found to have near unity internal quantum efficiency, being self-consistent to within 0.01%.

  18. SMR technology selection for remote sites

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Gen4 Energy, Denver, Colorado (United States)

    2012-07-01

    Gen4 Energy (formerly Hyperion Power Generation) is developing a small next generation nuclear power reactor. Sealed at the factory, including fuel for its 10 year operational lifetime, the Gen4 Power Module (G4M) will require no refueling and no on-site access to nuclear fuel (vastly reducing safety and proliferation concerns). The market for Gen4 Energy's product is anywhere that electricity is currently produced by diesel generators. This market includes: Remote and Island Communities that are off-grid and reliant on expensive and regular supply of diesel fuel; Mining and Oil & Gas Production projects that are off-grid, energy-intensive, and increasingly sensitive to the environmental concerns of burning fossil fuels; and, Government Facilities that need reliable, off-grid power for sensitive or strategic missions. Specific technologies that were included in the Gen4 design include liquid metal (lead bismuth) coolant, uranium nitride fuel, and a fast neutron spectrum. This presentation will provide market based rationale for those technology selections.

  19. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  20. The unusual phase curve of Titan's surface observed by Huygens’ Descent Imager/Spectral Radiometer

    Science.gov (United States)

    Schröder, S. E.; Keller, H. U.

    2009-12-01

    The Descent Imager/Spectral Radiometer onboard Huygens observed Titan's surface through the atmospheric methane windows [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669-707]. Infrared spectra obtained during the last stage of the descent, for which the atmospheric contribution is negligible, show that the reflectance of the surface around the sit increases with decreasing solar phase angle. Combining these with a spectrum reconstructed from reflected lamp light [Schröder, S.E., Keller, H.U., 2008. The reflectance spectrum of Titan's surface at the Huygens landing site determined by the Descent Imager/Spectral Radiometer. Planet. Space Sci. 56, 753-769] reveals a strong increase in reflectance towards zero phase angle: the opposition surge. Both shadow hiding and coherent backscatter are required to fit the phase curve with the Hapke [2002. Bidirectional Reflectance Spectroscopy 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 157, 523-534] model. We find the particle phase function below 60∘ phase angle to be close to isotropic, which is highly unusual for the surfaces of planetary bodies. A terrain with similar scattering properties has been identified on Triton [Lee, P., Helfenstein, P., Veverka, J., McCarthy, D., 1992. Anomalous-scattering region on Triton. Icarus 99, 82-97], and a connection with the tholins thought to be present on both worlds seems plausible. Indeed, tholin laboratory analogs are found to scatter in similar fashion [Lüthi, 2008. Remote sensing of the surface of Titan: Photometric properties, comparison with analogues, and future microscopic observations. Ph.D. Thesis, Philosophisch-naturwissenschaftlichen Fakultät, Universität Bern]. We conclude that Titan's unusual phase curve is consistent with the presence of tholins on the surface. Our result

  1. Aerosol optical depth determination in the UV using a four-channel precision filter radiometer

    Science.gov (United States)

    Carlund, Thomas; Kouremeti, Natalia; Kazadzis, Stelios; Gröbner, Julian

    2017-03-01

    The determination of aerosol properties, especially the aerosol optical depth (AOD) in the ultraviolet (UV) wavelength region, is of great importance for understanding the climatological variability of UV radiation. However, operational retrievals of AOD at the biologically most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR (UV precision filter radiometer) sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high-altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) derived from Langley plot calibrations underestimate the true extraterrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument's spectral response functions also result in an apparent air-mass-dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore introduced. Langley calibrations performed 13-14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a high-accuracy standard precision filter radiometer, measuring AOD at 368-862 nm wavelengths, showed consistent results. Also, very good agreement was achieved by comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB is higher than that reported from AOD instruments measuring in UVA and visible ranges. However, the precision can be high among instruments using harmonized algorithms for ozone and Rayleigh optical depth as

  2. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  3. Nimbus-3 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Day and Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN3IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-3 High-Resolution Infrared Radiometer. The images contain...

  4. Hydrothermal Alteration Maps of the Central and Southern Basin and Range Province of the United States Compiled From Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map...

  5. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  6. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  7. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  8. GHRSST Level 2P 1 m Depth Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  9. Nimbus-3 Medium-Resolution Infrared Radiometer (MRIR) Imagery of the Earth and Atmosphere at Daytime on 4" x 5" Film Sheets V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The MRIRN3IM data product consists of 4 x 5 inch photographic film sheets from the Nimbus-3 Medium Resolution Infrared Radiometer. Each film sheet contains an entire...

  10. Nimbus-2 Medium-Resolution Infrared Radiometer (MRIR) Imagery of the Earth and Atmosphere at Daytime on 4" x 5" Film Sheets V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The MRIRN2IM data product consists of 4 x 5 inch photographic film sheets from the Nimbus-2 Medium Resolution Infrared Radiometer. Each film sheet contains an entire...

  11. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  12. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  13. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  14. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A platform...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  16. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during...

  17. Interferometric microwave radiometers for high-resolution imaging of the atmosphere brightness temperature based on the adaptive Capon signal processing algorithm.

    Science.gov (United States)

    Park, Hyuk; Choi, Junho; Katkovnik, Vladimir; Kim, Yonghoon

    2004-03-01

    Passive microwave remote sensing from satellites and ground stations has contributed uniquely, and substantially, to the study of atmospheric chemistry, meteorology, and environmental monitoring. As user requirements are raised, in terms of the accuracy and the spatial resolution, a mechanically scanning radiometer, with a real aperture, becomes impractical due to the requirement for a very large antenna size. However, an aperture synthesis interferometric radiometer presents a valuable alternative. The work presented in this paper was devoted to high spatial resolution imaging, using the 37 GHz band interferometric radiometer, developed by ourselves. The spatially adaptive Capon beamforming method was exploited for the imaging, which outperformed the conventional Fourier Transform method. We concluded that the high spatial resolution imaging of the brightness temperature of the atmosphere could be accomplished with an interferometric radiometer equipped with the developed Capon beamforming imaging algorithm.

  18. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Snow Fraction Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Snow Cover/Depth Fraction (SCF) from the Visible Infrared Imaging Radiometer...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Binary Map Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Binary Snow Cover (BSC) from the Visible Infrared Imaging Radiometer Suite...