WorldWideScience

Sample records for sub-micron refractory metal

  1. Improved high temperature refractory. [MgCr/sub 2/O/sub 4/ composite with ZrO/sub 2/

    Science.gov (United States)

    Singh, J.P.; James, J.; Picciolo, J.J.

    1985-12-10

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5 to 30 wt % of unstabilized ZrO/sub 2/ having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO/sub 2/ and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6 to 5 microns and particularly below about 3 microns with an average size in the order of 1.2 to 1.8 microns.

  2. A refractory metal gate approach for micronic CMOS technology

    International Nuclear Information System (INIS)

    Lubowiecki, V.; Ledys, J.L.; Plossu, C.; Balland, B.

    1987-01-01

    In the future, devices scaling down, integration density and performance improvements are going to bring a number of conventional circuit design and process techniques to their fundamental limits. To avoid any severe limitations in MOS ULSI (Ultra Large Scale Integration) technologies, interconnection materials and schemes are required to emerge, in order to face the Megabits memory field. Among those, the gate approach will obviously take a keyrole, when the operating speed of ULSI chips will reach the practical upper limits imposed by parasitic resistances and capacitances which stem from the circuit interconnect wiring. Even if fairly suitable for MOS process, doped polycrystalline silicon is being gradually replaced by refractory metal silicide or polycide structures, which match better with low resistivity requirements. However, as we approach the submicronic IC's, higher conductivity materials will be paid more and more attention. Recently, works have been devoted and published on refractory metal gate technologies. Molybdenum or tungsten, deposited either by CVD or PVD methods, are currently reported even if some drawbacks in their process integration still remain. This paper is willing to present such an approach based on tungsten (more reliable than Molybdenum deposited by LPCVD (giving more conductive and more stable films than PVD). Deposition process will be first described. Then CMOS process flow will allow us to focus on specific refractory metal gate issues. Finally, electrical and physical properties will be assessed, which will demonstrate the feasibility of such a technology as well as the compatibility of the tungsten with most of the usual techniques

  3. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  4. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  5. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  6. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    Science.gov (United States)

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  7. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  8. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation

    Energy Technology Data Exchange (ETDEWEB)

    Uzu, G. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France)], E-mail: gaelle.uzu@ensat.fr; Sobanska, S. [LASIR UMR 8516, Universite des Sciences et Technologies de Lille, Batiment C5, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Sophie.Sobanska@univ-lille1.fr; Aliouane, Y. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France); Pradere, P. [Chemical Metal Treatment Company, STCM, 30-32 chemin de Fondeyre, 31200 Toulouse (France)], E-mail: p.pradere@stc-metaux.com; Dumat, C. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France)], E-mail: camille.dumat@ensat.fr

    2009-04-15

    Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 {+-} 20 mg Pb kg{sup -1}) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO{sub 4}, PbSO{sub 4}.PbO, {alpha}-PbO and Pb{sup 0}. Morphology investigations revealed that PM{sub 2.5} (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 {mu}m or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl{sub 2} extraction. - The soil-lettuce lead transfer from atmospheric industrial sub-micronic and micronic particles depends on particle size.

  9. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  10. Preparation of reactive and refractory metal powders (Paper No. 25)

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Sharma, B.P.; Krishnan, T.S.

    1979-01-01

    In devising processes for the preparation of refractory and reactive metal powders, one has to reckon with many relevant factors. The choice of specific flowsheets is governed by the characteristics of the metal compounds and the reducing agents, the purity required and achievable in the as-reduced powder, the need for further refining of the metal, the possibilities of chemical/physical/mechanical comminution of the purified metal without contamination, and the end application of the powder metal. Micron size zirconium powder used as trigger material in photo-flash bulbs and detonator compositions, tantalum powder of controlled particle size and high purity for the production of electrolytic capacitors, and beryllium metal powder for the preparation of hot pressed powder metallurgy components are illustrative of the variety of reactive metal powders for industrial applications. The work carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of special metal powders, with particular emphasis on Group IV and V metals and also beryllium is presented. Reduction of metal oxides with alkaline earth metals/hydrides, reduction of metal halides with sodium/magnesium, vacuum arc and electron beam melt purification followed by comminution by hydrogen embrittlement/mechanical comminution are among the processes discussed. (auth.)

  11. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  12. Spinning of refractory metals

    International Nuclear Information System (INIS)

    Chang Wenkua; Zheng Han

    1989-01-01

    The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)

  13. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  14. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  15. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    Science.gov (United States)

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  16. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  17. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  18. Characterization of in-situ annealed sub-micron thick Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Byoung-Soo; Sung, Shi-Joon; Hwang, Dae-Kue, E-mail: dkhwang@dgist.ac.kr

    2015-09-01

    Sub-micron thick Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on Mo-coated soda-lime glass substrates under various conditions by single-stage co-evaporation. Generally, the short circuit current (J{sub sc}) decreased with the decreasing thickness of the absorber layer. However, in this study, J{sub sc} was nearly unchanged with decreasing thickness, while the open circuit voltage (V{sub oc}) and fill factor (FF) decreased by 31.9 and 31.1%, respectively. We believe that the remarkable change of V{sub oc} and FF can be attributed to the difference in the total amount of injected thermal energy. Using scanning electron microscopy, we confirmed that the surface morphology becomes smooth and the grain size increased after the annealing process. In the X-ray diffraction patterns, the CIGS thin film also showed an improved crystal quality. We observed that the electric properties were improved by the in-situ annealing of CIGS thin films. The reverse saturation current density of the annealed CIGS solar cell was 100 times smaller than that of reference solar cell. Thus, sub-micron CIGS thin films annealed under a constant Se rate showed a 64.7% improvement in efficiency. - Highlights: • The effects of in-situ annealing the sub-micron CIGS film have been investigated. • The surface morphology and the grain size were improved by in-situ annealing. • The V{sub oc} and FF of the films were increased by about 30% after in-situ annealing. • In-situ annealing of sub-micron thick CIGS films can be improved an efficiency.

  19. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  20. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  1. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  2. Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures

    International Nuclear Information System (INIS)

    Jin Sumin; Burek, Michael J.; Evans, Robert D.; Jahed, Zeinab; Leung, Michael C.; Evans, Neal D.; Tsui, Ting Y.

    2012-01-01

    The mechanical properties exhibited by sub-micron scale columnar structures of cobalt, fabricated by electron beam lithography and electroplating techniques, were investigated through uniaxial compression. Transmission electron microscopy analyses show these specimens possess a microstructure with sub-micron grains which are elongated and aligned near to the pillar loading axis. In addition, small nanocrystalline cobalt crystals are also present within the columnar structure. These specimens display exceptional mechanical strength comparable with both bulk polycrystalline and nanocrystalline cobalt deposited by electroplating. Size-dependent softening with shrinking sample dimensions is also observed in this work. Additionally, the strength of these sub-micron structures appears to be strain rate sensitive and comparable with bulk nanocrystalline cobalt specimens.

  3. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  4. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  5. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  6. Application of metal oxide refractories for melting and casting reactive metals

    International Nuclear Information System (INIS)

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  7. Synthesis and characterization of hollow {alpha}-Fe{sub 2}O{sub 3} sub-micron spheres prepared by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Lizbet, E-mail: lizbetlf@gmail.com; Bustamante, Angel; Osorio, Ana; Olarte, G. S. [Universidad Nacional Mayor de San Marcos (Peru); Santos Valladares, Luis De Los, E-mail: ld301@cam.ac.uk; Barnes, Crispin H. W. [University of Cambridge, Cavendish Laboratory (United Kingdom); Majima, Yutaka [Tokyo Institute of Technology, Materials and Structures Laboratory (Japan)

    2011-11-15

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres ({alpha}-Fe{sub 2}O{sub 3}) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O) particles in citric acid solution by following the sol-gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180 Degree-Sign C resulted in an amorphous phase, without iron oxide formation. Annealing at 250 Degree-Sign C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400 Degree-Sign C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600 Degree-Sign C. The characterization was performed by X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  8. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation

    International Nuclear Information System (INIS)

    Uzu, G.; Sobanska, S.; Aliouane, Y.; Pradere, P.; Dumat, C.

    2009-01-01

    Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 ± 20 mg Pb kg -1 ) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO 4 , PbSO 4 .PbO, α-PbO and Pb 0 . Morphology investigations revealed that PM 2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 μm or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl 2 extraction. - The soil-lettuce lead transfer from atmospheric industrial sub-micronic and micronic particles depends on particle size

  9. Perspectives on environmental protection of refractory metals

    International Nuclear Information System (INIS)

    Perking, R.A.

    1992-01-01

    Alloys of refractory metals which combine high strength to weight ratios with useful low-temperature toughness and ductility have been designed to meet the requirements for the next generation of high-temperature aerospace structural materials with one exception: long term resistance to oxidation. It is considered unlikely that refractory metal alloys can be modified to possess useful resistance to oxidation as bulk materials or that coating can be designed to provide high reliability fail-safe protection for the structural alloys developed to date. Recent developments indicate that bulk alloys of W and Mo can be designed to possess short term resistance to oxidation, providing a base material which can be coated to extend useful life with fail-safe protection in the event of random coating failures. Current research on silicide coatings indicates that significant improvements in coating reliability and performance also are feasible. The technical basis for these conclusions is presented in this paper and the direction of future work that could lead to environmentally stable refractory metal alloy/coating systems is discussed

  10. Sub-micron accurate track navigation method ''Navi'' for the analysis of Nuclear Emulsion

    International Nuclear Information System (INIS)

    Yoshioka, T; Yoshida, J; Kodama, K

    2011-01-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ''noise'', about 10 4 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  11. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    Science.gov (United States)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  12. Carbothermic reduction of refractory metals

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.D.

    1976-01-01

    The reduction of stable refractory metal oxides by carbon is generally unacceptable since the product is usually contaminated with carbides. The carbide formation may be avoided by selecting a solvent metal to dissolve the reactive metal as it is produced and reduce its chemical activity below that required for carbide formation. This approach has been successfully applied to the oxides of Si, Zr, Ti, Al, Mg, and U. In the case where a volatile suboxide, a carbonyl reaction, or a volatile metal occur, the use of the solvent metal appears satisfactory to limit the loss of material at low pressures. In several solute--solvent systems, vacuum evaporation is used to strip the solvent metal from the alloy to give the pure metal

  13. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  14. Development of various welding techniques for refractory and reactive metals and alloys

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.

    2016-01-01

    Nuclear Fuel Complex (NFC), Hyderabad, India with its excellent manufacturing facilities, produces nuclear fuel and structural components for nuclear reactors. NFC has taken up the challenging job of production of various critical components made out of refractory and reactive metals and alloys for nuclear and aerospace applications as an indigenization import substitute program. Refractory metals are prime candidates for many high temperature aerospace components because of refractory metal's high melting points and inherent creep resistance. The use of refractory metals is often limited because of their poor room temperature properties, inadequate oxidation resistance at elevated temperatures, difficulties associated with joining or welding etc. These advanced materials demand stringent requirement with respect to chemistry, dimensional tolerances, mechanical and metallurgical properties. This paper discusses in detail various welding techniques adopted in NFC for refractory and reactive metals and alloys such as Nb, Zr, Ti, Ta, Zircaloy, Titanium-half alloy etc. to manufacture various components and assemblies required for nuclear and aerospace applications

  15. Direct brazing of ceramics, graphite, and refractory metals

    International Nuclear Information System (INIS)

    Canonico, D.A.; Cole, N.C.; Slaughter, G.M.

    1976-03-01

    ORNL has been instrumental in the development of brazing filler metals for joining ceramics, graphite, and refractory metals for application at temperatures above 1000 0 C. The philosophy and techniques employed in the development of these alloys are presented. A number of compositions are discussed that have been satisfactorily used to braze ceramics, graphite, and refractory metals without a prior surface treatment. One alloy, Ti--25 percent Cr--21 percent V, has wet and flowed on aluminum oxide and graphite. Further, it has been utilized in making brazes between different combinations of the three subject materials. The excellent flowability of this alloy and alloys from the Ti--Zr--Ge system is evidenced by the presence of filler metal in the minute pores of the graphite and ceramics

  16. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  17. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  18. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  19. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    Energy Technology Data Exchange (ETDEWEB)

    Ding Meng [Department of Physics, Jilin University, Changchun 130023 (China); Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Yao Bin, E-mail: binyao@jlu.edu.c [Department of Physics, Jilin University, Changchun 130023 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Fang Fang; Shen Dezhen; Zhang Zhenzhong [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China)

    2010-05-31

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  20. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    International Nuclear Information System (INIS)

    Ding Meng; Yao Bin; Zhao Dongxu; Fang Fang; Shen Dezhen; Zhang Zhenzhong

    2010-01-01

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  1. Sorption techniques for production of high purity refractory metals

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Peganov, V.A.; Logvinenko, I.A.; Molchanova, T.V.

    2004-01-01

    A consideration is given to potentialities of sorption processes tot provide a high quality of refractory metal and their alloys when using hydrometallurgical methods for raw material processing. The efficiency of application of ion exchange technology is shown for complex solutions reprocessing for various types of polymetallic raw materials, among them uranium ores, enriched concentrates of refractory metal ores, intermediate products, waste solutions. Based on investigation results on the behaviour of elements in process solutions and the mechanism of their sorption and elution, the process of pure chemical compounds production are developed which provide thereafter manufacturing compact metals. The flowsheets developed are mastered on a commercial scale [ru

  2. New applications and novel processing of refractory metal alloys

    International Nuclear Information System (INIS)

    Briant, C.L.

    2001-01-01

    Refractory metals have often been limited in their application because of their propensity to oxidize and to undergo a loos of yield strength at elevated temperatures. However, recent developments in both processing and alloy composition have opened the possibility that these materials might be used in structural applications that were not considered possible in the past. At the same time, the use of refractory metals in the electronics industry is growing, particularly with the use of tantalum as a diffusion barrier for copper metallization. Finally, the application of grain boundary engineering to the problem of intergranular fracture in these materials may allow processes to be developed that will produce alloys with a greater resistance to fracture. (author)

  3. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  4. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  5. Deep sub-micron FD-SOI for front-end application

    International Nuclear Information System (INIS)

    Ikeda, H.; Arai, Y.; Hara, K.; Hayakawa, H.; Hirose, K.; Ikegami, Y.; Ishino, H.; Kasaba, Y.; Kawasaki, T.; Kohriki, T.; Martin, E.; Miyake, H.; Mochizuki, A.; Tajima, H.; Tajima, O.; Takahashi, T.; Takashima, T.; Terada, S.; Tomita, H.; Tsuboyama, T.

    2007-01-01

    In order to confirm benefits of a deep sub-micron FD-SOI and to identify possible issues concerning front-end circuits with the FD-SOI, we have submitted a small design to Oki Electric Industry Co., Ltd. via the multi-chip project service of VDEC, the University of Tokyo. The initial test results and future plans for development are presented

  6. Hot carrier degradation and a new lifetime prediction model in ultra-deep sub-micron pMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Kai; Zhang Yue; Zheng Xue-Feng; Ma Xiao-Hua; Hao Yue

    2013-01-01

    The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal—oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W), channel length (L), and stress voltage (V d ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Review of alkali metal and refractory alloy compatibility for Rankine cycle applications

    International Nuclear Information System (INIS)

    DiStefano, J.R.

    1989-01-01

    The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in the alkali metals, even to very high temperatures, and static corrosion studies have verified that the systems are basically compatible. Loop studies with niobium and tantalum based alloys do not indicate any serious problems due to temperature gradient mass transfer. Above 1000 K, dissimilar metal mass transfer is noted between the refractory metals and iron or nickel based alloys. The most serious corrosion problems encountered are related to impurity reactions associated with oxygen

  8. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  9. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  10. Directed light fabrication of refractory metals

    International Nuclear Information System (INIS)

    Lewis, G.K.; Thoma, D.J.; Nemec, R.B.; Milewski, J.O.

    1997-01-01

    Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits

  11. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    International Nuclear Information System (INIS)

    Yuan Haiqing; Gu Xin; Pan Kexin; Wang Yiman; Liu Wei; Zhang Ke; Wang Jinshu; Zhou Meiling; Li Ji

    2005-01-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2 O 3 - distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 deg. C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 deg. C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h

  12. Brazilian mineral resources of refractory metals: Nb, Ta, W and Mo

    International Nuclear Information System (INIS)

    Barbosa, F.M.; Manso, G.C.

    1984-01-01

    A brief outlook of selected Brazilian refractory metals resources is presented. The metals are dealt separately with topics covering resources availability, production, Brazilian foreign trade, apparent consumption, and supply-demand balance with emphasis varying according to the specific metal characteristics. (E.G.) [pt

  13. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    Science.gov (United States)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  14. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  15. Thermodynamics of carbon deoxidation and aluminium deoxidation of refractory metals

    International Nuclear Information System (INIS)

    Garg, S.P.; Sundaram, C.V.

    1975-01-01

    Carbon has been used for removing the last traces of oxygen from many refractory metals by evaporation of CO at high temperature and vacuum. Similar purification can also be achieved employing aluminium deoxidation by evaporation of Al 2 Osub(g). In the present paper a theoretical thermodynamic approach has been attempted to evaluate the deoxidation tendencies of refractory metals of groups IV to VI by these two processes. Expressions have been theoretically derived, relating the concentration product of carbon and oxygen in the metal (which is a measure of the carbon deoxidation tendency of the metal) with temperature and pressure, for various M-C-O systems. Similarly the relative vapour pressure values of Alsub(2)Osub(g),Alsub(g)andMO(g) (suboxide of the metal) over various M-Al-O systems have been calculated as a function of aluminium and oxygen contents of the metal. From these analyses, it has been shown that a substantial amount of oxygen can be removed from M-Al-O alloys by aluminium deoxidation. The estimated values are compared with the reported values based on experiment. (author)

  16. Nonlinear resistivity in a d-wave superconductor YBa{sub 2}Cu{sub 4}O{sub 8} of sub-micron scale grains

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, H; Shoho, T; Kato, Y; Ashida, T; Mito, M; Takagi, S [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Hagiwara, M [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Koyama, K, E-mail: deguchi@tobata.isc.kyutech.ac.jp [Faculty of Integrated Arts and Science, The University of Tokushima 770-8502 (Japan)

    2011-07-20

    The d-wave ceramic YBa{sub 2}Cu{sub 4}O{sub 8} superconductor composed of sub-micron size grains is considered as random Josephson-coupled network of 0 and {pi} junctions and shows successive phase transitions. The upper transition occurs inside each grain at T{sub c1} = 82 K and the lower transition occurs among the grains at T{sub c2} = 66 K. We measured the temperature dependence of the current-voltage characteristics of the ceramic YBa{sub 2}Cu{sub 4}O{sub 8} and derived the linear and nonlinear resistivity. The nonlinear resistivity {rho}{sub 2} and {rho}{sub 4} have finite values between T{sub c1} and T{sub c2} and have the peak at the same temperature T{sub p} = 70 K above T{sub c2}. The result agrees with the theoretical one obtained by Li and DomInguez. They interpreted T{sub p} as the crossover temperature from the normal state phase to a chiral paramagnetic one.

  17. Wettability between TiN,TiC Containing Carbon Composite Refractory and Molten Slag or Hot Metal

    Institute of Scientific and Technical Information of China (English)

    SHIYue-xun; LIYingand; 等

    1994-01-01

    In order to develop a new-type TiC-TiN containing carbon composite refractory so as to improve the service life of blast furnace hearth,the wettability between the carbon refractory and molten slag or metal has been mea-sured.It was indicated that the carbon refractory is wet-ted by slag(θ≤90°) when(TiC+TiN)>33.52%,The effects of TiN or TiC on wetting behavior are basi-cally identical.When the amount of TiC in the carbon com-posite refractory is greater than 60% it will be wetted by hot metal;therefore,the carbon composite refractory will be wetted by slag but not permeated by hot metal when the amount of TiC is restricted.

  18. Wearing mechanisms of Al{sub 2} O{sub 3}-Si C-C for torpedo car; Mecanismos de desgate dos refratarios de Al{sub 2}O{sub 3}-SiC-C para carro-torpedo

    Energy Technology Data Exchange (ETDEWEB)

    Quintela, Marco Antonio; Correa Filho, Gerson [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisa e Desenvolvimento; Correa Filho, Joao Rodrigues [USIMINAS, Ipatinga, MG (Brazil). Gerencia de Manutencao de Refratarios e Civil

    1995-12-31

    Recently, with the improvement in the hot metal pretreatment practice in the torpedo car at USIMINAS, refractory linings were subjected to severe working conditions resulting in a considerable change in the performance of Al{sub 2} O{sub 3}-Si C-C bricks. A Post Mortem study of the torpedo car linings was carried out using ceramographic analysis and scanning electron microscopy. It was found that the wear mechanisms of Al{sub 2} O{sub 3}-Si C-C bricks comprise mainly the development of dense and secondary phases around Al{sub 2} O{sub 3} particles, together with the formation of low refractoriness phases on the slag and refractory interface. (author) 5 figs.

  19. Refractory metal particles in refractory inclusions in the Allende meteorite

    International Nuclear Information System (INIS)

    Fuchs, L.H.; Blander, M.

    1980-01-01

    An examination of refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite indicates a complex variety of compositions and large departures from equilibrium. These particles appear to have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe and Ni), phase segregations into different alloy phases (fcc, bcc, hcp and perhaps ordered phases) and the formation of metastable condensates appears to have been involved in the modification of these materials to their present state. Only a small fraction of our observations cannot be reconciled with this picture because of a lack of knowledge of some of the phase equilibria which might have bee involved

  20. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  1. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    Science.gov (United States)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  2. Processing of Refractory Metal Alloys for JOYO Irradiations

    International Nuclear Information System (INIS)

    RF Luther; ME Petrichek

    2006-01-01

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang

  3. Prediction of total dose effects on sub-micron process metal oxide semiconductor devices

    International Nuclear Information System (INIS)

    Kamimura, Hiroshi; Kato, Masataka.

    1991-01-01

    A method for correcting leakage currents is described to predict the radiation-induced threshold voltage shift of sub-micron MOSFETs. A practical model for predicting the leakage current generated by irradiation is also given on the basis of experimental results on 0.8-μm process MOSFETs. The constants in the threshold voltage shift model are determined from the 'true' I-V characteristic of the MOSFET, which is obtained by correction of leakage currents due to characteristic change of a parasitic transistor. In this way, the threshold voltage shift of the n-channel MOSFET irradiated at a low dose rate of 2 Gy(Si)/h was also calculated by using data from a high dose rate irradiation experiment (100 Gy(Si)/h, 5 h). The calculated result well represented the tendency of measured data on threshold voltage shift. The radiation-induced leakage current was considered to decay approximately in two exponential modes. The constants in this leakage current model were determined from the above high dose rate experiment. The response of leakage current predicted at a low dose rate of 2 Gy(Si)/h approximately agreed with that measured during and after irradiation. (author)

  4. Lung deposition of sub-micron aerosols calculated as a function of age and breathing rate

    International Nuclear Information System (INIS)

    James, A.C.

    1978-01-01

    Experimental measurements of lung deposition and especially of regional deposition, of aerosols in the sub-micron size range have been so few that it is worthwhile establishing a method of calculation. A computer routine has therefore been developed to calculate aerosol deposition in successive bronchial and bronchiolar generations of the Weibel 'A' model of human lung for the sub-micron size range where deposition occurs solely by diffusion. This model can be scaled to represent lungs at various ages and vital capacities. Some calculated results are presented here and compared with measurements of lung deposition made under carefully controlled conditions in humans. (author)

  5. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Palmer, A.J.; Woolstenhulme, C.J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed

  6. Brazing refractory metals used in high-temperature nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Woolstenhulme, C. J. [EG and G Services, Inc., (United States)

    2009-07-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  7. Brazing refractory metals used in high-temperature nuclear instrumentation

    International Nuclear Information System (INIS)

    Palmer, A. J.; Woolstenhulme, C. J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  8. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  9. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

    Science.gov (United States)

    Gruia, Flaviu; Parupudi, Arun; Polozova, Alla

    2015-01-01

    Nanoparticle Tracking Analysis (NTA) is an emerging analytical technique developed for detection, sizing, and counting of sub-micron particles in liquid media. Its feasibility for use in biopharmaceutical development was evaluated with particle standards and recombinant protein solutions. Measurements of aqueous suspensions of NIST-traceable polystyrene particle standards showed accurate particle concentration detection between 2 × 10(7) and 5 × 10(9) particles/mL. Sizing was accurate for particle standards up to 200 nm. Smaller than nominal value sizes were detected by NTA for the 300-900 nm particles. Measurements of protein solutions showed that NTA performance is solution-specific. Reduced sensitivity, especially in opalescent solutions, was observed. Measurements in such solutions may require sample dilution; however, common sample manipulations, such as dilution and filtration, may result in particle formation. Dilution and filtration case studies are presented to further illustrate such behavior. To benchmark general performance, NTA was compared against asymmetric flow field flow fractionation coupled with multi-angle light scattering (aF4-MALS) and dynamic light scattering, which are other techniques for sub-micron particles. Data shows that all three methods have limitations and may not work equally well under certain conditions. Nevertheless, the ability of NTA to directly detect and count sub-micron particles is a feature not matched by aF4-MALS or dynamic light scattering. Thorough characterization of particulate matter present in protein therapeutics is limited by the lack of analytical methods for particles in the sub-micron size range. Emerging techniques are being developed to bridge this analytical gap. In this study, Nanoparticle Tracking Analysis is evaluated as a potential tool for biologics development. Our results indicate that method performance is molecule-specific and may not work as well under all solution conditions, especially when

  10. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  11. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    Science.gov (United States)

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  12. Dynamic mixed state in micron bridges on the basis of Bi sub 2 Sr sub 2 CaCu sub 2 O sub x whiskers

    CERN Document Server

    Zybtsev, S G; Pokrovskii, V Yu

    2001-01-01

    One studied destruction of superconductivity by current in BSCCO (2212) single-crystal whiskers and in bridges based on them with dimensions of the order of the magnetic field penetration efficient depth. One measured the volt-ampere characteristics (VAC) of micron bridges made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub x single-crystal whiskers. It was detected that at temperatures below temperature of superconducting transition in VAC one observed current quasi-periodic abrupt changes of voltage with portions of the constant differential resistance the value of which was proportional to the number of abrupt change. In the narrowest (0.5-1 mu m) bridges one observed up to 10 abrupt changes of voltage. The result is explained by formation of vortex lines under the effect of current

  13. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  14. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    Science.gov (United States)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  15. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  16. PARTITIONING OF THE REFRACTORY METALS, NICKEL AND CHROMIUM, IN COMBUSTION SYSTEMS

    Science.gov (United States)

    The partitioning of nickel (Ni) and Chromium (Cr) in combustion systems was investigated theoretically and experimentally. In comparison to other volatile and semi-volatile metals, both Ni and Cr are usually considered to be refractory (non-volatile). Theoretical predictions ba...

  17. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  18. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    Science.gov (United States)

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  19. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  20. Viscosity measurements of molten refractory metals using an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki

    2012-01-01

    Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)

  1. Construction of stable Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yinhua, E-mail: yms418@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Liu, Peipei; Chen, YeCheng; Zhou, Zhengzhong; Yang, Haijian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Hong, Yuanzhi; Li, Fan; Ni, Liang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Yan, Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Gregory, Duncan H, E-mail: duncan.gregory@glasgow.ac.uk [School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-01-01

    Highlights: • Novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids were synthesized. • The hybrid nitrides showed enhanced visible-light photocatalytic performance. • The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability. • The hole is the main photoactive specie for the degradation of RhB. - Abstract: In this paper, a novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrid was successfully synthesized by a facile impregnation method. The photocatalytic activity of Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitrides was evaluated by the degradation of organic dye rhodamine B (RhB) under visible light irradiation, and the result indicated that all Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} samples exhibited distinctly enhanced photocatalytic activities for the degradation of RhB than pure g-C{sub 3}N{sub 4}. The optimal Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} composite sample, with Ta{sub 3}N{sub 5} mass ratio of 2%, demonstrated the highest photocatalytic activity, and its degradation rate constant was 2.71 times as high as that of pure g-C{sub 3}N{sub 4}. The enhanced photocatalytic activity of this Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/metal-free nitride was predominantly attributed to the synergistic effect which increased visible-light absorption and facilitated the efficient separation of photoinduced electrons and holes. The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability and reusability. The possible mechanism for improved photocatalytic performance was proposed. Overall, this work may provide a facile way to synthesize the highly efficient metal/metal-free hybrid nitride photocatalysts with promising applications in environmental purification and energy conversion.

  2. Refractory metal joining for first wall applications

    International Nuclear Information System (INIS)

    Cadden, C.H.; Odegard, B.C.

    2000-01-01

    The potential use of high temperature coolant (e.g. 900 deg. C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000 deg. C to 1275 deg. C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking

  3. Refractory metal joining for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadden, C.H. E-mail: chcadde@sandia.gov; Odegard, B.C

    2000-12-01

    The potential use of high temperature coolant (e.g. 900 deg. C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000 deg. C to 1275 deg. C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  4. Refractory metal joining for first wall applications

    Science.gov (United States)

    Cadden, C. H.; Odegard, B. C.

    2000-12-01

    The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  5. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  6. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    Science.gov (United States)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  7. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  8. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Kamyab, Lobna; Rostami, Ali; Capolino, Filippo; Boyraz, Ozdal

    2015-03-09

    We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

  9. A simple strategy to refine Cu{sub 2}O photocatalytic capacity for refractory pollutants removal: Roles of oxygen reduction and Fe(II) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai-Yong, E-mail: ayzhang@hfut.edu.cn; He, Yuan-Yi; Lin, Tan; Huang, Nai-Hui; Xu, Qiao; Feng, Jing-Wei, E-mail: jingweifeng@hfut.edu.cn

    2017-05-15

    Highlights: • A simple strategy was proposed to improve Cu{sub 2}O photochemical performance. • The photocatalysis-driven Fenton was developed for advanced water treatment. • The novel system had superior performance under visible light irradiation. • The catalytic mechanisms of novel system were elucidated and clearly presented. - Abstract: Visible-light-driven photocatalysis is a promising technology for advanced water treatment, but it usually exhibits a low efficiency. Cu{sub 2}O is a low-cost semiconductor with narrow band gap, high absorption coefficient and suitable conduction band, but suffers from low charge mobility, poor quantum yield and weak catalytic performance. Herein, the Cu{sub 2}O catalytic capacity for refractory pollutants degradation is drastically improved by a simple and effective strategy. By virtue of the synergistic effects between photocatalysis and Fenton, a novel and efficient photocatalysis-driven Fenton system, PFC, is originally proposed and experimentally validated using Cu{sub 2}O/Nano-C hybrids. The synergistic PFC is highly Nano-C-dependent and exhibits a significant superiority for the removal of rhodamine B and p-nitrophenol, two typical refractory pollutants in wastewater. The PFC superiority is mainly attributed to: (1) the rapid photo-electron transfer driven by Schottky-like junction, (2) the selective O{sub 2} reduction mediated by semi-metallic Nano-C for efficient H{sub 2}O{sub 2} generation, (3) the specific H{sub 2}O{sub 2} activation and large ·OH generation catalyzed by Haber-Weiss Fenton mechanism, and (4) the accelerated Fe{sup 2+}/Fe{sup 3+} cycling and robust Fe{sup 2+} regeneration via two additional pathways. Our findings might provide a new chance to overcome the intrinsic challenges of both photocatalysis and Fenton, as well as develop novel technology for advanced water treatment.

  10. ELABORATION PROCESS OF REFRACTORY MATERIALS BY REACTIVE PROJECTION OF OXIDE, PEROXIDE AND METALS

    OpenAIRE

    Pilatti , M.; Cransveld , J.; Raymond , G.; Plumat , E.; Duvigneaud , P.

    1986-01-01

    A device has been set up for spraying with accuracy a compound having a controlled grain size of refractory oxide, peroxide and metals. The refractory material is obtained by melting and recristallisation on a preheated substrate. Composition in the CaO.Al2O3 system and in the CaO-Al2O3-ZrO2 system have been synthesized. They have been analysed by X-ray diffraction and SEM. Dense and well cristallized materials have been deposited. This process can be successfully applied for the repair of a ...

  11. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill [School of Mechanical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-ku, Seoul (Korea, Republic of)

    2004-05-07

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate.

  12. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    International Nuclear Information System (INIS)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill

    2004-01-01

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate

  13. Synthesis and characterization of hollow α-Fe2O3 sub-micron spheres prepared by sol–gel

    International Nuclear Information System (INIS)

    León, Lizbet; Bustamante, Angel; Osorio, Ana; Olarte, G. S.; Santos Valladares, Luis De Los; Barnes, Crispin H. W.; Majima, Yutaka

    2011-01-01

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres (α-Fe 2 O 3 ) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO 3 ) 3 ·9H 2 O) particles in citric acid solution by following the sol–gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180°C resulted in an amorphous phase, without iron oxide formation. Annealing at 250°C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400°C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600°C. The characterization was performed by X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  14. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  15. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  16. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    Science.gov (United States)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  17. Heterogeneous activation of H{sub 2}O{sub 2} by defect-engineered TiO{sub 2−x} single crystals for refractory pollutants degradation: A Fenton-like mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai-Yong, E-mail: ayzhang@hfut.edu.cn; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-07-05

    Highlights: • Facet- and defect-engineered TiO{sub 2} is proposed for water treatment as Fenton-like catalyst. • The =Ti(III) center serves as lattice shuttle for electron transfer in H{sub 2}O{sub 2} activation. • TiO{sub 2} is promising due to low cost, high abundance, no toxicity and stable performance. - Abstract: The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO{sub 2}) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO{sub 2} can heterogeneously activate hydrogen peroxide (H{sub 2}O{sub 2}, E° = 1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, ·OH (E{sup 0} = 2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO{sub 2} single crystals exposed by high-energy {0 0 1} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {0 0 1} facet. Our findings could provide new chance to utilize TiO{sub 2} for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  18. The Carnegie Chicago Hubble Program: The Mid-Infrared Colours of Cepheids and the Effect of Metallicity on the CO Band-Head at 4.6 Micron

    Science.gov (United States)

    Scowcroft, Victoria; Seibert, Mark; Freedman, Wendy L.; Beaton, Rachael L.; Madore, Barry F.; Monson, Andrew J.; Rich, Jeffery A.; Rigby, Jane R.

    2016-01-01

    We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.

  19. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  20. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  1. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  2. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  3. Fabrication of sub-micron whole waffer SIS tunnel junctions for millimeter wave mixers

    International Nuclear Information System (INIS)

    Huq, S.E.; Blamire, M.G.; Evetts, J.E.; Hasko, D.G.; Ahmed, H.

    1991-01-01

    As a part of a programme for the development of a space-qualified sub-mm-wave mixer operating in the region of one terahertz we have been developing the processes required for the fabrication of submicron whole wafer tunnel junctions. Using the self-aligned whole-wafer process (SAWW) with electron beam lithography we have been able to reliably fabricate high quality (V m > 20 mV) submicron tunnel junctions from whole wafer Nb/AlO x /Nb structures. In particular we show that the junction quality is independent of size down to 0.3 μm 2 junction area. The problems of film stress, anodization, registration for electron beam lithography and lift-off, which limit the yield of good quality sub-micron scale junctions are addressed in this paper

  4. Structure, preparation and properties of refractory compounds and systems

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1977-01-01

    At the beginning of this report the possibilities of hardness optimization of refractory carbides are generally discussed. Three papers deal with TaC-basis refractories and hard metals. In particular, carbides with very low nonmetal/metal ratios and composites with hard phases formed by decomposition of tantalum carbonitrides are discussed. Another contribution reports investigations concerning the influence of the microstructure on the hardness of polycristaline mixed carbides. In a series of four papers, results are presented on the work of optimization conventional WC hard metals by introduction of a Fe,Co,Ni-binder: The influence of composition, carbon content and sintering conditions, as well as the wetting behaviour between carbides and binder metals are discussed. Phase relations in the refractory nitride and refractory nitride-binder metal systems as well as phase stabilities of ordered transition metal phases are reported in three papers, fundamental in character. Finally, the work concerning chemical analysis of refractory systems is described. (orig.) [de

  5. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    Science.gov (United States)

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Self-aligned metallization on organic semiconductor through 3D dual-layer thermal nanoimprint

    International Nuclear Information System (INIS)

    Jung, Y; Cheng, X

    2014-01-01

    High-resolution patterning of metal structures on organic semiconductors is important to the realization of high-performance organic transistors for organic integrated circuit applications. The traditional shadow mask technique has a limited resolution, precluding sub-micron metal structures on organic semiconductors. Thus organic transistors cannot benefit from scaling into the deep sub-micron region to improve their dc and ac performances. In this work, we report an efficient multiple-level metallization on poly (3-hexylthiophene) (P3HT) with a deep sub-micron lateral gap. By using a 3D nanoimprint mold in a dual-layer thermal nanoimprint process, we achieved self-aligned two-level metallization on P3HT. The 3D dual-layer thermal nanoimprint enables the first metal patterns to have suspending side-wings that can clearly define a distance from the second metal patterns. Isotropic and anisotropic side-wing structures can be fabricated through two different schemes. The process based on isotropic side-wings achieves a lateral-gap in the order of 100 nm (scheme 1). A gap of 60 nm can be achieved from the process with anisotropic side-wings (scheme 2). Because of the capability of nanoscale metal patterning on organic semiconductors with high overlay accuracy, this self-aligned metallization technique can be utilized to fabricate high-performance organic metal semiconductor field-effect transistor. (paper)

  7. Anti-irradiation performance against helium bombardment in bulk metallic glass (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5}

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Wang, Bin; Dong, Chuang; Gong, Faquan; Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-07-15

    Highlights: ► This paper used He{sup 2+} ion-irradiated metallic glass (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} and the W metal with the energy of 500 keV. ► There was no significant irradiation damage phenomenon on the surface of metallic glass at different irradiation fluences. ► For irradiated W, the peeling, delamination and flaking appeared numerously at fluences of 1 × 10{sup 18} and 2 × 10{sup 18} ions/cm{sup 2}. ► The resistance to He{sup 2+} irradiation of metallic glass (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} was superior to the one in W metal. -- Abstract: In order to compare the resistance to He{sup 2+} ion induced irradiation between metallic glass and polycrystal W metal, this paper used different fluences of He{sup 2+} ion-irradiated metallic glass (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} and polycrystal W with an energy of 500 keV. The SRIM simulation calculation results showed that the range (1.19 μm) of He{sup 2+} in metallic glass was greater than the one (0.76 μm) in polycrystal W. The SEM analysis showed that there was no significant irradiation damage phenomenon on the surface of metallic glass, and there was only a damage layer 1.45 μm away from the surface when the fluence reached 2 × 10{sup 18} ions/cm{sup 2}. For W, there were surface peeling, flaking and other surface damages at a fluence of 1 × 10{sup 18} ions/cm{sup 2}; when the fluence increased to 2 × 10{sup 18} ions/cm{sup 2}, multilayer detachment phenomenon appeared. The surface root mean square roughness of metallic glass (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} first increased and then decreased with the increase of fluence. The surface reflectivity of (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} decreased with the increase of fluence. Through detection by XRD, it was found that (Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5} always maintained amorphous phase after different fluences of radiation. The

  8. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  9. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  10. Resistance to He{sup 2+} irradiation damage in metallic glass Ta{sub 38}Ni{sub 62}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zhang, Xiaonan; Wang, Yingmin; Qiang, Jianbing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Sun, Jianrong [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2016-10-15

    Highlights: • Metallic glass Ta{sub 38}Ni{sub 62} irradiated by different fluence of He{sup 2+} remained amorphous. • The helium bubble layer appeared at the end of ion range 1.01 μm away from surface. • Helium bubbles were larger in the layer center and reduced to top and bottom sides. • No significant damage appeared in the surface of metallic glass Ta{sub 38}Ni{sub 62}. • Ta{sub 38}Ni{sub 62} better resisted to He{sup 2+} irradiation than W and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17}. - Abstract: Metallic glass Ta{sub 38}Ni{sub 62} strips, metallic W, and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy were irradiated using a 500 keV He{sup 2+} ion beam at different fluence to compare the metallic glass resistance to irradiation. Metallic glass Ta{sub 38}Ni{sub 62} remained amorphous at different He{sup 2+} irradiation fluence. Transmission electron microscopy analysis revealed the presence of helium bubbles at the end of the range of helium ions in the metallic glass. No significant damage resulted in the metallic glass surface, and the root mean square roughness increased nonlinearly with the increase in fluence. At 1 × 10{sup 18} ions/cm{sup 2}, metallic W appeared in larger sunken areas on the surface and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy experienced multi-layer flaking. The metallic glass Ta{sub 38}Ni{sub 62} resistance to He{sup 2+} ion beam irradiation was better than that of metallic W, and that of the V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy was the poorest.

