WorldWideScience

Sample records for sub-humid cropping environment

  1. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M.M.

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g.

  2. Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system.

    Science.gov (United States)

    Kumar, Upendra; Berliner, J; Adak, Totan; Rath, Prakash C; Dey, Avro; Pokhare, Somnath S; Jambhulkar, Nitiprasad N; Panneerselvam, P; Kumar, Anjani; Mohapatra, Shyamranjan D

    2017-01-01

    findings revealed that non-target effect of repetitive application of chloropyrifos (0.5kgha -1 ) on soil microbes and nematodes was found less under rice-rice cropping system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of improved drainage and nitrogen source on yields, nutrient uptake and utilization efficiencies by maize (Zea mays L.) on Vertisols in sub-humid environments

    NARCIS (Netherlands)

    Sigunga, D.O.; Janssen, B.H.; Oenema, O.

    2002-01-01

    Nitrogen is the most limiting plant nutrient in Vertisols in Kenya. Soil properties, climatic conditions and management factors as well as fertilizer characteristics can influence fertilizer nitrogen (N) use efficiency by crops. Vertisols, characterized by low-basic water infiltration rate, are

  4. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    in a sub-humid environment of Western Ghats, India. B Venkatesh1,∗. , Lakshman Nandagiri2, B K Purandara1 and V B Reddy3. 1National Institute of Hydrology, Hanuman Nagar, Belgaum 590 001, India. 2Department of Applied Mechanics & Hydraulics, National Institute of Technology,. Surathkal, Mangalore 575 025, ...

  5. Papaya: environment and crop physiology

    Science.gov (United States)

    Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions. Knowledge of how papaya responds to environmental factors provides a scientific basis for the development of management strategies to optimize fruit yield and quality. A better understanding of genotyp...

  6. Nigeria: macroeconomic environment and the perennial crops ...

    African Journals Online (AJOL)

    This paper examines the impacts of macroeconomic environment on the output performances of perennial crops – namely cocoa, rubber, palm oil and palm kernel in Nigeria. The time series data used for the analysis reveals agricultural policy/programme instability. Ordinary Least Square estimation shows that most ...

  7. Physiological Disorders in Closed, Controlled Environment Crops

    Science.gov (United States)

    Wheeler, Raymond M.; Morrow, Robert C.

    2010-01-01

    This slide presentation reviews some of the physiological disorders that affect crops grown in closed controlled environments. A physiological disorder is understood to be a problem resulting from the influence of environmental and horticultural factors on plan development other than a problem caused by a pathogen or some other abiotic cause. The topics that are addressed are: (1) Calcium-Related Disorders (2) Oedema (Intumescence) (3) Long-Photoperiod Injury (4) Light Spectral Quality Effects (5) Super-Elevated CO2 Injuries (6) Ethylene (7) Other Disorders (8) Considerations for Closed Space Environments. Views of plant with the disorders are shown.

  8. Yield, Phenotypical Stability and Micronutrients Contents in the Biofortified Bean in the Colombian Sub-humid Caribbean

    Directory of Open Access Journals (Sweden)

    Adriana Patricia Tofiño-Rivera,

    2016-09-01

    Full Text Available The intake of protein and micronutrients in the Colombian sub-humid Caribbean has been a concern in recent years. About 57 % of the population in the sub-humid Caribbean region, has a deficit of amino acids —iron (Fe and zinc (Zn— in their diet. This study shows the results of the agronomic evaluation of the performance and quality of nine genotypes of biofortified bean and one local control in four environments of Cesar. The methodology included chemical and microbio-logical soil characterization, reaction evaluation to pests and diseases, multi-sited valuation by AMMI and selection of two varieties with better yield and nutritional content by ACP. In addition to these two prioritized genotypes, the Pearson correlation coefficient between seed micronutrient content for locations and years was determined. The biofortified genotypes surpassed the control group significantly in both yield and precocity. According to the ACP, the biofortified group differed from the control group in iron and zinc content in the seed, confirming its superior characteristics in nutritional quality, and resistance to pests and diseases. The AMMI showed that the genotype SMR43 reflected stability and predi-ctability between environments and SMR39 had specific adaptation in the best location for grain production. Both genotypes retained high levels of micronutrients between locations and years as according to the Pearson correlation.