  11. Magnetic properties improvement of melt spun Co{sub 86.5}Hf{sub 11.5}B{sub 2} nanocomposites by refractory elements substitution

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.W. [Department of Applied Physics, Tunghai University, Taichung 407, Taiwan (China); Lin, Y.H.; Shih, C.W.; Liao, M.C.; Lee, Y.I. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Chang, W.C., E-mail: phywcc@ccu.edu.tw [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Yang, C.C. [Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan (China); Shaw, C.C. [Superrite Electronics Co. Ltd., Taipei 111, Taiwan (China)

    2016-03-01

    Magnetic properties of melt spun Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons with refractory elements substitution (M=Cr, Nb, Ti, Zr) have been studied. For ternary Co{sub 86.5}Hf{sub 11.5}B{sub 2} ribbon, permanent magnetic properties of B{sub r}=0.71 T, {sub i}H{sub c}=192 kA/m, and (BH){sub max}=34.4 kJ/m{sup 3} are obtained, and they are significantly improved to B{sub r}=0.73–0.76 T, {sub i}H{sub c}=136–216 kA/m and (BH){sub max}=38.4–52.8 kJ/m{sup 3} with M substitution. Summarized with the results of x-ray diffraction refinement, thermal magnetic analysis, and transmission electron microscopy, the Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nanocomposites following the optimal crystallization treatment mainly consist of orthorhombic 7:1 and face-center-cubic Co phases. Fine microstructure with average grain size in the range of 12.5−19.6 nm promotes exchange coupling effect between magnetic grains, thus improving permanent magnetic properties. The magnetic field dependence of coercivity reveals that coercivity of the studied Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nonocomposites is mainly governed by the reverse domain nucleation mechanism. - Highlights: • M substitution refines the grain size. • M substitution strengthens the exchange coupling effect between grains. • M substitution improves hard magnetic properties of Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons. • The coercivity is mainly governed by the reverse domain nucleation mechanism. • Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons are relevant candidate for RE free permanent magnets.

  12. Low-density to high-density transition in Ce{sub 75}Al{sub 23}Si{sub 2} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z [International Center for New-Structured Materials, Zhejiang University, Hangzhou 310027 (China); Fang, Y Z; Wu, F M [College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang (China); Yang, K; Li, A G; Yan, S; Yu, X H [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 (China); Lathe, C, E-mail: qiaoshizeng@gmail.co, E-mail: jiangjz@zju.edu.c [HASYLAB am DESY, Notkestrasse 85, Hamburg D-22603 (Germany)

    2010-09-22

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce{sub 75}Al{sub 23}Si{sub 2} metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T{sub x}) between them with a turning point at about 2 GPa. Compared with Ce{sub 75}Al{sub 25} metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T{sub x} and changes their slopes dT{sub x}/dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  13. Microstructure Changes of Aluminum Titanate Refractory Doped SiO{sub 2} and ZrO{sub 2} in Molten Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dami; Kim, Hyung-Tae; Ryu, Sung-Soo; Kim, Hyeong-Jun [Korea Institute of Ceramic Engineering and Technology, Bucheon (Korea, Republic of)

    2015-02-15

    Aluminum titanate (AT) ceramics has high potential as alloy casting refractory materials due to their good thermal shock resistance which results from their low coefficient of thermal expansion. In a previous study, AT doped SiO{sub 2} and ZrO{sub 2} were developed to achieve stability and mechanical strength at high temperature. In this work, the changes of microstructure of AT doped SiO{sub 2} and ZrO{sub 2} were investigated in molten steel. A finger rotating test of sintered AT was carried out at 1300 ℃ for 30 min, 1 h, 2 h, and 3 h. Even if there was no reaction between AT and molten steel, a new surface was formed, followed by the decomposition of AT by the heat from molten steel, which was dominantly constituted of Al and Si due to decomposition of AT and Mullite phases. Some of the new surface layer was found to have been eroded by fluctuations of the molten steel.

  14. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  15. Immobilization of trypsin on sub-micron skeletal polymer monolith

    Energy Technology Data Exchange (ETDEWEB)

    Yao Chunhe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qi Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu Wenbin [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang Fuyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang Gengliang [College of Pharmacy, Hebei University, Baoding 071002 (China)

    2011-04-29

    A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-{alpha}-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-{alpha}-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30 deg. C, which is comparable to 24 h digestion in solution at 37 {sup o}C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.

  16. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  17. Model of hot-carrier induced degradation in ultra-deep sub-micrometer nMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Yue; Ma Xiao-Hua; Hao Yue

    2014-01-01

    The degradation produced by hot carrier (HC) in ultra-deep sub-micron n-channel metal oxide semiconductor field effect transistor (nMOSFET) has been analyzed in this paper. The generation of negatively charged interface states is the predominant mechanism for the ultra-deep sub-micron nMOSFET. According to our lifetime model of p-channel MOFET (pMOFET) that was reported in a previous publication, a lifetime prediction model for nMOSFET is presented and the parameters in the model are extracted. For the first time, the lifetime models of nMOFET and pMOSFET are unified. In addition, the model can precisely predict the lifetime of the ultra-deep sub-micron nMOSFET and pMOSFET. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Compatibility of refractory materials with boiling sodium

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1976-01-01

    The program employed to determine the compatibility of commercially available refractories with boiling sodium is described. The effects of impurities contained within the refractory material, and their relations with the refractory's physical stability are discussed. Also, since consideration of refractories for use as an insulating material within Liquid Metal Fast Breeder Reactor Plants (LMFBR's) is currently under investigation; recommendations, based upon this program, are presented

  19. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  20. Research on refractory, reactive and rare metals in BARC

    International Nuclear Information System (INIS)

    Banerjee, Srikumar

    2016-01-01

    for specific applications. The presentation will essentially attempt to give an account of the development of refractory, reactive and rare metals in BARC over the period of nearly fifty years. (author)

  1. A better ferrimagnetic half-metal LuCu{sub 3}Mn{sub 4}O{sub 12}: Predicted from first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Han Deming; Wu Zhijian [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu Xiaojuan, E-mail: lxjuan@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-03-15

    Electronic structure calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA) and GGA+U for manganite cuprate compound LuCu{sub 3}Mn{sub 4}O{sub 12} have been performed, using the full-potential linearized augmented plane wave method. The calculated results indicate that LuCu{sub 3}Mn{sub 4}O{sub 12} is ferrimagnetic and half-metallic in both GGA and GGA+U calculations. The minority-spin band gap is 0.7 eV within GGA, which is larger than that of LaCu{sub 3}Mn{sub 4}O{sub 12} (0.3 eV), indicating its better half-metallicity. Further, the minority-spin gap enlarges from 0.7 to 2.8 eV with U taken into account, and simultaneously the Fermi level being shifted to the middle of the gap, making the half-metallic energy gap to be 1.21 eV. These results demonstrate that electronic correlation effect enhances the stability of half-metallic property. These facts make this system interesting candidates for applications in spintronic devices. - Research highlights: The electronic and magnetic properties of LuCu{sub 3}Mn{sub 4}O{sub 12} are analyzed. Both GGA and GGA+U methods are reported and compared. A better half-metal LuCu{sub 3}Mn{sub 4}O{sub 12} is obtained with large half-metallic gap. The results agree very well with the experimental data.

  2. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  3. Acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) capture and dissociation on metal decorated phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Anlong, E-mail: alkuang@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Yang, Xiaolan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-07-15

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO{sub 2}, NO{sub 2} and SO{sub 2} because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO{sub 2} on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO{sub 2} on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO{sub 2} and SO{sub 2} due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  4. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F. [Hunter College, Department of Physics and Astronomy, City University of New York, 695 Park Ave, New York, NY 10065 (United States); Douglas, Stephanie T. [American Museum of Natural History, Department of Astrophysics, Central Park West at 79th Street, New York, NY 10024 (United States); Marley, Mark S., E-mail: khiranak@hunter.cuny.edu [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2016-10-20

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  5. Nanostructure formation on refractory metal surfaces irradiated by helium plasmas

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kajita, Shin; Ohno, Noriyasu

    2013-01-01

    Helium defects on plasma-facing refractory metals like tungsten have been studied in fusion sciences from the view point of the effects on metal surface properties, concentrating on the bubble formation. However, the surface morphology over the lower surface temperature range was found recently to be changed drastically, something like cotton down or arborescence, sometimes called as “fuzz”. The formation process, although still open problem, would be discussed in terms of viscoelastic model with the effect of surface tension, taking account of its thermal properties and nano-bubbles inside the thin fibers. Some physical surface characteristics like electron emission, radiation emissivity and sputtering are quite influenced by its forest-like structure. Unipolar arcing has been newly studied by using such a surface structure which makes its initiation controllable. In the present report, other examples of nanostructure formation in a variety of particle incident conditions have been introduced as well as the possibility of its industrial applications to enhance interdisciplinary interests. (author)

  6. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  7. Typical corrosion of alumina refractory in aluminum reflow oven

    International Nuclear Information System (INIS)

    Baldo, Jaoa B.

    2014-01-01

    The refractory linings of furnaces for secondary melting of aluminum, are exposed to intense attack by the molten metal. This occurs, because molten aluminum has a strong reducing power over the refractory oxide components, particularly Fe 2 O 3 , SiO 2 and TiO 2 . In this work, based on X-ray diffraction and scanning electron microscopy, it is presented a post mortem study of the mechanisms that lead to a premature wear of a 80% Al2O3 chemically bonded refractory bricks, used in the metal line of an aluminum re-melting furnace. The SEM analysis demonstrated that the oxides SiO 2 and TiO 2 contained in the refractory were reduced and transformed into their metallic elements causing an intense structural spalling. (author)

  8. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    International Nuclear Information System (INIS)

    ME Petrichek

    2005-01-01

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed

  9. Electronic properties of metal-In{sub 2}O{sub 3} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nazarzadehmoafi, Maryam

    2017-02-22

    The behavior of the electronic properties of as-cleaved melt-grown In{sub 2}O{sub 3} (111) single crystals was studied upon noble metals, In and Sn deposition using angle-resolved photoemission spectroscopy. The stoichiometry, structural quality and crystal orientation, surface morphology, and the electron concentration were examined by energy dispersive X-ray spectroscopy, Laue diffraction, scanning tunneling microscopy (STM), and Hall-effect measurement, respectively. The similarity of the measured-fundamental and surface-band gaps reveals the nearly flat behavior of the bands at the as-cleaved surface of the crystals. Ag and Au/In{sub 2}O{sub 3} interfaces show Schottky behavior, while an ohmic one was observed in Cu, In, and Sn/In{sub 2}O{sub 3} contacts. From agreement of the bulk and surface band gaps, rectifying contact formation as well as the occurrence of photovoltage effect at the pristine surface of the crystals, it can be deduced that SEAL is not an intrinsic property of the as-cleaved surface of the studied crystals. Moreover, for thick Au and Cu overlayer regime at room temperature, Shockley-like surface states were observed. Additionally, the initial stage of Cu and In growth on In{sub 2}O{sub 3} was accompanied by the formation of a two dimensional electron gas (2DEG) fading away for higher coverages which are not associated with the earlier-detected 2DEG at the surface of In{sub 2}O{sub 3} thin films. The application of the Schottky-Mott rule, using in situ-measured work functions of In{sub 2}O{sub 3} and the metals, showed a strong disagreement for all the interfaces except for Ag/In{sub 2}O{sub 3}. The experimental data also disagree with more advanced theories based on the electronegativity concept and metal-induced gap states models.

  10. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  11. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  12. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  13. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    Science.gov (United States)

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  15. Quadruple metal-metal bonds with strong donor ligands. Ultraviolet photoelectron spectroscopy of M{sub 2}(form){sub 4} (M = Cr, Mo, W; form = N,N{prime}-diphenylformamidinate)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberger, D.L.; Lynn, M.A.; Chisholm, M.H.

    1999-12-29

    The He I photoelectron spectra of M{sub 2}(form){sub 4}(M = Cr, Mo, W; form - N,N{prime}-diphenylformamidinate) and Mo{sub 2}(cyform){sub 4} (cyform = N,N{prime}-dicyclohexylformamidinate) are presented. For comparison, the Ne I, He I, and He II photoelectron spectra of Mo{sub 2}(p-CH{sub 3}-form){sub 4} have also been obtained. The valence ionization features of these molecules are interpreted based on (1) the changes that occur with the metal and ligand substitutions, (2) the changes in photoelectron cross sections with excitation source, and (3) the changes from previously studied dimetal complexes. These photoelectron spectra are useful for revealing the effects that better electron donor ligands have on the valence electronic structure of M{sub 2}(L-L){sub 4} systems. Comparison with the He I spectra of the isoelectronic M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} compounds is particularly revealing. Unlike with the more electron-withdrawing acetate ligand, several formamidinate-based ionizations derived from the nitrogen p{sub {pi}} orbitals occur among the metal-metal {sigma}, {pi}, and {delta} ionization bands. Although these formamidinate-based levels are close in energy to the occupied metal-metal bonds, they have little direct mixing interaction with them. The shift of the metal-metal bond ionizations to lower ionization energies for the formamidinate systems is primarily a consequence of the lower electronegativity of the ligand and the better {pi} donation into empty metal levels. The metal-metal {delta} orbital experiences some additional net bonding interaction with ligand orbitals of the same symmetry. Also, an additional bonding interaction from ligand-to-metal electron donation to the {delta}* orbital is identified. These spectra suggest a greater degree of metal-ligand covalency than in the related M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} systems. Fenske-Hall molecular orbital and density functional (ADF) calculations agree with the assignment and

  16. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  17. Optimization of exposure procedures for sub-quarter-micron CMOS applications

    Science.gov (United States)

    Hotta, Shoji; Onozuka, Toshihiko; Fukumoto, Keiko; Shirai, Seiichiro; Okazaki, Shinji

    1998-06-01

    We investigated various exposure procedures to minimize the Critical Dimension (CD) variation for the patterning of sub- quarter micron gates. To examine dependence of the CD variation on the pattern pitch and defocus conditions, the light intensity profiles of four different mask structures: (1) a binary mask with clear field, (2) a binary mask with dark field, (3) a phase-edge type phase-shifting mask (a phase-edge PSM) with clear field, and (4) a halftone phase- shifting mask (a halftone PSM) were compared, where exposure wavelength was 248 nm and numerical aperture (NA) of KrF stepper was 0.55. For 200-nm gate patterns, dependence of the CD variation on the pattern pitch and defocus conditions was minimized by a phase-edge PSM with clear field. By optimizing the illumination condition for a phase-edge PSM exposure, we obtained the CD variation of 10 nm at the minimum gate pitch of 0.8 micrometer and the defocus condition of plus or minus 0.4 micrometer. Applying the optimized exposure procedure to the device fabrication process, we obtained the total CD variation of plus or minus 27 nm.

  18. Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation

    International Nuclear Information System (INIS)

    Kadar-Kallen, M.A.; Bonin, K.D.

    1994-01-01

    We report a technique for generating a dense, pulsed beam of refractory metal atoms using two-stage laser ablation. An atomic beam of uranium was produced with a peak, ground-state number density of 1x10 12 cm -3 at a distance of z=27 cm from the source. This density can be scaled as 1/z 3 to estimate the density at other distances which are also far from the source

  19. Optimizing the throughput capacity of torpedo ladles with Al{sub 2} O{sub 3}-C-Sic refractories in Brazil; Aumento da disponibilidade e capacidade de carros torpedo revestidos com refratarios de Al{sub 2}O{sub 3}-C-SiC no Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Alvaro Bravo; Braha, Joao; Frasson, Silvio Cassavia [Carborundum do Brasil Ltda. (Brazil); Marques, Oscar Rosa; Delgado, Paulo Roberto Senna [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil)

    1996-12-31

    This paper describes the excellent results of the development program made between Companhia Siderurgica Nacional (C.S.N.) and Carborundum do Brasil Ltda, to improve the throughput capacity of torpedo car ladle by using Al{sub 2} O{sub 3}-C-Sic refractories in Brazil. The development and application of these products are described and presented compared to conventional material currently in use. (author) 11 refs., 10 figs., 2 tabs.

  20. The 3 micron spectrum of NGC 4565

    International Nuclear Information System (INIS)

    Adamson, A.J.; Whittet, D.C.B.

    1990-01-01

    Researchers spectrum of NGC 4565 is essentially featureless. The absence of the 3.0 micron feature (Tau 3.0 less than 0.05) implies that the extinction to the nucleus does not arise to a significant degree in molecular clouds. Researchers deduce Tau 3.0/A sub V less than 0.01, compared with approx. 0.022 for GC-IRS7. These results support the conclusion (McFadzean et al. 1989) that the 3.0 micron absorption in the GC-IR sources is due to the presence of ice in a (probably single) foreground molecular cloud. The 3.4 micron feature is also weak or absent in the researchers spectrum of NGC 4565 (Tau 3.4 less than or equal to 0.07), hence, Tau 3.4/A sub V less than or equal to 0.016, compared with approx. 0.008 towards GC-IRS7. The absence of the feature in NGC 4565 at the signal-to-noise level of the current observations is consistent with a probable moderate degree of extinction towards the nucleus. The observations of NGC 4565 provide a useful comparison for studies of dust in the Galaxy. Limits have been set on the strengths of the 3.0 and 3.4 micron features in NGC 4565. The absence of 3.0 micron absorption is significant, and supports the view that the feature at this wavelength in the Galactic Centre is due to water-ice absorption in a foreground molecular cloud. The non-detection of the 3.4 micron absorption is less surprising and provides indirect support for the association between this feature and the diffuse interstellar medium. The current spectrum probably represents the best that can be achieved with a single-detector instrument within reasonable integration times. It will clearly be of interest in the future to obtain spectra of higher signal-to-noise, as a positive detection of the 3.4 micron feature in an external galaxy, even at a low level, would be of considerable astrophysical significance

  1. An anti CuO{sub 2}-type metal hydride square net structure in Ln{sub 2}M{sub 2}As{sub 2}H{sub x} (Ln = La or Sm, M = Ti, V, Cr, or Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroshi; Park, SangWon; Hosono, Hideo [Tokyo Institute of Technology, Yokohama (Japan). Materials Research Center for Element Strategy; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya [High-Energy Accelerator Research Organization (KEK), Tsukuba (Japan). Inst. of Materials Structure Science

    2015-03-02

    Using a high pressure technique and the strong donating nature of H{sup -}, a new series of tetragonal La{sub 2}Fe{sub 2}Se{sub 2}O{sub 3}-type layered mixed-anion arsenides, Ln{sub 2}M{sub 2}As{sub 2}H{sub x}, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x∼3). In these compounds, an unusual M{sub 2}H square net, which has anti CuO{sub 2} square net structures accompanying two As{sup 3-} ions, is sandwiched by (LaH){sub 2} fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Aa was confirmed in La{sub 2}Ti{sub 2}As{sub 2}H{sub 2.3}, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters.

  2. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    Science.gov (United States)

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Influence of strain and metal thickness on metal-MoS{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-07

    MoS{sub 2} and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS{sub 2} contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS{sub 2}(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS{sub 2} heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS{sub 2} exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS{sub 2} with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  4. An anti CuO{sub 2}-type metal hydride square net structure in Ln{sub 2}M{sub 2}As{sub 2}H{sub x} (Ln = La or Sm, M = Ti, V, Cr, or Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroshi; Park, SangWon; Hosono, Hideo [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya [Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-03-02

    Using a high pressure technique and the strong donating nature of H{sup -}, a new series of tetragonal La{sub 2}Fe{sub 2}Se{sub 2}O{sub 3}-type layered mixed-anion arsenides, Ln{sub 2}M{sub 2}As{sub 2}H{sub x}, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x∼3). In these compounds, an unusual M{sub 2}H square net, which has anti CuO{sub 2} square net structures accompanying two As{sup 3-} ions, is sandwiched by (LaH){sub 2} fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Aa was confirmed in La{sub 2}Ti{sub 2}As{sub 2}H{sub 2.3}, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Metal-insulator transition in SrTi{sub 1−x}V{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-11-25

    Epitaxial SrTi{sub 1−x}V{sub x}O{sub 3} (0 ≤ x ≤ 1) thin films were grown on (001)-oriented (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates using the pulsed electron-beam deposition technique. The transport study revealed a temperature driven metal-insulator transition (MIT) at 95 K for x = 0.67. The films with higher vanadium concentration (x > 0.67) were metallic corresponding to a Fermi liquid system. In the insulating phase (x < 0.67), the resistivity behavior was governed by Mott's variable range hopping mechanism. The possible mechanisms for the induced MIT are discussed, including the effects of electron correlation, lattice distortion, and Anderson localization.

  6. Refractory metal alloys and composites for space power systems

    International Nuclear Information System (INIS)

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-01-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed

  7. Superconducting properties of GdBa{sub 2}Cu{sub 3}O{sub y} films by metal-organic deposition using new fluorine-free complex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561 (Japan); Kita, R. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: terkita@ipc.shizuoka.ac.jp; Miura, O. [Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0364 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Ichinose, A. [CRIEPI, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0916 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Matsumoto, K. [Kyushu Institute of Techonology, Sensui-cho, Tobata-ku, Kitakyushu, Hukuoka 804-8550 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Yoshida, Y. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Mukaida, M. [Kyushu University, Hakozaki 6-10-1, Higashi-ku 4-3-16, Fukuoka 992-8510 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Horii, S. [University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8586 (Japan); CREST-JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan)

    2008-09-15

    GdBa{sub 2}Cu{sub 3}O{sub y} (GdBCO) films have been prepared on LaAlO{sub 3} single-crystal substrates by metal-organic deposition (MOD) using new fluorine-free complex solutions consisting of metal 2-ethylhexanates (2-EH) and metal naphthenates. The dispersion of T{sub c} values for GdBCO films improved by using a complex solution, rather than only a solution of metal naphthenates. c-axis oriented GdBCO films with flat surfaces were grown under lower calcining temperatures and higher firing temperatures than in the process using only metal naphthenates. The T{sub c} and J{sub c} of the GdBCO films were 91.2 K and 0.61 MA/cm{sup 2}, respectively, at 77 K at self-field.

  8. Metallicity of Ca{sub 2}Cu{sub 6}P{sub 5} with single and double copper-pnictide layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: lil2@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parker, David [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chi, Miaofang [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Tsoi, Georgiy M.; Vohra, Yogesh K. [Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Sefat, Athena S., E-mail: sefata@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-06-25

    We report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca{sub 2}Cu{sub 6}P{sub 5} and compare with CaCu{sub 2-δ}P{sub 2}. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP{sub 4}, similar to Fe–As and Fe–Se layers (with FeAs{sub 4}, FeSe{sub 4}) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca{sub 2}Cu{sub 6}P{sub 5} and CaCu{sub 2-δ}P{sub 2} have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu{sub 2-δ}P{sub 2} is slightly off-stoichiometric, with δ = 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large density of states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca{sub 2}Cu{sub 6}P{sub 5} is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu{sub 2-δ}P{sub 2} at 300 K is approximately three times larger than in Ca{sub 2}Cu{sub 6}P{sub 5}, which suggests the likelihood of stronger electron-phonon coupling. This study shows that the details of Cu–P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities. - Highlights: • A comprehensive study on Cu-based compound Ca{sub 2}Cu{sub 6}P{sub 5} and compare with CaCu{sub 2-δ}P{sub 2}. • Both materials have layers of

  9. Breakdown resistance of refractory metals compared to copper

    CERN Document Server

    Taborelli, M; Kildemo, M

    2004-01-01

    The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field without breakdown and the field enhancement factor, beta have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are compared with RF breakdown experiments [1] performed on prototype 30 GHz...

  10. Study of slag-refractory system in iron desulfurization process by isopleths from Ca O-Si O{sub 2}-Al{sub 2} O{sub 3} equilibrium diagram; Analise da interacao escoria de dessulfuracao de gusa - refratario do carro-torpedo a partir de projecao vertical no diagrama de equilibrio CaO-SiO{sub 2}-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marco Antonio; Tenorio, Jorge Alberto Soares [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1996-12-31

    The sulfur withdrawal from liquid iron to compatible levels in steels plant processes capability is an important task of high quality rolled products fabrication. Mixture of lime forms a family of desulfurization agent frequently used, mainly their lower cost if injected in iron to reach not so lower levels of desulfurization. The use of this desulfurization agents produces approximately 7.0 Kg/t of slag, that results between 10 to 30 Kg/t of total slag. This slag interacts with the refractory lining of torpedo car, normally high alumina. In the present case it was analyzed an interaction between a slag formed by the use of the agent plus a blast furnace slag with a high alumina tar bonded lining. Isopleths of Ca O-Si O{sub 2}-Al{sub 2} O{sub 3} equilibrium diagram were constructed to represent the slag-refractory interaction. The results show that the use of the agent formed by lime and aluminium by-product is more deleterious to studied lining, what confirm the observations carried out in industrial plant. (author) 11 refs., 9 figs., 3 tabs.

  11. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  12. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  13. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  14. Metal-organic framework templated synthesis of Fe{sub 2}O{sub 3}/TiO{sub 2} nanocomposite for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, Kathryn E. de; Wang, Cheng; Lin, Wenbin [University of North Carolina, Chapel Hill, NC (United States). Department of Chemistry

    2012-04-17

    A new metal-organic framework (MOF)-templated method has been developed for the synthesis of a metal oxide nanocomposite with interesting photophysical properties. Fe-containing nanoscale MOFs are coated with amorphous titania, then calcined to produce crystalline Fe{sub 2}O{sub 3}/TiO{sub 2} composite nanoparticles. This material enables photocatalytic hydrogen production from water using visible light, which cannot be achieved by either Fe{sub 2}O{sub 3} or TiO{sub 2} alone or a mixture of the two. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  17. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  18. Half metallic ferromagnetism in tri-layered perovskites Sr{sub 4}T{sub 3}O{sub 10}(T = Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Ghimire, Madhav Prasad, E-mail: ghimire.mpg@gmail.com [Faculty of Science, Nepal Academy of Science and Technology, P. O. Box 3323, Khumaltar, Lalitpur (Nepal); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044 (Japan); Thapa, R. K.; Sandeep [Department of Physics, Mizoram University, Aizawl 796-004 (India); Rai, D. P. [Department of Physics, Pachhunga University College, Aizawl 796-001 (India); Sinha, T. P. [Department of Physics, Bose Institute, Kolkata 700-009 (India); Hu, Xiao [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044 (Japan)

    2015-02-14

    First-principles density functional theory (DFT) is used to investigate the electronic and magnetic properties of Sr{sub 4}Rh{sub 3}O{sub 10}, a member of the Ruddlesden-Popper series. Based on the DFT calculations taking into account the co-operative effect of Coulomb interaction (U) and spin-orbit couplings (SOC), Sr{sub 4}Rh{sub 3}O{sub 10} is found to be a half metallic ferromagnet (HMF) with total magnetic moment μ{sub tot} = 12 μ{sub B} per unit cell. The material has almost 100% spin-polarization at the Fermi level despite of sizable SOC. Replacement of Rh atom by the isovalent Co atom is considered. Upon full-replacement of Co, a low-spin to intermediate spin transition happens resulting in a HMF state with the total magnetic moment three-time larger (i.e., μ{sub tot} = 36 μ{sub B} per unit cell), compared to Sr{sub 4}Rh{sub 3}O{sub 10}. We propose Sr{sub 4}Rh{sub 3}O{sub 10} and Sr{sub 4}Co{sub 3}O{sub 10} as candidates of half metals.

  19. Dechlorination Reaction of Metal Chloride Wastes with Inorganic Composite (SiO{sub 2}-Al{sub 2}O{sub 3}- P{sub 2}O{sub 5}) at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Pyrochemical process to recover uranium and transuranic elements from the spent nuclear fuel indispensably generates radioactive metal chlorides waste containing fission products. These wastes are difficult to solidify and stabilize by conventional method due to their volatility and low comparability with silicate glass. Our research group is under development of dechlorination method to remove Clinduced problems. For dechlorination of metal chloride waste, an inorganic composite, SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} (SAP), has been investigated as dechlorination agent. The composite reacts with metal chloride to produce aluminosilicates, alumino phosphate and orthophosphate. The products are thermally stable up to 1200 .deg. C and compatible with silicate glass. In this study, modified SAP containing Fe{sub 2}O{sub 3} as another component was investigated to enhance the dechlorination reaction and characterize the reaction behavior of LiCl

  20. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  1. Mechanical behavior of Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} bulk-metallic glass under torsional loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinjian [School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072 (China); Huang Lu [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Chen Xu, E-mail: xchen@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072 (China); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States); An Ke [Neutron Scattering Sciences Division, Oak Ridge National Laboratory, TN 37831 (United States); Zhang Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang Gongyao [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States)

    2010-11-15

    Research highlights: {yields} Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} bulk-metallic glass exhibits a brittle characteristic under torsional loading. {yields} The BMG occurs in a tensile mode failure under torsional loading. {yields} A slight cyclic-hardening behavior was observed in the initial loading cycles during torsional-fatigue tests. {yields} The torsional fatigue-fracture surface consists of three main regions. - Abstract: Pure- and cyclic-torsional studies were conducted on a Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} (atomic percent, at.%) bulk-metallic glass at room temperature for an understanding of its damage and fracture mechanisms. Under pure-torsional loading, the metallic glass exhibited very little plastic strain before fracture. The fracture initiated along the maximum tensile-stress plane, which is about 45{sup o} to the axial direction. The shear-fracture strength ({approx}510 MPa) is much lower than the compressive-fracture strength ({approx}3280 MPa), which suggests that different deformation mechanisms be present under various loading modes. Instead of an apparent vein-type structure, the fracture morphologies revealed a crack-initiation site, a mirror region, a mist region, and a hackle region. Under cyclic-torsional loading, fatigue cracks initiated from casting defects, and propagate generally along the maximum tensile-stress plane. A slight cyclic-hardening behavior was observed in initial loading steps. The fatigue-fracture surface consists of three main regions: the fatigue crack-initiation, crack-propagation, and final-fast-fracture areas. The striations resulting from the blunting and re-sharpening of the fatigue crack tip were observed in the crack-propagation region. Based on these results, the damage and fracture mechanisms of the metallic glass induced by torsional loadings are elucidated.

  2. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  3. Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach

    Science.gov (United States)

    Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra

    2017-11-01

    Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this

  4. Crystallization of Zr<sub>2sub>PdxCu>1-xsub> and Zr<sub>2sub>NixCu>1-xsub> Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Min [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr<sub>2sub>PdxCu>1-xsub> and Zr<sub>2sub>NixCu>1-xsub> (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction (HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr<sub>2sub>PdxCu>1-xsub> and Zr<sub>2sub>NixCu>1-xsub> metallic glass have been explored. All Zr<sub>2sub>PdxCu>1-xsub> compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr<sub>2sub>PdxCu>1-xsub> system. Meta-stable C16 phase is competitive with

  5. Applications of radioisotopes for studying refractory wear-out in Bhilai Steel Plant

    International Nuclear Information System (INIS)

    Dubey, R.S.; Bose, U.P.; Shipstone, A.J.

    1979-01-01

    In Bhilai Steel Plant, investigations were carried out to study the refractory wear-out of (i) hearth bottom of blast furnaces, (ii) roof of open hearth furnaces, and (iii) hot metal mixer lining, by using radioisotope tracer techniques with a view to evaluate the life of the refractory lining at various locations and to help in planning its timely hot and cold repairs. The life of the refractory lining has the effective bearing on the overall production and hence on the economy of the plant. The two radiometric methods employed for studying the erosion of the refractory lining, by using isotope inserted bricks at various positions without damaging the lining are (i) based on recording the penetration of gamma rays emitting from the radioactive isotopes inserted at definite points of the brick lining and, (ii) by detecting the radioactivity of the pig iron or steel arising due to washing away of the respective radioactive isotopes previously inserted in the lining. In hot mixers also radioisotope sources were placed in the critical location of refractory lining and the washing out of radioisotope due to refractory brick wear out was detected by radiogauging at site. It has been found that radiotracer technique with periodic radiogauging is very useful method for tracing the radioisotope source if more than one refractory brick with isotope is placed, as in the case of open hearth furnaces. The results of radioanalysis revealed that radioactivity coming alongwith hot metal steel has been far below the permissible limit of concentration i.e. 20 micro-curie per ton of metal. Further, during dismantling of the residual refractory lining of open hearth furnaces or hot metal mixers, bricks containing radioisotopes have been successfully retrieved for safe disposal. (auth.)

  6. Probable metal-insulator transition in Ag{sub 4}SSe

    Energy Technology Data Exchange (ETDEWEB)

    Drebushchak, V.A., E-mail: dva@igm.nsc.ru [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Pal’yanova, G.A.; Seryotkin, Yu.V. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Drebushchak, T.N. [Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)

    2015-02-15

    Highlights: • New phase transition in Ag{sub 4}SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag{sub 4}SSe. • Similar thermal and electrical effects in K{sub 3}Cu{sub 8}S{sub 6} are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag{sub 4}SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag{sub 4}SSe published in literature. Elusive phase transition in Ag{sub 2}Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K{sub 3}Cu{sub 8}S{sub 6}.

  7. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    International Nuclear Information System (INIS)

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains

  8. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Song, Rak-Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of); Dokiya, Masayuki [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  9. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Science.gov (United States)

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  10. Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Terry D., E-mail: terry_humphries81@hotmail.com [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Takagi, Shigeyuki; Li, Guanqiao; Matsuo, Motoaki; Sato, Toyoto [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sørby, Magnus H.; Deledda, Stefano; Hauback, Bjørn C. [Physics Department, Institute for Energy Technology, Kjeller NO-2027 (Norway); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-05

    Highlights: • Structures of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8} have been determined by XRD and PND. • Compounds incorporate independently coordinated ionic and covalent hydrogen. • [TH{sub 6}]{sup 4−} anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations. • H{sup −} anions are octahedrally coordinated by four Na{sup +} and two Mg{sup 2+} cations. • Vibrational modes of the H{sup −} anions and complex hydride anion are observed. - Abstract: A new class of quaternary complex transition metal hydrides (Na{sub 2}Mg{sub 2}TH{sub 8} (T = Fe, Ru)) have been synthesized and their structures determined by combined synchrotron radiation X-ray and powder neutron diffraction. The compounds can be considered as a link between ionic and complex hydrides in terms of incorporating independently coordinated ionic and covalent hydrogen. These novel isostructural complex transition metal hydrides crystallize in the orthorhombic space group Pbam, where the octahedral complex hydride anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations, forming distinct two-dimensional layers. An intriguing feature of these materials is the distorted octahedral coordination of the isolated H{sup −} anions by four Na{sup +} and two Mg{sup 2+} cations, which form layers between the transition metal containing layers. The vibrational modes of the H{sup −} anions and complex hydride anion are independently observed for the first time in a quaternary complex transition metal hydride system by Raman and IR spectroscopy.

  11. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic and partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.

  12. Theoretical assessment of the electro-optical features of the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and group IV carbides (C{sub 24}, Si{sub 12}C{sub 12} and Ge{sub 12}C{sub 12}) nanoclusters encapsulated with alkali metals (Li, Na and K)

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of); Shakerzadeh, Ehsan, E-mail: e.shakerzadeh@scu.ac.ir [Chemistry Department, Faculty of Science, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Biglari, Zeinab [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Encapsulation of Li, Na and K narrow the HOMO–LUMO gaps of the clusters. • The group III nitrides nanoclusters strongly interacted with the alkali metals. • First hyperpolarizabilities remarkably enhance for B{sub 12}N{sub 12} encapsulated with Na/K. - Abstract: Density functional theory (DFT) calculations have been carried out to study the influence of alkali metals (Li, Na and K) encapsulation within the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and the group IV carbides (C{sub 24}, Si{sub 12}C{sub 12}and Ge{sub 12}C{sub 12}) nanoclusters. The encapsulation of Li, Na and K atoms is found to narrow the HOMO–LUMO gaps of the considered clusters. The electronic properties of these clusters, especially the group III nitrides nanoclusters, are strongly sensitive to interaction with the alkali metals. Moreover it is observed that the encapsulation of alkali metals enhances the first hyperpolarizabilities of B{sub 12}N{sub 12} nanocluster. Surprisingly, due to the alkali metals encapsulation within B{sub 12}N{sub 12} nanocluster, the first hyperpolarizability values are remarkably increased to 8505.49 and 122,503.76 a.u. for Na@B{sub 12}N{sub 12} and K@B{sub 12}N{sub 12}, respectively. Also the TD-DFT calculations at both CAM-B3LYP/6-311+G(d) and PBE0/6-311+G(d) levels of theory are also performed to investigate the origin of first hyperpolarizabilities.

  13. Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides. K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Mathias; Haeusler, Jonas; Cordes, Niklas; Schnick, Wolfgang [Department of Chemistry, University of Munich (LMU) (Germany)

    2017-12-13

    Alkali-alkaline earth metal and alkali-rare earth metal carbodiimides, namely K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (x = 0 - 1) (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}, were synthesized under ammonothermal conditions in high-pressure autoclaves. The structures of the three compounds can be derived from homeotypic K{sub 5}H(CN{sub 2}){sub 3} and Na{sub 5}H(CN{sub 2}){sub 3} by partial substitution of K{sup +} or Na{sup +}by Sr{sup 2+} or Eu{sup 2+}. The reactions were carried out in two step syntheses (T{sub 1} = 673 K, T{sub 2} = 823 K) starting from sodium or potassium azide, dicyandiamide and strontium or Eu(NH{sub 2}){sub 2}, respectively. The crystal structures were solved and refined from single-crystal X-ray diffraction data [K{sub 4.16}Sr{sub 0.84}(CN{sub 2}){sub 2.84}(HCN{sub 2}){sub 0.16}: space group Im3m (no. 229), a = 7.8304(5) Aa, Z = 2, R{sub 1} = 0.024, wR{sub 2} = 0.052; K{sub 4.40}Eu{sub 0.60}(CN{sub 2}){sub 2.60}(HCN{sub 2}){sub 0.40}: space group Im anti 3m (no. 229), a = 7.8502(6) Aa, Z = 2, R{sub 1} = 0.022, wR{sub 2} = 0.049]. In contrast to the potassium carbodiimides, the sodium-strontium carbodiimide was only synthesized as microcrystalline powder. The crystal structure was determined by powder X-ray diffraction and refined by the Rietveld method [Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}: space group Im3m (no. 229), a = 7.2412(1) Aa, Z = 2, R{sub wp} = 0.050]. The presence of hydrogencyanamide units ([HNCN]{sup -}) next to carbodiimide units ([CN{sub 2}]{sup 2-}) in all compounds was confirmed by FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  15. Bioaccessibility of selected trace metals in urban PM{sub 2.5} and PM{sub 10} samples: a model study

    Energy Technology Data Exchange (ETDEWEB)

    Falta, Thomas; Koellensperger, Gunda; Hann, Stephan [University of Natural Resources and Applied Life Sciences, Division of Analytical Chemistry, Vienna (Austria); Limbeck, Andreas [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Vienna (Austria)

    2008-02-15

    Bioaccessibility of trace metals originating from urban particulate matter was assessed in a worst case scenario to evaluate the uptake and thus the hazardous potential of these metals via gastric juice. Sampling was performed over a period of about two months at the Getreidemarkt in downtown Vienna. Concentrations of the assayed trace metals (Ti, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, Tl and Pb) were determined in PM{sub 2.5} and PM{sub 10} samples by ICP-MS. The metal concentrations in sampled air were in the low picogram to high nanogram per cubic metre range. The concentrations in PM{sub 2.5} samples were generally lower than those in PM{sub 10} samples. The average daily intake of these metals by inhalation for a healthy adult was estimated to be in the range of <1 ng (Tl) to >1,000 ng (Zn). To estimate the accessibility of the inhaled and subsequently ingested metals (i.e. after lung clearance had taken place) in the size range from 2.5- to 10-{mu}m aerodynamic equivalent diameter, a batch-extraction with synthetic gastric juice was performed. The data were used to calculate the bioaccessibility of the investigated trace metals. Extractable fractions ranged from 2.10% (Ti in PM{sub 2.5}) to 91.0% (Cd in PM{sub 2.5}), thus yielding bioaccessible fractions (PM{sub 2.5-10}) from 0.16 ng (Ag) to 178 ng (Cu). (orig.)

  16. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  17. The role of interfacial metal silicates on the magnetism in FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Desautels, R. D., E-mail: rddesautels@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Toyota Research Institute of North America, Ann Arbor, Michigan 48169 (United States); Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rowe, M. P. [Toyota Research Institute of North America, Ann Arbor, Michigan 48169 (United States); Lierop, J. van [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO{sub 2}-based interfacial shell.

  18. [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}: A designer all-metal aromatic sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Juan; You, Xue-Rui [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Guo, Jin-Chang [Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Li, Da-Zhi, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Department of Chemical Engineering, Binzhou University, Binzhou 256603 (China); Wang, Ying-Jin [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Sun, Zhong-Ming [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhai, Hua-Jin, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006 (China)

    2016-07-28

    We report on the computational design of an all-metal aromatic sandwich, [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb{sub 4}]{sup +}[Au{sub 4}]{sup 4−}[Sb{sub 4}]{sup +}, showing ionic bonding characters with electron transfers in between the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers to the interlayer Sb–Au–Sb edges, which effectively lead to four Sb–Au–Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb{sub 4}]{sup +} ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ∼1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  19. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  20. Metallization and stiffness of the Li-intercalated MoS{sub 2} bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.V. [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Yakovkin, I.N., E-mail: yakov@iop.kiev.ua [Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Zeze, D.A. [School of Engineering & Computing Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2015-10-30

    Graphical abstract: The band structures, DOS, and Fermi surfaces for the MoS{sub 2} bilayer with adsorbed (a, c, e) and intercalated (b, d, f) Li (1 × 1) layer. - Highlights: • Adsorbed or intercalated Li monolayer makes the MoS{sub 2} surface metallic. • Increasing density of adsorbed Li leads to the nonmetal-to-metal transition in the layer. • Lithium inserted into MoS{sub 2} bilayers increases the interlayer interaction. - Abstract: Performed density-functional theory (DFT) calculations have shown that the Li adsorption on the MoS{sub 2} (0 0 0 1) surface, as well as Li intercalation into the space between MoS{sub 2} layers, transforms the semiconductor band structure of MoS{sub 2} into metallic. For the (√3 × √3) – R30° Li layer, the band structures of the MoS{sub 2} bilayer with adsorbed and intercalated Li are very similar, while for higher Li concentrations, the character of metallization for the adsorbed layer substantially differs from that of the MoS{sub 2}–Li–MoS{sub 2} layered system. In particular, for the adsorbed (1 × 1) Li monolayer, the increased density of the layer leads to the nonmetal-to-metal transition, which is evident from the appearance of the band crossing E{sub F} with an upward dispersion, pertinent to simple metals. It has been demonstrated that intercalated Li substantially increases the interlayer interaction in MoS{sub 2}. Specifically, the estimated 0.12 eV energy of the interlayer interaction in the MoS{sub 2} bilayer increases to 0.60 eV. This result is also consistent with results of earlier DFT calculations and available experimental results for alkali-intercalated graphene layers, which have demonstrated a substantial increase in the stiffness due to intercalation of alkalis.

  1. Micron Scale Mineralogy

    Science.gov (United States)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  2. Resistive switching in ZrO{sub 2} based metal-oxide-metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkkaenen, Irina

    2014-07-01

    The goal of this work is a deeper understanding of the influence of the (i) metal-oxide-metal (MOM) layer stacks configuration, (ii) the oxide films microstructure, (iii) and their defect structure on the appearance of different switching modes, i.e. unipolar (UP) and bipolar (BP). The first part deals with the fabrication of ZrO{sub 2} thin films by an industrial compatible atomic layer deposition (ALD) process, the chemical, structural and morphological characterization of the films, the growth of ZrO{sub 2}/TiO{sub 2} bilayers, the integration of the layers into metal-oxide-metal (MOM) devices and the electrical characterization with focus on the RS behavior. In the second part the effect of the device structure, in particular the thickness of the electrochemical active electrode (EAE) and the ZrO{sub 2} film morphology, on the RS switching polarity of Pt/ZrO{sub 2}/(EAE) cells is discussed. ZrO{sub 2} films and ZrO{sub 2}/TiO{sub 2} bilayers were grown by ALD and were carefully structurally and electrically characterized. The ZrO{sub 2} films grown from Zr[N(CH{sub 3})C{sub 2}H{sub 5}]{sub 4} (TEMA-Zr) at 240 C were polycrystalline with a mixture of cubic/tetragonal phases. ALD/H{sub 2}O-ZrO{sub 2} films exhibited a random oriented polycrystalline structure, whereas the ALD/O{sub 3}-ZrO{sub 2} films consisted of preferably oriented cubic shaped grains. Pt/ZrO{sub 2}/Ti/Pt structures with a Ti top electrode (TE) thickness of 5 to 20 nm showed unipolar type RS behavior, while by increasing the Ti TE thickness a gradual change of switching polarity from unipolar to bipolar with a completely bipolar type RS behavior for a Ti TE thickness of 40 nm is found. The switching in Pt/ZrO{sub 2}/TiO{sub 2}/Ti/Pt devices was unipolar, comparable to Pt/ZrO{sub 2}/Ti/Pt cells. In contrast, bilayers with the reverse structure, Pt/TiO{sub 2}/ZrO{sub 2}/Ti/Pt, showed non-switching behavior. The effect of the cells stack structure on the polarity of the RS behavior was studied in

  3. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  4. Pressure induced insulator–metal transition and giant negative piezoresistance in Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, S., E-mail: sarumugam1963@yahoo.com [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Kalaiselvan, G.; Sivaprakash, P. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India)

    2016-11-01

    The effect of external hydrostatic pressure (P) on the magnetization (M) and resistivity (ρ) properties of charge-orbital (CO) ordered-insulating phase-separated manganite Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} system is reported here. At ambient P, CO ordering transition and spin-canting in the AFM are observed at 223 K and 55 K respectively in M(T) and ρ(T) measurements. Application of P increases simultaneously the magnitude of magnetization (M) and transition temperature, and weakens the CO ordering in M(T) measurements up to 0.98 GPa. During ρ(T) measurements, P induces an insulator–metallic transition (T{sub IM}) at 1.02 GPa, and further increase of P up to 2.84 GPa leads to increase of T{sub IM} (dT{sub IM}/dP =21.6 K/GPa). ρ at T{sub IM} is reduced about three orders of magnitude at 2.84 GPa, and leads to the giant negative piezoresistance (~98%). These results are analyzed separately in two temperature regions i.e., below and above T{sub IM} by power function equation and small polaronic hopping model respectively. It is understood from these analyses that the application of P suppresses the Jahn–Teller distortions, electron–electron and electron–magnon scattering factors, and induces the insulator–metal transition in Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} system. - Highlights: • Application of P on Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} reduces resistivity (ρ) remarkably at low-temperatures, and exhibits an insulator to metallic transition at 1.02 GPa. • The reduction in ρ by P is about three orders of magnitude at 2.84 GPa, leads to the giant negative piezoresistance about 98%. • The effect of the suppression of Jahn–Teller distortions, electron–electron and electron–magnon scattering under an applied P exhibits to the metal-Insulator transition. • The phase-separation in this system has been tuned by both internal and external perturbations.

  5. Statistical experimental design for refractory coatings

    International Nuclear Information System (INIS)

    McKinnon, J.A.; Standard, O.C.

    2000-01-01

    The production of refractory coatings on metal casting moulds is critically dependent on the development of suitable rheological characteristics, such as viscosity and thixotropy, in the initial coating slurry. In this paper, the basic concepts of mixture design and analysis are applied to the formulation of a refractory coating, with illustration by a worked example. Experimental data of coating viscosity versus composition are fitted to a statistical model to obtain a reliable method of predicting the optimal formulation of the coating. Copyright (2000) The Australian Ceramic Society

  6. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  7. Pressure dependence of the elastic constants and vibrational anharmonicity of Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass

    CERN Document Server

    Wang Li; Sun, L L; Wang, W H; Wang, W K

    2003-01-01

    The pressure dependence of the acoustic velocities of a Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass have been investigated up to 0.5 GPa at room temperature with the pulse echo overlap method. Two independent second-order elastic coefficients C sub 1 sub 1 and C sub 4 sub 4 and their pressure derivatives are yielded. The vibrational anharmonicity is shown by calculating both the acoustic mode Grueneisen parameters in the long-wavelength limit and the thermal Grueneisen parameter, and this result is compared with that for the Pd sub 4 sub 0 Ni sub 4 sub 0 P sub 2 sub 0 bulk glass.

  8. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    K. Schütze

    2017-10-01

    Full Text Available Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM  =  3872; SEM  =  330 were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air−1 and varied between 0.65 and 2.3 (mg air−1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation. Carbon and oxygen are the only detected major elements with an atomic O∕C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si∕C: 0.010 ± 0.011; S∕C: 0.0007 ± 0.0015; Fe∕C: 0.0052 ± 0.0074; Cr∕C: 0.0012 ± 0.0017; Ni∕C: 0.0006 ± 0.0011 (all mean values ± standard deviation.High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between

  9. Electronic computer prediction of properties of binary refractory transition metal compounds on the base of their simplificated electronic structure

    International Nuclear Information System (INIS)

    Kutolin, S.A.; Kotyukov, V.I.

    1979-01-01

    An attempt is made to obtain calculation equations of macroscopic physico-chemical properties of transition metal refractory compounds (density, melting temperature, Debye characteristic temperature, microhardness, standard formation enthalpy, thermo-emf) using the method of the regression analysis. Apart from the compound composition the argument of the regression equation is the distribution of electron bands of d-transition metals, created by the energy electron distribution in the simplified zone structure of transition metals and approximated by Chebishev polynoms, by the position of Fermi energy on the map of distribution of electron band energy depending upon the value of quasi-impulse, multiple to the first, second and third Brillouin zone for transition metals. The maximum relative error of the regressions obtained as compared with the literary data is 15-20 rel.%

  10. Exploring Charge Transport in Guest Molecule Infiltrated Cu<sub>3sub>(BTC)>2sub> Metal Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Francois Leonard [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu<sub>3sub>(BTC)>2sub> were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu<sub>3sub>(BTC)>2sub> revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holes are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.

  11. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  12. Synthesis of Mg{sub 2}FeH{sub 6} containing as additives transition metal and transition metal fluorides or carbon; Sintese de Mg{sub 2}FeH{sub 6} contando como aditivos metais de transicao e fluoretos de metais de transicao ou carbono

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, G.; Leiva, D.R.; Botta, W.J., E-mail: guizepon@yahoo.com.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The Mg{sub 2}FeH{sub 6} is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H{sub 2}/m{sup 3}. However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg{sub 2}FeH{sub 6} as a hydrogen storage material. Little is known about the effects of additives in Mg{sub 2}FeH{sub 6} based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg{sub 2}FeH{sub 6} containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  13. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Cui Jiang-Wei; Zhou Hang; Yu De-Zhao; Yu Xue-Feng; Lu Wu; Guo Qi; Ren Di-Yuan

    2015-01-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result. (paper)

  14. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  15. Study of impurity composition of some compounds of refractory metals by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kaganov, L.K.; Dzhumakulov, D.T.; Mukhamedshina, N.M.

    1994-01-01

    The compounds of refractory transition metals find wide application in all fields of engineering, in particular in microelectronics to manufacture contact-barrier layers of thin-film current-conducting systems of silicon instruments, large and very large scale integrated circuits. Production of such materials is realted with the need to apply the analytical control methods that allow to determine a large number of elements with high reliability. The instrumental neutron-activation techniques have been developed to determine impurity composition of the following compounds: MoSi 2 , WSi 2 , TiB 2 , NbB 2 , TiC, NbC

  16. Toward selective electrochemical 'E-tongue': Potentiometric DO sensor based on sub-micron ZnO-RuO{sub 2} sensing electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@csiro.au [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Kats, Eugene [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Plashnitsa, Vladimir [Research and Education Centre of Carbon Resources, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Miura, Norio [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2011-06-01

    Highlights: > We examine ZnO-doped RuO{sub 2} sensing electrode of DO sensor. > Study of ZnO-RuO{sub 2} confirmed the development of high surface-to-volume ratio. > Developed sensing electrode is insensitive to the presence of various dissolved salts. > 20 mol% ZnO-doped RuO{sub 2} sensing electrode enables maximum DO sensitivity. > We conclude that DO sensor based on ZnO-RuO{sub 2} electrode can work at 11-30 deg. C. - Abstract: Planar dissolved oxygen (DO) sensors based on thick-film ZnO-RuO{sub 2} sensing electrodes (SEs) with different mol% of ZnO were prepared on the alumina substrates using a screen-printing method and their structural and electrochemical properties were closely studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) techniques. Structural and electrochemical properties of ZnO-RuO{sub 2}-SEs have been investigated. Interference testing ascertained that the DO sensor based on sub-micron ZnO-RuO{sub 2}-SE is insensitive to the presence of various dissolved ions including Cl{sup -}, Li{sup +}, SO{sub 4}{sup 2-}, NO{sup 3-}, Ca{sup 2+}, PO{sub 4}{sup 3-}, Mg{sup 2+}, Na{sup +} and K{sup +} within a concentration range of 10{sup -7} to 10{sup -1} mol/L for DO measurement from 0.5 to 8.0 ppm in the test solution at a temperature range of 11-30 deg. C. These dissolved salts had practically no effect on the sensor's output potential difference response, whereas Br{sup -} ions had some effects at concentration more than 10{sup -3} mol/L. The relationship between DO and the sensor's potential difference was found to be relatively linear with the maximum sensitivity of -50.6 mV per decade was achieved at 20 mol% ZnO at 7.35 pH. The response and recovery time to pH changes for the planar device based on 20 mol% ZnO-RuO{sub 2}-SE was found to be 10 and 25 s

  17. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2012-05-01

    Full Text Available South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC. The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO<sub>2sub>, NO<sub>x>, CO and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM<sub>10sub> and O<sub>3sub> concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO<sub>2sub>-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during

  18. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles [Department of Physics, Boise State University, Boise, Idaho 83725 (United States); Padture, Nitin P. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  19. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K; Kumar, N; Lindfors, L E [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1997-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  20. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  1. High-throughput synthesis of mixed-metal electrocatalysts for CO{sub 2} reduction

    Energy Technology Data Exchange (ETDEWEB)

    He, Jingfu; Dettelbach, Kevan E.; Li, Tengfei [Department of Chemistry, The University of British Columbia, Vancouver, BC (Canada); Salvatore, Danielle A. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada); Berlinguette, Curtis P. [Department of Chemistry, The University of British Columbia, Vancouver, BC (Canada); Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2017-05-22

    The utilization of CO{sub 2} as a feedstock requires fundamental breakthroughs in catalyst design. The efficiencies and activities of pure metal electrodes towards the CO{sub 2} reduction reaction are established, but the corresponding data on mixed-metal systems are not as well developed. In this study we show that the near-infrared driven decomposition (NIRDD) of solution-deposited films of metal salts and subsequent electrochemical reduction offers the unique opportunity to form an array of mixed-metal electrocatalyst coatings with excellent control of the metal stoichiometries. This synthetic method enabled us to develop an empirical structure-property correlation to help inform the development of optimized CO{sub 2} catalyst compositions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Development of diagnosis and repair system for steelmaking refractories; Seikoyo taikabutsu no shindan hoshu gijutsu no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Aso, S.; Harada, S.; Tsutsui, Y. [Nippon Steel Corp., Tokyo (Japan)

    1996-06-01

    The latest measurement equipment and repair method were introduced into the work area of all refractories in the process of torpedo cars, hot metal preliminary treatment, hot metal pans, secondary refining, and cast pans so as to improve the cost of the newest advanced steelmaking refractories. As a result, the refractory cost could be reduced by 10%. This paper introduces the improvement in RH refractories and refractories for hot metal preliminary treatment. As for basic items, in addition to the visual observation, the thickness of refractories was quantified using equipment (laser profile meter, thermotracer, and NS sensor) for the furnace stop in the minimum remaining length. An ITV was also installed in the facilities where the visual check is difficult to carry out. Repair is mainly done by spraying. A thermal spraying repair method with high durability was used for the repair. A method that relieves a thermal shock was used for preheating. Moreover, measures that make the temperature gradient in the thickness direction uniform by using newly developed microwave drying equipment were taken for drying of unburned refractories. 4 refs., 13 figs., 2 tabs.

  3. A preliminary study of oxidation-resistant coatings on refractory-metal thermocouple sheaths

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1985-01-01

    The need to make reliable temperature measurements up to 2200 0 C or higher in steam environments during in-pile nuclear fuel damage tests led to a search for oxidation-resistant coatings for the refractory-metal sheaths used to enclose and protect thermocouples used for such measurements. Iridium, thoria, and thoria-over-iridium coatings were separately sputter-deposited on molybdenum-rhenium alloy protection tubes for evaluation. The coated samples were individually heated in flowing steam in an induction furnace. An extension tube welded to each sample was connected to a vacuum pump and gauge; failure of the sample was detected by noting the degradation of the vacuum maintained in the sample. Relatively heavy coatings of iridium provided a modest degree of oxidation protection at the temperatures of interest. Thoria coatings provided no significant protection at those temperatures, compared to uncoated control samples

  4. Plasma deposition of refractories

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Ivanov, V.M.

    1981-01-01

    The problems of deposition, testing and application of plasma coating of refractory metals and oxides are considered. The process fundamentals, various manufacturing procedures and equipment for their realization are described in detail. Coating materials are given (Al, Mg, Al 2 O 3 , ZrO 2 , MgAlO 4 ) which are used in reactor engineering and their designated purposes are shown [ru

  5. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  6. Fabrication and magnetic-induced aggregation of Fe{sub 3}O{sub 4}–noble metal composites for superior SERS performances

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zibao; Zhao, Aiwu, E-mail: awzhao@iim.ac.cn; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu [Chinese Academy of Sciences, Institute of Intelligent Machines (China)

    2013-11-15

    Fe{sub 3}O{sub 4}–noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe{sub 3}O{sub 4} NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe{sub 3}O{sub 4}–noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe{sub 3}O{sub 4}–noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe{sub 3}O{sub 4}–noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe{sub 3}O{sub 4}–Ag aggregates for R6G is as low as 10{sup −14} M, and the calculated EF reaches up to 1.2 × 10{sup 6}, which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances.

  7. Modern materials based on refractory compounds

    International Nuclear Information System (INIS)

    Kosolapova, T.Ya.

    1979-01-01

    Discussed are the existing methods for synthesizing powders of binary refractory compounds and high-productivity techniques which hold promise as regards the manufacture of highly disperse and pure powders. Plasmochemical synthesis is shown to be an effective method for obtaining practically all carbides, nitrides and borides. A description is given of three main methods for obtaining single crystals of refractory compounds (TiN, TiC, ZrC, ZrB 2 , NbC) fairly perfect in structure and composition. These processes include deposition from vapour-gas phase, melting in arc plasma and crystallization from solutions in metallic melts. The advantages have been shown of the self-propagating high-temperature synthesis of refractory compounds, ensuring the manufacture of products, close in composition to stoichiometric ones simultaneously with forming of items. Mechanical, thermal, abrasive, and resistive characteristics of the above materials are presented

  8. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    Science.gov (United States)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  9. Selenization of mixed metal oxides for dense and ZnSe-free Cu{sub 2}ZnSnSe{sub 4} absorber films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yitao; Chen, Guilin; Pan, Bin; Li, JianMin; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2014-04-05

    Highlights: • ZnSe-free CZTSe films with large grains was prepared from mixed oxides nanopraticles. • Appearance of Zn{sub 2}SnO{sub 4} in mixed oxides precursors leads to the absence of ZnSe secondary phrase. • To obtain pure CZTSe phase, different treating temperature was used. -- Abstract: Cu{sub 2}ZnSnSe{sub 4} (CZTSe) films were prepared by direct selenization of Cu{sub 2}O, SnO{sub 2} and Zn{sub 2}SnO{sub 4} precursors. Oxides precursors were prepared by baking hydroxides precipitation. In order to obtain ZnSe-free CZTSe films, Zn{sub 2}SnO{sub 4} was used to replace separated ZnO and SnO{sub 2} as one of the precursors. Through X-ray diffraction (XRD), scanning electron microscopy (SEM), it was found that CZTSe films, with micron-sized dense grains, were obtained in our work. From Raman spectra, it was also found that the ZnSe secondary phase was absent after the selenization. An energy bandgap about 0.86 eV was obtained in our work, which confirmed the Stannite-CZTSe structure.

  10. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; hide

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications

  11. Hydrogen-induced metallicity and strengthening of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yakovkin, I.N., E-mail: yakov@iop.kiev.ua; Petrova, N.V.

    2014-04-15

    Highlights: • Hydrogen inserted into MoS{sub 2} bilayers increases the interlayer interaction. • Adsorbed or intercalated H monolayer makes the surface metallic. • Fermi surface of the H/MoS{sub 2} shows a significant nesting. - Abstract: The performed DFT calculations for MoS{sub 2} layers with adsorbed and intercalated hydrogen indicate that the atomic hydrogen monolayer makes the surface metallic. The physisorbed H{sub 2} does not affect electronic properties of the MoS{sub 2} monolayer, which remains a direct gap semiconductor. Due to forming S–H–S bonds, hydrogen atoms, intercalated into the space between MoS{sub 2} layers, increase the interlayer interaction from 0.12 eV to 0.60 eV. The related increase of the stiffness of the Mo–H–Mo layered system is of a primary importance for the interpretation of images of the surface obtained with the Ultrasonic Force Microscopy (Kolosov and Yamanaka, 1993) [42].

  12. Resistance to He{sup 2+} induced irradiation damage in metallic glass Zr{sub 64}Cu{sub 17.8}Ni{sub 10.7}Al{sub 7.5}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zhang, Hongran; Hou, Wenjing; Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2014-01-15

    Graphical abstract: This paper used TEM for the analysis of the microstructure, helium bubble distribution and helium bubble growth process of Zr-based metallic glass after the irradiation at maximum fluence. Fig. a shows the cross-sectional TEM sample morphology image of Zr-based metallic glass. It could be observed that a large number of helium bubbles were distributed on the topmost surface of Zr-based metallic glass (Zone A in Fig.a). The helium bubbles on the surface were mostly round, except for a small number of irregular-shape bubbles, with the sizes ranging from several nanometers to several tens of nanometers. The helium bubble diameter became gradually smaller downwardly from Zone A. As shown in Fig.a, the helium bubble size was small within the range of 0.3–1.2 μm below the surface (Zone B), and a large number of helium bubbles with a diameter of several nanometers were uniformly distributed in the area close to Zone A and Zone C; as shown in Fig.b, a helium bubble layer appeared within the range of 1.2–1.5 μm (Zone C) away from the surface, and it was found that the helium bubble size was larger in the vicinity of 1.3 μm away from the surface. Fig.b shows the atom vacancy distribution curves in Zr-based metallic glass before and after the helium ion irradiation obtained through SRIM program simulation. It could be observed that vacancy concentration peaks appeared at the ion range of 1.2 μm, and a large number of vacancies were concentrated at the end of the range. The vacancies of the sample were very easy to capture helium atoms and were conducive to the formation and growth of helium bubbles. -- Highlights: • Metallic glass could maintain amorphous state at different irradiation fluences. • A damage layer appeared in Zr{sub 64}Cu{sub 17.8}Ni{sub 10.7}Al{sub 7.5} at a fluence of 2 × 10{sup 18} ions/cm{sup 2}. • Peeling and delamination appeared numerously in W at a fluence of 1 × 10{sup 18} ions/cm{sup 2}. • Lots of helium bubbles

  13. Micron scale spectroscopic analysis of materials

    International Nuclear Information System (INIS)

    James, David; Finlayson, Trevor; Prawer, Steven

    1991-01-01

    The goal of this proposal is the establishment of a facility which will enable complete micron scale spectroscopic analysis of any sample which can be imaged in the optical microscope. Current applications include studies of carbon fibres, diamond thin films, ceramics (zirconia and high T c superconductors), semiconductors, wood pulp, wool fibres, mineral inclusions, proteins, plant cells, polymers, fluoride glasses, and optical fibres. The range of interests crosses traditional discipline boundaries and augurs well for a truly interdisciplinary collaboration. Developments in instrumentation such as confocal imaging are planned to achieve sub-micron resolution, and advances in computer software and hardware will enable the aforementioned spectroscopies to be used to map molecular and crystalline phases on the surfaces of materials. Coupled with existing compositional microprobes (e.g. the proton microprobe) the possibilities for the development of new, powerful, hybrid imaging technologies appear to be excellent

  14. Phase evolution and its effect on magnetic properties of Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 bulk metallic glass

    CERN Document Server

    Lei Xia; Pan, M X; Zhao, D Q; Wang, W H; Dong, Y D

    2003-01-01

    The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic properties were studied for as-cast Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hard magnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

  15. Mechanical properties of refractory concretes for boilers; Propriedades mecanicas de concretos refratarios para caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Angioletto, E.; Pelisser, F.; Peterson, M.; Angioletto, E.; Rocha, M.R.; Arnt, A.B.C. [Universidade do Estado de Santa Catarina (UDESC), Criciuma, SC (Brazil)], E-mail: ean@unesc.net; Coelho, R. [Tractebel Energia, Florianpolis, SC (Brazil)

    2010-07-01

    Refractory concretes are used in extremely physically demanding conditions. An important example is concretes used as sealing systems in boilers, where their dimensional stability at high temperatures is fundamental to durability and has a strong impact on maintenance costs and system idleness. In this work, refractory concretes with different compositions were characterized and then tested by dilatometry, for compressive strength and in assays involving adherence between tensile concrete/metal inserts, simulating the fixing system in boilers. Analysis of the results showed that refractory concretes do not present retraction due to air during drying, eliminating the possibility of cracking. While casting the plate/prototype with metal inserts, satisfactory concrete/metal adherence was verified and surface cracking occurred that did not influence the tensile bond strength between the insert and the concrete. (author)

  16. Deformation processes in refractory metals. Progress report, December 1, 1975--November 30, 1976

    International Nuclear Information System (INIS)

    Arey, R.W.; Boratto, F.; Wise, D.E.; Watson, P.G.; Reed-Hill, R.E.

    1976-01-01

    Two papers were published during the report period. Abstracts of these papers are included. Four others have been accepted for publication and are abstracted in included sections. In addition to this, Mr. Juan Donoso has published a dissertation which is summarized. A paper is presented which was prepared for presentation at the ''Interstitial Effects in Refractory Metals'' session of the Fall AIME meeting in Niagara Falls, New York. Other work currently under way is discussed, including new internal friction determinations of the diffusion coefficients of O and N in niobium and re-evaluation of the available relevant data in the literature. It is believed that the results of this study make it possible to rationalize apparent inconsistencies in the literature. Work on the static strain-aging in Ti is reported. A review of work on the effects of hydrogen on the yield point phenomena in niobium at the temperatures 273 and 193 0 K is presented along with transmission electron microscopy work on titanium aimed at obtaining a better insight into the causes of anomalous work hardening associated with dynamic strain-aging in this metal

  17. Efficacy of Self-Expandable Metallic Stent Inserted for Refractory Hemorrhage of Duodenal Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Orii

    2016-05-01

    Full Text Available Because of advances in the technology of gastrointestinal endoscopy and improvements in the quality of stents, it has become routine to place a stent as palliative therapy for malignant gastrointestinal obstruction. On the other hand, stent placement for malignant gastrointestinal hemorrhage has scarcely been reported, although it may be performed for hemorrhage of the esophageal varicose vein. We recently experienced a patient with refractory hemorrhage from an unresectable duodenal cancer who underwent placement of a self-expandable metallic stent (SEMS and thereafter had no recurrence of the hemorrhage. A 46-year-old man underwent laparotomy to radically resect a cancer in the third portion of the duodenum, which invaded widely to the superior mesenteric vein and its branches and was considered unresectable. After stomach-partitioning gastrojejunostomy was performed, chemotherapy was initiated according to the regimen of chemotherapy of far advanced gastric cancer. One year and 4 months after induction of chemotherapy, gastrointestinal hemorrhage occurred. Upper gastrointestinal endoscopy revealed the hemorrhage oozing from the duodenal cancer, and endoscopic hemostasis, such as injection of hypertonic saline epinephrine and argon plasma coagulation, was unsuccessful. Twenty days after emergence of the hemorrhage, an endoscopic covered SEMS was placed with confirmation by fluoroscopy. Immediately after placement of the stent, the tarry stool stopped and the anemia ceased to progress. The recurrence of the hemorrhage has not been confirmed without migration of the stent. SEMS is an effective hemostatic procedure for malignant refractory hemorrhage.

  18. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  19. Half metallicity in bare BC{sub 2}N nanoribbons with zigzag edges

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong, E-mail: lihong@ncut.edu.cn [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Xiao, Xiang; Tie, Jun [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Lu, Jing [State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2017-06-09

    We study the electronic and magnetic properties of bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs) by using first principles calculations. The ZBC{sub 2}NNRs which we studied are assigned to four edge types, and we carefully examine the size effect and edge magnetic coupling orders. We find that the N edge and the C edge adjacent to N atoms have a ferromagnetic coupling, while the B edge and the C edge adjacent to B atoms have an anti-ferromagnetic coupling. These novel properties arise from the unsaturated edge with specific edge determined magnetic moment distribution. All the investigated ribbons exhibit magnetic ground states with room-temperature accessible half-metallic character, irrespective of the ribbon width. Our results suggest that ZBC{sub 2}NNRs can have potential applications in spintronics. - Highlights: • DFT study on bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs). • All the studied bare ZBC{sub 2}NNRs are half-metals at room temperature. • The half-metal characters come from specific spin couplings on the edge atoms. • We predict bare ZBC{sub 2}NNRs as practical candidate for spintronics.

  20. Performance assessment of refractory samples in the Los Alamos Controlled Air Incinerator

    International Nuclear Information System (INIS)

    Hutchins, D.A.; Borduin, L.C.; Koenig, R.A.; Vavruska, J.S.; Warner, C.L.

    1986-01-01

    A refractory evaluation project was initiated in 1979 to study the performance of six selected refractory materials within the Los Alamos Controlled Air Incinerator (CAI). Determining refractory resistance to thermal shock, chemical attack, and plutonium uptake was of particular interest. The experimental refractories were subjected to a variety of waste materials, including transuranic (TRU) contaminated wastes, highly chlorinated compounds and alkaline metal salts of perchlorate, chlorate, nitrate and oxylate, over the six year period of this study. Results of this study to date indicate that the use of high alumina, and possibly specialty plastic refractories, is advisable for the lining of incinerators used for the thermal destruction of diverse chemical compounds. 12 refs., 4 tabs

  1. Experimental study on reactor neutron induced effect of deep sub-micron CMOS static random access memory

    International Nuclear Information System (INIS)

    Yang Shanchao; Guo Xiaoqiang; Lin Dongsheng; Chen Wei; Li Ruibin; Bai Xiaoyan; Wang Guizhen

    2010-01-01

    This paper investigates neutron irradiation effects of two kinds of commercial CMOS SRAM (static random access memory), of which one is 4M memory with the feature size of 0.25 μm and the other is 16M memory with the feature size of 0.13 μm. We designed a memory testing system of irradiation effects and performed the neutron irradiation experiment using the Xi'an Pulse Reactor. The upset of two kinds of memory cells did not present a threshold versus the increase of neutron fluence. The results showed that deep sub-micron SRAM behaved single-event upset (SEU) effect in neutron irradiation environment. The SEU effect of SRAM with smaller size and higher integrated level tends to upset is considered to be related to the reduction of the device feature size, and fewer charges for upsets of the memory cell also lead to the SEU effect. (authors)

  2. Brazed graphite/refractory metal composites for first-wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C.D.; Salmonson, J.C.; Whitley, J.B.; Nickel, H.

    1991-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000deg C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50x50 mm 2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100deg C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (orig.)

  3. Brazed graphite/refractory metal composites for first-wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1995-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000 degree C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 5O X 50 mm 2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100 degree C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (author)

  4. Brazed graphite/refractory metal composites for first wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N; Kneringer, G.; Nickel, H.

    1995-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000 degree C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/10Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 x 50 mm with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with the experimental parameters chosen to cover NET/ITER design specifications. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (author)

  5. Brazed graphite/refractory metal composites for first-wall protection elements

    Science.gov (United States)

    Šmid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1991-03-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2. The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000°C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 × 50 mm2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100°C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model.

  6. One-pot solvothermal synthesis of Co{sub 1−x}Mn{sub x}C{sub 2}O{sub 4} and their application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Wei An Elijah [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); Cheah, Yan Ling; Wong, Chui Ling [Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); Hng, Huey Hoon [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Madhavi, Srinivasan, E-mail: madhavi@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM CREATE Center for Electromobility, 1 CREATE Way, #10-02 CREATE Tower, Singapore 138602 (Singapore)

    2015-07-25

    Graphical abstract: MnC{sub 2}O{sub 4} exhibited good cycling stability while CoC{sub 2}O{sub 4} showed severe capacity fading phenomenon after 40 cycles. Notably, mixed solid solution having Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} composition improved the specific reversible discharge capacity to a stable value of ∼1000 mA h g{sup −1} (1 C-rate). - Highlights: • Mixed metal oxalates are synthesized by solvothermal method for the first time. • We control morphologies by varying solvent mixtures and transition metal types. • Li/Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} is the best capacity and rate-performing cell in this study. • The positive synergistic effect is attributed to optimal Co:Mn mole ratio. • Properties of Co give high capacity values while Mn give good cycling stability. - Abstract: A facile one-pot solvothermal route has been developed to synthesize phase pure M{sub x}C{sub 2}O{sub 4}⋅2H{sub 2}O (M = Mn, Co; 0 < x ⩽ 1) microstructures without employing any hard/soft template and their electrochemical performance in lithium-ion batteries has been systematically investigated. Morphology, microstructure and composition of the synthesized materials are characterized by field emission-scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. Anhydrous micron-sized MnC{sub 2}O{sub 4} and CoC{sub 2}O{sub 4} exhibits specific reversible discharge capacity of ∼800 and 950 mA h g{sup −1} respectively, at 1 C-rate. MnC{sub 2}O{sub 4} exhibited good cycling stability while CoC{sub 2}O{sub 4} showed severe capacity fading phenomenon after 40 cycles, thereafter attaining 400–600 mA h g{sup −1} for all C-rates. Interestingly, mixed solid solution having Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} composition improved the specific reversible discharge capacity to a stable value of ∼1000 mA h g{sup −1} (1 C-rate), which is one of the highest reported values for such oxalates. The cycling stability of this

  7. Low leakage stoichiometric SrTiO{sub 3} dielectric for advanced metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, Mihaela; Kaczer, Ben; Redolfi, Augusto; Elshocht, Sven van; Jurczak, Malgorzata [imec Belgium, Leuven (Belgium); Afanas' ev, Valeri V. [Department of Physics and Astronomy, KU Leuven (Belgium); Sereni, Gabriele [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); Larcher, Luca [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); MDLab, Saint Christophe (Italy)

    2016-05-15

    Metal-insulator-metal capacitors (MIMCAP) with stoichiometric SrTiO{sub 3} dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr-rich STO seed layer, with the Ti-rich STO top layer. The resulted stoichiometric SrTiO{sub 3} would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr-rich STO which allow further equivalent oxide thickness downscaling. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    Science.gov (United States)

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized

  9. Comparison of Semiconducting and Metallic Carbon Nanotubes Incorporating In{sub 2}S{sub 3}/In{sub 2}O{sub 3} Photoelectrochemical Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heesoo; Lee, Jongtaek; Park, Taehee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun [Hanyang University, Seoul (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-08-15

    We fabricate photoelectrochemical cells (PECs) using In{sub 2}S{sub 3}/In{sub 2}O3{sub d}ouble-layer composite as a working electrode in the presence of single-walled carbon nanotubes (SWCNTs). Simple solution methods, such as spray-coating and chemical bath deposition, were used to assemble each layer in the PECs. We apply pristine SWCNTs, semiconducting SWCNTs (s-SWCNTs), and metallic SWCNTs (m-SWCNTs) to the PECs, and measure their solar performances, incident photon to charge carrier efficiency, and electroimpedance spectra. Field emission is also measured to explain the enhanced electric field of each cell.

  10. Formation of TiC/Al{sub 2}O{sub 3} composites from metal-polymer-precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jost, H.; Braun, M.; Staedler, C. [Technische Univ. Berlin (Germany). Inst. fuer Nichtmetallische Werkstoffe

    2002-07-01

    A new synthesis route for TiC/Al{sub 2}O{sub 3} materials was developed starting from a mixed metal-polymer precursor. The Precursor was prepared from aluminium nitrate, titantetrachloride and polymethacrylic acid dissolved in a solvent in order to achieve a high homogeneity of the precursor reactants. (orig.)

  11. Calcium substitution in rare-earth metal germanides with the hexagonal Mn{sub 5}Si{sub 3} structure type. structural characterization of the extended series RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Rare-earth metal)

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu

    2014-09-15

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and

  12. Adherence of diamond films on refractory metal substrates for thermionic applications

    International Nuclear Information System (INIS)

    Tsao, B.H.; Ramalingam, M.L.; Adams, S.F.; Cloyd, J.S.

    1991-01-01

    Diamond films are currently being considered as electrical insulation material for application in the thermionic fuel element of a power producing nuclear reactor system. The function of the diamond insulator in this application is to electrically isolate the collector of each cell in the TFE from the coolant and outer sheath. Deposition of diamond films on plane surfaces of Si/SiO 2 have already been demonstrated to be quite effective. However, the diamond films on refractory metal surfaces tend to spall off in the process of deposition revealing an inefficient adherence characteristic between the film and the substrate. This paper is geared towards explaining this deficiency by way of selected experimentation and the use of analytical tools to predict uncertainties such as the mismatch in coefficient of expansion, micrographic study of the interface between the film and the substrate and X-ray diffraction spectra. The investigation of the adherence characteristics of several diamond films on Mo and Nb substrates revealed that there was an allowable stress that resulted in the formation of the critical thickness for the diamond film

  13. The complex metal-rich boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68, y=1.06) with a new structure type containing B{sub 4} zigzag fragments: Synthesis, crystal chemistry and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany)

    2012-08-15

    Polycrystalline samples and single crystals of the new complex boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B{sub 4} fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) A, b=14.995(2) A and c=3.234(1) A. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B{sub 4} fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior. - graphical abstract: The structure of Ti{sub 1.68(2)}Rh{sub 2.38(6)}Ir{sub 1.94(4)} B{sub 3}, a new structure type containing planar trans zigzag B{sub 4} units, is another example which illustrates the tendency of metal-rich borides to form B-B bonds with increasing boron content. Beside the B{sub 4} fragment it exhibits one-dimensional chains of titanium atoms and hold one-dimensional strings of face-sharing empty tetrahedral and square pyramidal clusters (see figure). Highlights

  14. Paramagnetic susceptibility of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} metallic glass subjected to high-pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, A.V., E-mail: korolyov@imp.uran.ru [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Kourov, N.I. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Pushin, V.G. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Gunderov, D.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation); Boltynjuk, E.V.; Ubyivovk, E.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Valiev, R.Z. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation)

    2017-09-01

    Highlights: • Zr-based BMG was subjected to HPT at temperatures of 20 °C and 150 °C. • Magnetic measurements reveal well recordable changes in paramagnetic susceptibility. • Paramagnetic susceptibility may be an indicator of a change in the structural state. - Abstract: The Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glass is studied in the as-cast state and in the state after processing by high-pressure torsion at temperatures of 20 °C and 150 °C. According to the data from X-ray diffraction and transmission electron microscopy, the structural state of the samples depends weakly on the conducted processing. At the same time, magnetic measurements reveal well recordable changes in paramagnetic susceptibility induced by the processing of the samples. It is assumed that, because of high-pressure torsion deformation, there occurs a noticeable change in the material electronic structure, which leads to a change in the full susceptibility of the samples. The performed studies demonstrate that paramagnetic susceptibility may be an indicator of a change in the structural state of paramagnetic amorphous metallic substances.

  15. Improvement of the thermoplastic formability of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass by minor addition of Erbium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zeng, X.R., E-mail: zengxier@szu.edu.cn [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); JANUS Precision Components Co., LTD., Dongguan 523000 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Chen, S.S. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Jiang, J. [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2016-12-01

    The softness of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5}){sub 98}Er{sub 2} (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  16. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryltsev, R. E. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Klumov, B. A. [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); High Temperature Institute, Russian Academy of Sciences, 13/2 Izhorskaya Str., 125412 Moscow (Russian Federation); Chtchelkatchev, N. M. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700 Moscow Region (Russian Federation); All-Russia Research Institute of Automatics, 22 Sushchevskaya, 127055 Moscow (Russian Federation); Shunyaev, K. Yu. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation)

    2016-07-21

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{sup 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.

  17. Laboratory studies of refractory metal oxide smokes

    International Nuclear Information System (INIS)

    Nuth, J.A.; Nelson, R.N.; Donn, B.

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs

  18. Solvothermal synthesis of a new 3-D mixed-metal sulfide framework, (H{sub 1.33}tren)[In{sub 2.67}Sb{sub 1.33}S{sub 8}]·tren

    Energy Technology Data Exchange (ETDEWEB)

    Lampkin, John D., E-mail: j.lampkin@pgr.rdg.ac.uk; Powell, Anthony V., E-mail: a.v.powell@rdg.ac.uk; Chippindale, Ann M., E-mail: a.m.chippindale@rdg.ac.uk

    2016-11-15

    A new indium(III) antimony(V) sulfide, (H{sub 1.33}tren)[In{sub 2.67}Sb{sub 1.33}S{sub 8}]·tren, has been prepared solvothermally at 433 K. The compound crystallises in the tetragonal space group I-42d (lattice parameters, a=12.6248(5) and c=19.4387(18) Å at 150 K) and contains adamantane-like T2 supertetrahedral units comprised of corner-sharing InS{sub 4}{sup 5−} and SbS{sub 4}{sup 3−} tetrahedra. The adamantane-like units are then linked through sulfur vertices to generate an open, 3-D framework structure containing large pores in which neutral, protonated tren (tris(2-aminoethylene)amine) molecules reside. The presence of the organic components was confirmed by solid-state {sup 13}C NMR (10 kHz), combustion and thermogravimetric analysis. The band gap, obtained from UV–vis diffuse reflectance measurements, is 2.7(2) eV. Stirring with either water or alkali-metal salt solution leads to removal of the neutral tren molecules and an ~9% reduction in unit-cell volume on formation of (H{sub 1.33}tren)[In{sub 2.67}Sb{sub 1.33}S{sub 8}]·(H{sub 2}O){sub 4}. - Graphical abstract: Linking of In(III)-Sb(V)-S adamantane units to form a 3-D open framework. - Highlights: • Preparation and structural characterisation of a new mixed-metal thiometallate. • The first mixed In(III)/Sb(V) supertetrahedron. • Optical band gap of 2.7(2) eV. • Soaking in aqueous alkali-metal solutions leads to removal of ca. 50% of the organic content.

  19. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  20. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Pranesh, E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, R.K.; Soudamini, N. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kaushik, C.P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ajithkumar, T.G. [Central NMR Facility, National Chemical Laboratory, Pune 411 008 (India); Banerjee, K. [Nuclear Recycle Group, Mumbai 400 085 (India)

    2015-12-15

    ‘Fused/cast Al{sub 2}O{sub 3}–ZrO{sub 2}–SiO{sub 2} (FC-AZS)’ is being considered as ‘glass contact refractory’ within ceramic melters, to be used for nuclear waste immobilization. Microstructural analyses reveal random distributions of baddeleyite (ZrO{sub 2}) within aluminosilicate (Al{sub 2}SiO{sub 5}) matrix. {sup 27}Al and {sup 29}Si NMR data suggest that within aluminosilicate matrix Al occurs in both 4- and 6-fold co-ordinations whereas Si prefers a 4-fold environment. Polydispersity of pores has been studied with small-angle neutron scattering (SANS) technique. Corrosion rates of FC-AZS within 6 M HNO{sub 3}, simulated wastes (500 h exposure), and borosilicate melt (975 °C, 800 h exposure) are found to be 0.38 × 10{sup 3} μmy{sup −1}, 0.13 × 10{sup 3} μmy{sup −1} and 4.75 × 10{sup 3} μmy{sup −1} respectively. A comparison of chemical interaction data clearly suggests that FC-AZS exhibits better chemical durability than AZC refractory (Al{sub 2}O{sub 3}–ZrO{sub 2}–Cr{sub 2}O{sub 3}, also used for similar purpose). Thermal cycling studies indicate that FC-AZS retains structural integrity (including compressive strength and density) even up to 20 cycles. - Highlights: • Vitrification of nuclear waste using AZS refractory within ceramic melter. • Microstructure of AZS refractory. • Interaction of AZS with simulated high level waste and glass.

  1. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  2. On the kinetic and thermodynamic fragility of the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gallino, Isabella, E-mail: i.gallino@mx.uni-saarland.de [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Gross, Oliver [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Dalla Fontana, Giulia [Department of Chemistry IFM and NIS, University of Torino, V. Giuria 7, 10125 Torino (Italy); Evenson, Zach; Busch, Ralf [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany)

    2014-12-05

    Highlights: • The studied Pt–Cu–(Ni,Co)–P glasses are more fragile than Zr-based alloys. • They show large increases in the C{sub p} at T{sub g} and small barriers for cooperative rearrangements of atoms. • They have fragility parameters among the lowest reported for BMG systems (D{sup *} = 10–12). • They crystallize into a state that melts with distinctly high entropy of fusion. • The microscopic origin of their fragility seems different than that for Zr- and Pd-based BMGs. - Abstract: The investigations in this study focus on bulk metallic glass (BMG) alloy families based on noble metals like Pt, which are more kinetically fragile than Zr-based BMG systems. Thermophysical properties have been investigated by calorimetry and thermal mechanical analyses for the determination of the specific heat capacity and viscosity, respectively. For the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} BMG compositions consistent Vogel–Fulcher–Tammann (VFT) fits of the viscosity measurements are established, and the temperature dependence of the configurational entropy is calculated from thermodynamic data. Fits to the Adam–Gibbs equation are performed using this configurational entropy change. Their fragile nature is compared to that of Zr-based alloys in terms of structural considerations.

  3. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    Science.gov (United States)

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-09

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  4. Gas atomization processing of tin and silicon modified LaNi<sub>5sub> for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB<sub>5sub> alloys for battery applications. These studies involved LaNi<sub>5sub> substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB<sub>5sub> alloy powder for further processing advantage. Gas atomization processing of the AB<sub>5sub> alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB<sub>5sub> alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB<sub>5sub> alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB<sub>5sub> production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  5. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Zhang, Yue; Zhang, Feng, E-mail: fzhang@ameslab.gov; Ye, Zhuo [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Ding, Zejun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Cai-Zhuang [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); Ho, Kai-Ming [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); International Center for Quantum Design of Functional Materials (ICQD), and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5}, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.

  6. X-ray spectroscopic characterization of Co(IV) and metal–metal interactions in Co<sub>4sub>O>4sub>: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.; Ullman, Andrew M.; Casa, Diego M.; Upton, Mary H.; Nocera, Daniel G; Chen, Lin X.

    2016-08-12

    In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co<sub>4sub>O>4sub> cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t<sub>2gsub>-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co<sub>4sub>O>4sub>. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co<sub>4sub>O>4sub> to CoM<sub>3sub>O>4sub> structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E0 over hundreds of mVs.

  7. M<sub>5sub>Si>3sub>(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti<sub>5sub>Si>3sub>-based alloys was investigated. Oxidation behavior of Ti<sub>5sub>Si>3sub>-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti<sub>5sub>Si>3sub> by nucleation and growth of nitride subscale. Ti<sub>5sub>Si>3.2sub>and Ti<sub>5sub>Si>3sub>C>0.5sub> alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi<sub>2sub> coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo<sub>3sub>Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo<sub>3sub>Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb<sub>ss> (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb<sub>SS> + NbB was determined to occur at 2104 ± 5 C by DTA.

  8. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  9. Mechanism of protodesorption—exchange of heavy metal cations for protons in a heterophase system of H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}—cellulose sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.A.; Nikiforova, T.E., E-mail: tatianaenik@mail.ru; Loginova, V.A.; Koifman, O.I.

    2015-12-15

    Highlights: • Protodesorption takes place with participation of anions. • The interphase indicator MSO{sub 4} is used in ion exchange investigation. • In ion exchange process salt and acid participate in equivalent proportions. • In a protodesorption process proton acts in degree of ½. • M{sup 2+}/2Na{sup +} and M{sup 2+}/2H{sup +} exchanges take place in ion and molecular forms. - Abstract: The influence of pH on the distribution of metal cations [Cd(II), Cu(II), Fe(II), Ni(II), Zn(II)] in a four-component heterophase system (H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}–cellulose sorbent) was studied. Protodesorption of metal cations was studied with indicator and constant quantities of [MSO{sub 4}] salts and constant solvent–sorbent ratio. Linear dependence lgK{sub DM2+} = f(pH) with tgα = 1/2 of the K{sub DM2+} metal ions distribution coefficients from the acidity of the aqueous phase is observed in logarithmic coordinates. Depression of the exponent corresponding to proton involvement in protodesorption from 2 (theory) to 0.5 (experiment) indicates that anions of the aqueous phase are involved in the process of exchange of metal cation for proton on the anionic centers of the sorbent, which corresponds to participation of the salt and acid components of the system in molecular non-dissociated form in an equivalent proportion H{sub 2}SO{sub 4}/MSO{sub 4} = 1/1. Different behavior of the salt and acid components in ion exchange of cations for cations and cations for protons is due to the differences in the constraint coefficients of their molecular and ionic forms which must be taken into consideration in equations describing thermodynamics of the interphase exchange.

  10. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  11. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    International Nuclear Information System (INIS)

    Ross, N.; Kostylev, M.; Stamps, R. L.

    2014-01-01

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  12. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  13. The ternary post-transition metal carbodiimide SrZn(NCN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Corkett, Alex J.; Konze, Philipp M. [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH-Aachen University, Aachen (Germany)

    2017-11-17

    SrZn(NCN){sub 2}, the first example of a ternary post-transition metal carbodiimide, was prepared by a solid-state metathesis reaction. The crystal structure was solved from PXRD data and found to adopt the orthorhombic (Cmcm) BaZnSO structure, a high symmetry modification of that expressed by the oxide analogue SrZnO{sub 2}. Locally, SrZn(NCN){sub 2} features ZnN{sub 4} tetrahedra and SrN{sub 6} trigonal prisms similar to those in quarternary LiSr{sub 2}M(NCN){sub 4} (M = Al{sup 3+} and Ga{sup 3+}) phases, however, the overall topologies are distinct with single chains in the former and double chains in the latter. Electronic structure calculations indicate an indirect bandgap of about 2.95 eV in SrZn(NCN){sub 2}, slightly lower than the experimentally observed bandgap of 3.4 eV in SrZnO{sub 2} and consistent with a greater degree of covalency. The structural similarities between SrZn(NCN){sub 2} and oxychalcogenide analogues highlight the pseudochalcogenide character of NCN{sup 2-} and suggest that the title compound may serve as a template for accessing novel ternary carbodiimides featuring tetrahedrally coordinated transition metals. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Enhancement of the life of refractories through the operational experience of plasma torch melter

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Pyo [Technology Institute, Korea Radioactive waste Agency (KORAD), Daejeon (Korea, Republic of); Choi, Jaang Young [Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

  15. Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems

    Science.gov (United States)

    D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.

    2018-02-01

    The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.

  16. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  17. Magnetism in ordered metallic perovskite compound GdPd{sub 3}B{sub x}C{sub 1-x}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: abhishek.phy@gmail.com; Mazumdar, Chandan [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: chandan.mazumdar@saha.ac.in; Ranganathan, R. [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Dattagupta, S. [Indian Institute of Science Education and Research, Block-HC, Sector-III, Salt Lake, Kolkata 700106 (India)

    2009-08-15

    We report results of dc-magnetization, ac-susceptibility and magnetoresistance measurements on crystalline metallic-perovskite compounds GdPd{sub 3}B{sub x}C{sub 1-x} (x=0.25, 0.50, 0.75 and 1.00) and the parent cubic compound GdPd{sub 3}. The interest in these materials stems from the observation of negative temperature coefficient of resistance and negative thermal expansion in some of the members of this series. In the present study, we show that by substitution of non-magnetic elements, boron and carbon, the nature of the magnetic interaction can be varied from dominating ferromagnetic to antiferromagnetic and finally to a canted magnetic structure without altering the crystal symmetry of the compounds. The variation of magnetic interaction by modifying the lattice parameter resembles Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations.

  18. Applications of electricity and corrosion. Precautions for use of metals and stainless and refractory alloys

    International Nuclear Information System (INIS)

    Gras, J.M.

    1993-09-01

    The development of applications of electricity poses highly diversified problems with materials where the resistance to corrosion prevails. Corrosion occurs under various conditions, which sometimes look harmless, and it covers diverse phenomenons linked to the nature of materials and to the physical and chemical context. However, in spite of the diversity of the processes used (electrical boilers, mechanical steam compression, heat pumps, Joule effect,) the knowledge required to approach the corrosion problems corresponds to a limited number of generic situations with regard not only to the phenomenons proper (general corrosion of copper, pitting and stress corrosion cracking of stainless steels, refractory alloys oxidation,) but also to chemical conditions which favour the corrosion (natural waters, acidic condensates, hot gases). This report is a short guide to anti-corrosion. With the aid of questions asked during the past few years, it aims to provide engineers in charge of the development of applications of electricity with a few recommendations upon the precautions for use of metallic materials. We analyze in turn the problems met with wet air and drying mists, chloride-containing neutral waters, alkaline waters and caustic media, acidic waters and concentrated acids, and, last, hot gases. We lay stress upon the behaviour of materials deemed to withstand corrosion under aqueous conditions (stainless steels and alloys, copper,titanium) and corrosion at high temperatures (refractory alloys). (author). 11 figs., 43 refs., 11 tabs

  19. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  20. Improvements in or relating to refractory materials

    International Nuclear Information System (INIS)

    Peckett, J.W.A.

    1980-01-01

    A process is described for the production of a refractory material which includes heating an intermediate material containing carbon to cause a thermally induced reaction involving carbon in the intermediate material, wherein the intermediate material has been produced by heating a shaped gel precipitated gel, and the carbon in the intermediate material for participating in the thermally induced reaction has been produced from a gelling agent, or a derivative thereof, incorporated in the gel during gel precipitation. As examples, the refractory material may comprise uranium/plutonium oxide, or uranium/plutonium carbide, or thorium/uranium carbide, or tungsten carbide, or tungsten carbide/cobalt metal. (author)

  1. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  2. Powder metallurgy of refractory metals

    International Nuclear Information System (INIS)

    Eck, R.

    1979-01-01

    This paper reports on the powder metallurgical methods for the production of high-melting materials, such as pure metals and their alloys, compound materials with a tungsten base and hard metals from liquid phase sintered carbides. (author)

  3. Core losses of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bitoh, T; Ishikawa, T; Okumura, H, E-mail: teruo_bitoh@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, 015-0055 (Japan)

    2011-01-01

    The soft magnetic properties of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} cast bulk metallic glass (BMG) with thickness of 0.3-1.0 mm have been investigated. The BMG specimens exhibit high relative permeability of (9-29)x10{sup 3} at 0.40 A/m and 50 Hz and low coercivity of 4.0 A/m. The core losses of the 0.3 mm thick BMG specimen are lower than those of commercial Fe-6.5 mass% Si steel (6.5Si) with the same thickness, and are comparable to those of the 0.10 mm thick 6.5Si. The low core losses of the BMG originate from the low coercivity and high electrical resistivity.

  4. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  5. Synthesis, characterization, and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Ovchinnikov, Alexander [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-11-17

    Large single crystals of Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}] up to several mm in size were grown from mixtures of the respective elements and binary alkaline-earth metal nitrides in reactive lithium melts employing a modified high-temperature centrifugation-aided filtration (HTCAF) technique. The main structural features of these isotypic phases are stella quadrangula building units [Ga{sub 4}]Li{sub 4/2} and octahedra (Nae{sub 6/2}), which form two independent interpenetrating networks. The phases crystallize in the η-carbide structure and represent diamagnetic small bandgap semiconductors. Real-space chemical bonding analysis indicates predominantly ionic bonding. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Fabrication of sub-wavelength photonic structures by nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kontio, J.

    2013-11-01

    Nanoimprint lithography (NIL) is a novel but already a mature lithography technique. In this thesis it is applied to the fabrication of nanophotonic devices using its main advantage: the fast production of sub-micron features in high volume in a cost-effective way. In this thesis, fabrication methods for conical metal structures for plasmonic applications and sub-wavelength grating based broad-band mirrors are presented. Conical metal structures, nanocones, with plasmonic properties are interesting because they enable concentrating the energy of light in very tight spots resulting in very high local intensities of electromagnetic energy. The nanocone formation process is studied with several metals. Enhanced second harmonic generation using gold nanocones is presented. Bridged-nanocones are used to enhance Raman scattering from a dye solution. The sub-wavelength grating mirror is an interesting structure for photonics because it is very simple to fabricate and its reflectivity can be extended to the far infrared wavelength range. It also has polarization dependent properties which are used in this thesis to stabilize the output beam of infrared semiconductor disk laser. NIL is shown to be useful a technique in the fabrication of nanophotonic devices in the novel and rapidly growing field of plasmonics and also in more traditional, but still developing, semiconductor laser applications (orig.)

  7. Bandgap engineering of lead-free double perovskite Cs{sub 2}AgBiBr{sub 6} through trivalent metal alloying

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-zhao; Mitzi, David B. [Department of Mechanical Engineering and Materials Science, and Department of Chemistry, Duke University, Durham, NC (United States); Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, OH (United States)

    2017-07-03

    The double perovskite family, A{sub 2}M{sup I}M{sup III}X{sub 6}, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH{sub 3}NH{sub 3}PbI{sub 3}. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs{sub 2}AgBiBr{sub 6} as host, band-gap engineering through alloying of In{sup III}/Sb{sup III} has been demonstrated in the current work. Cs{sub 2}Ag(Bi{sub 1-x}M{sub x})Br{sub 6} (M=In, Sb) accommodates up to 75 % In{sup III} with increased band gap, and up to 37.5 % Sb{sup III} with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs{sub 2}Ag(Bi{sub 0.625}Sb{sub 0.375})Br{sub 6}. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  9. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of this project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.

  10. Proceedings of the Conference on Refractory Alloying Elements in Superalloys

    International Nuclear Information System (INIS)

    1984-01-01

    Some papers about the use of refractory metals in superalloys are presented. Mechanical properties, thermodynamics properties, use for nuclear fuels and corrosion resistance of those alloys are studied. (E.G.) [pt

  11. Metal Monolithic Amine-grafted Zeolite for CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven

    2011-03-31

    The solid amine sorbent for CO{sub 2} capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO{sub 2} capture capacity or low stability. The solid amine sorbent developed in this project exhibited more than 3.2 mmol/g and degraded less than 10% even after 500 cycles of heating and cooling in absence of steam. The presence of steam further enhanced CO{sub 2} capture capacity. The cost of the sorbent is estimated to be less than $7.00/lb. This sorbent was developed using the results of in situ infrared spectroscopic study. Infrared results showed that CO{sub 2} adsorbs on TEPA (tetraethylenepentamine)/PEG (polyethylene glycol) as carbamates and bicarbonates. The CO{sub 2} adsorption capacity and oxidation resistance of the amine sorbent can be enhanced by the interactions between NH{sub 2} of TEPA molecules with the OH group of PEG molecules. PEG was also found to be effectively disperse and immobilize the aromatic amines for SO{sub 2} adsorption. The infrared study also showed that SiO{sub 2} is a significantly better support than zeolites due to its proper hydrophobicity. The results of this study led to the development of a high performance solid amine sorbent under simulated gas flow condition in a fixed bed, a fluidized bed, and a metal monolith unit. This study showed heat transfer could become a major technical issue in scaling up a fixed bed adsorber. The use of the fluidized bed and metal monoliths can alleviate the heat transfer issue. The metal monolith could be suitable for small scale applications due to the high cost of manufacturing; the fluidized bed mode would be most suitable for large scale applications. Preliminary economic analysis suggested that the Akron solid amine process would cost 45% less than that of MEA process.

  12. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  13. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Formation of nanoparticles and defects in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} prepared by the metal organic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, R. [Naval Research Laboratory, Washington, DC 20375 (United States); SAIC, Washington, DC 20003 (United States)], E-mail: goswami@anvil.nrl.navy.mil; Holtz, R.L. [Naval Research Laboratory, Washington, DC 20375 (United States); Rupich, M.W. [American Superconductors Inc., Westborough, MA 01581 (United States); Spanos, G. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2007-11-15

    Nanoparticles and defects have been investigated using transmission electron microscopy in fully reacted YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO), prepared by the metal-organic deposition (MOD) process. Two types of particles, Y{sub 2}O{sub 3} and CuY{sub 2}O{sub 5}, ranging from 10 to 100 nm, have been observed in the YBCO matrix. The YBCO contains a large number of planar defects and a considerable number of (1 1 0) rotational twins. Details of the nanoparticles and defects in the MOD-processed YBCO films are presented in this paper.

  15. Dense plasma focus x-ray source for sub-micron lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Mangano, J.; Greene, P.; Qi, Niansheng

    1993-01-01

    A discharge driven, dense plasma focus in neon is under development at SRL for use as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼ 13j/pulse of neon K-shell x-rays (8--14 angstrom) into 4π steradians with 2 kj of electrical energy stored in the capacitor bank charged to 9 kV at a pulse repetition rate of 2 Hz. The discharge is produced by a ≤4 kj, ≤12 kV, capacitor bank circuit, which has a fixed inductance of 12 nH and drives ≤450 kA currents into the DPF load, with ∼1.1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. A new rail-gap switched capacitor bank and DPF have been built, designed for continuous operation at 2 Hz and burst mode operation at 20 Hz. This paper will present measurements of the x-ray output at a repetition rate of 2 Hz using the new capacitor bank. It will also describe measurements of the spot size (0.3--0.8 mm) and the spectrum (8--14 angstrom) of the DPF source. The dependence of these parameters on the DPF head geometry, bank energy and operating pressure will be discussed. The x-ray output has been measured using filtered pin diodes, x-ray diodes, and absolutely calibrated x-ray crystal spectra. Results from the source operating at 2 Hz will be presented. A novel concept of a windowless beamline has also been developed. The results of preliminary experiments to test the concept will be discussed. At a pulse repetition rate of 20 Hz, this source should produce 200--400 W of x-ray power in the 8-14 angstrom wavelength band, with an input power of 40--60 kW

  16. Metal-charge density wave coexistence in TTF[Ni(dmit){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, W. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Laboratoire de Physique de la Matière Condensée, Campus Universitaire, Université de Tunis El-Manar, Tunis 2092 (Tunisia); Auban-Senzier, P.; Raffy, H.; Monteverde, M.; Pouget, J.-P. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Pasquier, C.R., E-mail: pasquier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Alemany, P. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Canadell, E. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra (Spain); Valade, L. [Laboratoire de Chimie de Coordination, Route de Narbonne F-31077 Toulouse (France)

    2015-03-01

    We have established a new pressure–temperature phase diagram of TTF[Ni(dmit){sub 2}]{sub 2} based on longitudinal and transverse resistivity measurements under pressure up to 30 kbar. We were able to identify three different charge density wave (CDW) states which all coexist with a metallic state in a wide temperature range and superconductivity at the lowest temperatures. At low pressure, two successive CDW transitions have been clearly identified. These two transitions merge into a single one at 12 kbar. A maximum of this unique CDW transition temperature is observed at 19 kbar.

  17. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  18. Probing the impact of metallicity on the dust properties in galaxies

    International Nuclear Information System (INIS)

    Remy-Ruyer, Aurelie

    2013-01-01

    As galaxies evolve, their Interstellar Medium (ISM) becomes continually enriched with metals, and this metal enrichment influences the subsequent star formation. Low metallicity dwarf galaxies of the local Universe are ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies and gives us insight into the enrichment process and star formation under ISM conditions that may provide clues to conditions in early universe metal-poor systems. Previous studies have shown that the ISM of dwarf galaxies poses a number of interesting puzzles in terms of the abundance of dust grains, the dust composition and even the FIR emission processes. However these studies were limited to the warmer dust emitting at wavelengths shorter than 200 microns and were done only on a small number of dwarf galaxies. Thanks to its increased sensitivity and resolution in FIR and submillimeter (sub-mm) wavelengths, Herschel gives us a new view on the cold dust properties in galaxies and enables us to study the lowest metallicity galaxies in a systematic way. In this work, I carry out a study of the dust properties in dwarf galaxies and compare with more metal rich environments, in order to address the question of the impact of metallicity on the dust properties. The novelty of this work lays in the fact that dwarf galaxies are studied here in a systematic way, enabling us to derive and quantify the general properties that are representative of these systems. This study is conducted over the full IR-to-sub-mm range, using new FIR/sub-mm Herschel observations, Spitzer, WISE, IRAS and 2MASS data. We complete this set of data with longer sub-mm measurements from ground-based facilities such as APEX and JCMT to study the presence and characteristics of the sub-mm excess in my sample of galaxies. I also collect Hi and CO data to access the gas properties of the galaxies and study the evolution of the G/D with metallicity. Our study reveal different dust properties in

  19. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Angelici

    2003-06-01

    Refractory 4,6-dimethyldibenzothiophene, which is difficult to remove from petroleum feedstocks, binds to the Ru in Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} by displacing the H{sub 2}O ligand. Thiophene, benzothiophene and dibenzothiophene (DBT) also react with Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} similarly. This binding ability of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} has been used to remove over 50% of the DBT in simulated petroleum feedstocks by a biphasic extraction process. The extraction phase is readily regenerated by air-oxidation thereby completing a cyclic process that removes DBT from petroleum feedstocks. Solid phase extractants consisting of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}, CpRu(CO){sub 2}(BF{sub 4}), CpFe(CO){sub 2}(C{sub 4}H{sub 8}){sup +} and AgX (where X = BF{sub 4}{sup -}, PF{sub 6}{sup -} or NO{sub 3}{sup -}) adsorbed on silica have also been used to remove DBT and 4,6-Me{sub 2}DBT from simulated petroleum feedstocks. The AgX/silica adsorbents remove 90% of the DBT and 4,6-Me{sub 2}DBT and can be regenerated and re-used for multiple extractions, which makes these adsorbents of potential industrial use for the removal of refractory dibenzothiophenes from petroleum feedstocks.

  20. An examination of the shrinking-core model of sub-micron aluminum combustion

    Science.gov (United States)

    Buckmaster, John; Jackson, Thomas L.

    2013-04-01

    We revisit the shrinking-core model of sub-micron aluminum combustion with particular attention to the mass flux balance at the reaction front which necessarily leads to a displacement velocity of the alumina shell surrounding the liquid aluminum. For the planar problem this displacement simply leads to an equal displacement of the entire alumina layer, and therefore a straightforward mathematical framework can be constructed. In this way we are able to construct a single curve which defines the burn time for arbitrary values of the diffusion coefficient of O atoms, the reaction rate, the characteristic length of the combustion field, and the O atom mass concentration within the alumina provided that it is much smaller than the aluminum density. This demonstrates a transition between a 'd 2-t' law for fast chemistry and a 'd-t' law for slow chemistry. For the spherical geometry, the one of physical interest, the outward displacement velocity creates not a simple displacement, but a stress field which, when examined within the framework of linear elasticity, strongly suggests the creation of internal cracking. We note that if the molten aluminum is pushed into these cracks by the high internal pressure characteristic of the stress field, its surface, where reaction occurs, could be fractal in nature and affect the fundamental nature of the burning law. Indeed, if this ingredient is added to the planar model, a single curve for the burn time can again be derived, and this describes a transition from a 'd 2-t' law to a 'd ν-t' law, where 0<ν<1.

  1. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  2. Synthesis of metallic nanoparticles in SiO{sub 2} matrices; Sintesis de nanoparticulas metalicas en matrices de SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez W, C; Mondragon G, G; Perez H, R; Mendoza A, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Metallic nanoparticles was synthesized in SiO{sub 2} matrices by means of a process of two stages. The first one proceeded via sol-gel, incorporating the metallic precursors to the reaction system before the solidification of the matrix. Later on, the samples underwent a thermal treatment in atmosphere of H{sub 2}, carrying out the reduction of the metals that finally formed to the nanoparticles. Then it was detected the presence of smaller nanoparticles than 20 nm, dispersed and with the property of being liberated easily of the matrix, conserving a free surface, chemically reactive and with response to external electromagnetic radiation. The system SiO{sub 2}-Pd showed an important thermoluminescent response. (Author)

  3. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    Science.gov (United States)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  4. A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator

    Science.gov (United States)

    Wang, Senhao; Wang, Wei; Gu, Shangzhi; Zhang, Guoxin; Song, Ningning

    2018-05-01

    In this study, sulphur-modified reduced graphene oxide (S-rGO) was employed as substrate to investigate the growth mechanism of metal and metallic nanoparticles (NPs). It is observed that the monodispersed Au, SnO2, FeO(OH) and Co3S4 NPs in sub-nanometer (sub-nm) with narrow size distribution were successfully anchored on S-rGO, respectively. The results indicate that the S contained radicals, viz. the Cdbnd S and Csbnd Ssbnd C functional groups play an important role in determining the homogeneous distribution of NPs on S-rGO by providing active sites for the NPs anchoring and nucleation. In additional, as anode materials for lithium ion batteries (LIBs), the as-synthesized sub-nm sized Co3S4/S-rGO and SnO2/S-rGO composites show excellent Li storage performance. It could be stabilized at ca. 600 mAh/g after formation cycle with the coulombic efficiency of 98%. It is expected that the strategy of growing sub-nm sized metallic component onto graphene by applying sulphur functionalities could be utilized as a general method to prepare monodispersed graphene-based NPs with other metals, especially with transition metals in sub-nm sizes.

  5. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  6. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  7. Influence of spark plasma sintering parameters on the mechanical properties of Cu{sub 50}Zr{sub 45}Al{sub 5} bulk metallic glass obtained using metallic glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, S. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Pelletier, J.M., E-mail: jean-marc.pelletier@insa-lyon.fr [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Qiao, J.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Bonnefont, G. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Xie, G. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2016-11-20

    Gas atomized Cu{sub 50}Zr{sub 45}Al{sub 5} amorphous powder was densified by spark plasma sintering, in order to obtain bulk metallic glasses with larger size than that obtained by the conventional casting strategy. The influence of different parameters was investigated: sintering temperature, isothermal holding time as well as size of the specimens. After optimization of the processing parameters, dense and amorphous specimens were elaborated with a diameter up to 30 mm. Thermal stability and mechanical properties of consolidated samples are similar to those of Cu{sub 50}Zr{sub 45} Al{sub 5} cast alloy. A hardness of 535 HV and a compressive strength of 1600 MPa have been obtained. Fractographic investigation indicated an intergranular rupture mode which leads to lower toughness compared to as the cast material, but for these samples the size is limited to 3 mm. However an increase in applied pressure (from 90 MPa to 1 GPa) induces a significant improvement in bonding between powder particles.

  8. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  9. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  10. V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), the first quaternary metal-rich -boride adopting the Mo{sub 2}IrB{sub 2}-type structure: Synthesis, crystal and electronic structure and bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian; Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany)

    2013-02-15

    Polycrystalline samples and single crystals of the new metal-rich boride V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-ray diffraction and EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase adopts the Mo{sub 2}IrB{sub 2}-type structure (space group Pnnm, no. 58) with the lattice parameters a = 7.301(7) Aa, b = 9.388(9) Aa and c = 3.206(5) Aa. It is the first quaternary representative of Mo{sub 2}IrB{sub 2}-type structure. The structure contains zigzag B{sub 4}-fragments with boron-boron distances of 1.83-1.85 Aa. The electronic density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the zigzag B{sub 4}-fragment and two significantly different Ir-B interactions are observed in the new phase and the prototype Mo{sub 2}IrB{sub 2}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Chemical potential pinning due to equilibrium electron transfer at metal/C{sub 60}-doped polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heller, C.M.; Campbell, I.H.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C{sub 60}-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C{sub 60} molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C{sub 60}-doped poly[2-methoxy, 5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C{sub 60}-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C{sub 60} molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C{sub 60} and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C{sub 60} in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV. {copyright} {ital 1997 American Institute of Physics.}

  12. Monodisperse Ni{sub x}Fe{sub 3-x}O{sub 4} nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kedan, E-mail: 17858961652@163.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yun, E-mail: liuyun650403@163.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Pan, Yefei, E-mail: 3083780256@qq.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Wang, Ru, E-mail: 631081137@qq.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Hu, Panbing, E-mail: 1036855954@qq.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); He, Rujia, E-mail: 634185782@qq.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Lingli, E-mail: 786510121@qq.com [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Tong, Guoxiu, E-mail: tonggx@zjnu.cn [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China)

    2017-05-15

    Highlights: • A metal-ion-steered solvothermal method for synthesizing Ni{sub x}Fe{sub 3-x}O{sub 4} nanospheres. • Proposing an in situ-reduction, coordination-precipitation transformation mechanism. • Investigating size- and composition-dependent static magnetic properties. • Investigating size- and composition-dependent microwave absorbing properties. - Abstract: An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform Ni{sub x}Fe{sub 3-x}O{sub 4} polycrystalline nanospheres with tunable sphere diameter (40–400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni{sup 2+}/Fe{sup 3+} molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe{sub 3}O{sub 4} single domain (25 nm). Studies on microwave absorption reveal that 150–400 nm Fe{sub 3}O{sub 4} nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40–135 nm Ni{sub x}Fe{sub 3-x}O{sub 4} nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe{sub 3}O{sub 4} nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum R{sub L} of −50.11 dB.

  13. Metal-insulator transition in nanocomposite VO{sub x} films formed by anodic electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lok-kun; Lu, Jiwei; Zangari, Giovanni, E-mail: gz3e@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Hildebrand, Helga; Schmuki, Patrik [Department for Materials Science LKO, University of Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)

    2013-11-11

    The ability to grow VO{sub 2} films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VO{sub x} films by anodic electrodeposition of V{sub 2}O{sub 5}, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO{sub 2} stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is observed between room temperature and 140 °C. In addition, the films exhibit a temperature coefficient of resistance of ∼ −2.4%/ °C from 20 to 140 °C.

  14. Electron lone pair distortion facilitated metal-insulator transition in β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, L.; Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Marley, P. M.; Banerjee, S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 (United States); Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-05-05

    The electronic structure of β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  15. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    International Nuclear Information System (INIS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  16. On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain

    Directory of Open Access Journals (Sweden)

    M. Sorribas

    2011-11-01

    Full Text Available This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days. The mean total concentration (N<sub>T> was 8660 cm−3 and the mean concentrations in the nucleation (N<sub>NUC>, Aitken (N<sub>AIT> and accumulation (N<sub>ACC> particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean N<sub>NUC> and N<sub>ACC>. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of N<sub>ACC> which suppressed the new particle formation (decreasing N<sub>NUC>. Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles

  17. Synthesis, structures, and luminescent properties of sodium rare-earth metal(III) chloride oxotellurates(IV), Na{sub 2}Ln{sub 3}Cl{sub 3}[TeO{sub 3}]{sub 4} (Ln = Sm, Eu, Gd, Tb, Dy, and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, Dmitri O.; Dorofeev, Sergey G.; Berdonosov, Peter S.; Dolgikh, Valery A. [Department of Chemistry, Lomonosov Moscow State University (Russian Federation); Zitzer, Sabine; Greiner, Stefan; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Olenev, Andrei V. [Department of Chemistry, Lomonosov Moscow State University (Russian Federation); Sine Theta Ltd., Moscow (Russian Federation)

    2017-11-17

    Six sodium rare-earth metal(III) chloride oxotellurates(IV), Na{sub 2}Ln{sub 3}Cl{sub 3}[TeO{sub 3}]{sub 4}, isostructural to Na{sub 2}Y{sub 3}Cl{sub 3}[TeO{sub 3}]{sub 4}, were synthesized by flux techniques and characterized by single-crystal XRD. The compounds crystallize in the monoclinic space group C2/c with lattice constants a = 23.967(1), b = 5.6342(3), c = 16.952(1) Aa, β = 134.456(5) for Ln = Sm, a = 23.932(2), b = 5.6044(5), c = 17.134(1) Aa, β = 135.151(6) for Ln = Eu, a = 23.928(1), b = 5.5928(1), c = 17.1133(8) Aa, β = 135.366(3) for Ln = Gd, a = 23.907(1), b = 5.569(3), c = 16.745(1) Aa, β = 134.205(3) for Ln = Tb, a = 23.870(1), b = 5.547(3), c = 16.665(1) Aa, β = 134.102(3) for Ln = Dy, and a = 23.814(1), b = 5.526(3), c = 16.626(1) Aa, β = 134.016(3) for Ln = Ho and Z = 4. Their crystal structure can be considered as a framework built of intergrowing Ln-O and Na-(O,Cl) slabs with channel walls decorated by tellurium atoms of [TeO{sub 3}]{sup 2-} groups. The luminescent properties of the new compounds due to the Ln{sup 3+} cations are described and discussed. We also discuss the crystal chemistry of various alkali-metal rare-earth metal(III) halide oxochalcogenates(IV). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Study of half-metallic ferromagnetism and elastic properties of Cd{sub 1-x}Cr{sub x}Z (Z=S, Se)

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India); Kumar, Ranjan [Panjab University Chandigarh, Department of Physics, Chandigarh (India)

    2016-12-15

    We have studied the structural, electronic and magnetic properties of Cd{sub 1-x}Cr{sub x}S and Cd{sub 1-x}Cr{sub x}Se diluted magnetic semiconductors in zinc blende (B3) phase at x = 0.25, 0.125 and 0.0625. The calculations have been performed using DFT (density functional theory) as implemented in SIESTA code using LDA (local density approximation) as exchange-correlation (XC) potential. Study of band structures and DOS (density of states) shows HMF (half-metallic ferromagnetic) nature of Cd{sub 1-x}Cr{sub x}S and Cd{sub 1-x}Cr{sub x}Se alloys. The calculated values of s-d exchange constant Nα and p-d exchange constant Nβ show the magnetic behavior of these compounds. Moreover, both DMSs retain their half-metallic nature at 0.25, 0.125 and 0.0625 concentrations with 100% spin polarization at Fermi level (E{sub F}). Total magnetic moment of these compounds is due to 3d states of Cr atom and also existence of small induced magnetic moment on other non-magnetic atoms as well. HM robustness is also calculated as a function of lattice constants. (orig.)

  19. Electronic and magnetic properties of 1T-HfS{sub 2} by doping transition-metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu, E-mail: zhaoxu@htu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Wang, Tianxing; Wang, Guangtao [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Department of Physics, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Xia, Congxin [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Lin [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007 (China)

    2016-10-15

    Highlights: • Pristine 1T-HfS{sub 2} is a semiconductor with indirect gaps of 1.250 eV • Magnetism can be observed for V, Cr, Mn, Fe, Co, and Cu doping. • Strong p–d hybridization was found between TM 3d orbitals and S 3p orbitals. • V-doped 1T-HfS{sub 2} is ideal for spin injection. - Abstract: We explored the electronic and magnetic properties of 1T-HfS{sub 2} doped by transition metal (TM) atom using the first-principles calculation. We doped the transition metal atoms from the IIIB to VIB groups in nonmagnetic 1T-HfS{sub 2}. Numerical results show that the pristine 1T-HfS{sub 2} is a semiconductor with indirect gaps of 1.250 eV. Magnetism can be observed for V, Cr, Mn, Fe, Co, and Cu doping. The polarized charges mainly arise from the localized 3d electrons of the TM atom. The strong p–d hybridization was found between the 3d orbitals of TM and 3p orbitals of S. The substituted 1T-HfS{sub 2} can be a metal, semiconductor or half-metal. Analysis of the band structure and magnetic properties indicates that TM-doped HfS{sub 2} (TM = V, Fe, Cu) are promising systems to explore two-dimensional diluted magnetic semiconductors. The formation energy calculations also indicate that it is energetically favorable and relatively easier to incorporate transition metal atom into the HfS{sub 2} under S-rich experimental conditions. In contrast, V-doped HfS{sub 2} has relatively wide half-metallic gap and low formation energy. So V-doped 1T-HfS{sub 2} is ideal for spin injection, which is important for application in semiconductor spintronics.

  20. Gate-controlled metal-insulator transition in the LaAlO{sub 3}/SrTiO{sub 3} system with sub-critical LaAlO{sub 3} thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Sung; Lee, Seung Ran; Chang, Jung-Won; Noh, Hyunho; Baasandorj, Lkhagvasuren; Shim, Seung-Bo; Kim, Jinhee [Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Seung, Sang Keun; Shin, Hyun Sup; Song, Jonghyun [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-12-15

    We studied the electrical conduction in the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface electron system with a sub-critical LAO layer thickness of {proportional_to}3.5 unit cells (uc). It was found that the true dividing point between metallic and insulating behaviour without gating lies near the LAO thickness of 3.5 uc. Our marginally metallic 3.5 uc sample showed a sharp transition to insulating state at temperatures which strongly depended on the applied negative back-gate voltage. The superior gate-controllability of the sample was attributed to its sheet carrier density which was an order of magnitude lower than those of conducting LAO/STO samples with 4 uc or more of LAO layers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Development of electro fused aggregates for use in refractories for the burning zone of cement kilns; Desenvolvimento de agregados eletrofundidos para utilizacao em refratarios para a zona de queima de fornos de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luis Leonardo Horne Curimbaba

    2006-07-01

    Electro fused aggregates are largely used in refractory production due to the better performance reached when they are employed. In this work electro fused aggregates were designed for application in refractories for the burning zone of cement kilns. Initially reaction evaluation was conducted aiming the identification of the most prone refractory systems when single refractory phases react with Portland cement phases at high temperatures. In the next step, raw materials of the best refractory systems were electro fused to generate different aggregate compositions. The electro fused aggregates properties were evaluated and the classified ones were used to produce refractory bricks for the burning zone of cement kilns. General characteristics of these bricks were measured and compared with a standard magnesia-spinel refractory. Aggregates of the system Mg O - TiO{sub 2} - Ca O, more specifically aggregates belonged to the compatibility triangle Mg O - Mg{sub 2}TiO{sub 4} - CaTiO{sub 3}, showed suitable characteristics for development of refractories for the burning zone cement kilns. (author)

  2. CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2}. A new rare-earth metal(III) fluoride oxoselenate(IV) with sections of the ReO{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Stefan; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2017-09-04

    A new representative of rare-earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid-state reactions. Colorless single crystals of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} were obtained through the reaction of Sc{sub 2}O{sub 3}, ScF{sub 3}, and SeO{sub 2} (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc{sub 3}F{sub 6}[SeO{sub 3}]{sub 2} contains two crystallographically different Sc{sup 3+} cations. Each (Sc1){sup 3+} is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2){sup 3+} are formed by three fluoride anions and three oxygen atoms from three terminal [SeO{sub 3}]{sup 2-} anions. The [(Sc1)F{sub 6}]{sup 3-} octahedra link via common F{sup -} vertices to six fac-[(Sc2)F{sub 3}O{sub 3}]{sup 6-} octahedra forming {sup 2}{sub ∞}{[Sc_3F_6O_6]"9"-} layers parallel to (001). These layers are separated by oxygen-coordinated Cs{sup +} cations (C.N. = 12), arranging for the charge compensation, while Se{sup 4+} cations within the layers surrounded by three oxygen atoms as ψ{sup 1}-tetrahedral [SeO{sub 3}]{sup 2-} units complete the structure. EDX measurements confirmed the composition of the title compound and single-crystal Raman studies showed the typical vibrational modes of isolated [SeO{sub 3}]{sup 2-} anions with ideal C{sub 3v} symmetry. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  4. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  5. Metal ion displacements in noncentrosymmetric chalcogenides La{sub 3}Ga{sub 1.67}S{sub 7}, La{sub 3}Ag{sub 0.6}GaCh{sub 7} (Ch=S, Se), and La{sub 3}MGaSe{sub 7} (M=Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Abishek K. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Yin, Wenlong [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900 (China); Rudyk, Brent W. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Lin, Xinsong [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Centre for Oil Sands Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, Canada T6N1E5 (Canada); Nilges, Tom [Department of Chemistry, Technical University of Munich, 85748 Garching b. München (Germany); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada)

    2016-11-15

    The quaternary Ga-containing chalcogenides La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}, La{sub 3}ZnGaSe{sub 7}, and La{sub 3}CdGaSe{sub 7}, as well as the related ternary chalcogenide La{sub 3}Ga{sub 1.67}S{sub 7}, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La{sub 3}M{sub 1–x}GaCh{sub 7} (M=Ga, Ag, Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced. - Graphical abstract: Partial occupation of metal atoms in multiple sites accounts for versatility in Ga-containing chalcogenides La{sub 3}M{sub 1–x}GaCh{sub 7} with noncentrosymmetric hexagonal structures. - Highlights: • La{sub 3}M{sub 1–x}GaCh{sub 7} (M =Ga, Ag, Zn, Cd; Ch =S, Se) adopt related hexagonal structures. • Large displacements of M atoms originate from partial occupation of multiple

  6. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-01-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga 2 O 3 , In 2 O 3 , and SnO 2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga 2 O, In 2 O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO 2 , somewhat lower for In 2 O 3 , and the lowest for Ga 2 O 3 . Our findings can be generalized to further oxides that possess related sub-oxides

  7. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  8. Atomic layer deposition of HfO{sub 2} for integration into three-dimensional metal-insulator-metal devices

    Energy Technology Data Exchange (ETDEWEB)

    Assaud, Loic [Aix Marseille Univ, CNRS, CINAM, Marseille (France); ICMMO-ERIEE, Universite Paris-Sud / Universite Paris-Saclay, CNRS, Orsay (France); Pitzschel, Kristina; Barr, Maissa K.S.; Petit, Matthieu; Hanbuecken, Margrit; Santinacci, Lionel [Aix Marseille Univ, CNRS, CINAM, Marseille (France); Monier, Guillaume [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS, Institut Pascal, Clermont-Ferrand (France)

    2017-12-15

    HfO{sub 2} nanotubes have been fabricated via a template-assisted deposition process for further use in three-dimensional metal-insulator-metal (MIM) devices. HfO{sub 2} thin layers were grown by Atomic Layer Deposition (ALD) in anodic alumina membranes (AAM). The ALD was carried out using tetrakis(ethylmethylamino)hafnium and water as Hf and O sources, respectively. Long exposure durations to the precursors have been used to maximize the penetration depth of the HfO{sub 2} layer within the AAM and the effect of the process temperature was investigated. The morphology, the chemical composition, and the crystal structure were studied as a function of the deposition parameters using transmission and scanning electron microscopies, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. As expected, the HfO{sub 2} layers grown at low-temperature (T = 150 C) were amorphous, while for a higher temperature (T = 250 C), polycrystalline films were observed. The electrical characterizations have shown better insulating properties for the layers grown at low temperature. Finally, TiN/HfO{sub 2}/TiN multilayers were grown in an AAM as proof-of-concept for three-dimensional MIM nanostructures. (orig.)

  9. Chlorobenzene, chloroform, and carbon tetrachloride adsorption on undoped and metal-doped sol-gel substrates (SiO{sub 2}, Ag/SiO{sub 2}, Cu/SiO{sub 2} and Fe/SiO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.A. [Postgrado de Ciencias Ambientales and Departamento de Investigacion en Zeolitas, Instituto de Ciencias, Universidad Autonoma de Puebla, Edificio 76, Complejo de Ciencias, Ciudad Universitaria, CP 72570 Puebla (Mexico)], E-mail: mighern@siu.buap.mx; Gonzalez, A.I.; Corona, L.; Hernandez, F. [Postgrado de Ciencias Ambientales and Departamento de Investigacion en Zeolitas, Instituto de Ciencias, Universidad Autonoma de Puebla, Edificio 76, Complejo de Ciencias, Ciudad Universitaria, CP 72570 Puebla (Mexico); Rojas, F.; Asomoza, M.; Solis, S. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, D.F. Mexico (Mexico); Portillo, R.; Salgado, M.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Puebla (Mexico)

    2009-02-15

    Adsorption isotherms of chlorobenzene, chloroform and carbon tetrachloride vapors on undoped SiO{sub 2}, and metal-doped Ag/SiO{sub 2}, Cu/SiO{sub 2} and Fe/SiO{sub 2} substrates were measured in the temperature range of 398-593 K. These substrates were prepared from a typical sol-gel technique in the presence of metal dopants that rendered an assortment of microporous-mesoporous solids. The relevant characteristic of these materials was the different porosities and micropore to mesopore volume ratios that were displayed; this was due to the effect that the cationic metal valence exerts on the size of the sol-gel globules that compose the porous solid. The texture of these SiO{sub 2} materials was analyzed by X-ray diffraction (XRD), FTIR, and diverse adsorption methods. The pore-size distributions of the adsorbents confirmed the existence of mesopores and supermicropores, while ultramicropores were absent. The Freundlich adsorption model approximately fitted the chlorinated compounds adsorption data on the silica substrates by reason of a heterogeneous energy distribution of adsorption sites. The intensity of the interaction between these organic vapors and the surface of the SiO{sub 2} samples was analyzed through evaluation of the isosteric heat of adsorption and standard adsorption energy; from these last results it was evident that the presence of metal species within the silica structure greatly affected the values of both the amounts adsorbed as well as of the isosteric heats of adsorption.

  10. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  11. Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Matthias, E-mail: matthias.bieda@iws.fraunhofer.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Siebold, Mathias, E-mail: m.siebold@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institut für Fertigungstechnik, 01062 Dresden (Germany)

    2016-11-30

    Highlights: • Laser interference patterning is introduced to generate sub-micrometer surface pattern. • The two-temperature model is applied to ps-laser interference patterning of metals. • Line-like structures with a pitch of 0.7 μm were fabricated on SAE 304, Ti and Cu. • The process is governed by a photo-thermal mechanism for a pulse duration of 35 ps. • A “cold”-ablation process for metals requires a pulse duration shorter than 10 ps. - Abstract: Picosecond direct laser interference patterning (ps-DLIP) is investigated theoretically and experimentally for the bulk metals copper, stainless steel and titanium. While surface texturing with nanosecond pulses is limited to feature sizes in the micrometer range, utilizing picosecond pulses can lead to sub-micrometer structures. The modelling and simulation of ps-DLIP are based on the two-temperature model and were carried out for a pulse duration of 35 ps at 515 nm wavelength and a laser fluence of 0.1 J/cm{sup 2}. The subsurface temperature distribution of both electrons and phonons was computed for periodic line-like structures with a pitch of 0.8 μm. The increase in temperature rises for a lower absorption coefficient and a higher thermal conductivity. The distance, at which the maximum subsurface temperature occurs, increases for a small absorption coefficient. High absorption and low thermal conductivity minimize internal heating and give rise to a pronounced surface micro topography with pitches smaller than 1 μm. In order to confirm the computed results, periodic line-like surface structures were produced using two interfering beams of a Yb:YAG-Laser with 515 nm wavelength and a pulse duration of 35 ps. It was possible to obtain a pitch of 0.7 μm on the metallic surfaces.

  12. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  13. Recovering uranium and/or aluminium from refractory silico-aluminous material

    International Nuclear Information System (INIS)

    Livesey-Goldblatt, E.; Nagy, I.F.; Tunley, T.H.

    1983-01-01

    A process for recovering uranium and/or aluminium from a refractory silico-aluminous material comprises leaching the material in one or more stages, obtaining a pregnant solution which contains little or no acid and recovering the desired metal from the solution

  14. The substitution effect of chromium on the magnetic properties of (Fe{sub 1−x}Cr{sub x}){sub 80}Si{sub 6}B{sub 14} metallic glasses (0.02≤x≤0.14)

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa (Spain); Santos, J.D.; Pérez, María J. [Departamento de Física, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Sánchez-Valdes, C.F.; Sánchez Llamazares, J.L. [División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la presa San José 2055, CP 78216 San Luis Potosí (Mexico); Gorria, Pedro, E-mail: pgorria@uniovi.es [Departamento de Física, EPI, Universidad de Oviedo, 33203 Gijón (Spain)

    2013-12-15

    Magnetization studies were carried out to characterize the magnetic properties of the Iron-rich metallic glasses (Fe{sub 1−x}Cr{sub x}){sub 80}Si{sub 6}B{sub 14} with 0.02≤x≤0.14. The Curie temperature T{sub C} diminishes almost linearly with the increase in the Cr-content from 401 K (x=0.10) to 291 K (x=0.14), while the saturation magnetization M{sub S} at T=5 K also undergoes a linear reduction from 169 Am{sup 2} kg{sup −1} (x=0.02) to 87 Am{sup 2} kg{sup −1} (x=0.14). These results suggest that the system should become paramagnetic for x≈0.22. The magneto-caloric properties of samples with T{sub C} near room temperature, i.e., with x=0.12 and 0.14, were investigated up to a maximum magnetic field change of 8 T. Both ribbons are characterized by a very broad temperature dependence of the magnetic entropy change ΔS{sub M}(T) and moderate peak values of 2.9 Jkg{sup −1} K{sup −1} and 2.6 Jkg{sup −1} K{sup −1}, respectively. - Highlights: • We report on the magnetic properties of (Fe{sub 1−x}Cr{sub x}){sub 80}Si{sub 6}B{sub 14} metallic glasses with 0.02≤x≤0.14. • Curie temperature and saturation magnetization values reduce linearly as the chromium content increases. • The magneto-caloric response up to 8 T has been measured for samples with x=0.12 and 0.14.

  15. Slagging gasifier refractories. A new pathway to longer refractory life

    Energy Technology Data Exchange (ETDEWEB)

    Schnake, Mark [Harbinson-Walker Refractories Company, Mexico, MO (United States)

    2013-07-01

    Solid fuel slagging gasification to convert coal or petroleum coke feedstocks into syngas has rapidly evolved over the last 25 years. The gasifier is a high temperature, high pressure reaction chamber. Operating temperatures are between 1250 and 1575 C. Pressures will be between 20.4 and 68 atm. Syngas has been typically used for chemical feedstocks, fuel for power plants, or for steam and hydrogen generation in other industrial applications. Ash which comes from the solid fuel during gasification has many impurities. It melts during the gasifier reactor operation forming a liquid that penetrates the refractory lining. Given time, the refractory will wear away from thermal spalling, structural spalling, or overheating of the refractory. In some cases, all three wear mechanisms are seen in the same gasifier lining. Industry users have identified refractory life as one major limiting factor in worldwide use of this technology. Users have stated if the refractory liner can increase on-line availability of the gasifier operation, more industry acceptance of this technology is possible. Harbison-Walker Refractories Company will review destructive factors affecting lining life and discuss new refractory materials that have dramatically increased gasifier lining life and reliability. New refractory materials will be presented and supported by field trial results and post mortem analysis.

  16. Preparation and properties of crystals of mixed refractory oxides with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Melekh, B T; Andreev, A A; Kartenko, N F; Pevtsov, A B; Trepakov, V A; Filin, Yu N [AN SSSR, Moscow. Fiziko-Tekhnicheskij Inst.

    1982-10-01

    Peculiar features of crystal growth of some complex refractory oxides with perovskite structure using the method of direct high-frequency melting in a cold container are studied. Melting, synthesis and directed crystallization have been conducted in the air. X-ray diffraction investigations of the prepared SrTiO/sub 3/, CaZrO/sub 3/, BaZrO/sub 3/, BaHFO/sub 3/, LaCrO/sub 3/, YCrO/sub 3/, ErCrO/sub 3/, La/sub 2/Ti/sub 2/O/sub 7/, LaTaO/sub 3/ and other oxides are conducted, lattice parameters are given. Optical spectra of absorption, photo- and thermoluminescence and thermostimulated currents are studied.

  17. Effects of halogens on interactions between a reduced TiO{sub 2} (110) surface and noble metal atoms: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kohei, E-mail: k-tada@aist.go.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Koga, Hiroaki [Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan); Hayashi, Akihide; Kondo, Yudai; Kawakami, Takashi; Yamanaka, Shusuke [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan)

    2017-07-31

    Highlights: • We investigated the halogen effect on the interactions of noble metals with TiO{sub 2}. • Halogen atoms inhibit electron transfer from TiO{sub 2} to noble metals. • Iodine stabilizes the adsorption of noble metals especially for Ag and Cu. • Electron transfer from the TiO{sub 2} is effective in anchoring Au and Pt atoms. • Covalent interaction with the support is effective in anchoring Ag and Cu atoms. - Abstract: Using DFT calculation, we investigate the effects of halogens on the interactions between rutile TiO{sub 2} (110) and noble metal atoms (Au, Ag, Cu, Pt, and Pd). Fluorine, chlorine, and bromine atoms occupy the oxygen defect sites of TiO{sub 2}, decreasing the stability of noble metal atoms on the surface. This decrease occurs because the halogens inhibit electron transfer from TiO{sub 2} to the noble metal atoms; the electron transfer from reduced TiO{sub 2} to the noble metal atom stabilizes the noble metal atom adsorption. In contrast, iodine strengthens the interactions between TiO{sub 2} and some noble metal atoms, namely Ag and Cu. This stabilization occurs because of the covalent interaction between iodine-doped TiO{sub 2} and the noble metal atom. Therefore, the stabilization is explained well by chemical hardness. This result suggests that iodine-doping of a TiO{sub 2} surface would be an effective method for the preparation of highly stabilized noble metal clusters.

  18. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Electrochemical Stability of Li{sub 6.5}La{sub 3}Zr{sub 1.5}M{sub 0.5}O{sub 12} (M = Nb or Ta) against Metallic Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunsung [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Yoo, Aeri [Department of Advanced Materials Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Schmidt, Robert; Sharafi, Asma [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Lee, Heechul [Department of Advanced Materials Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Wolfenstine, Jeff [Army Research Laboratory, RDRL-SED-C, Adelphi, MD (United States); Sakamoto, Jeff, E-mail: jeffsaka@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The electrochemical stability of Li{sub 6.5}La{sub 3}Zr{sub 1.5}Nb{sub 0.5}O{sub 12} (LLZNO) and Li{sub 6.5}La{sub 3}Zr{sub 1.5}Ta{sub 0.5}O{sub 12} (LLZTO) against metallic Li was studied using direct current (DC) and electrochemical impedance spectroscopy (EIS). Dense polycrystalline LLZNO (ρ = 97%) and LLZTO (ρ = 92%) were made using sol–gel synthesis and rapid induction hot-pressing at 1100°C and 15.8 MPa. During DC cycling tests at room temperature (± 0.01 mA/cm{sup 2} for 36 cycles), LLZNO exhibited an increase in Li–LLZNO interface resistance and eventually short-circuiting while the LLZTO was stable. After DC cycling, LLZNO appeared severely discolored while the LLZTO did not change in appearance. We believe the increase in Li–LLZNO interfacial resistance and discoloration are due to reduction of Nb{sup 5+} to Nb{sup 4+}. The negligible change in interfacial resistance and no color change in LLZTO suggest that Ta{sup 5+} may be more stable against reduction than Nb{sup 5+} in cubic garnet versus Li during cycling.

  20. Characterization of refractory brick based on local raw material from Lampung Province - Indonesia

    Science.gov (United States)

    Amin, Muhammad; Suryana, Yayat I.; Isnugroho, Kusno; Aji, Bramantyo B.; Birawidha, David C.; Hendronursito, Yusup

    2018-04-01

    Refractories are non-metallic inorganic materials that are difficult to melt at high temperatures and used in high-temperature casting industries. Refractories are classified into their constituent mineral feed stocks, refractories having typical plot properties commonly called fire bricks. In the manufacture of refractory bricks that exist in the market during the use of mangrove materials derived from abroad that is from China. In this research the refractory brick materials used are quartz sand, feldspart, kaolin, bentonite, and ball clay. All materials come from local Lampung Province - Indonesia. The experiment, there are 7 kinds of experimental composition, made of plot shape with size 230 mm, 65 mm in thickness, 114 mm height mould using manual press machine with 10 tons power and burning at 1400°C for 5 hours. Refractory brick product is done by physical test in the form of porosity, specific gravity, compressive strength and XRF and SEM characteristics. The result of XRF characteristic of refractory brick composition of 1 to 5 compared to the refractory brick type SK 34 in the market and the result of composition 1 is a composition close to refractory brick composition type SK 34 namely SiO2 is 54.21 %, Al2O3 is 25.38 % and test Physical of Bulk density is 2.25 g/cm3, porosity is 18.98 % and compressive strength is 325 kg/cm2.

  1. Continuous preparation of Fe{sub 3}O{sub 4} nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hong-Lei [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Zhou, Shao-Feng [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan, 030051 (China); Gao, Jing [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Liu, You-Zhi, E-mail: lyzzhongxin@126.com [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China)

    2016-06-25

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs). This Fe{sub 3}O{sub 4} NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe{sub 3}O{sub 4} NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe{sub 3}O{sub 4} NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles were continuous prepared through IS-RPB reactor. • The Fe{sub 3}O{sub 4} nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM{sup −1}) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  2. Preparation and properties of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Ma, XiuHua [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Li, Qiang, E-mail: qli@xju.edu.cn [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Zhang, Jijun [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Dong, Yaqiang; Chang, Chuntao [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-09-01

    Highlights: • Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20–50 at.%) BMGs were prepared by fluxing and J-quenching techniques. • The highest GFA is reached at x = 40 and the corresponding critical diameter is up to 2.5 mm. • The present FeNi-based BMGs exhibit very large ε{sub p} and the ε{sub p} of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG is 11.7%. • The present FeNi-based BMGs have much higher corrosion resistance than stainless steel. - Abstract: Bulk Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) glassy alloy rods with the diameters of 1.0–2.5 mm were synthesized by combining fluxing technique and J-quenching technique. The glassy alloy rods were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). It is found that the range of supercooled liquid region (ΔT{sub x}) is 27–32 K. The saturation magnetization of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) bulk glassy alloys gradually decreases from 1.13 T to 0.58 T with increasing Ni content from x = 20 to x = 50. More importantly, the present quaternary FeNiPB bulk metallic glasses (BMGs) shows a significant plastic strain, in particular, the plastic strain of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG reaches as high as 11.7%. The corrosion resistance of the present FeNiPB BMGs was studied by weight-loss method, potentiodynamic polarization curves and scanning electron microscopy (SEM). It is shown that the corrosion resistance of the present FeNiPB BMGs in 0.5 M NaCl and 1 M HCl solution increases with Ni content, and further the present FeNiPB BMGs exhibit larger E{sub corr} values and lower I{sub corr} values, i.e. higher corrosion resistances, than that of stainless steel.

  3. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  4. Damage free Ar ion plasma surface treatment on In{sub 0.53}Ga{sub 0.47}As-on-silicon metal-oxide-semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Donghyi; Shin, Seung Heon; Ahn, Jaehyun; Sonde, Sushant; Banerjee, Sanjay K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758 (United States); Kwon, Hyuk-Min [SK Hynix, Icheon, 2091, Gyeongchung-daero, Bubal-eub, Icheon-si, Gyeonggi-do 136-1 (Korea, Republic of); Orzali, Tommaso; Kim, Tae-Woo, E-mail: twkim78@gmail.com [SEMATECH Inc., 257 Fuller Rd #2200, Albany, New York 12203 (United States); Kim, Dae-Hyun [Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-11-02

    In this paper, we investigated the effect of in-situ Ar ion plasma surface pre-treatment in order to improve the interface properties of In{sub 0.53}Ga{sub 0.47}As for high-κ top-gate oxide deposition. X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor capacitors (MOSCAPs) demonstrate that Ar ion treatment removes the native oxide on In{sub 0.53}Ga{sub 0.47}As. The XPS spectra of Ar treated In{sub 0.53}Ga{sub 0.47}As show a decrease in the AsO{sub x} and GaO{sub x} signal intensities, and the MOSCAPs show higher accumulation capacitance (C{sub acc}), along with reduced frequency dispersion. In addition, Ar treatment is found to suppress the interface trap density (D{sub it}), which thereby led to a reduction in the threshold voltage (V{sub th}) degradation during constant voltage stress and relaxation. These results outline the potential of surface treatment for III-V channel metal-oxide-semiconductor devices and application to non-planar device process.

  5. Impact-disrupted gunshot residue: A sub-micron analysis using a novel collection protocol

    Directory of Open Access Journals (Sweden)

    V. Spathis

    2017-06-01

    Full Text Available The analysis of gunshot residue (GSR has played an integral role within the legal system in relation to shooting cases. With a characteristic elemental composition of lead, antimony, barium, and a typically discriminative spheroidal morphology, the presence and distribution of GSR can aid in firearm investigations. In this experiment, three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range. The samples were analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM in conjunction with an X-flash Energy Dispersive X-ray (EDX detector, allowing for GSR particle analyses of composition and structure at the sub-micron level. The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary significantly, and at certain distances from the firearm particles with an irregular morphology were discerned, forming “impact-disrupted” GSR particles, henceforth colloquially referred to as “splats”. Upon further analysis, trends with regards to the formation of these splat particles were distinguished. An increase in splat frequency was observed starting at 10 cm from the firearm, with 147 mm−2 splat density, reaching a maximal flux at 40 cm (451 mm−2, followed by a gradual decrease to the maximum range sampled. Moreover, the structural morphology of the splats changes throughout the sampling range. At the distances closest to the firearm, molten-looking particles were formed, demonstrating the metallic residues were in a liquid state when their flight path was disrupted. However, at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm, the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact, forming more

  6. Parameters affecting the production of Al-Al/sub 2/O/sub 3/ metal matrix particulate composite, (MMPC)

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Jaber, F.

    2003-01-01

    Aluminum-ceramic composites were made by powder metallurgy up to early 80's. Since then several attempts Metal have been made to produce these composites by liquid metallurgy method. Different techniques have been reported to produce these composites by this method and many difficulties have been encountered in wetting the particles by the molten metal due to the difference in densities which caused non uniform distribution of the particles in the matrix resulting in poor mechanical strength. In this paper, the production of aluminum-aluminum oxide (Al-Al/sub 2/O/sub 3/) metal matrix composite by different techniques is investigated. These include injection, centrifugal vortex, compocasting and a newly suggested method, modified vortex technique. The effect of the process parameters are investigated and discussed and the optimum process conditions were determined. It was found that preheating of the alumina powder for one hour at 1050 deg. before introducing it to the aluminum melt is vital to be accepted by the melt. Incorporation of the alumina particles by injecting them below the surface of the melt resulted in better wettability of the particles but no more than 10% volume fraction was achieved. Similarly, in the centrifuged casting technique, the same volume fraction of the Al/sub 2/O/sub 3/ particles was obtained and in both techniques existence of porosity was observed. The vortex technique, when its parameters were optimized resulted in higher volume fraction, as 25% of alumina particles was achieved with better particle distribution than those obtained by the injection and centrifuged casting methods. Comparison among the different techniques is made based on volume fraction, particle distribution, soundness and micro segregation. A new method, based on modifying the vortex technique is given and discussed. The mechanical strength and hardness of Al-Al/sub 2/O/sub 3/ MMPC produced by this method were determined. It was found that an increase of 100% in

  7. High alumina refractories

    International Nuclear Information System (INIS)

    Simao, L.C.; Lopes, A.B.; Galvao Filho, N.B.; Souza, R.B. de

    1989-01-01

    High alumina refractories with 92 to 96.5% Al 2 O 3 were produced using brown and white fused as aggregate. Those refractories present only alumina-α and mullite as crystalline mineralogical phase. Other physical and chemical characteristics are similar to the ones found in refractories produced in Brazil, Japan and U.S.A. The most important physical and chemical tests used for the characterization of the raw materials and refractories, complemented by those realized at high temperatures, plus X-ray Difractometry and optical microscopy are presented, besides the refractory formulation and main parameters of production [pt

  8. Genetic toxicology of metal compounds. I. Induction of lambda prophage in E coli WP2/sub s/(lambda)

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, T.G.; Molina, M.; Meyer, L.W.

    1984-01-01

    A number of metal compounds have been shown to be human carcinogens. Others, while not proven human carcinogens, are able to cause tumors in laboratory animals. Short-term bacterial assays for genotoxic effects have not been successful in predicting the carcinogenicity of metal compounds. The authors report here the ability of some metal compounds to cause the induction of lambda prophage in E coli WP2/sub s/(lambda). By far the strongest inducing ability was observed with K/sub 2/CrO/sub 4/, followed by Pb(NO/sub 3/)/sub 2/ > Ni(OOCCH/sub 3/)/sub 2/ > CrCl/sub 2/ > NaWO/sub 4/ > Na/sub 2/MoO/sub 4/ > KMnO/sub 4/. With the exception of chromate, long-term exposures in a narrow, subtoxic dose range were required in order to demonstrate phage induction. A new microtiter assay for lambda prophage induction, which incorporates these features, is described. This system also was able to detect very small amounts of organic carcinogens.

  9. AC losses of single-core MgB{sub 2} wires with different metallic sheaths

    Energy Technology Data Exchange (ETDEWEB)

    Kováč, J., E-mail: elekjkov@savba.sk; Šouc, J.; Kováč, P.; Hušek, I.

    2015-12-15

    Highlights: • AC losses in single-core MgB{sub 2} wires with different metallic sheaths have been measured. • It has been shown that metallic sheath can affect the measured AC loss considerably. • GlidCop and Stainless Steel have negligible effect to the overall loss. • Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. • Due to Monel sheath AC loss of MgB{sub 2} core is not visible. - Abstract: AC losses of single-core MgB{sub 2} superconductors with different metallic sheaths (Cu, GlidCop, stainless steel and Monel) have been measured and analyzed. These wires were exposed to external magnetic field with frequencies 72 and 144 Hz and amplitudes up to 0.1 T at temperatures ranged from 18 to 40 K. The obtained results have shown that applied metallic sheath can affect the measured AC loss considerably. In the case of GlidCop and Stainless Steel a negligible small effect of metallic sheath was observed. Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. In the case of Monel sheath, the hysteresis loss of magnetic sheath is dominated and AC loss of MgB{sub 2} core is practically not visible.

  10. O{sub 2} adsorption and dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sha; Yang, Yongpeng; Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn

    2017-07-15

    Highlights: • O{sub 2} adsorption and dissociation on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} NPs are performed by DFT. • Adsorption energies of O{sub 2} and O are strongly affected by the coordination number. • Adsorption energy and d-band center displays the opposite change tendency. • Ni{sub 13}@Pt{sub 42} is the most active catalyst among Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) NPs. - Abstract: Density functional theory calculations are performed to investigate O{sub 2} adsorption and dissociation on the icosahedral Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles. The parallel adsorption of O{sub 2} on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) is stronger than the vertical adsorption. The adsorption of O{sub 2} on the bridge site (B1) is favorable in the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles, while the adsorption of O atom on the hollow site (H1) is preferred. The adsorption energies of O{sub 2} and O are strongly affected by the coordination number. Low coordination site shows strong adsorption of O{sub 2} and O on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles. The adsorption energies of O{sub 2} and O atoms are found to be correlated well with the d-band center of surface Pt. For the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts, the ORR activity follows the order of Ni{sub 13}@Pt{sub 42} > Pd{sub 13}@Pt{sub 42} > Pd{sub 12}Ni{sub 1}@Pt{sub 42} > Pd{sub 1}Ni{sub 12}@Pt{sub 42}, illustrating that the Ni{sub 13}@Pt{sub 42} is the strongest ORR activity among the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts. Our results have important significance to understand the mechanism of O{sub 2} dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles.

  11. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  12. Uranium metalla-allenes with carbene imido R{sub 2}C=U{sup IV}=NR' units (R=Ph{sub 2}PNSiMe{sub 3}; R'=CPh{sub 3}): alkali-metal-mediated push-pull effects with an amido auxiliary

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Lewis, William [School of Chemistry, The University of Nottingham (United Kingdom)

    2016-08-08

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM{sup TMS})(NCPh{sub 3})(NHCPh{sub 3})(M)] (BIPM{sup TMS}=C(PPh{sub 2}NSiMe{sub 3}){sub 2}; M=Li or K) that can be described as R{sub 2}C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R{sub 2}C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR{sub 2} interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U{sup IV}=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Transesterification of palm oil on K{sub y}Mg{sub 1} {sub -} {sub x}Zn{sub 1} {sub +} {sub x}O{sub 3} catalyst: Effect of Mg-Zn interaction

    Energy Technology Data Exchange (ETDEWEB)

    Olutoye, M.A.; Hameed, B.H. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-06-15

    The Mg-Zn interaction effect of K{sub y}Mg{sub 1} {sub -} {sub x}Zn{sub 1} {sub +} {sub x}O{sub 3} heterogeneous type catalyst and its performance on transesterification of palm oil have been studied using the response surface methodology and the factorial design of experiments. The catalyst was synthesized using the co-precipitation method and the activity was assessed by transesterification of palm oil into fatty acid methyl esters. The ratio of the Mg/Zn metal interaction, temperature and time of calcination were found to have positive influence on the conversion of palm oil to fatty acid methyl ester (FAME) with the effect of metal to metal ratio and temperature of calcination being more significant. The catalytic activity was found to decrease at higher calcination temperature and the catalyst type K{sub 2}Mg{sub 0.34}Zn{sub 1.66}O{sub 3} with Mg/Zn ratio of 4.81 gave FAME content of 73% at a catalyst loading of 1.404 wt.% of oil with molar ratio of methanol to oil being 6:1 at temperature of 150 C in 6 h. A regression model was obtained to predict conversions to methyl esters as a function of metal interaction ratio, temperature of calcination and time. The observed activity of the synthesized catalyst was due to its synergetic structure and composition. (author)

  14. The coloring problem in the solid-state metal boride carbide ScB{sub 2}C{sub 2}. A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lassoued, Souheila [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Boucher, Benoit [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Boutarfaia, Ahmed [Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Gautier, Regis; Halet, Jean-Francois [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques

    2016-08-01

    The electronic properties of the layered ternary metal boride carbide ScB{sub 2}C{sub 2}, the structure of which consists of B/C layers made of fused five- and seven-membered rings alternating with scandium sheets, are analyzed. In particular, the respective positions of the B and C atoms (the so-called coloring problem) are tackled using density functional theory, quantum theory of atoms in molecules, and electron localizability indicator calculations. Results reveal that (i) the most stable coloring minimizes the number of B-B and C-C contacts and maximizes the number of boron atoms in the heptagons, (ii) the compound is metallic in character, and (iii) rather important covalent bonding occurs between the metallic sheets and the boron-carbon network.

  15. First-principles calculations of a half-metallic ferromagnet zinc blende Zn{sub 1−x}V{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    El Amine Monir, M.; Baltache, H. [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Azam, Sikander [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ali, Roshan [Materials Modeling Lab, Department of Physics, Post Graduate Jahanzeb College, Swat (Pakistan)

    2015-03-15

    First-principles calculations have been used to study the structural, elastic, electronic, magnetic and thermal properties of zinc blende Zn{sub 1−x}V{sub x}Te for x=0, 0.25, 0.50, 0.75 and 1 using the full-potential linearized augmented plane wave method (FP-LAPW) based on spin-polarized density functional theory (DFT). The electronic exchange-correlation potential is approached using the spin generalized gradient approximation (spin-GGA). The structural properties of the Zn{sub 1−x}V{sub x}Te alloys (x=0, 0.25, 0.50, 0.75 and 1) are given for the lattice constants and the bulk moduli and their pressure derivatives. The elastic constants C{sub 11}, C{sub 12} and C{sub 44} are calculated using numerical first-principles calculations implemented in the WIEN2k package. An analysis of the band structures and the densities of states reveals that Zn{sub 0.50}V{sub 0.50}Te and Zn{sub 0.75}V{sub 0.25}Te exhibit a half-metallic character, while Zn{sub 0.25}V{sub 0.75}Te is nearly half-metallic. The band structure calculations are used to estimate the spin-polarized splitting energies Δ{sub x}(d) and Δ{sub x}(pd) produced by the V(3d)-doped and s(p)–d exchange constants N{sub 0α} (conduction band) and N{sub 0β} (valence band). The p–d hybridization reduces the magnetic moment of V from its atomic charge value of 3µ{sub B} and creates small local magnetic moments on the nonmagnetic Zn and Te sites. Finally, we present the thermal effect on the macroscopic properties of these alloys, such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model. - Highlights: • Some physical properties of Vanadium doped ZnTe have been investigated. • Structural parameters for the parent compounds compare well with the available data. • The elastic and thermal properties are studied for the first time.

  16. Investigation of SiO{sub 2}:Na{sub 2}O ratio as a corrosion inhibitor for metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, N.; Othman, N. K. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Jalar, A. [Institute of Micro Engineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The silicate is one of the potential compounds used as a corrosion inhibitor for metal alloys. The mixture between silica and sodium hydroxide (NaOH) succeeded to produce the silicate product. The formulation of a silicate product normally variable depended by the different ratio of SiO{sub 2}:Na{sub 2}O. This research utilized the agriculture waste product of paddy using its rice husk. In this study, the amorphous silica content in rice husk ash was used after rice husk burnt in a muffle furnace at a certain temperature. The X-ray diffraction (XRD) analysis was done to determine the existence of amorphous phase of silica in the rice husk ash. There are several studies that recognized rice husk as an alternative source that obtained high silica content. The X-ray fluorescence (XRF) analysis was carried out to clarify the percentage amount of Si and O elements, which referred the silica compound in rice husk ash. The preparation of sodium silicate formulation were differ based on the SiO{sub 2}:Na{sub 2}O ratio (SiO{sub 2}:Na{sub 2}O ratio = 1.00, 2.00 and 3.00). These silicate based corrosion inhibitors were tested on several testing samples, which were copper (99.9%), aluminum alloy (AA 6061) and carbon steel (SAE 1045). The purpose of this study is to determine the appropriate SiO{sub 2}:Na{sub 2}O ratio and understand how this SiO{sub 2}:Na{sub 2}O ratio can affect the corrosion rate of each metal alloys immersed in acidic medium. In order to investigate this study, weight loss test was conducted in 0.5 M hydrochloric acid (HCl) for 24 hours at room temperature.

  17. Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel [US Army Natick Soldier Research Development and Engineering Center (NSRDEC), 15 General Greene Ave., Natick, Massachusetts 01760 (United States); Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Chin, Matthew; Nichols, Barbara; Dubey, Madan [RF and Electronics Division, US Army Research Laboratory, Adelphi, Maryland 20783 (United States); Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy [Division of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States); Parilla, Philip; Berry, Joseph; Ginley, David [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-09-15

    Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports

  18. Metal-free indoline dye sensitized solar cells based on nanocrystalline Zn{sub 2}SnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lihua [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); Jiang, Lilong; Wei, Mingding [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2010-02-15

    Zn{sub 2}SnO{sub 4} nanocrystals were synthesized and first used as the electrode materials for the metal-free indoline dyes sensitized solar cells (DSSCs). The highest efficiency of 3.08% was achieved for a D131 DSSC. This might be attributed to the fact that the D131 dye has a greater positive oxidation potential, which can lead to rapid dye regeneration, avoiding the geminate charge recombination between oxidized dye molecules and injected electrons in the Zn{sub 2}SnO{sub 4} film. The efficiency can be improved significantly using a mixture solution of D131 and N719 dyes for which an efficiency of 3.6% was obtained. (author)

  19. Glass forming ability and magnetic properties of Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses produced by suction casting

    Energy Technology Data Exchange (ETDEWEB)

    Sarlar, Kagan [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Physics Department, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University, YunusEmre Campus, 70100 Karaman (Turkey); Kucuk, Ilker, E-mail: ikucuk@uludag.edu.tr [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2015-01-15

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) have a supercooled liquid region (∆T{sub x}) of about 44 K. The saturation magnetizations (J{sub s}) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J{sub s} 0.62−0.81 T with a low H{sub c} of 2−289 A/m of the alloys.

  20. Quaternary equilibrium diagrams ZrO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2}-(CaO, MgO, TiO{sub 2}). A powerful tool for the development of new materials by reaction sintering; Diagramas de equilibrio cuaternarios ZrO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2}- (CaO, MgO, TiO{sub 2}). Una poderosa herramienta para el desarrollo de nuevos materiales por sinterizacion reactiva

    Energy Technology Data Exchange (ETDEWEB)

    Moya, J. S.; Bartolome, J. F.; Pena, P.

    2011-07-01

    In this paper we set out, discuss and evaluate the work on Mullite-zirconia composites obtained by reaction sintering led and inspired by Salvador de Aza on the basis of ZrO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2}-(CaO, MgO, TiO{sub 2}) multicomponent phase equilibrium diagrams. We analyze their impact on different areas of ceramic science and technology such as refractory grogs, aluminum industry, etc. The possible fields of future applications such as dental prosthesis replacing partially stabilized zirconia materials with rare earths are also reported. (Author) 42 refs.

  1. Merits of using andalusite-based refractories compared to bauxite-based refractories

    OpenAIRE

    Nyoka, M.; Brazier, D.; Courtney, T.; Parry, R.A.

    2013-01-01

    Historically bauxite-based refractories have been used in applications where andalusite-based refractories could work. Bauxite-based refractories were chosen over andalusite-based refractories mainly because of the availability of low-cost Chinese bauxite and also because many furnaces were designed by international companies that cannot easily access high-quality products. Currently, the availability of low-cost bauxite is under threat as a result of high export duties and tariffs as well as...

  2. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  4. Inelastic neutron scattering studies of TbNiAlH sub 1 sub . sub 4 and UNiAlH sub 2 sub . sub 0 hydrides

    CERN Document Server

    Bordallo, H N; Kolomiets, A V; Kalceff, W; Nakotte, H; Eckert, J

    2003-01-01

    The optical vibrations of hydrogen in TbNiAlH sub 1 sub . sub 4 and UNiAlH sub 2 sub . sub 0 were investigated by means of inelastic neutron scattering. The experimental data were analysed, including multiphonon neutron scattering contributions, calculated in an isotropic harmonic approximation. At least two fundamental H optical peaks were observed in TbNiAlH sub 1 sub . sub 4 , and were assigned to the vibrational modes of hydrogen atoms occupying different interstitial sites in the metal sublattice. The high-energy part of the UNiAlH sub 2 sub . sub 0 spectra is characterized by strong anharmonicity, and a broad fundamental band. The latter can be accounted for by a large dispersion of phonon modes due to the strong H-H interactions, and/or different metal-hydrogen force constants, which may originate from different metal atoms surrounding the H atoms in the unit cell.

  5. Prediction of half-metallic properties in TlCrS{sub 2} and TlCrSe{sub 2} based on density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Hashimzade, F.M.; Huseinova, D.A. [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Jahangirli, Z.A. [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan); Mehdiyev, B.H., E-mail: bachschi@yahoo.de [Institute of Physics, National Academy of Sciences of Azerbaijan, AZ 1143 Baku (Azerbaijan)

    2017-08-01

    Highlights: • Half-metallic properties of TlCrS2, TlCrSe2 and hypothetical TlCrSSe have been investigated by first-principles all-electron full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). • Total magnetic moment keeps its integer value on a relatively wide range of changes in volume (−10% ÷ 10%) for TlCrS2 and TlCrSSe, while total magnetic moment TlCrSe2 decreases with increasing volume, approaching to integer value 3 μB. • The states at the Fermi level in the case of spin-up channel consist of a hybridization of p-states of the atom S(Se) with d-states of Cr. - Abstract: Half-metallic properties of TlCrS{sub 2}, TlCrSe{sub 2} and hypothetical TlCrSSe have been investigated by first-principles all-electron full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). The results of calculations show that TlCrS{sub 2} and TlCrSSe are half-metals with energy gap (E{sub g}) ∼0.12 eV for spin-down channel. Strong hybridization of p-state of chalchogen and d-state of Cr leads to bonding and antibonding states and subsequently to the appearance of a gap in spin-down channel of TlCrS{sub 2} and TlCrSSe. In the case of TlCrSe{sub 2}, there is a partial hybridization and p-state is partially present in the DOS at Fermi level making this compound nearly half-metallic. The present calculations revealed that total magnetic moment keeps its integer value on a relatively wide range of changes in volume (−10% ÷ 10%) for TlCrS{sub 2} and TlCrSSe, while total magnetic moment of TlCrSe{sub 2} decreases with increasing volume approaching to integer value 3 μB.

  6. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  7. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  8. Determination of Unit Pressure Force in Material Volume in the Course of Refractory Stamping Press Moulding

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2016-06-01

    Full Text Available The paper presents results of assessment of the unit pressure force within the refractory material volume in the course press-moulding of stampings for refractory precast shapes. The force was evaluated with the use of physical simulation of deformation undergone by lead balls placed in the raw refractory mass subjected to pressing in a metal die. To determine the value of unit pressure force applied to the aggregate grains in the course of stamping press-moulding, physical model of deformation of a sphere induced by the uniaxial stress state was used.

  9. Superconductivity in Ba sub 1 sub - sub x K sub x BiO sub 3 : possible scenario of spatially separated Fermi-Bose mixture

    CERN Document Server

    Menushenkov, A P; Kuznetsov, A V; Kagan, M Y

    2001-01-01

    A new scenario for the metal-insulator phase transition and superconductivity in the perovskite-like bismuthates Ba sub 1 sub - sub x K sub x BiO sub 3 (BKBO) is proposed. It is shown that two types of charge carriers, the local pairs (real-space bosons) and the itinerant electrons, exist in the metallic compound BKBO (x >= 0.37). The real-space bosons are responsible for the charge transport in semiconducting BaBiO sub 3 and for superconductivity in the metallic BKBO. The appearance of the Fermi-liquid state as the percolation threshold is overcome (x >= 0.37) explains the observed metal-insulator phase transition. Because bosons and fermions occupy different types of the octahedral BiO sub 6 complexes, they are separated in real space, and therefore, the spatially separated Fermi-Bose mixture of a new type is likely to be realized in the bismuthates. The nature of superconductivity is consistently explained in the framework of this scenario. A new superconducting oxide Ba sub 1 sub - sub x La sub x PbO sub ...

  10. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-F{sub TOX} model

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk; Lofts, S.

    2013-10-15

    Highlights: •Metal accumulation by living organisms is successfully simulated with WHAM. •Modelled organism-bound metal provides a measure of toxic exposure. •The toxic potency of individual bound metals is quantified by fitting toxicity data. •Eleven laboratory mixture toxicity data sets were parameterised. •Relatively little variability amongst individual test organisms is indicated. -- Abstract: The WHAM-F{sub TOX} model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F{sub TOX}), a linear combination of the products of organism-bound cation and a toxic potency coefficient (α{sub i}) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r{sup 2} = 0.89, root mean squared deviation = 0.44), supporting the use of HA binding as a proxy. Calculated loadings of H{sup +}, Al, Cu, Zn, Cd, Pb and UO{sub 2} were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-F{sub TOX} gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of α{sub i}, the toxicity of bound cations can tentatively be ranked in the order: H < Al < (Zn–Cu–Pb–UO{sub 2}) < Cd. The WHAM-F{sub TOX} analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to

  11. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  12. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. D.; Fang, Y. M.; Wu, S. Q., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Zhu, Z. Z., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005 (China)

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  13. Preparation of Photo catalytic Materials Based on Bi{sub 4}Ti{sub 3}O{sub 1}2 Doped with Transition Metals; Preparacion de Materiales Fotocatalizadores Basados en Bi{sub 4}Ti{sub 3}O{sub 1}2 Dopados con Metales de Transicion

    Energy Technology Data Exchange (ETDEWEB)

    Calatalyud, D. G.; Rodriguez, M.; Gallego, B.; Fernandez-Hevia, D.; Jardiel, T.

    2012-07-01

    The production of hydrogen from water using ceramic semiconductors with photo catalytic properties has gained special relevance in the last years, due to their potential use for the generation of hydrogen in a direct and clean way. Doping with transition metals has demonstrated to be an effective method to obtain new active photo catalysts in the visible range of the solar spectrum by changing the band gap of the material. In this paper we study the effect of the addition of various dopants (Fe, Ni, Cr, Mn, Co, Cu) in the structure and band gap of Bi{sub 4}Ti{sub 3}O{sub 1}2, in order to improve its photo catalytic activity and make it visible light active. Accordingly, doped BIT based materials have been obtained by solid state processing and different amounts of an additional phase with sillenite structure, Bi{sub 1}2TiO{sub 2}0, have been detected. With the dopant a shift of the absorption spectra is produced towards higher wavelengths and consequently towards lower band gap values. The band gap values obtained for many of the prepared compositions are quite promising, promoting the study of their catalytic properties.. (Author)

  14. Reversible Exsolution of Nanometric Fe<sub>2sub>O>3 sub> Particles in BaFe<sub>2-xsub>(PO>4sub>)>2sub> (0 ≤ x ≤ 2/3):The Logic of Vacancy Ordering in Novel Metal-Depleted Two-Dimensional Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Alcover, Ignacio Blazquez; David, Rénald; Daviero-Minaud, Sylvie; Filimonov, Dmitry; Huvé, Marielle; Roussel, Pascal; Kabbour, Houria; Mentré, Olivier [CNRS-UMR

    2015-08-12

    We show here that the exsolution of Fe2+ ions out of two-dimensional (2D) honeycomb layers of BaFe<sub>2sub>(PO>4sub>)>2 sub>into iron-deficient BaFe<sub>2–xsub>(PO>4sub>)>2sub> phases and nanometric α-Fe<sub>2sub>O>3sub> (typically 50 nm diameter at the grain surface) is efficient and reversible until x = 2/3 in mild oxidizing/reducing conditions. It corresponds to the renewable conversion of 12 wt % of the initial mass into iron oxide. After analyzing single crystal X-ray diffraction data of intermediate members x = 2/7, x = 1/3, x = 1/2 and the ultimate Fe-depleted x = 2/3 term, we then observed a systematic full ordering between Fe ions and vacancies (V<sub>Fe>) that denote unprecedented easy in-plane metal diffusion driven by the Fe2+/Fe3+ redox. Besides the discovery of a diversity of original depleted triangular <sub>∞>{Fe2/3+<sub>2–xsub>O>6sub>} topologies, we propose a unified model correlating the x Fe-removal and the experimental Fe/V<sub>Fe> ordering into periodic one-dimensional motifs paving the layers, gaining insights into predictive crystahemistry of complex low dimensional oxides. When we increased the x values it led to a progressive change of the materials from 2D ferromagnets (Fe2+) to 2D ferrimagnets (Fe2/3+) to antiferromagnets for x = 2/3 (Fe3+).

  15. Photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Iervolino, Giuseppina [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Tantis, Iosif [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece); Sygellou, Lamprini [FORTH/ICE-HT, P.O. Box 1414, 26504, Patras (Greece); Vaiano, Vincenzo, E-mail: vvaiano@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Sannino, Diana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece)

    2017-04-01

    Highlights: • Metals-modified hematite photoanodes prepared by electrodeposition method. • Ti and Ni-modified hematite thin films showed the higher photocurrents values. • The optimal loading of modifier was found at nominal 1% for Ni and 3% for Ti. • The highest H2 production was obtained on 3%Ti-Fe2O3 in the presence of glucose. - Abstract: The present work reports the investigation of photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production using aqueous solutions containing various organic compounds. Fe{sub 2}O{sub 3} photoanodes were prepared by the electrodeposition method. The efficiency of various metal modifiers of the hematite structure (Ti, Ni, Sn, Co and Cu) has been tested by monitoring the photoelectrochemical behavior of the ensuing photoanodes. Hydrogen production was monitored in an H-shaped reactor using pure and metal-modified hematite films deposited on FTO electrodes as photocatalyst while a combination of commercial carbon paste with dispersed Pt nanoparticles was used as electrocatalyst. In all cases, hydrogen production was obtained by application of a small external electric bias (in the range 0.5- 0.7 V vs Ag/AgCl electrode). Highest photocurrent production has been achieved with a Ti-modified Fe{sub 2}O{sub 3} photoanode in the presence of glucose as sacrificial agent.

  16. Palladium mixed-metal surface-modified AB<sub>5sub>-type intermetallides enhance hydrogen sorption kinetics

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2010-09-01

    Full Text Available Surface engineering approaches were adopted in the preparation of advanced hydrogen sorption materials, based on ‘low-temperature’, AB<sub>5sub>-type intermetallides. The approaches investigated included micro-encapsulation with palladium and mixed-metal mantles using electroless plating. The influence of micro-encapsulation on the surface morphology and kinetics of hydrogen charging were investigated. It was found that palladium-nickel (Pd-Ni co-deposition by electroless plating significantly improved the kinetics of hydrogen charging of the AB<sub>5sub>-type intermetallides at low hydrogen pressure and temperature, after long-term pre-exposure to air. The improvement in the kinetics of hydrogen charging was credited to a synergistic effect between the palladium and nickel atoms in the catalytic mantle and the formation of an ‘interfacial bridge’ for hydrogen diffusion by the nickel atoms in the deposited layer. The developed surface-modified materials may find application in highly selective hydrogen extraction, purification, and storage from impure hydrogen feeds.

  17. Persistent semi-metal-like nature of epitaxial perovskite CaIrO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-05-21

    Strong spin-orbit coupled 5d transition metal based ABO{sub 3} oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO{sub 3}. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO{sub 3} thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.

  18. Some thermoelectric properties of the light rare earth sesquiselenides (R2Se/sub 3-x/)

    International Nuclear Information System (INIS)

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1981-01-01

    Rare earth sesquiselenides of the Th 3 P 4 structure show variable electric properties over their homogeneity range, i.e., ranging from metallic (R 3 Se 4 ) to semimetallic (R 2 Se/sub 3-x/, where 0.14 > x > 0) to semiconducting (R 2 Se 3 ). The composition change is due to the formation of metal vacancies in the Th 3 P 4 structure with no vacancies at R 3 Se 4 and 4.75 at. % vacancies at R 2 Se 3 . The rare earth sesquiselenides are also refractory materials and therefore are of interest for high temperature thermoelectric applications. Preliminary results of thermoelectric power and electrical resistivity measurements on the light lanthanide sesquiselenides (La through Sm) are presented

  19. A 197Au and 57Fe Moessbauer study of the roasting of refractory gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.

    1989-01-01

    The transformation of chemically bound gold into metallic gold during industrial scale roasting of an arsenical gold ore concentrate from the Fairview Mine, Eastern Transvaal, has been studied quantitatively by 197 Au Moessbauer spectroscopy. The iron compounds in the concentrate, mainly FeAsS and FeS 2 , and their transformations during roasting have been studied by 57 Fe Moessbauer spectroscopy. The bound gold is found to convert into the metal in parallel to the decomposition of FeAsS and the increase in cyanide leachability. This shows that the refractory character of the ore is caused by the chemical bonding of the gold rather than by the physical inclusion of small, discrete metallic particles in the matrix of FeAsS or FeS 2 . The ratio of the f-factors of gold bound in the FeAsS component of a refractory ore and of metallic gold was determined to be f(Au:FeAsS)/f(Au)=1.48 ± 0.09. (orig.)

  20. Phonon dispersion of metallic glass CuZr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Y [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Otomo, T [Japan Proton Accelerator Research Complex, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan (Japan); Suenaga, R [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Baron, A Q R [Materials Dynamics Laboratory, Harima RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tsutsui, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Kohara, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Takeda, S [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Itoh, K [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Kato, H [Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Fukunaga, T [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Hasegawa, M [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

    2007-12-15

    Collective dynamics of metallic glass CuZr{sub 2} has been studied in the first pseudo Brillouin zone using high-resolution inelastic X-ray scattering. Acoustic-like longitudinal propagating excitations were observed and the dispersion relation was determined. In addition of longitudinal mode, transverse mode with half excitation energy contributes to medium energy-transfer region.

  1. Three series of quaternary rare-earth transition-metal pnictides with CaAl{sub 2}Si{sub 2}-type structures: RECuZnAs{sub 2}, REAgZnP{sub 2}, and REAgZnAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stoyko, Stanislav S.; Ramachandran, Krishna K.; Blanchard, Peter E.R. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Rosmus, Kimberly A.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2014-05-01

    Three series of quaternary rare-earth transition-metal pnictides REMM′Pn{sub 2} (M=Cu, Ag; M′=Zn; Pn=P, As) have been prepared by reaction of the elements at 800 °C, with crystal growth promoted through the addition of iodine. The extent of RE substitution is broad in these series: RECuZnAs{sub 2} (RE=Y, La-Nd, Sm, Gd–Lu), REAgZnP{sub 2} (RE=La–Nd, Sm, Gd–Dy), and REAgZnAs{sub 2} (RE=La-Nd, Sm, Gd-Dy). Powder and single-crystal X-ray diffraction analysis revealed that they adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (space group P3{sup ¯}m1, Z=1), in which Cu or Ag atoms are disordered with Zn atoms over the unique tetrahedrally coordinated transition-metal site. Magnetic measurements indicated Curie–Weiss behavior for several members of the RECuZnAs{sub 2} and REAgZnP{sub 2} series. Core-line X-ray photoelectron spectra (XPS) collected on some RECuZnAs{sub 2} members corroborate the charge assignment deduced by the Zintl concept for these compounds, (RE{sup 3+})(M{sup 1+})(Zn{sup 2+})(Pn{sup 3−}){sub 2}. Optical diffuse reflectance spectra and valence band XPS spectra established that these compounds are small band-gap semiconductors (up to ∼0.8 eV in REAgZnP{sub 2}) or semimetals (RECuZnAs{sub 2}). Band structure calculations also support this electronic structure and indicate that the band gap can be narrowed through appropriate chemical substitution (RE=smaller atoms, M=Cu, and Pn=As). - Graphical abstract: Cu or Ag atoms are disordered with Zn atoms over the tetrahedral site within relatively rigid [M{sub 2}Pn{sub 2}] slabs in three series of quaternary pnictides adopting the CaAl{sub 2}Si{sub 2}-type structure. - Highlights: • Three series (comprising 25 compounds) of pnictides REMM'Pn{sub 2} were prepared. • Cu or Ag atoms are disordered with Zn atoms within relatively rigid [M{sub 2}Pn{sub 2}] slabs. • They are semimetals or small band-gap semiconductors. • RECuZnAs{sub 2} and REAgZnP{sub 2} are generally

  2. Atomic structure of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Fang, H.Z.; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shang, S.L.; Wang, Y. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Qin, J.Y. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University - Southern Campus, Jinan 250061 (China); Liu, Z.K. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-01-15

    Ab initio molecular dynamics (AIMD) calculations were performed on the atomic configuration of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} bulk metallic glass. The local structures were characterized in terms of structure factors (SF), pair correlation functions (PCF), coordinate numbers, bond pairs and Voronoi polyhedra. The glass transition temperature, generalized PCF and SF predicated by AIMD are in good agreement with the experimental data. Icosahedral short-range orders (ISRO) are found to be the most dominant, in view of the presence of the majority of bond pairs with 1551, 1541 and 1431, and Voronoi polyhedra with <0,3,6,1>, <0,2,8,1>, <0,0,12,0> and <0,2,8,4>. Icosahedral medium range orders (IMROs) are formed from icosahedra via the linkage of vertex-, edge-, face- and intercross-shared atoms. The glass structure on the nanometer scale is accumulated by polyhedra through an efficient packing mode. It is suggested that the extraordinary glass-forming ability of this alloy is essentially attributable to the formation of ISRO and IMRO, and the dense packing of atoms.

  3. Synthesis and photoluminescent properties of Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} phosphor prepared by polymer metal complex method for WLEDs applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Dhia A., E-mail: dhia_hassan@yahoo.com [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Education for Pure Science, University of Basrah, Basrah 61004 (Iraq); Xu, Jian; Chen, Yibin; Li, Langkai [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Zeng, Renjie, E-mail: rjzeng@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Key Lab of Advanced Special Materials, Xiamen University, Xiamen 361005 (China)

    2016-07-15

    Highlights: • SrSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} phosphor was prepared by polymer metal complex (pechini method). • The annealing time was decreased from 6 h in solid state method to 3 h. • The particles are crystalline and dispersed well with average size 6.5 μm. - Abstract: Green emitting Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) phosphors were synthesized by polymer metal complex or pechini method. The XRD results confirm the formation of a pure phase at 1400 °C for 3 h. The SEM and particles size results indicate that the prepared phosphor consists of a polyhedral crystalline shape with well dispersed and the average particle size around 6.5 μm. The maximum PL intensity was found at 0.04% Eu{sup 2+} with a wide emission band between 460 and 640 nm and a green emission peak at 531.4 nm. The external quantum efficiency of 0.04% Eu{sup 2+} sample was 43.13%. The results indicate that pechini method is an alternative way and close in efficiency to the solid state method to prepare SrSi{sub 2}O{sub 2}N{sub 2} phosphor with higher homogeneity and more uniform size distribution for near UV and blue region applications for white light emitting diodes WLEDs.

  4. Estimation of sensing characteristics for refractory nitrides based gain assisted core-shell plasmonic nanoparticles

    Science.gov (United States)

    Shishodia, Manmohan Singh; Pathania, Pankaj

    2018-04-01

    Refractory transition metal nitrides such as zirconium nitride (ZrN), hafnium nitride (HfN) and titanium nitride (TiN) have emerged as viable alternatives to coinage metals based plasmonic materials, e.g., gold (Au) and silver (Ag). The present work assesses the suitability of gain assisted ZrN-, HfN- and TiN-based conventional core-shell nanoparticles (CCSNPs) and multilayered core-shell nanoparticles (MCSNPs) for refractive index sensing. We report that the optical gain incorporation in the dielectric layer leads to multifold enhancement of the scattering efficiency (Qsca), substantial reduction of the spectral full width at half maximum, and a higher figure of merit (FOM). In comparison with CCSNPs, the MCSNP system exhibits superior sensing characteristics such as higher FOM, ˜ 45% reduction in the critical optical gain, response shift towards the biological window, and higher degree of tunability. Inherent biocompatibility, growth compatibility, chemical stability and flexible spectral tuning of refractory nitrides augmented by superior sensing properties in the present work may pave the way for refractory nitrides based low cost sensing.

  5. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  6. Processing and characterisation of novel metal-reinforced Al{sub 2}O{sub 3}-composites; Herstellung und Charakterisierung neuartiger metallverstaerkter Al{sub 2}O{sub 3}-Verbundwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    Using a new processing route, Al{sub 2}O{sub 3}-based ceramic composites have been prepared, that consist of 3-d networks of the ceramic and different metallic phases. The damage tolerance of these composites could be significantly improved over monolithic Al{sub 2}O{sub 3}: fracture strength and fracture toughness were increased by a factor of 4 up to 1393 MPa and 11.8 MPa {radical}(m), respectively. Similarly, resistance against abrasive wear was successfully improved by a factor of two over monolithic Al{sub 2}O{sub 3}. In combination with the good electrical and thermal conductivity, these superior mechanical properties are of great interest for automotive and biomedical industries. (orig.) [German] Mit einem neu entwickelten Verfahren werden keramische Al{sub 2}O{sub 3}-Verbundwerkstoffe hergestellt, die sich durch eine dreidimensionale Vernetzung der (inter)metallischen und der keramischen Phase auszeichnen. Die Schadenstoleranz derartiger Verbundwerkstoffe konnte im Vergleich zu monolithischer Al{sub 2}O{sub 3}-Keramik deutlich gesteigert werden: Die Bruchfestigkeit und die Bruchzaehigkeit wurden jeweils um einen Faktor 4 auf 1393 MPa bzw. 11,8 MPa {radical}(m) erhoeht, die Abriebfestigkeit um einen Faktor 2 verbessert. In Kombination mit der elektrischen und thermischen Leitfaehigkeit sind diese aussergewoehnlichen mechanischen Eigenschaften in Automobilbau und in der Medizintechnik von grossem Interesse. (orig.)

  7. Use of refractory-metal alloys in the Next European Torus divertor design, and comparative study of mechanical properties after disruptive heat loads or brazing and ageing treatment

    International Nuclear Information System (INIS)

    Moons, Frans; Falbriard, Patricia; Nicolas, Guy; Faron, Robert

    1990-01-01

    A limited comparative study of ten refractory metals and alloys has been made to evaluate materials for use in the divertor element of the Next European Torus (NET). Tensile tests up to 800 0 C were performed on sintered molybdenum, wrought molybdenum, Z6 (Mo-ZrO 2 ), Mo-5Re, Mo-41Re, sintered tungsten, wrought tungsten, W-5Re, and W-26Re, in delivery state and after ageing for 10 days at 600 0 C; the 10 days of ageing simulated the integrated divertor lifetime. Slow bend tests were done from room temperature to 800 0 C and 600 0 C respectively on samples of refractory metal previously brazed to graphite or to copper; the brazing process was representative of part of the manufacturing process. Finally, impact tests up to 800 0 C were carried out on samples disposed to high-energy flux deposition of 3 or 15 MJ m -2 by laser; this was to simulate the energy deposition that might occur on the material during a plasma disruption. The resulting ranking of materials is of course criteria-dependent, but generally speaking Mo-41Re scored the best as 'engineering' material, followed by TZM. (author)

  8. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  9. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    Science.gov (United States)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  10. Observation of semiconductor to metallic transition and polaron hopping in double perovskite Pr{sub 2}CoTiO{sub 6} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800005 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1, APC Road, Kolkata 700009 (India)

    2017-05-01

    This paper describes semiconductor to metal transition and polaron conduction in double perovskite Pr{sub 2}CoTiO{sub 6} (PCTO) ceramics. The XRD pattern recorded at room temperature confirmed the pure phase, single crystalline structure. The semicircle arc in the impedance plot at each temperature can be attributed to the grain boundary contribution, indicating one dominating response in the measurement frequency range. The semiconductor to metallic transition was also confirmed by the variation of grain boundary resistance (R{sub gb}) with temperature. The activation energy estimated from the imaginary part of electrical modulus and impedance are found to be the characteristic of polaron conduction in PCTO. Ac conductivity followed power law dependence σ{sub ac} = Bω{sup n}. The observed variation of the exponent ‘n’ with temperature suggests the typical of charge transport assisted by a hopping process. The observed minimum in the temperature dependence of frequency exponent ‘n’ strongly suggests that the large polaron tunneling is the dominant transport process.

  11. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  12. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  13. Refractory vasculitis

    NARCIS (Netherlands)

    Rutgers, Bram; Kallenberg, Cees G. M.

    Refractory vasculitis occurs in 4-5% of patients with anti-neutrophil cytoplasmic antibody associated vasculitis (AAV). Differences between therapies used for refractory disease are mostly reflected in the percentages of complete and partial remissions, but also in the number of serious side

  14. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  15. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  16. Selective Rutherford backscattering techniques in the study of transition-metal implanted YBa{sub 2}C{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia). School of Physics; Cohen, D.D.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Using a metal-vapor vacuum arc ion source, several as-grown, large single crystal YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were implanted with a dose of 1x10{sup 17} zinc, nickel and iron ions. After implantation the crystal was subjected to two anneal cycles that has allowed to examine crystal structure, superconducting transitions and composition, through X-ray diffraction, rutherford backscattering spectroscopy (RBS) and AC susceptibility measurements respectively. Although RBS discriminates strongly against light elements, such as oxygen, the use of resonant reaction {sup 16}O ({alpha}, {alpha}){sup 16}O at 3.4 MeV was beneficial, as its cross section is nearly 23 times that of the rutherford cross section. 4 figs.

  17. Selective Rutherford backscattering techniques in the study of transition-metal implanted YBa{sub 2}C{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia). School of Physics; Cohen, D D; Evans, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Using a metal-vapor vacuum arc ion source, several as-grown, large single crystal YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were implanted with a dose of 1x10{sup 17} zinc, nickel and iron ions. After implantation the crystal was subjected to two anneal cycles that has allowed to examine crystal structure, superconducting transitions and composition, through X-ray diffraction, rutherford backscattering spectroscopy (RBS) and AC susceptibility measurements respectively. Although RBS discriminates strongly against light elements, such as oxygen, the use of resonant reaction {sup 16}O ({alpha}, {alpha}){sup 16}O at 3.4 MeV was beneficial, as its cross section is nearly 23 times that of the rutherford cross section. 4 figs.

  18. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  19. Transition metal-centered trigonal prisms as building units in RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.; Rodewald, U.C.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany)

    2007-12-15

    The indides RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn were synthesized from the elements by are-melting and subsequent annealing for crystal growth. Their structures were characterized on the basis of X-ray powder and single crystal data: Lu{sub 14}Co{sub 3}In{sub 3}-type, space group P4{sub 2}/nmc, a = 970.2(1), c = 2340.7(5) pm for Y{sub 13.95}Pd{sub 3}In{sub 3.05}, a = 959.7(1), c = 2309.0(5) pm for Ho{sub 14}Pd{sub 2.95}In{sub 3}, a = 955.5(1), c = 2305.1(5) pm for Er{sub 14}Pd{sub 3}In{sub 3}, a = 950.9(1), c = 2291.6(5) pm for Tm{sub 13.90}Pd{sub 3}In{sub 3.10}, a = 944.4(1), c = 2275.5(5) pm for Lu{sub 13.93}Pd{sub 3}In{sub 3.07}, a = 962.9(1), c = 2343.0(5) pm for Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}, a = 967.6(1), c = 2347.8(5) pm for Y{sub 13.92}Pt{sub 3.05}In{sub 2.91}, and Gd{sub 4}RhIn-type, space group F anti 43m, a = 1368.6(2) pm for Y{sub 4}IrIn. The main structural motifs are transition metal-centered trigonal prisms of the rare Earth elements which are condensed to two-dimensional networks in the RE{sub 14}T{sub 3}In{sub 3} indides and to a three-dimensional one in Y{sub 4}IrIn. The indium atoms in both structure types show segregation in the metal-rich matrix, i.e. In{sub 2} dumbbells in the RE{sub 14}T{sub 3}In{sub 3} indides (309 pm In2-In2 in Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}) and In{sub 4} tetrahedra (322 pm In-In) in Y{sub 4}IrIn. The crystal chemical peculiarities of both structure types are discussed. (orig.)

  20. Observation of the dynamics of magnetically induced chains of sub-micron superparamagnetic beads in aqueous solutions by laser light scattering

    International Nuclear Information System (INIS)

    Tanizawa, Y; Tashiro, T; Sandhu, A; Ko, P J

    2013-01-01

    Optical monitoring the behaviour of magnetically induced self-assembled chains of superparamagnetic beads (SPBs) are of interest for biomedical applications such as biosensors. However, it is difficult to directly monitor magnetically induced self-assembly of sub-micron nano-beads with conventional optical microscopes. Here, we describe the optical observation of the dynamics of magnetically induced self-assembled rotating chains of 130 nm SPBs in aqueous solutions by laser light scattering. Magnetic fields of ∼1 kOe were applied to control the self-assembly chains of SPBs and their behaviour analyzed by monitoring the intensity of laser light scattered from the chain structures. We compared the light scattering from chains that were formed only by the application of external fields with chains formed by beads functionalized by EDC, where chemical reactions lead to the bonding of individual beads to form chains. The EDC experiments are a precursor to experiments on molecular recognition applications for biomedical diagnostics.

  1. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  2. Modification of MWCNT@TiO{sub 2} core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Meei Mei [Low Carbon Economy (LCE) Group, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor (Malaysia); Chai, Siang-Piao, E-mail: chai.siang.piao@monash.edu [Low Carbon Economy (LCE) Group, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor (Malaysia); Mohamed, Abdul Rahman [Low Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2014-11-15

    Graphical abstract: - Highlights: • Metal oxide-doped MWCNT@TiO{sub 2} core–shell nanocomposites were prepared. • Red-shift of absorption band positions was observed in CuO- and Fe{sub 2}O{sub 3}-MWCNT@TiO{sub 2}. • Total methane formation of 0.93 μmol/g-catalyst was achieved using CuO-MWCNT@TiO{sub 2}. - Abstract: Titanium dioxide (TiO{sub 2}) doped with visible-light-responsive metal oxides has been widely reported for improving the visible light absorption performance of TiO{sub 2} and its photocatalytic activity. The metal oxides could function as ‘charge-carrier traps’ that transport electrons from TiO{sub 2} through the heterojunction of the TiO{sub 2}-metal oxides. In this work, the common transition metal oxides, i.e. FeO{sub x}, CuO{sub x}, NiO, CoO{sub x} and ZnO, were doped onto MWCNT@TiO{sub 2} core–shell nanocomposites. The effects of the metal oxide dopants on the photoactivity of the core–shell nanocomposites on CO{sub 2} reduction were studied. Characterization with diffuse-reflectance UV–vis showed significant improvement on visible light absorption after doping MWCNT@TiO{sub 2} with CuO{sub x}, FeO{sub x} and CoO{sub x} with the adsorption band-edge position red-shifted into the wavelength range of 480–630 nm. CuO-MWCNT@TiO{sub 2} appeared to be the most active one among all the studied photocatalysts, achieving a total methane formation of 0.93 μmol/g-catalyst.

  3. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  4. Thermal expansion of the nuclear fuel-sodium reaction product Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4} - Structural mechanism and comparison with related sodium-metal ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Illy, Marie-Claire [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Smith, Anna L. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science & Technology, Nuclear Energy and Radiation Applications (NERA), Mekelweg 15, 2629 JB, Delft (Netherlands); Wallez, Gilles, E-mail: gilles.wallez@upmc.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); Sorbonne University, UPMC Université, Paris 06, 75005 Paris (France); Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J.M. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2017-07-15

    Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O{sub 2} fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Na{sub n-2}M{sup n+}O{sub n-1} - including Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the M{sup n+} cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products. - Highlights: •Thermal expansion and structural mechanism of Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4}, main product of the reaction of sodium with nuclear fuel. •Thermomechanical behavior of sodium uranate suggests possible strains on the fuel cladding and risks of de-cohesion with the fuel pin. •Effect of homo- and aliovalent cation substitutions allows to predict the thermomechanical behavior of sodium metallates involving fission products or minor actinide elements. •Crystal structure of new compounds Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}.

  5. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    Science.gov (United States)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  6. Mixed valent perovskites Ba/sub 3/B/sup 3 +/Ru/sub 2/sup(4. 5+)O/sub 9/. Catalytic activity of perovskite oxides with noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S; Ehmann, A; Schaller, H U; Duerrschmidt, E; Thumm, I; Bader, H [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-10-01

    The black compounds Ba/sub 3/B/sup 3 +/Ru/sub 2/O/sub 9/ crystallize with B/sup 3 +/ = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Y in a hexagonal BaTiO/sub 3/ structure (6L, sequence (hcc)/sub 2/) with an ordered distribution (1:2 order) of B/sup 3 +/ and ruthenium (BO/sub 6/ single octahedra; Ru/sub 2/O/sub 9/ double groups). The mean oxidation state of ruthenium is about +4.5. The properties are compared with those of other isotypic stacking polytypes Ba/sub 3/B/sup 3 +/M/sub 2/sup(4.5)O/sub 9/ (M/sub 2/ = IrRu, Ir/sub 2/, PtRu) and Ba/sub 3/B/sup 2 +/M/sub 2//sup 5 +/O/sub 9/ (M = Ru, Ir). The results of activity tests concerning the efficiency of perovskite oxides with noble metals in respect of the oxidation of CO or CHsub(x) and the reduction of NOsub(x) are reported.

  7. Evidence of the semiconductor-metal transition in V{sub 2}O{sub 5} thin films by the pulsed laser photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pacheco, A.; Acosta-Najarro, D. R.; Cruz-Manjarrez, H.; Rodriguez-Fernandez, L.; Pineda-Santamaria, J. C; Aguilar-Franco, M. [Instituto de Fisica-Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Castaneda-Guzman, R. [Laboratorio de Fotofisica y Peliculas Delgadas, CCADET-UNAM, Mexico DF (Mexico)

    2013-05-14

    In this work, the pulsed photoacoustic technique was used to investigate the semiconductor-metal transition of thin vanadium pentoxide films (V{sub 2}O{sub 5}) under increasing temperature. The V{sub 2}O{sub 5} thin films were simultaneously deposited by RF magnetron sputtering at room temperature, on corning glass and SnO{sub 2}:F/glass substrates, in order to compare the photoacoustic response. The elemental and structural analysis of the V{sub 2}O{sub 5} films was performed by Rutherford backscattering spectroscopy and X-ray diffraction. The optical transmission and band gap were determined using UV-Vis spectroscopy. The electrical properties were measured using four-point probe measurements with the Van der Pauw geometry.

  8. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Chul; Kwak, Hyun-Jung [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Yoo, Chung-Yul [Advanced Materials & Devices Laboratory, Korea Institute of Energy Research, Daejeon 34129 (Korea, Republic of); Yun, Hoseop [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Kim, Seung-Joo, E-mail: sjookim@ajou.ac.kr [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of)

    2016-11-15

    A new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}, was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} crystallizes to the P2{sub 1}/n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO{sub 4}){sub 2}] layers alternating regularly with [LiSrPO{sub 4}] layers. In the [LiSrAl(PO{sub 4}){sub 2}] sublattice, the AlO{sub 6} octahedra and PO{sub 4} tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO{sub 4}){sub 2}]{sup 3−} framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO{sub 4}] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO{sub 4} and PO{sub 4} tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li{sup +} ion conduction. The impedance measurement indicated that Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} had a moderate ion conductivity (σ≈1.30×10{sup −4} S cm{sup −1} at 667 K), with an activation energy E{sub a}≈1.02 eV. - Graphical abstract: Polyhedral view of Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}. Li{sup +} ions are represented by green spheres, Sr atoms by white spheres, AlO{sub 6} groups by octahedra, and PO{sub 4} groups by tetrahedra. - Highlights: • New compound Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  9. Ultrafast microwave hydrothermal synthesis and characterization of Bi{sub 1−x}La{sub x}FeO{sub 3} micronized particles

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Cannio, M., E-mail: maria.cannio@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K. [Department of Energy Conversion and Storage, Technical University of Denmark Frederiksborgvej, 4000 Roskilde (Denmark); Leonelli, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy)

    2015-07-15

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi{sub 1−x}La{sub x}FeO{sub 3} where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi{sub 1−x}La{sub x}FeO{sub 3} crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO{sub 3} lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO{sub 3} and Bi{sub 0.85}La{sub 0.15}FeO{sub 3}. The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi{sub 1−x}La{sub x}FeO{sub 3}, x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T{sub c} shift in La doped BiFeO{sub 3} DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic.

  10. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  11. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors and its applications

    International Nuclear Information System (INIS)

    MacDowell, A.A.; Lamble, G.M.; Celestre, R.S.; Padmore, H.A.; Chang, C.H.; Patel, J.R.

    1998-06-01

    The authors have developed an x-ray micro-probe facility utilizing mirror bending techniques that allow white light x-rays (4--12keV) from the Advanced light Source Synchrotron to be focused down to spot sizes of micron spatial dimensions. They have installed a 4 crystal monochromator prior to the micro-focusing mirrors. The monochromator is designed such that it can move out of the way of the input beam, and allows the same micron sized sample to be illuminated with either white or monochromatic radiation. Illumination of the sample with white light allows for elemental mapping and Laue x-ray diffraction, while illumination of the sample with monochromatic light allows for elemental mapping (with reduced background), micro-X-ray absorption spectroscopy and micro-diffraction. The performance of the system will be described as will some of the initial experiments that cover the various disciplines of Earth, Material and Life Sciences

  12. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors and its applications

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A.A.; Lamble, G.M.; Celestre, R.S.; Padmore, H.A. [Lawrence Berkeley National Lab., CA (United States); Chang, C.H.; Patel, J.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.]|[Stanford Univ., CA (United States)

    1998-06-01

    The authors have developed an x-ray micro-probe facility utilizing mirror bending techniques that allow white light x-rays (4--12keV) from the Advanced light Source Synchrotron to be focused down to spot sizes of micron spatial dimensions. They have installed a 4 crystal monochromator prior to the micro-focusing mirrors. The monochromator is designed such that it can move out of the way of the input beam, and allows the same micron sized sample to be illuminated with either white or monochromatic radiation. Illumination of the sample with white light allows for elemental mapping and Laue x-ray diffraction, while illumination of the sample with monochromatic light allows for elemental mapping (with reduced background), micro-X-ray absorption spectroscopy and micro-diffraction. The performance of the system will be described as will some of the initial experiments that cover the various disciplines of Earth, Material and Life Sciences.

  13. Biodegradable stents for the treatment of refractory or recurrent benign esophageal stenosis.

    Science.gov (United States)

    Imaz-Iglesia, Iñaki; García-Pérez, Sonia; Nachtnebel, Anna; Martín-Águeda, Belén; Sánchez-Piedra, Carlos; Karadayi, Bilgehan; Demirbaş, Ali Rıza

    2016-06-01

    Esophageal stents are used for the treatment of refractory and recurrent dyphagias. In 2007, esophageal biodegradable stents (EBS) were authorised as an alternative to existing metal and plastic stents in Europe. The advantages claimed for EBS are fewer complications concerning tissue ingrowth, stent migration and stent removal. We performed a systematic review to evaluate the efficacy and safety of EBS compared to fully-covered self-expanding metal stents, self-expanding plastic stents, and esophageal dilation for the treatment of refractory or recurrent benign esophageal stenosis. Three comparative studies (one randomized controlled trial and two cohort studies) were assessed. The studies used different inclusion criteria, had a very small (sample) size and the quality of the evidence was very low. Expert commentary: The current evidence is insufficient to determine the relative efficacy or safety of esophageal biodegradable stents. The results of this systematic review should be updated once new evidence is available.

  14. Pharmacotherapy for Refractory and Super-Refractory Status Epilepticus in Adults.

    Science.gov (United States)

    Holtkamp, Martin

    2018-03-01

    Patients with prolonged seizures that do not respond to intravenous benzodiazepines and a second-line anticonvulsant suffer from refractory status epilepticus and those with seizures that do not respond to continuous intravenous anesthetic anticonvulsants suffer from super-refractory status epilepticus. Both conditions are associated with significant morbidity and mortality. A strict pharmacological treatment regimen is urgently required, but the level of evidence for the available drugs is very low. Refractory complex focal status epilepticus generally does not require anesthetics, but all intravenous non-anesthetizing anticonvulsants may be used. Most descriptive data are available for levetiracetam, phenytoin and valproate. Refractory generalized convulsive status epilepticus is a life-threatening emergency, and long-term clinical consequences are eminent. Administration of intravenous anesthetics is mandatory, and drugs acting at the inhibitory gamma-aminobutyric acid (GABA) A receptor such as midazolam, propofol and thiopental/pentobarbital are recommended without preference for one of those. One in five patients with anesthetic treatment does not respond and has super-refractory status epilepticus. With sustained seizure activity, excitatory N-methyl-d-aspartate (NMDA) receptors are increasingly expressed post-synaptically. Ketamine is an antagonist at this receptor and may prove efficient in some patients at later stages. Neurosteroids such as allopregnanolone increase sensitivity at GABA A receptors; a Phase 1/2 trial demonstrated safety and tolerability, but randomized controlled data failed to demonstrate efficacy. Adjunct ketogenic diet may contribute to termination of difficult-to-treat status epilepticus. Randomized controlled trials are needed to increase evidence for treatment of refractory and super-refractory status epilepticus, but there are multiple obstacles for realization. Hitherto, prospective multicenter registries for pharmacological

  15. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) with Th{sub 7}Fe{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Misse, Patrick R.N.; Mbarki, Mohammed [Institute of Inorganic Chemistry, RWTH Aachen University, 52066 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, 52066 Aachen (Germany)

    2012-08-15

    Powder samples and single crystals of the new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th{sub 7}Fe{sub 3} structure type (space group P6{sub 3}mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. - Graphical abstract: The new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) has been synthesized by arc melting the elements under purified argon atmosphere. Beside the 3d/4d site preference within the whole solid solution, an unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. Highlights: Black-Right-Pointing-Pointer Synthesis of a new boride series fulfilling Vegard Acute-Accent s rule. Black-Right-Pointing-Pointer 3d/4d site preference. Black-Right-Pointing-Pointer Unexpected Ru/Rh site preference. Black-Right-Pointing-Pointer Rh-rich region is Pauli paramagnetic. Black-Right-Pointing-Pointer Ru-rich region is Pauli and temperature-dependent paramagnetic.

  16. Visible light active TiO{sub 2} films prepared by electron beam deposition of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinggang, E-mail: hou226@163.co [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma Jun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liu Andong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Dejun; Huang Meidong; Deng Xiangyun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China)

    2010-03-15

    TiO{sub 2} films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO{sub 2} films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO{sub 2} is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO{sub 2} films by this method is affected by the concentration of impregnating solution.

  17. Characterization, integration and reliability of HfO{sub 2} and LaLuO{sub 3} high-κ/metal gate stacks for CMOS applications

    Energy Technology Data Exchange (ETDEWEB)

    Nichau, Alexander

    2013-07-15

    The continued downscaling of MOSFET dimensions requires an equivalent oxide thickness (EOT) of the gate stack below 1 nm. An EOT below 1.4 nm is hereby enabled by the use of high-κ/metal gate stacks. LaLuO{sub 3} and HfO{sub 2} are investigated as two different high-κ oxides on silicon in conjunction with TiN as the metal electrode. LaLuO{sub 3} and its temperature-dependent silicate formation are characterized by hard X-ray photoemission spectroscopy (HAXPES). The effective attenuation length of LaLuO{sub 3} is determined between 7 and 13 keV to enable future interface and diffusion studies. In a first investigation of LaLuO{sub 3} on germanium, germanate formation is shown. LaLuO{sub 3} is further integrated in a high-temperature MOSFET process flow with varying thermal treatment. The devices feature drive currents up to 70μA/μm at 1μm gate length. Several optimization steps are presented. The effective device mobility is related to silicate formation and thermal budget. At high temperature the silicate formation leads to mobility degradation due to La-rich silicate formation. The integration of LaLuO{sub 3} in high-T processes delicately connects with the optimization of the TiN metal electrode. Hereby, stoichiometric TiN yields the best results in terms of thermal stability with respect to Si-capping and high-κ oxide. Different approaches are presented for a further EOT reduction with LaLuO{sub 3} and HfO{sub 2}. Thereby the thermodynamic and kinetic predictions are employed to estimate the behavior on the nanoscale. Based on thermodynamics, excess oxygen in the gate stack, especially in oxidized metal electrodes, is identified to prevent EOT scaling below 1.2 nm. The equivalent oxide thickness of HfO{sub 2} gate stacks is scalable below 1 nm by the use of thinned interfacial SiO{sub 2}. The prevention of oxygen incorporation into the metal electrode by Si-capping maintains the EOT after high temperature annealing. Redox systems are employed within the

  18. Preparation of SrIrO{sub 3} thin films by using metal-organic aerosol deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Sebastian; Schneider, Melanie; Moshnyaga, Vasily; Gegenwart, Philipp [1. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2013-07-01

    The interplay between spin-orbit coupling and electronic correlations could lead to interesting novel states in iridium oxide materials. We focus on the perovskite phase of SrIrO{sub 3} because Moon et al. [1] showed by using optical spectroscopy and first-principles calculations that the last member of the Ruddlesden-Popper series Sr{sub n+1}Ir{sub n}O{sub 3n+1} (n = ∞) is close to the Mott transition. By using metal-organic aerosol deposition technique we have grown SrIrO{sub 3} thin films on (111)-oriented SrTiO{sub 3} substrates. The cubic symmetry of the SrTiO{sub 3} substrate ensured that the SrIrO{sub 3} thin film grew in the monoclinic perovskite phase. The X-ray diffraction results suggest that SrIrO{sub 3} thin films in perovskite structure were obtained and these show out of plane epitaxy with monoclinic (002){sub m}-orientation. The temperature dependence of the electrical resistivity of these SrIrO{sub 3} thin films were investigated and metallic behavior was observed down to 50 K.

  19. Normal and refractory concretes for LMFBR applications. Volume 1. Review of literature on high-temperature behavior of portland cement and refractory concretes. Final report

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Chern, J.C.; Abrams, M.S.; Gillen, M.P.

    1982-06-01

    The extensive literature on the properties and behavior at elevated temperature of portland cement concrete and various refractory concretes was reviewed to collect in concise form the physical and chemical properties of castable refractory concretes and of conventional portland cement concretes at elevated temperature. This survey, together with an extensive bibliography of source documents, is presented in Volume 1. A comparison was made of these properties, the relative advantages of the various concretes was evaluated for possible liquid metal fast breeder reactor applications, and a selection was made of several materials of interest for such applications. Volume 2 concludes with a summary of additional knowledge needed to support such uses of these materials together with recommendations on research to provide that knowledge

  20. Luminescence properties of Tb{sub 3}Al{sub 5}O{sub 12} garnet and related compounds synthesized by the metal organic decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yuya; Nakamura, Toshihiro, E-mail: tnakamura@gunma-u.ac.jp; Adachi, Sadao, E-mail: adachi@gunma-u.ac.jp

    2017-03-15

    The Tb–Al–O ternay compounds were prepared by the metal organic decompostion (MOD) method from mixted solutions of Al{sub 2}O{sub 3} and Tb{sub 4}O{sub 7} and subsequent calcination at T{sub c}=1200 °C in air. The structural and optical properties of the synthesized compounds were examined using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, PL decay kinetics, and diffuse reflectance spetrosopy. The stoichiometric compounds of terbium aluminium garnet Tb{sub 3}Al{sub 5}O{sub 12} (TAG) and peroviskite-type TbAlO{sub 3} were synthesized at molar ratios of x=0.375 and 0.5 [x ≡Tb{sub 4}O{sub 7}/(Tb{sub 4}O{sub 7}+2Al{sub 2}O{sub 3})], together with the end-point binary materials of rhombohedral Al{sub 2}O{sub 3} (α-Al{sub 2}O{sub 3}; x=0) and cubic Tb{sub 4}O{sub 7} (x=1.0). One can also expect synthesis of stoichiometric compounds Tb{sub 4}Al{sub 2}O{sub 9} and Tb{sub 3}AlO{sub 12} at x=0.667 and 0.75, respectively; however, these compounds were found to be very difficult to synthesize by the MOD method or, probably by other methods. Temperature dependence of the PL spectra for TAG was measured from T=20–440 K in 10-K step and analyzed using a newly developed theoretical model. Raman scattering measurements were also performed on the Tb–Al–O material system with compositions widely varying from x=0 (α-Al{sub 2}O{sub 3}) to 1.0 (Tb{sub 4}O{sub 7}).

  1. Ab initio study of domain structures in half-metallic CoTi{sub 1−x}Mn{sub x}Sb and thermoelectric CoTi{sub 1−x}Sc{sub x}Sb half-Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Mena, Joaquin, E-mail: joaquin.miranda@uni-bayreuth.de; Schoberth, Heiko G.; Gruhn, Thomas; Emmerich, Heike

    2015-11-25

    We present first-principles calculations of the electronic density of state, the structures in CoTi{sub 1−x}Sc{sub x}Sb and CoTi{sub 1−x}Mn{sub x}Sb. In addition for the latter we calculate magnetic moments. Systems with different stoichiometries are compared and low energy configurations are determined using a cluster expansion procedure. For all studied manganese concentrations, x > 0, CoTi{sub 1−x}Mn{sub x}Sb is half-metallic and magnetic, which make it interesting for spintronic applications. In contrast, with increasing scandium concentration, the band gap of CoTi{sub x}Sc{sub 1-x}Sb closes continuously, while the material changes from a semiconductor to a non-magnetic metal. For low Sc doping this material is well suited for thermoelectric applications. The electronic states close to the Fermi energy are strongly influenced by the distribution of Ti and Mn (or Ti and Sc). This has important consequences for the usage of materials in application fields like spintronics and thermoelectrics. In general, a phase separation of the alloys into a Ti rich and a Ti poor phase is energetically favored. Using mean field theory we create a phase diagram that shows the coexistence and the spinodal region. A spontaneous demixing can be used for the creation of nanodomains within the material. In the case of CoTi{sub 1−x}Sc{sub x}Sb, the resulting reduced lattice thermal conductivity is beneficial for thermoelectric applications, while in CoTi{sub 1−x}Mn{sub x}Sb the nanodomains are detrimental for polarization.

  2. Non-intubated recovery from refractory cardiogenic shock on percutaneous VA-extracorporeal membrane oxygenation

    NARCIS (Netherlands)

    van Houte, J; Donker, D W; Wagenaar, L J; Slootweg, A P; Kirkels, J H; van Dijk, D

    We report on the use of percutaneous femoral veno-arterial extracorporeal membrane oxygenation (VA-ECMO) in a fully awake, non-intubated and spontaneously breathing patient suffering from acute, severe and refractory cardiogenic shock due to a (sub)acute anterior myocardial infarction. Intensified

  3. Synthesis and characterization particles of Ba{sub 0,50}Sr{sub 0,50}Co{sub 0,80}Fe{sub 0,20}O{sub 3} obtained by the citrate-EDTA technique; Sintese e caracterizacao de particulados de Ba{sub 0,50}Sr{sub 0,50}Co{sub 0,80}Fe{sub 0,20}O{sub 3} obtidos pela tecnica dos citratos-EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Bonturim, E; Vargas, R A; Andreoli, M; Seo, E S.M., [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2010-07-01

    The Ba{sub (1-x)}Sr{sub (x)}Co{sub (1-y)}Fe{sub (y)}O{sub (3)} (BSCF) has been studied as a cathode material for Intermediate Temperature Solid Oxide Fuel Cell, due to its better ion and electron conduction. This work aims to study the synthesis of the compound obtained from the citrate-EDTA technique. Thermogravimetric analysis indicated the formation of the compound above 800 deg C. The materials calcined at temperatures of 700, 800 and 900 deg C for 5 h showed cubic pseudo-perovskite structure, according to the literature. By analysis of X-ray fluorescence were obtained powders with nominal chemical composition in the temperature range studied. The micrographs obtained by SEM and particle size distribution analysis showed the formation of particle with diameters below 1 micron. (author)

  4. Recovery of UO[sub 2]/PuO[sub 2] in IFR electrorefining process

    Science.gov (United States)

    Tomczuk, Z.; Miller, W.E.

    1994-10-18

    A process is described for converting PuO[sub 2] and UO[sub 2] present in an electrorefiner to the chlorides, by contacting the PuO[sub 2] and UO[sub 2] with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO[sub 2] and PuO[sub 2] to metals while converting Li metal to Li[sub 2]O. Li[sub 2]O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O[sub 2] out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li[sub 2]O to disassociate to O[sub 2] and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl[sub 2].

  5. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    Energy Technology Data Exchange (ETDEWEB)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2015-10-20

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  6. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Girish [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India); Department of Chemistry, School of Engineering and Technology, CMR University, Bengaluru, 562149, Karnataka (India); Rao, K.S.R. Koteswara, E-mail: raoksrk@gmail.com [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India)

    2017-01-01

    Graphical abstract: Semiconductor metal oxides: Modifications, charge carrier dynamics and photocatalysis. - Highlights: • TiO{sub 2}, WO{sub 3} and ZnO based photocatalysis is reviewed. • Advances to improve the efficiency are emphasized. • Differences and similarities in the modifications are highlighted. • Charge carrier dynamics for each strategy are discussed. - Abstract: Metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO{sub 2}, WO{sub 3} & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO{sub 2} and WO{sub 3} in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal

  7. Development of a Refractory High Entropy Superalloy (Postprint)

    Science.gov (United States)

    2016-03-17

    hardened with HfC precipitates [2], Co-Re- or Co-Al-W-based alloys [3] or two-phase ( FCC + L12) refractory superalloys based on platinum group metals...Ni-based superalloys consisting of cuboids with the ordered L12 structure embedded in an FCC solid-solution matrix. Based on this microstructural...and 5). A comparison of the average atomic radii with the measured lattice parameters allows us to conclude that the disordered BCC phase forming

  8. Vertical Bridgman growth and characterization of Cd<sub>0.95-xsub>MnxZn>0.05sub>Te (x=0.20, 0.30) single-crystal ingots

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shcherbak, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fochuk, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Filonenko, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-01

    Solid-liquid phase transitions in Cd<sub>0.95-xsub>MnxZn>0.05sub>Te alloys with x = 0.20 and 0.30 were investigated by differential thermal analysis (DTA). The heating/cooling rates were 5 and 10 K/min with a melt dwell time of 10, 30 and 60 minutes. Cd<sub>0.95-xsub>MnxZn>0.05sub>Te (x=0.20, 0.30) single-crystal ingots were grown by the vertical Bridgman method guided using the DTA results. Te inclusions (1-20 microns), typical for CdTe and Cd(Zn)Te crystals, were observed in the ingots by infrared transmission microscopy. The measured X-ray diffraction patterns showed that all compositions are found to be in a single phase. Using current-voltage (I-V) measurements, the resistivity of the samples from each ingot was estimated to be about 105 Ohm·cm. The optical transmission analysis demonstrated that the band-gap width of the investigated ingots increased from 1.77 to 1.88 eV with the increase of the MnTe content from 20 to 30 mol. %.

  9. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  10. Autoradiographic study of corrosion of refractories

    International Nuclear Information System (INIS)

    Lisenenkova, S.B.; Kucheryavyi, M.N.; Bursteva, T.A.

    1988-01-01

    A comparative study was made of the character of the interaction between a container-glass melt consisting of sodium calcium silicate and refractories in various furnace sections using an autoradiographic method. Static tests were conducted on specimens of the following refractories: chrome-aluminum-zircon, Bakor 41, corundum, a high alumina refractory, and a refractory based on tin dioxide. The specimens were activated by calcium 45. Autoradiography and photomicrography indicated that an intrinsic feature of all refractories was that calcium from the melt penetrated the refractories along the weak link; for fused-cast refractories, the glass phase; and for sintered refractories, through the binder and cracks

  11. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  12. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO{sub 2} and NO

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiang, E-mail: xgao1@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Liu Shaojun; Zhang Yang; Luo Zhongyang; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China)

    2011-04-15

    Research highlights: {yields} Cu and Fe were partly reduced by carbon during preparation. {yields} Metal-involved SO{sub 2} removal pathways were catalytic oxidation, reaction and adsorption. {yields} Good performances of SO{sub 2} and NO removal depended on the metal redox pairs. - Abstract: Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N{sub 2} adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO{sub 2} and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO{sub 2} removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH{sub 3}, which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO{sub 2} and NO removal, just like V and Cu.

  13. Variation in band gap of lanthanum chromate by transition metals doping LaCr{sub 0.9}A{sub 0.1}O{sub 3} (A:Fe/Co/Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Naseem, Swaleha, E-mail: wasiamu@gmail.com; Khan, Wasi, E-mail: wasiamu@gmail.com; Saad, A. A., E-mail: wasiamu@gmail.com; Shoeb, M., E-mail: wasiamu@gmail.com; Ahmed, Hilal, E-mail: wasiamu@gmail.com; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Technology, Aligarh Muslim University, Aligarh-202002 (India); Husain, Shahid [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2014-04-24

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO{sub 3} at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles.

  14. Diode laser trabeculoplasty in open angle glaucoma: 50 micron vs. 100 micron spot size.

    Science.gov (United States)

    Veljko, Andreić; Miljković, Aleksandar; Babić, Nikola

    2011-01-01

    The study was aimed at evaluating the efficacy of diode laser trabeculoplsaty in lowering intraocular pressure in patients with both primary open-angle glaucoma and exfoliation glaucoma by using different size of laser spot. This six-month, unmasked, controlled, prospective study included sixty-two patients with the same number of eyes, who were divided into two groups. Trabeculoplasty was performed with 50 micron and 100 micron laser spot size in the group I and group II, respectively. Other laser parameters were the same for both groups: the wave length of 532 nm, 0.1 second single emission with the power of 600-1200 mW was applied on the 180 degrees of the trabeculum. The mean intraocular pressure decrease in the 50 micron group (group 1) on day 7 was 24% from the baseline and after six-month follow-up period the intraocular pressure decrease was 29.8% (p < 0.001). In the 100 micron group (group II), the mean intraocular pressure decrease on day 7 was 26.5% and after six months it was 39% (p < 0.001).

  15. Thermodynamic properties of heavy ion heated refractory metals; Thermodynamische Eigenschaften von schwerionengeheizten hochschmelzenden Metallen

    Energy Technology Data Exchange (ETDEWEB)

    Hug, Alexander

    2011-05-04

    Knowledge of basic physical properties of matter in high-energy-density (HED) states such as the equation-of-state (EOS) is of fundamental importance for various branches of basic and applied physics. However, such matter under extreme conditions of temperature and pressure - also called ''warm dense matter'' (WDM) - can only be generated in dynamic experiments employing the most powerful drivers. At the high temperature experimental area HHT of the GSI Helmholtzzentrum fuer Schwerionenforschung (Darmstadt, Germany), intense beams of energetic heavy ions are used for this purpose. The aim of this work is to study thermophysical properties of refractory metals in hot solid and liquid states by precise temperature measurements. In order to identify the melting plateau and to limit the maximum target temperature to the region of interest, relatively long (one microsecond) bunches of uranium and xenon ions have been used to heat initially solid samples. The intense ion beams were focused on a millimetre spot at the target in order to achieve uniform conditions. The temperature on the target surface was determined by analysing thermal radiation emitted from a 0.03 mm{sup 2} area at five different wavelengths. In order to obtain the physical temperature, one has to measure not only the thermal radiation but also the emissivity, ε(T,λ) of the target surface which is not known ab initio. For this purpose, a set-up for direct target reflection measurement was designed and embedded into the fast multichannel pyrometer system. The reflection signal provides the necessary information about modifications of the target surface properties during the interaction with the ion beam. Beside the pyrometric and reflection measurement set-ups, various hardware and software components of the data acquisition system for the heavy-ion beam driven experiments were substantially enhanced. The emissivity was also obtained by identifying the melting plateau and using the

  16. Improved conductivity of infinite-layer LaNiO{sub 2} thin films by metal organic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2013-12-15

    Highlights: •LaNiO{sub 2} films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO{sub 2}. •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO{sub 2} thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO{sub 2} is isostructural to SrCuO{sub 2}, the parent compound of high-T{sub c} Sr{sub 0.9}La{sub 0.1}CuO{sub 2} with T{sub c} = 44 K, and has 3d{sup 9} configuration, which is very rare in oxides but common to high-T{sub c} copper oxides. The bulk synthesis of LaNiO{sub 2} is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO{sub 2} is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO{sub 2}. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  17. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    Science.gov (United States)

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  18. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  19. Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts promoted with noble metals for the hydrogen production by ethanol vapor reforming; Catalisadores de Ni/CeO{sub 2}-Al{sub 2}O{sub 3} promovidos com metais nobres para a producao de hidrogenio por reforma a vapor de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene P.R.; Ticianelli, Edson Antonio; Assaf, Elisabete Moreira [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: eassaf@iqsc.usp.br

    2008-07-01

    The catalytic activity of Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts modified with noble metals (Ru, Ir, Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by energy dispersive spectroscopy, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy and H{sub 2} temperature-programmed reduction-X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was avoided due to the presence of a CeO{sub 2} dispersed on the alumina. The promoting effect of noble metals included a decrease of the reduction temperatures of NiO species interacting with the support due to the hydrogen spillover effect, leading to an increase of the reducibilities of the promoted catalysts The better catalytic performance for the ethanol steam reforming was obtained for the NiPd/CeAl catalyst, which presented an effluent gaseous mixture with the highest H{sub 2} yield. (author)

  20. Using compound SiO{sub 2}(62-68)-MgO+CaO(29-39) in the protections of ceramics of steel company to replace the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} compound; Utilizacao do composto SiO{sub 2}(62-68)-MgO+CaO(29-39) nas protecoes ceramicas de empresa siderurgica em substituicao ao composto CaO-Al{sub 2}O{sub 3}-SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Anderson Carvalho; Silva, Paula Cipriano da; Vernilli Junior, Fernando; Santos, Claudinei dos; Magnago, Roberto de Oliveira [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Lima, Leonardo Moreira de [Universidade de Sao Paulo (USP), Lorena, SP (Brazil)

    2014-12-15

    This article describes the use of protective ceramic composed of SiO{sub 2}(62-68)-MgO + CaO(29-39) in the frontal region of the machines that inject mass refractory to stop racing pig iron and slag liquid in blast furnaces. The new protection model (prototype) showed a annual saving of approximately R$ 32,000.00 compared to the compound previously used CaO-Al{sub 2}O{sub 3}-SiO{sub 2}. Also had a lower toxicity, as it has in its morphology least amount of fiber. These fibers when inhaled cause damage to internal tissues of the lungs is harmful to health. There maintenance rates of production, since in all samples tested the new ceramic protection, the front part was preserved allowing the refractory mass injection quantity and pressure required for reconstitution of the length of the bore which removes iron and slag inside the high oven, allowing for a larger internal volume to produce more. The protection models were produced by Morganite-Brazil. The morphology and crystallographic characterization were characterized by Scanning Electron Microscopy and X-ray diffraction, respectively. (author)

  1. Influence of temperature and plasma composition on deuterium retention in refractory metals

    International Nuclear Information System (INIS)

    Alves, E.; Alves, L.C.; Barradas, N.P.; Mateus, R.; Carvalho, P.A.; Wright, G.M.

    2010-01-01

    Refractory materials are being considered potential candidates to build the first wall of the fusion reactor chamber. This work reports on the results of the study of tungsten and molybdenum metals exposed to high flux densities (∼10 24 D/m 2 s) and low temperature (T e ∼ 3 eV) deuterium plasmas in Pilot-PSI irradiation facility. The hydrogenic retention in poly-crystalline W and Mo targets was studied with 3 He nuclear reaction analyses (NRA). The NRA results clearly show a two-dimensional radial distribution of the deuterium with a minimum at the center and a maximum close to the edge. These distribution correlates well with the thermal profile of the sample surface, where a maximum of ∼1600 K was measured at the center decreasing to ∼1000 K in the edges. A maximum deuterium fluence retention of 5 x 10 15 D/cm 2 was measured. The values of the retained fractions ranging from 10 -5 to 10 -6 D retained /D incident were measured with thermal desorption spectroscopy (TDS) and compares well with IBA results. Moreover, the presence of C in the plasma and its co-deposition increases the D retention in the region where a C film is formed. Both NRA and TDS results show no clear dependence of retention on incident fluence suggesting the absence of plasma related traps in W under these conditions.

  2. Saturated vapor pressure over molten mixtures of GaCl{sub 3} and alkali metal chlorides; Davlenie nasyshchennykh parov rasplavlennykh smesej CaCl{sub 3} s khloridami shchelochnykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smolenskij, V V; Moskalenko, N I [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Elaterinburg (Russian Federation)

    2004-07-01

    Volatilities of GaCl{sub 3} and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl{sub 3} in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl{sub 3}; their variation permits altering parameters of GaCl{sub 3} distillation from the salt melt in a wide range.

  3. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  4. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO{sub 2}-based surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gole, James L. [Schools of Physics and Mechanical Engineering, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)], E-mail: jim.gole@physics.gatech.edu; Prokes, S.M. [Code 6876, NRL, Washington, DC 20375 (United States)], E-mail: prokes@estd.nrl.navy.mil; White, Mark G. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Box 959, MS 39762 (United States)], E-mail: white@che.msstate.edu

    2008-11-30

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO{sub 2} and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO{sub 2} nanocolloid lattice.

  5. Structural and magnetic properties and superconductivity in Ba(Fe<sub>1-xsub>TMx)>2sub>As>2sub>

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Alexander [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe<sub>2sub>As>2sub>. We grew four series of Ba(Fe<sub>1-xsub>TM>2sub>)>2sub>As>2sub> (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe<sub>1-xsub>Crx)>2sub>As>2sub> and Ba(Fe<sub>1-xsub>Cox)>2sub>As>2sub> to heat treatment to explore what changes might be induced.

  6. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M. [Imec, Leuven 3001 (Belgium)

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  7. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  8. Unique opportunities in powder injection molding of refractory and hard materials

    International Nuclear Information System (INIS)

    German, R.M.

    2001-01-01

    Powder injection molding (PIM) is a relatively new manufacturing process for the creation of complicated net-shapes outside the range usually possible via powder metallurgy technologies. This new process is now in production at more than 550 sites around the world. Although a small industry, PIM will soon pass $1 billion dollars (USA) in annual sales. This presentation overviews the PIM process, some of the new developments and some of the successes that have occurred with both refractory metals and hard metals. Example applications are seen in medical and dental devices, industrial components, wristwatches, jet engines, firearms, automotive components, and even hand tools. To help establish the novel growth opportunities, PIM is compared to other fabrication routes to better understand the design features arising with this new approach, providing a compelling case for substantial opportunities in the refractory and hard materials. Illustrations are provided of several components in production. New opportunities abound for the technology, since it eliminates the shape complexity barrier associated with die compaction and the cost of machining associated with complicated or dimensionally precise components. Further, a relative cost advantage exists for refractory and hard materials because PIM can use the same powders at the same prices as employed in alternative processes. Future successes will occur by early identification of candidate materials and designs. Early examples include tungsten heavy alloy components now reaching production rates of six million per month. (author)

  9. Life prolongation of hot metal ladle by improved shape and material of the bricks; Renga keijo to zaishitsu kaizen ni yoru yosenka jumyo no encho

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Toru.; Mori, Hajime.; Fukushima, Hironori.; Iiyama, Makoto. [NKK Corp., Tokyo (Japan)

    1999-03-01

    Keihin Works, NKK, intended to extend life of a hot metal ladle and reduction of refractory cost by improving shapes and materials of bricks. The refractory composition of the ladle is a 4-layer structure constituted of a permanent lining comprising 3 layers of agalmatolite bricks and a 180 mm thick work lining. High alumina bricks are used for a free board part and Al{sub 2}O{sub 3}-SiC-C bricks for the slag line part to the ground part. Elevation of the pore rate was observed from the working face to the back face in a brick after use. The former is considered caused by densification of structure and the latter by embrittlement by oxidation. Cracks parallel to the working face are considered caused by structural spalling by the difference of the physical properties. Since cracks vertical to the working face are observed, the finite element method (FEM) thermal stress analysis is applied to inspect the possibility of cracks by thermal stress. A brick whose degree of sintering was suppressed was tri allyl manufactured. It brought wide extension of life and reduction of refractory cost. (NEDO)

  10. Magnetic properties of Mg{sub 12}O{sub 12} nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Javan, Masoud Bezi, E-mail: javan.masood@gmail.com

    2015-07-01

    Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved to some extent due to the interaction between the TM and Mg{sub 12}O{sub 12} nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg{sub 11}(TM)O{sub 12} complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping. - Highlights: • Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals was studied. • The most stable structures were determined near the minimum of the binding energy. • The encapsulated Ni atom has a larger binding energy than the other TM atoms. • Magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved.

  11. Covered metal stent or multiple plastic stents for refractory pancreatic ductal strictures in chronic pancreatitis: a systematic review.

    Science.gov (United States)

    Shen, Yonghua; Liu, Mingdong; Chen, Min; Li, Yunhong; Lu, Ying; Zou, Xiaoping

    2014-01-01

    Refractory chronic pancreatitis has been proposed as a challenge for endoscopists following routine single plastic stenting. However, data on the efficacy and safety of further endoscopic stenting are still controversial. The current systematic review aimed to assess the efficacy and safety of placement of fully covered self-expandable metal stent (FCSEMS) and multiple plastic stents. Databases including MEDLINE, EMBASE, the Cochrane Library, CBM, CNKI, VIP, and WANFANG Database were used to search relevant trials. Published studies were assessed by using well-defined inclusion and exclusion criteria. The process was independently performed by two investigators. A total of 5 studies provided data of 80 patients. Forest plots and publication bias were not carried out because few studies were relevant and screened studies were all case series. The technical success rate was 100% both in placement of FCSEMS and multiple plastic stents. The functional success rate after placement of FCSEMS was 100%, followed by multiple plastic stents (94.7%). Complications occurred 26.2% after FCSEMS placement, which was not described in detail in multiple plastic stents. The stent migration rate was 8.2% for FCSEMS and 10.5% for multiple plastic stents. Reintervention rate was 9.8% for FCSEMS and 15.8% for multiple plastic stents. Pain improvement rate was 85.2% for FCSEMS and 84.2% for multiple plastic stents. FCSEMS appeared to be no significant difference with multiple plastic stents in treatment of refractory chronic pancreatitis. We need to develop more investigations. Copyright © 2014 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. N-type In/sub 2/S/sub 3/ thin films prepared by gas chalcogenization of metallic electroplated indium: Photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J

    1988-08-01

    Chalcogenization of electroplated metallic indium films onto Ti substrates has been carried out in a flowing stream of H/sub 2/S at about 350/sup 0/C for 1 h with a pretreatment of 3 h at 130/sup 0/C. X-ray diffraction patterns showed that ..beta..-In/sub 2/S/sub 3/ thin films were grown with a good crystalline quality. Photoelectrochemical characterization of the electrodes was accomplished in aqueous polysulphide solutions, and a energy gap of 2.00 eV was obtained. The flatband potential, V/sub fb/, in the same polysulphide couple was -1.0 V versus SCE. Behaviour of the thin film photocurrent with time was checked, and a photocorrosion reaction proposed.

  13. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jahangeer [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States); Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States)

    2016-10-15

    Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.

  14. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  15. Length scale-dependent structural relaxation in Zr{sub 57.5}Ti{sub 7.5}Nb{sub 5}Cu{sub 12.5}Ni{sub 10}Al{sub 7.5} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Kaban, I. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Prashanth, K.G. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Vaughan, G.B.M. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2015-08-05

    Highlights: • Structural relaxation of metallic glasses studied by high-energy X-ray diffraction. • Free volume is not uniformly distributed across the atoms. • Annihilation of free volume (i.e. shrinking) during heating is observed in the MRO. • Increase of free volume (i.e. expansion) during heating occurs in the SRO. • First diffraction maximum in reciprocal space describes structural changes in MRO. - Abstract: Structural relaxation in ball-milled Zr{sub 57.5}Ti{sub 7.5}Nb{sub 5}Cu{sub 12.5}Ni{sub 10}Al{sub 7.5} glassy powders has been investigated by in-situ high-energy X-ray diffraction. The studies in reciprocal and real space reveal a contrasting behavior between medium- (MRO) and short-range order (SRO). The free volume is not uniformly distributed across the atoms: annihilation of free volume (i.e. shrinking) during heating is observed in the MRO, whereas an increase of free volume (i.e. expansion) occurs in the SRO, implying a denser SRO in the as-milled powder compared to the structurally relaxed material. This behavior is in agreement with the concepts of free volume and anti-free volume and can be attributed to the change of the coordination number in the first nearest-neighbor shell. Finally, the results demonstrate that the first diffuse diffraction maximum in reciprocal space is a reliable indicator to evaluate the structural changes occurring in the MRO.

  16. NMR Studies of the Vanadium Spin Dynamics and Spin Structure in LiV<sub>2sub>O>4sub>, CaV<sub>2sub>O>4sub>, and (Li<sub>xV>1-xsub>)>3sub>BO>5sub> (x ≈ 0.33, 0.40)

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Xiaopeng [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Strong electron correlation is believed to be an essential and unifying factor in diverse properties of condensed matter systems. Ground states that can arise due to electron correlation effects include Mott insulators, heavy fermion, ferromagnetism and antiferromagnetism, spin glasses, and high-temperature superconductivity. The electronic systems in transition metal oxide compounds are often highly correlated. In this thesis, the author presents experimental studies on three strongly correlated vanadium oxide compounds: LiV<sub>2sub>O>4sub>, (Li<sub>xV>1-xsub>)>3sub>BO>5sub>, and CaV<sub>2sub>O>4sub>, which have completely different ground states.

  17. Religiosity is associated with hippocampal but not amygdala volumes in patients with refractory epilepsy

    OpenAIRE

    Wuerfel, J; Krishnamoorthy, E; Brown, R; Lemieux, L; Koepp, M; v Tebartz,; Trimble, M

    2004-01-01

    Method: Magnetic resonance images were obtained from 33 patients with refractory epilepsy and mesial temporal structure volumes assessed. Amygdala and hippocampal volumes were then compared in high and low scorers on the religiosity, writing, and sexuality sub-scales of the Neurobehavioural Inventory.

  18. In vitro metal ion release and biocompatibility of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with/without gelatin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.Y., E-mail: chan.wing.yue@sgh.com.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital (Singapore); Chian, K.S.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore)

    2013-12-01

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO{sub 2}. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO{sub 2}, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO{sub 2} system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO{sub 2}. • L929 cell proliferation correlates with Mg{sup 2+} level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction.

  19. Compatibility of refractory alloys with space reactor system coolants and working fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.; DiStefano, J.R.; Hoffman, E.E.

    1984-01-01

    The bulk of this report deals with compatibility studies in liquid lithium and boiling potassium. Substantial information is also presented concerning the reactivity of niobium and tantalum alloys with residual gases in high and ultrahigh vacuum atmospheres. The remaining information, which is much less extensive, covers the compatibility behavior of molybdenum and tungsten alloys in alkali metals and a qualitative assessment of the use of refractory metals for containing helium in a closed Brayton cycle. 22 references, 29 figures, 14 tables

  20. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  1. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  2. A structural, magnetic, and Mössbauer study of the Dy{sub 2}Fe{sub 17−x}Nb{sub x} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rai, B.K. [Department of Physics, The University of Memphis, Memphis, TN 38152 (United States); Syed Ali, K.S. [Department of Science, Estill High school, Estill, SC 29918 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, The University of Memphis, Memphis, TN 38152 (United States); Khanra, S.; Ghosh, K. [Department of Physics, Astronomy, and Materials Science, The Missouri State University, Springfield, MO 65897 (United States)

    2014-03-15

    The single-phase intermetallic compounds of refractory metal Nb doped Dy{sub 2}Fe{sub 17−x}Nb{sub x} were prepared by arc melting. The substitution of Nb in the Dy{sub 2}Fe{sub 17} compound was found to have an important effect on their structure and magnetic properties. The Rietveld analysis of X-ray diffraction data shows that Dy{sub 2}Fe{sub 17−x}Nb{sub x} (x=0–1.5) solid solutions crystallize with the Th{sub 2}Ni{sub 17} structure. The lattice parameters obtained from Rietveld refinement show that the unit cell volume of Dy{sub 2}Fe{sub 17−x}Nb{sub x} increases linearly with increasing Nb concentration up to x=1. The solubility of Nb was found to be limited to x∼1. The substitutional Nb atoms occupied all four sites in the order 12j>12k>6g>4f of a Th{sub 2}Ni{sub 17} structure. The Curie temperature (T{sub c}) was found to be Nb content dependent. The T{sub c} first increased and then decreased with increasing Nb content x, attaining a maximum value of 460 K at around x=1, which is 78 K higher than that of Dy{sub 2}Fe{sub 17}. The saturation magnetization decreased linearly with increasing Nb content from 69 emu/g for x=0 to 38 emu/g for x=1.5. {sup 57}Fe Mössbauer spectra show the presence of DyFe{sub 3} and NbFe{sub 2} phases at a higher Nb content x≥1. The hyperfine field values of 4f site first increased up to x=1 and then decreased at higher Nb content. - Highlights: • Nb is used to suppress the free alpha iron in 2:17 intermediates. At higher concentration x>1, Nb forms paramagnetic phase with alpha iron, NbFe{sub 2}. • The low level of Nb doping (x<1) in Dy{sub 2}Fe{sub 17−x}Nb{sub x} brings in ∼21% increase in the Curie temperature. • In Al, Si or Ga doped 2:17 intermatallics, similar improvement is observed in T{sub c} at a much higher doping concentration at the cost of reduction in net magnetization. • The maximum Curie temperature, 460 K, is observed for x∼1 Nb doping.

  3. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    (= 20 AU) is easier for smaller grains (=1 micron) than for larger grains (approx. 20 microns like Stardust terminal particles). The presence of predominantly micron-sized and smaller grains suggests comet ISON may have formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limitedlifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C2, CN, and CH were more abundant than their parent molecules (C2H2, C2H6, measured in the near- IR). Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins.

  4. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  5. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  6. Metallic nature of Sn{sub 1-} {sub x} Sb {sub x} O{sub 2{+-}} {sub {delta}} (x=0.0, 0.10 and 0.20) mixed oxides: Probed by {sup 119}Sn MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, O.D. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)]. E-mail: ddjaya@apsara.barc.ernet.in; Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kulshreshtha, S.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2007-04-15

    Antimony doped SnO{sub 2} samples were prepared by co-precipitation method and characterized by X-ray diffraction (XRD), {sup 119}Sn magic angle spinning nuclear magnetic resonance (MAS NMR) and variable temperature electrical conductivity measurements. Based on {sup 119}Sn MAS NMR measurements on these samples, it was established that only above 400 deg. C, the structural units of antimony and tin interacts, resulting in the metallic nature. Metallic behavior of the high-temperature heated samples was further confirmed by the variable temperature electrical conductivity measurements.

  7. Selective Decontamination Effect of Metal Ions in Soil Using Supercritical CO{sub 2} and TBP Complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-10-15

    Decontamination of soil pollution is difficult because the type of contamination largely depends on the characteristics of the pollutant and the area. Also, existing soil decontamination methods generate large quantities of secondary waste and additional process costs. For this reason, new decontamination methods are always under active investigation. A method involving the use of supercritical carbon dioxide with excellent permeability in place of chemical solvents is currently being studied. Unlike other heavy metals in fission products, uranium is used as fuel, and must be handled carefully. Therefore, in this paper, we studied a supercritical carbon dioxide method for decontaminating heavy metal ions in soil using tri-n-butyl phosphate(TBP), which is well known as a ligand for the extraction of metal ions of actinium. We investigated the decontamination effect of heavy metal ions in the soil using TBP-HNO{sub 3} Complex and supercritical carbon dioxide. The study results showed that when heavy metals in soil are extracted using supercritical carbon dioxide, the extraction efficiency is different according to the type of pollutant metal ions in the soil. When TBP-HNO{sub 3} Complex is used with an extractant, uranium extraction is very effective, but lithium, strontium, and cesium extraction is not effective. Therefore, in the case of a mixture of uranium and other metals such as lithium, strontium, cesium, and so on in soil contaminated by fission product leaks from nuclear power plants, we can selectively decontaminate uranium with supercritical carbon dioxide and TBP-HNO{sub 3} Complex.

  8. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.; Jayaswal, Gaurav; Gahaffar, F.A.; Shamim, Atif

    2017-01-01

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  9. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  10. Control of the refractory lining wear in blast furnaces, using a radiotracer technique

    International Nuclear Information System (INIS)

    Carvalho, G.; Vieira, J.M.; Daltro, T.F.L.; Banados Perez, H.E.

    1984-01-01

    Small metal 60 Co sources, double encapsulated with quartz and alumina, were inserted (at different depths and levels) into the refractory bricks of the blast furnace walls, and the initial radioactivity emerging at each location recorded as a reference data for future measurements. The displacement of the charge inside the blast furnace originates a progressive wear of the refractory lining and after certain time, the inner sources will begin to be scaped off from the wall and then dissolved in the molten iron. By periodically monitoring the radiation level at the points where the sources were placed, it is possible to know if some of them was removed by the wearing process. This, in turn, will indicate the thickness of refractory material lost in each location making of the blast furnace, as a function of time. The practical application of this method in the Brazilian steel industry is reported. (Author) [pt

  11. Polishing Metal Mirrors to 0,025 Micron Surface Finish

    DEFF Research Database (Denmark)

    Pedersen, P. E.

    1978-01-01

    A research program undertaken by the Danish Atomic Energy Commission required the fabrication of metal mirrors measuring 1 m long by 53 mm wide, which had to be finished to extremely tight tolerances on thickness, plane-parallelism and surface characteristics. Progressively finer diamond compound...... are employed to achieve a high gloss finish on the metal mirrors, which are used in polarized neutron experiments. This article describes the fabrication techniques developed at the Commission's Ris phi Central Workshop....

  12. Corrosão de refratários utilizados na siderurgia. Parte III: caracterização de refratários comerciais Corrosion of refractories used in steel metallurgy. Part III: characterization of commercial refractories

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2013-03-01

    Full Text Available Foi realizada uma revisão dos principais aspectos encontrados na literatura especializada sobre corrosão de refratários, avaliando-se a viabilidade de determinados ensaios e relacionando-se com resultados experimentais. As propriedades físicas e microestruturais de refratários comerciais foram estudadas, considerando-se as diferenças entre elas e implicações com a qualidade e provável vida útil do refratário. Assim, investigou-se os diversos tipos de refratários utilizados como revestimento em uma panela de aço, como de sobre-linha (freeboard, linha de escória e linha de metal. Os refratários magnésia-carbono e doloma-carbono foram avaliados, destacando-se também as diferenças entre eles. Os materiais analisados mostraram características favoráveis a uma elevada resistência ao processo de corrosão, apresentando uma série de propriedades a serem escolhidas de acordo com a prática industrial.The main aspects found in the literature about refractories corrosion were reviewed, evaluating the feasibility of certain tests and relating them with experimental results. The physical properties and microstructure of commercial refractories were analyzed, considering the differences between them and the quality implications and probable life of the refractory. Thus, this study comprised various types of refractories used as lining on steel ladle, as on freeboard, slag line and metal line. Magnesia-carbon and doloma-carbon refractories were analyzed, highlighting the differences between them. The examined materials showed characteristics favoring high resistance to corrosion process, presenting a series of properties to be selected in accordance with industry practice.

  13. Density functional theory based study of chlorine doped WS{sub 2}-metal interface

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, Anuja; Mahapatra, Santanu, E-mail: santanu@dese.iisc.ernet.in [NanoScale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012 (India)

    2016-03-07

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS{sub 2} with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS{sub 2} supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS{sub 2}.

  14. Electrochemical formation of AlN in molten LiCl-KCl-Li{sub 3}N systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Takuya [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)]. E-mail: goto@energy.kyoto-u.ac.jp; Iwaki, Takayuki [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); Ito, Yasuhiko [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2005-01-30

    Electrochemical formation of aluminum nitride was investigated in molten LiCl-KCl-Li{sub 3}N systems at 723 K. When Al was anodically polarized at 1.0 V (versus Li{sup +}/Li), oxidation of nitride ions proceeded to form adsorbed nitrogen atoms, which reacted with the surface to form AlN film. The obtained nitrided film had a thickness of sub-micron order. The obtained nitrided layer consisted of two regions; the outer layer involving AlN and aluminum oxynitride and the inner layer involving metallic Al and AlN. When Al electrode was anodically polarized at 2.0 V, anodic dissolution of Al electrode occurred to give aluminum ions, which reacted with nitride ions in the melt to produce AlN particles (1-5 {mu}m of diameter) of wurtzite structure.

  15. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  16. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  17. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  18. Experimental constraints on heating and cooling rates of refractory inclusions in the early solar system

    International Nuclear Information System (INIS)

    Boynton, W.V.

    1987-01-01

    The refractory inclusions in carbonaceous chondrites were the subject of considerable interest since their discovery. These inclusions contain minerals that are predicted to be some of the earliest condensates from the solar nebula, and contain a plethora of isotopic anomalies of unknown origin. Of particular interest are those coarse-grained inclusions that contain refractory metal particles (Fe, Ni, Pt, Ru, Os Ir). Experimental studies of these inclusions in terrestrial laboratories are, however, complicated because the dense particles tend to settle out of a molten or partially molten silicate material. Heating experiments in the Space Station technology and microgravity in order to observe the effects of metal nuggets (which may act as heterogeneous nucleation sites) on nucleation rates in silicate systems and to measure simultaneously the relative volatilization rate of siderophile and lithophile species. Neither experiment is possible in the terrestrial environment

  19. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bhat Zahoor; Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in [Solid State Research Laboratory, Department of Physics, University of Kashmir, Srinagar 190006 (India)

    2016-04-14

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O]. X-ray crystal structure analyses reveal that it crystallizes in the P4{sub 1}2{sub 1}2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  20. Nanomechanical testing of circular freestanding polymer films with sub-micron thickness

    International Nuclear Information System (INIS)

    Maner, Kyle C.; Begley, Matthew R.; Oliver, Warren C.

    2004-01-01

    This paper describes techniques to create freestanding films over perfectly circular spans (windows) and measure their mechanical properties using instrumented nanoindentation. Test samples were created by spin-casting polymer films over glass plates with embedded fibers, which were subsequently etched using a relatively weak acid to leave freestanding circular spans. The freestanding spans were tested using an instrumented nanoindenter over a wide range of applied loads and displacements. Material properties can be extracted from measured load-deflection responses using straightforward models for point-loads on circular plates or membranes. Results are presented for poly(methyl methacrylate) and poly(2,6,dimethyl,1,4,phenylene ether) films with thickness ranging from 350 to 750 nm. The properties derived from freestanding tests are compared with traditional nanoindentation of films on intact substrates. The freestanding approach has key advantages for characterizing micron-scale behavior of compliant materials, notably greater ease and applicability of sample preparation over other micro-fabrication techniques and straightforward analytical or numerical models

  1. Enhanced NH{sub 3} gas sensing performance based on electrospun alkaline-earth metals composited SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Daqing Branch, Heilongjiang Academy of Sciences, Daqing 163319 (China); Yang, Ying; Jiang, Chao [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Gao, Jun [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Department of Chemistry, Harbin Normal University, Harbin 150025 (China); Jing, Liqiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Shen, Peikang [Department of Physics and Engineering Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); and others

    2015-01-05

    Highlights: • The small-sized SnO{sub 2} (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO{sub 2} nanofibers showed uniform nanotubes structure (Sr/SnO{sub 2}). • Sr/SnO{sub 2} showed an excellent sensing performance to NH{sub 3} at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO{sub 2} (Ae/SnO{sub 2}) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO{sub 2} was 5–7 nm, which was smaller than the pristine SnO{sub 2} nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO{sub 2} nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO{sub 2} nanotubes exhibited an excellent sensing response toward NH{sub 3} gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO{sub 2} nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO{sub 2}. Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO{sub 2} nanotubes was 3 fold of that pristine SnO{sub 2}.

  2. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  3. New transparent metal-like bilayer composite films with highly conducting layers of {theta}-(BET-TTF){sub 2}Br.3H{sub 2}O nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Mas-Torrent, M.; Laukhina, E.; Rovira, C.; Veciana, J. [Campus Univ. de Bellaterra, Barcelona (Spain). Inst. de Ciencia de Materials; Tkacheva, V. [RAS, Chernogolovka (Russian Federation). Inst. of Problems of Chemical Physics; Zorina, L.; Khasanov, S. [RAS, Chernogolovka (Russian Federation). Inst. of Solid State Physics

    2001-08-01

    A novel conducting bilayer composite (BLC) film-a polycarbonate matrix with a conducting surface layer of a crystalline network of an organic conductor-is presented. A BLC film combines the high stability and physical properties of an organic conductor, in this case the molecular metal {theta}-(BET-TTF){sub 2}Br.3H{sub 2}O, with the flexibility, transparency, and low density of a polymer matrix. The determination of the optimal conditions for the preparation of the new film, which is extremely transparent and has metal-like transport properties down to liquid helium temperature, is described. (orig.)

  4. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  5. Chemical synthesis of Fe/Fe{sub 3}O{sub 4} core-shell composites with enhanced soft magnetic performances

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai, E-mail: byang@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Xiaopan [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yang, Xueying [Hi-tech Industry Standardization Institute, Hubei Standardization and Quality Institution, Wuhan 430061 (China); Yu, Ronghai [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-04-15

    The large-grain Fe/Fe{sub 3}O{sub 4} composite particles with average size of about 1.2 µm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe{sub 3}O{sub 4} as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe{sub 3}O{sub 4} composites leads to their high saturation magnetization of 119.6 A m{sup 2} Kg{sup -1}. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe{sub 3}O{sub 4} composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm{sup -3}. The fully compacted sample shows good soft magnetic properties including high magnetic induction B{sub 1.2k} {sub (H=1200} {sub A/m)} of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices. - Highlights: • Micron-sized Fe/Fe{sub 3}O{sub 4} composites are prepared by a one-step solvothermal method. • High saturation magnetization and low coercivity are obtained in the composites. • Good air stability and high bulk density occurs in the composites. • High magnetic induction and good frequency-dependent properties are achieved.

  6. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  7. Variable dimensionality and framework found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min, E-mail: kmok@cau.ac.kr

    2017-01-15

    Five new alkali metal zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O have been synthesized by heating a mixture of ZnO, SeO{sub 2} and A{sub 2}CO{sub 3} (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn{sup 2+}. While Rb{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} and Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·H{sub 2}O revealed three-dimensional frameworks consisting of isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra, Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O contained two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers. Specifically, whereas isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra are arranged into two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in two cesium compounds, circular [Zn{sub 3}O{sub 10}]{sup 14-} chains and SeO{sub 3} linkers are formed in two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d{sup 10} and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.

  8. High-pressure studies on a new superconducting clathrate: Ba sub 6 Ge sub 2 sub 5

    CERN Document Server

    Yuan, H Q; Carrillo-Cabrera, W; Paschen, S; Sparn, G; Baenitz, M; Grin, Y; Steglich, F

    2002-01-01

    The effect of pressure on the low-temperature states of the newly discovered clathrate Ba sub 6 Ge sub 2 sub 5 is investigated by means of measurements of the electrical resistivity. At ambient pressure, Ba sub 6 Ge sub 2 sub 5 undergoes a two-step structural phase transition between 230 and 180 K from metallic behaviour to a high-resistivity state characterized by a mean free path of about 3 A. Interestingly, a Bardeen-Cooper-Schrieffer-like (BCS-like) superconducting transition occurs at T sub C approx 0.24 K from the resulting 'bad metal'. With increasing pressure, the structural phase transition is depressed but T sub C increases drastically. T sub C reaches a maximum value of 3.85 K at the critical pressure p sub C approx 2.8 GPa, where the structural distortion is completely suppressed and the system exhibits metallic behaviour. Higher pressures lead to a slight decrease of T sub C.

  9. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  10. Refractoriness in human atria

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Jespersen, Thomas; Christ, Torsten

    2016-01-01

    BACKGROUND: Refractoriness of cardiac cells limits maximum frequency of electrical activity and protects the heart from tonic contractions. Short refractory periods support major arrhythmogenic substrates and augmentation of refractoriness is therefore seen as a main mechanism of antiarrhythmic...... drugs. Cardiomyocyte excitability depends on availability of sodium channels, which involves both time- and voltage-dependent recovery from inactivation. This study therefore aims to characterise how sodium channel inactivation affects refractoriness in human atria. METHODS AND RESULTS: Steady......-state activation and inactivation parameters of sodium channels measured in vitro in isolated human atrial cardiomyocytes were used to parameterise a mathematical human atrial cell model. Action potential data were acquired from human atrial trabeculae of patients in either sinus rhythm or chronic atrial...

  11. Transport and magnetic properties of R sub 1 sub - sub x A sub x CoO sub 3. (R = La, Pr and Nd; A = Ba, Sr and Ca)

    CERN Document Server

    Masuda, H; Miyashita, T; Soda, M; Yasui, Y; Kobayashi, Y; Sato, M

    2003-01-01

    Transport and magnetic measurements have been carried out on perovskite Co-oxides R sub 1 sub - sub x A sub x CoO sub 3 (R = La, Pr, and Nd; A = Ba, Sr and Ca; 0 <= x <= 0.5: All sets of the R and A species except Nd sub 1 sub - sub x Ba sub x CoO sub 3 have been studied.). With increasing the Sr- or Ba-concentration x, the system becomes metallic ferromagnet with rather large magnetic moments. For R = Pr and Nd and A = Ca, the system approaches the metal-insulator phase boundary but does not become metallic. The magnetic moments of the Ca-doped systems measured with the magnetic field H = 0.1 T are much smaller than those of the Ba- and Sr-doped systems. The thermoelectric powers of the Ba- and Sr-doped systems decrease from large positive values of lightly doped samples to negative ones with increasing doping level, while those of Ca-doped systems remain positive. These results can be understood by considering the relationship between the average ionic radius of R sub 1 sub - sub x A sub x and the ene...

  12. Genetic toxicology of metal compounds: I. Induction of lambda prophage in E coli WP2/sub s/(lambda)

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, T.G.; Molina, M.; Meyer, L.W.

    1984-01-01

    A number of metal compounds have been shown to be human carcinogens. Others, while not proven human carcinogens, are able to cause tumors in laboratory animals. Short-term bacterial assays for genotoxic effects have not been successful in predicting the carcinogenicity of metal compounds. The ability of some metal compounds to cause the induction of lambda prophage in E coli WP2/sub s/(lambda) is reported. By far the strongest inducing ability was observed with K/sub 2/CrO/sub 4/. With the exception of chromate, long-term exposures in a narrow, subtoxic dose range were required in order to demonstrate phage induction. A new microtiter assay for lambda prophage induction, which incorporates these features, is described. This system also was able to detect very small amounts of organic carcinogens.

  13. Ferroelectric and piezoelectric properties of lead-free BaTiO{sub 3} doped Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} thin films from metal-organic solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Susant Kumar [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Semiconductor Science and Technology, Basic Research Laboratory (BRL), Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sang-Kwon; Hyung, Jung-Hwan [Department of Semiconductor Science and Technology, Basic Research Laboratory (BRL), Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yang, Yun-Ho; Kim, Bok-Hee [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Ahn, Byung-Guk, E-mail: bkahn@jbnu.ac.kr [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-05

    Highlights: Black-Right-Pointing-Pointer Lead-free BNT-BT thin films from an optimized metal-organic solution deposition. Black-Right-Pointing-Pointer Phase and microstructure evolution with annealing temperature. Black-Right-Pointing-Pointer A relatively low leakage current density. Black-Right-Pointing-Pointer Good dielectric constant of 613 at a frequency of 1 kHz. Black-Right-Pointing-Pointer High remanent polarization and piezoelectric constant comparable to PZT thin films. - Abstract: Lead-free 0.94Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.06BaTiO{sub 3} (BNT-BT) piezoelectric thin films were prepared by metal-organic solution deposition onto a Pt/Ti/SiO{sub 2}/Si substrate. A dense and well crystallized thin film with a perovskite phase was obtained by annealing these films at 700 Degree-Sign C. Atomic force microscopy showed that these films were smooth and crack-free with an average grain size on the order of 200 nm. Thin films of 356 nm thickness exhibited a small signal dielectric constant and a loss tangent at 1 kHz of 613 and 0.044, respectively. Ferroelectric hysteresis measurements indicated a remanent polarization value of 21.5 {mu}C/cm{sup 2} with a coercive field of 164.5 kV/cm. The leakage current density of the thin film was 4.08 Multiplication-Sign 10{sup -4} A/cm{sup 2} at an applied electric field of 200 kV/cm. A typical butterfly-shaped piezoresponse loop was observed and the effective piezoelectric coefficient (d{sub 33}) of the BNT-BT thin film was approximately 51.6 pm/V.

  14. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Feng, Yuping [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Nieto, Daniel [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); García-Lecina, Eva [Unidad de Superficies Metálicas, IK4-CIDETEC, E20009 Donostia-San Sebastián Gipuzkoa (Spain); Mcdaniel, Clare [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Díaz-Marcos, Jordi [Unitat de Tècniques Nanomètriques, Centres Científics i Tecnològics, Universitat de Barcelona, E08028 Barcelona (Spain); Flores-Arias, María Teresa [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); O’Connor, Gerard M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Pellicer, Eva, E-mail: eva.pellicer@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); and others

    2016-05-15

    Highlights: • Formation of ripples after femtosecond pulsed laser irradiation (FSPLI) of metallic glass was studied. • Magnetic patterning at the surface of non-ferromagnetic amorphous steel was induced by FSPLI. • The origin of the generated ferromagnetism is the laser-induced devitrification. - Abstract: Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe{sub 3}C) and ferrimagnetic [(Fe,Mn){sub 3}O{sub 4} and Fe{sub 2}CrO{sub 4}] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  15. Improvements in or relating to refractory oxide protective coatings for fuel can

    International Nuclear Information System (INIS)

    Cairns, J.A.; Bennett, M.J.; Linacre, J.K.

    1981-01-01

    An improved coating for Advanced Gas Cooled Nuclear Reactor austenitic stainless steel fuel cans is described which, tests have shown, inhibits the deposition of carbon on the cans in carbon-containing ionising radiation environments. The coating comprises a refractory oxide which has been prepared by a vapour phase condensation method, in combination with a noble metal. (U.K.)

  16. Metrology of sub-micron structured polymer surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Salaga, J.

    metal masters with different types of finish has been carried out.Four types of surface finish were considered: a) Diamond buff polishing. b) Grit paper polishing. c) Stone polishing. d) Dry blast polishing (see Fig. 1). Both master and replicated surfaces were measured using a laser scanning confocal...... of about 70 %. The worst amplitude replication was achieved for both diamond buff and grit paper polished surfaces with a replication fidelity around 50 %.The tendency is almost the same for slope replication but the replication fidelity values are lower: 70 % for stone polished surfaces. 50 % for dry...... evaluated according to ISO 15530-3:2011, adapted to optical measure-ments, and propagated to the replication fidelity.A good amplitude replication was achieved for stone polished surfaces with a replication fidelity larger than 90 %. The dry blast ones were evaluated with an amplitude replication fidelity...

  17. Structure-property relationship of compounds with pyrite and shandite structure with metal-semiconductor transition in InSnCo{sub 3}S{sub 2}; Struktur-Eigenschafts-Beziehungen von Verbindungen mit Pyrit- und Shanditstruktur mit Metall-Halbleiter-Uebergang in InSnCo{sub 3}S{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rothballer, Jan

    2014-12-23

    The aim of this Ph.D thesis is to correlate theoretical calculations and experimental data to understand the building and stabilities of structures to influence the properties due to applications. Properties of compounds are defined by their electronic structures. The electronic structure can be influenced by substitution of elements or even doping. As a matter of fact, electronic design is a basic principle in materials research. It can help to change or switch the electric conductivity or the magnetism of a starting compound. I analyzed compounds with pyrite-type structure and Sn{sub 2}Co{sub 3}S{sub 2} and related compounds to these. Its electronic as well as its crystallographic structure is highly flexible and Sn{sub 2}Co{sub 3}S{sub 2} is a half metallic ferromagnet. By substituting In to Sn one gets a semiconductor due to indium-tin ordering. By doping sulfur against selenium, the magnetism is highly influenced. To verify and to understand these effects I did magnetic, XRD, neutron and conductivity measurements as well as DFT calculations in direct and reciprocal space.

  18. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu{sub 2}MoS{sub 4}) nanosheets as co-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2017-02-28

    Highlights: • Developed Cu{sub 2}MoS{sub 4} nanosheets as co-catalysts. • Cu{sub 2}MoS{sub 4} as active replacements for precious noble metal. • Controlled charge recombination for use in photocatalytic H{sub 2} evolution. • Obtained superior rate of H{sub 2} production by using Cu{sub 2}MoS{sub 4} loaded CdS nanorods. - Abstract: Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H{sub 2}) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu{sub 2}MoS{sub 4}) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H{sub 2} evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu{sub 2}MoS{sub 4} nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu{sub 2}MoS{sub 4}nanosheets. These layered Cu{sub 2}MoS{sub 4} nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H{sub 2} production by water splitting. We have obtained superior H{sub 2} production rates by using Cu{sub 2}MoS{sub 4} loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  19. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  20. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  1. Reacciones en estado sólido para el sistema Al-MoO<sub>3sub> en la fabricación de materiales compuestos Al<sub>2sub>O>3sub>-aluminuros de Mo

    Directory of Open Access Journals (Sweden)

    Marín, J.

    2002-02-01

    Full Text Available Ceramic matrix composites reinforced with metallic particles exhibit good mechanical properties. One research line has involved the fabrication of 3A (alumina-aluminide alloys composites via in situ consolidation of aluminum reactive powders mixed with a metallic oxide. In this paper the solid state reactions for the Al-MoO<sub>3sub> system and the effect of the precursor compositions for obtaining Al<sub>2sub>O>3sub> composites and intermetallic aluminides are studied. The reactions in vacuum for the 25 °C to 750 °C temperature range, and the microstructural evolution up to 1200 °C were studied. DTA-TG and DSC were used to determine that a heating rate of 1 °C/min at the critical range of 500-600 °C, resulted in controlled aluminothermic reactions. XRD and SEM showed that in the sintered composites a microstructure composed of an Al<sub>2sub>O>3sub> matrix and a Mo aluminide /metallic Mo dispersed phase was present. The precursor composition affects the dispersed phase in the composite (Mo aluminides and/or metallic Mo, the relative Al<sub>2sub>O>3sub> /second phase quantities, and the hardness of the composite sintered at 1450 °C.

    Los materiales compuestos de matriz cerámica (CMC's de Al<sub>2sub>O>3sub> reforzados con partículas metálicas tienen propiedades mecánicas muy atractivas. Un área de investigación emergente es la fabricación de compuestos 3A (Alumina-Aluminide-Alloys, mediante la formación in situ de Al<sub>2sub>O>3sub> reforzada con metal elemental y/o aluminuros del metal, partiendo de polvos de aluminio y de óxidos metálicos. En este trabajo se estudian las reacciones en estado sólido para el sistema Al-MoO<sub>3sub>. Las reacciones de aluminotermia se estudian en vacío para el rango de temperaturas entre 25 °C y 750 °C y su evolución microestructural hasta 1.200 °C. Mediante análisis calorimétrico (DTA-TG y DSC se determinó que para una

  2. The large second-harmonic generation of LiCs{sub 2}PO{sub 4} is caused by the metal-cation-centered groups

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Guo, Guo-Cong; Hong, Maochun; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2018-04-03

    We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs{sub 2}PO{sub 4} (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal-cation-centered groups CsO{sub 6} and LiO{sub 4}, not by the nonmetal-cation-centered groups PO{sub 4} expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Investigating and engineering spin-orbit torques in heavy metal/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Loong, Li Ming; Deorani, Praveen; Qiu, Xuepeng; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-07-13

    Current-induced spin-orbit torques (SOTs) have the potential to revolutionize magnetization switching technology. Here, we investigate SOT in a heavy metal (HM)/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS)/MgO thin film structure with perpendicular magnetic anisotropy (PMA), where the HM is either Pt or Ta. Our results suggest that both the spin Hall effect and the Rashba effect contribute significantly to the effective fields in the Pt underlayer samples. Moreover, after taking the PMA energies into account, current-induced SOT-based switching studies of both the Pt and Ta underlayer samples suggest that the two HM underlayers yield comparable switching efficiency in the HM/CFAS/MgO material system.

  4. LiV<sub>2sub>O>4sub>: A heavy fermion transition metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Shinichiro [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV<sub>2sub>O>4sub>. In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV<sub>2sub>O>4sub> is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV<sub>2sub>O>4sub> and two Li<sub>1+xsub>Ti>2-xsub>O>4sub> (x = 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV<sub>2sub>O>4sub> and Li<sub>1+xsub>T>2-xsub>O>4sub> samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV<sub>2sub>O>4sub> it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J

  5. Electrospun metal oxide-TiO{sub 2} nanofibers for elemental mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yuan; Zhao, Yongchun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li, Hailong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Li, Yang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Gao, Xiang [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zheng, Chuguang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang, Junying, E-mail: jyzhang@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Developed the metal oxides (CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O) doped TiO{sub 2} nanofibers. Black-Right-Pointing-Pointer The fibers are applied to control Hg{sup 0} from coal combustion flue gas. Black-Right-Pointing-Pointer WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} doped TiO{sub 2} greatly enhanced Hg{sup 0} removal under visible light irradiation. Black-Right-Pointing-Pointer TiO{sub 2}-Ag{sub 2}O showed a steady Hg{sup 0} removal efficiency of 95% without any light. - Abstract: Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg{sup 0}) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO{sub x}) including CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O supported on TiO{sub 2} have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200 nm. Compared to pure TiO{sub 2}, the UV-vis absorption intensity for MO{sub x}-TiO{sub 2} increased significantly and the absorption bandwidth also expanded, especially for Ag{sub 2}O-TiO{sub 2} and V{sub 2}O{sub 5}-TiO{sub 2}. Hg{sup 0} oxidation efficiencies over the MO{sub x}-TiO{sub 2} nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Doping V{sub 2}O{sub 5} into TiO{sub 2} enhanced Hg{sup 0} removal efficiency greatly from 6% to 63% under visible light irradiation. Ag{sub 2}O doped TiO{sub 2} showed a steady Hg{sup 0} removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment

  6. Use of a cobalt-based metallic glass for joining MoSi{sub 2} to stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Rangaswamy, P.; Misra, A.; Gallegos, D.E.; Castro, R.G.; Petrovic, J.J. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Butt, D.P. [Florida Univ., Gainesville, FL (United States). Dept. of Materials Science and Engineering

    2002-07-01

    The successful use of a cobalt-based metallic glass in joining molybdenum disilicide (MoSi{sub 2}) to stainless steel 316L was demonstrated. Such joints are being investigated for sensor tube applications in glass melting operations. The cobalt-based metallic-glass (METGLAS{sup TM} 2714A) was found to wet the MoSi{sub 2} and stainless steel surfaces and provide high quality joints. Joining was completed at 1050 C for 60 minutes in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Post-brazing metallographic evaluations coupled with quantitative elemental analysis indicated the presence of a Co-Cr-Si ternary phase with CoSi and CoSi{sub 2} precipitates within the braze. The residual stresses in these molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were evaluated using X-ray diffraction and instrumented indentation techniques. These measurements revealed that significant differences are induced in the residual stresses in MoSi{sub 2} and stainless steel depending on the joining technique employed. Push-out tests were carried out on these joints to evaluate the joint strength. (orig.)

  7. Electrical transport of (1-x)La{sub 0.7}Ca{sub 0.3}MnO{sub 3}+xAl{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T. [Nhatrang Pedagogic College, Khanhhoa, 1st Nguyen Chanh, Nha Trang City, Khanhhoa (Viet Nam); Institute of Material Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Khiem, N.V. [Department of Natural Sciences, Hongduc University, 307 Le Lai Street Thanh Hoa City (Viet Nam)], E-mail: nvkhiem2002@yahoo.com; Dai, N.V.; Manh, D.H.; Hong, L.V.; Phuc, N.X. [Institute of Material Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)

    2009-10-15

    We report the resistivity ({rho})-temperature (T) patterns in (1-x)La{sub 0,7}Ca{sub 0,3}MnO{sub 3}+xAl{sub 2}O{sub 3} composites (0{<=}x{<=}0.05) over a temperature regime of 50-300 K. Al{sub 2}O{sub 3} addition has increased the resistivity of these composites. The Curie temperature (T{sub C}) is almost independent on the Al{sub 2}O{sub 3} content and is about 250 K for all the samples, while the metal-insulator transition temperature (T{sub MI}) decreases with increasing Al{sub 2}O{sub 3} content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data ({rho}-T) from 50 to 300 K and find that the activation barrier increases as Al{sub 2}O{sub 3} content increases.

  8. Porous sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} as an anode material for Li-ion batteries with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin, E-mail: tangbohejin@sues.edu.cn [Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering (China)

    2017-01-15

    Sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} was prepared by a novel facile sol–gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe{sub 2}O{sub 3}, the agglomeration of particles has been alleviated after the incorporation of SO{sub 4}{sup 2−}. Interestingly, the primary particle size of the SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} delivered a higher reversible discharge capacity (992 mAh g{sup −1}), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe{sub 2}O{sub 3}. We believed that the presence of SO{sub 4}{sup 2−} and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li{sup +} and electrons.

  9. Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [School of Stomatology, China Medical University, 117 Nanjing North Sreet, Shenyang, 110002 (China); Shi, Ling-ling; Zhu, Zhen-dong; He, Qiang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Ai, Hong-jun, E-mail: aih0620@yahoo.com.cn [School of Stomatology, China Medical University, 117 Nanjing North Sreet, Shenyang, 110002 (China); Xu, Jian, E-mail: jianxu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China)

    2013-05-01

    In comparison with titanium and its alloys, Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} (ZT1) bulk metallic glass (BMG) manifests a good combination of high strength, high fracture toughness and lower Young's modulus. To examine its biocompatibility required for potential use in dental implants, this BMG was used as a cell growth subtract for three types of cell lines, L929 fibroblasts, human umbilical vein endothelial cells (HUVEC), and osteoblast-like MG63 cells. For a comparison, these cell lines were in parallel cultured and grown also on commercially pure titanium (CP-Ti) and Ti6–Al4–V alloy (Ti64). Cellular responses on the three metals, including adhesion, morphology and viability, were characterized using the SEM visualization and CCK-8 assay. Furthermore, real-time RT-PCR was used to measure the activity of integrin β, alkaline phosphatase (ALP) and type I collagen (COL I) in adherent MG63 cells. As indicated, in all cases of three cell lines, no significant differences in the initial attachment and viability/proliferation were found between ZT1, CP-Ti, and Ti64 until 5 d of incubation period. It means that the biocompatibility in cellular response for ZT1 BMG is comparable to Ti and its alloys. For gene expression of integrin β, ALP and COL I, mRNA level from osteoblast cells grown on ZT1 substrates is significantly higher than that on the CP-Ti and Ti64. It suggests that the adhesion and differentiation of osteoblasts grown on ZT1 are even superior to those on the CP-Ti and Ti64 alloy, then promoting bone formation. The good biocompatibility of ZT1 BMG is associated with the formation of zirconium oxide layer on the surface and good corrosion-resistance in physiological environment. Quantitative analysis of Real-time PCR for MG63 cells cultured on Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} BMG, CP-Ti, and Ti64 as well as plastic as a control at several incubation periods. Relative amounts of (a) integrin β, (b) ALP, and (c) COL I (*p < 0

  10. Microstructural analysis of metal solution interfacial films in the multiphase brine CO{sub 2}, H{sub 2}S hydrocarbon inhibitor system; Analise microestrutural de filmes na interface metal-solucao no sistema multifasico salmoura Co{sub 2}/H{sub 2}S hidrocarboneto inibidor

    Energy Technology Data Exchange (ETDEWEB)

    Forero, Adriana; Yesid Pena, Dario [Universidad Industrial de Santander, Bucaramanga (Colombia); Bott, Ivani de S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    2005-07-01

    This work presents an analysis of the formation of different films obtained at the metal - solution interface in a multiphase Brine - CO{sub /}H{sub 2}S Hydrocarbon - Inhibitor - Steel AISI SAE 1020 system. Tests were carried out on loss of mass test pieces in a static autoclave, for exposure times of 21 days. Infrared Absorption Spectroscopy (IAS), X Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM) techniques, were used for the analysis of the products of corrosion and the inhibitor films formed. The results obtained for XRD indicate the formation hydrous oxide of iron, Siderite, Magnetite, and in some cases chloride crystals and iron sulphates. The results obtained by SEM, show that the thin films of the inhibitor and corrosion products have irregular surfaces, are porous, fragile and have little adhesion to the metal. Additionally the generation of primary films of carbonate of iron saturated with carbon and oxide of iron was confirmed and also the formation of secondary carbonates of iron due to recrystallization of the of iron carbonate. (author)

  11. A comparative study of charge trapping in HfO{sub 2}/Al{sub 2}O{sub 3} and ZrO{sub 2}/Al{sub 2}O{sub 3} based multilayered metal/high-k/oxide/Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, D., E-mail: d_spassov@abv.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Skeparovski, A. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Paskaleva, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Novkovski, N. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2016-09-01

    The electrical properties of multilayered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2}/SiO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} metal-oxide semiconductor capacitors were investigated in order to evaluate the possibility of their application in charge-trapping non-volatile memory devices. The stacks were deposited by reactive radiofrequency magnetron sputtering on Si substrates with thermal SiO{sub 2} with a thickness ranging from 2 to 5 nm. Both types of stacks show negative initial oxide charge and its density is higher for HfO{sub 2}-based structures. Memory window up to 6V at sweeping voltage range of ± 16V was obtained for HfO{sub 2}-based stacks. The hysteresis in these structures is mainly due to a trapping of electrons injected from the Si substrate. The charge-trapping properties of ZrO{sub 2}-based samples are compromised by the high leakage currents and the dielectric breakdown. The conduction through the capacitors at low applied voltages results from hopping of thermally excited electrons from one isolated state to another. The energy depth of the traps participating in the hopping conduction was determined as ~ 0.7 eV for the HfO{sub 2}-based layers and ~ 0.6 eV for ZrO{sub 2}-based ones, originating from negatively charged oxygen vacancies. At high electric fields, the current voltage characteristics were interpreted in terms of space charge limited currents, Fowler–Nordheim tunneling, Schottky emission, and Poole–Frenkel mechanism. The charge retention characteristics do not depend on the thickness of the tunnel SiO{sub 2}. - Highlights: • Sputtered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2} charge-trapping layers were studied. • HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} stacks show memory window up to 6 V and good retention times. • Negatively charged oxygen vacancies were identified as main defects in the stacks. • Electrical breakdown compromise the charge-trapping properties

  12. The responses of endothelial cells to Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} metallic glass in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing, E-mail: monkeys0109@sina.com; Ai, Hong-jun

    2014-07-01

    The goal of this study was to evaluate the biocompatibility of newly developed Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} metallic glass (denoted ZT1) and its parallel material, commercially pure titanium (CP-Ti), as dental implants. To this end, we evaluated their cytotoxicity in vitro using human umbilical vein endothelial cells (HUVECs) and in vivo by performing an oral mucosa irritation test in hamsters. Specifically, cytotoxicity was determined in HUVECs by evaluating their cell morphology using scanning electron microscopy (SEM) and their cell viability using CCK-8 assays. Moreover, we examined the mRNA levels of vascular endothelial growth factor and von Willebrand factor by quantitative PCR (qPCR). In the early stages of proliferation and differentiation, no differences were observed between HUVECs inoculated on ZT1 compared to those on CP-Ti. However, in the later stages of proliferation and differentiation, the HUVECs inoculated on ZT1 were significantly better than the cells cultured on CP-Ti. In the oral mucosa irritation test, we sutured sample discs into the cheek pouch of hamsters. After 2, 3, and 4 weeks, we harvested the corresponding mucosal tissues, stained them with hematoxylin and eosin, obtained blood samples for biochemical analysis, and finally, observed the topography of the sample discs by SEM. Immunohistochemistry and hematology analyses showed no differences in the biocompatibility of ZT1 and CP-Ti, and neither of these compounds caused irritation of the mucosa. In addition, SEM images showed that no pitting occurred on the sample discs. Together, these data indicate that ZT1 may be a good candidate for dental implants and should be further studied. - Graphical abstract: The results of blood analysis. (a) WBC, (b) Mon %, (c) Neu %, and (d) Eos %. - Highlights: • We used HUVECs to evaluate the cytotoxicity of Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} BMG. • We are the first to evaluate Zr{sub 61}Ti{sub 2}Cu{sub 25}Al{sub 12} BMG using an

  13. Improving Hardness and Toughness of Boride Composites Based on AIMgB<sub>14sub>

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Justin Steven [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB<sub>14sub>-TiB>2sub> composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB<sub>14sub> - 60 vol% TiB<sub>2sub> approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB<sub>14sub> and TiB<sub>2sub> phases. AlMgB<sub>14sub> is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB<sub>2sub> is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB<sub>2sub> ceramics. A combination of sintering aids, pressure, and temperatures of 1800 C are often required to achieve near full density articles. The AlMgB<sub>14sub> - TiB<sub>2sub> composites can achieve 99% density from hot-pressing at 1400 C. This is mostly due to the

  14. Theoretical and practical aspects about corrosion of refractories used in steel metallurgy: part 3: characterization of commercial refractories

    International Nuclear Information System (INIS)

    Braganca, S.R.

    2012-01-01

    In this study, it was reviewed the main aspects found in the literature about refractories corrosion, evaluating the feasibility of certain tests and relating them with experimental results. The physical properties and microstructure of commercial refractories were analyzed, considering the differences between them and the quality implications and probable life of the refractory. Thus, it was studied the various types of refractories used as lining on steel ladle. Magnesia-carbon and doloma-carbon refractories were analyzed, highlighting the differences between them. The examined refractory showed characteristics favoring high resistance to corrosion process, presenting a series of properties to be selected in accordance with industry practice. (author)

  15. Fabrication, interfacial characterization and mechanical properties of continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuqiang; Lin, Chunfa; Han, Xiaoxiao; Chang, Yunpeng; Guo, Chunhuan, E-mail: guochunhuan@hrbeu.edu.cn; Jiang, Fengchun, E-mail: fengchunjiang@hrbeu.edu.cn

    2017-03-14

    Continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite was fabricated using a vacuum hot pressing (VHP) sintering method and followed by hot isostatic pressing (HIP). The microstructure characteristics of the interfaces between Ti and Al{sub 3}Ti, as well as Al{sub 2}O{sub 3} fiber and Al{sub 3}Ti intermetallic were analyzed by scanning electron microscopy (SEM). Elemental distribution in the interfacial reaction zones were quantitatively examined by energy-dispersive spectroscopy (EDS). The phases in the composite were identified by X-ray diffractometer (XRD). The mechanical properties of the CCFR-MIL composite were measured using compression and tensile tests under quasi-static strain rate. The experimental results indicated that the residual Al was found in Al{sub 3}Ti intermetallic layer of CCFR-MIL composite. The interfacial reactions occurred during HIP and the reaction products were determined to be Al{sub 2}Ti, TiSi{sub 2}, TiO{sub 2} and Al{sub 2}SiO{sub 5} phases. Compared to Ti/Al{sub 3}Ti MIL composite without fiber reinforcement, both the strength and failure strain of CCFR-MIL composite under both compressive and tensile stress states increased due to the contribution of the continuous ceramic Al{sub 2}O{sub 3} fiber.

  16. Lithium Superionic Conductor Li{sub 9.42}Si{sub 1.02}P{sub 2.1}S{sub 9.96}O{sub 2.04} with Li{sub 10}GeP{sub 2}S{sub 12}-Type Structure in the Li{sub 2}S–P{sub 2}S{sub 5}–SiO{sub 2} Pseudoternary System: Synthesis, Electrochemical Properties, and Structure–Composition Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Satoshi [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama (Japan); Suzuki, Kota; Hirayama, Masaaki [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama (Japan); Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama (Japan); Kato, Yuki [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama (Japan); Battery Research Division, Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka (Japan); Battery AT, Advanced Technology 1, Toyota Motor Europe NV/SA, Zaventem (Belgium); Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama (Japan); Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama (Japan)

    2016-12-07

    Lithium superionic conductors with the Li{sub 10}GeP{sub 2}S{sub 12} (LGPS)-type structure are promising materials for use as solid electrolytes in the next-generation lithium batteries. A novel member of the LGPS family, Li{sub 9.42}Si{sub 1.02}P{sub 2.1}S{sub 9.96}O{sub 2.04} (LSiPSO), and its solid solutions were synthesized by quenching from 1273 K in the Li{sub 2}S–P{sub 2}S{sub 5}–SiO{sub 2} pseudoternary system. The material exhibited an ionic conductivity as high as 3.2 × 10{sup −4} S cm{sup −1} at 298 K, as well as the high electrochemical stability to lithium metal, which was improved by the introduction of oxygen into the LGPS-type structure. An all-solid-state cell with a lithium metal anode and LSiPSO as the separator showed excellent performance with a high reversibility of 100%. Thus, oxygen doping is an effective way of improving the electrochemical stability of LGPS-type structure.

  17. Using coupled micropillar compression and micro-Laue diffraction to investigate deformation mechanisms in a complex metallic alloy Al{sub 13}Co{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Ayan, E-mail: a.bhowmik@ic.ac.uk; Britton, T. Ben; Sernicola, Giorgio; Dye, David [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Dolbnya, Igor P. [Diamond Light Source, Didcot, Oxfordshire OX11 0DE (United Kingdom); Jones, Nicholas G.; Walter, Claudia; Clegg, William J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Gille, Peter [Crystallographic Section, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich D-80333 (Germany); Giuliani, Finn [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-14

    In this study, we have used in-situ micro-Laue diffraction combined with micropillar compression of focused ion beam milled Al{sub 13}Co{sub 4} complex metallic alloy to investigate the evolution of deformation in Al{sub 13}Co{sub 4}. Streaking of the Laue spots shows that the onset of plastic flow occurs at stresses as low as 0.8 GPa, although macroscopic yield only becomes apparent at 2 GPa. The measured misorientations, obtained from peak splitting, enable the geometrically necessary dislocation density to be estimated as 1.1 × 10{sup 13 }m{sup −2}.

  18. Syntheses, crystal Structures and electronic Structures of new metal chalcoiodides Bi{sub 2}CuSe{sub 3}I and Bi{sub 6}Cu{sub 3}S{sub 10}I

    Energy Technology Data Exchange (ETDEWEB)

    Liang, I-Chu [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Bilc, Daniel I. [Department of Molecular & Biomolecular Physics, National Institute for Research & Development of Isotopic & Molecular Technologies, Cluj-Napoca 400293 (Romania); Manoli, Maria [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Chang, Wei-Yun; Lin, Wen-Fu [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Kyratsi, Theodora [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Hsu, Kuei-Fang [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2016-02-15

    Two new metal chalcoiodides were synthesized by solid-state reactions at 400 °C. Crystal Data: Bi{sub 2}CuSe{sub 3}I, 1, monoclinic, C2/m, a=14.243(2) Å, b=4.1937(7) Å, c=14.647(2) Å, β=116.095(2)°, V=785.7(2) Å{sup 3}, and Z=4; Bi{sub 6}Cu{sub 3}S{sub 10}I, 2, orthorhombic, Pnma, a=17.476(2) Å, b=4.0078(4) Å, c=27.391(2) Å, V=1918.5(3) Å{sup 3}, and Z=4. Compound 1 adopts a three-dimensional structure formed by two alternative layers, which consist of BiSe{sub 5} square pyramids, BiSe{sub 4}I{sub 2} octahedra, CuSe{sub 4} tetrahedra, and CuSe{sub 2}I{sub 2} tetrahedra. Compound 2 possesses a new open framework built up of BiS{sub 5} square pyramides, BiS{sub 6} octahedra, BiS{sub 8} polyhedra, and CuS{sub 4} tetrahedra where I{sup −} anions are uniquely trapped within the tunnels. Both electronic structures reveal that bismuth and chalcogenide orbitals dominate the bandgaps. The Cu d and I p states contribute to the top of valence bands, in which the distribution of I orbitals may correspond to the relative bonding interactions in 1 and 2. The optical bandgaps determined by the diffuse reflectance spectra are 0.68 eV and 0.72 eV for 1 and 2, respectively. 1 is a p-type semiconductor with high Seebeck coefficients of 460–575 μV/K in the temperature range of 300–425 K. The electrical conductivity is 0.02 S/cm at 425 K for the undoped sample. The thermal conductivity is 0.22 W/mK at 425 K. - Graphical abstract: The hybridization of chalcogenides and iodides produces two new solids Bi2CuSe3I and Bi6Cu3S10I. The I{sup −} anions participate in distinct bonding interactions within the two structures and that is consistent with the analyses of density of states. 1 is a p-type semiconductor with an optical bandgap of 0.68 eV, which possesses high Seebeck coefficient and low lattice thermal conductivity in 300–425 K.

  19. Development of Pneumatic Transport System (PTS) for safe handling of uranium oxide powder in UMP/UED

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Tonnage quantity radioactive uranium oxide powder of particle size sub micron to 100 micron is handled in Uranium Metal Plant (UMP), UED/BARC for production of nuclear grade uranium metal, required for fuelling research reactors - Dhruva and Cirus. A Pneumatic Transfer System (PTS) using vacuum has been introduced and is being used for handling radioactive powder to improve radiation protection

  20. Effects of based Ca O and aluminum ash desulfurization agent on wearing of torpedo car refractories; Acao de agente dessulfurante a base de CaO + Al `ash`sobre o desgaste de refratario de carro torpedo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidiney Nascimento; Marques, Oscar Rosa; Delgado, Paulo Roberto Senna [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil); Longo, Elson; Varela, Jose Arana [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Justus, Sergio Murilo [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Engenharia de Materiais

    1996-12-31

    The introduction oa a new desulfurization agent, at Companhia Siderurgica Nacional (CSN) based Ca O and aluminum ash, have been strongly altered the work conditions of slag line refractories of torpedo car. The wearing mechanism of Al{sub 2} O{sub 3}.Si C.C refractories of torpedo car slag line is as follows: graphite and silicon carbide oxidation by the gas present in torpedo car atmosphere and sodium oxide from process slag; as result from these oxidation reactions, there is a increasing of refractory permeability, simultaneously the silica precipitation in the refractory matrix; the refractory matrix, rich in mullite, strongly reacts with the calcium oxide from slag and silica excess, precipitated from oxidation reactions; as consequence, the formation of low melting point phases occurs which accelerates the wearing of material. (author) 12 refs., 6 figs., 8 tabs.