  9. Water use of tree lines: importance of leaf area and micrometeorology in sub-humid Kenya

    NARCIS (Netherlands)

    Radersma, S.; Ong, C.K.; Coe, R.

    2006-01-01

    In this research the relative importance of leaf area and microclimatic factors in determining water use of tree lines was examined in sub-humid Western Kenya. Measurements of tree water-use by a heat-balance technique, leaf area, bulk air saturation deficit, daily radiation, and soil water content

  10. Nigeria: macroeconomic environment and the perennial crops ...

    African Journals Online (AJOL)

    Ordinary Least Square estimation shows that most macroeconomic policy variables – exchange rate, interest rate, government expenditure, credit are negatively related to outputs. Technological change and policy shift variables are negative for cocoa but positive for other crops. Collectively, the variables explain between ...

  11. Radiation efficiency and nitrogen fertilizer impacts on sunflower crop in contrasting environments of Punjab, Pakistan.

    Science.gov (United States)

    Nasim, Wajid; Ahmad, Ashfaq; Amin, Asad; Tariq, Muhammad; Awais, Muhammad; Saqib, Muhammad; Jabran, Khawar; Shah, Ghulam Mustafa; Sultana, Syeda Refat; Hammad, Hafiz Mohkum; Rehmani, Muhammad Ishaq Asif; Hashmi, Muhammad Zaffar; Rahman, Muhammad Habib Ur; Turan, Veysel; Fahad, Shah; Suad, Shah; Khan, Aziz; Ali, Shahzad

    2018-01-01

    Sunflower (Helianthus annuus L.) is the leading non-conventional oilseed crop in Pakistan. Nitrogen fertilizer can affect plant growth and productivity by changing canopy size which has an effect on the radiation use efficiency (RUE) of the crop. The response of sunflower hybrids in terms of phenology, fraction of intercepted radiation (F i), and RUE to nitrogenous rates (0, 60, 120, 180, and 240 kg ha-1) was studied in three field experiments conducted in three various environments: Multan (arid), Faisalabad (semi-arid), and Gujranwala (sub-humid) during spring seasons 2008 and 2009. The treatments were laid out according to a randomized complete block design with split plot arrangements, keeping the sunflower hybrids in main plots and nitrogen rates in sub-plots, and replicated three times. The results showed Hysun-38 took a maximum number of days to anthesis (101) as compared to Pioneer-64A93 (100) and Hysun-33 (99). The mean values of F i were 0.850, 0.903, and 0.978, and the estimated values of RUE for total aboveground dry matter were 2.14, 2.47, and 2.65 g MJ-1 at experimental locations of Multan, Faisalabad, and Gujranwala, respectively. The values of RUE for grain yield (RUEGY) were 0.78, 0.98, and 1.26 g MJ-1 at experimental locations of Multan, Faisalabad, and Gujranwala, respectively. The average RUEGY values over three locations were 2.61, 2.60, 2.43, and 2.36 g MJ-2 in N4 (180 kg ha-1), N5 (240 kg ha-1), N3 (120 kg ha-1), and N2 (60 kg ha-1) treatments, respectively. Increasing rates of N increased RUEGY over the standard treatment N3 (120 kg N ha-1); however, the averaged values over three locations were 1.22, 1.08, 0.99, and 0.92 g MJ-2 in N4, N5, N3, and N2 treatments, respectively. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance sunflower growth and yield.

  12. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    Estimations of evapotranspiration (ET) from natural surfaces are used in a large number of applications such as agricultural water management and water resources planning. Lack of reliable, cheap and easy-to-use instruments, associated with the chaotic and varying nature of the meteorological...

  13. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment.

  14. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements

    NARCIS (Netherlands)

    Zimmermann, Andrea; Webber, Heidi; Zhao, Gang; Ewert, Frank; Kros, Hans; Wolf, Joost; Britz, Wolfgang; Vries, de Wim

    2017-01-01

    Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time

  15. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  16. Suitability of multipurpose trees, shrubs and grasses to rehabilitate gullies in the sub-humid tropics

    Science.gov (United States)

    Talema, Ayalew; Muys, Bart; Poesen, Jean; Padro, Roc; Dibaba, Hirko; Diels, Jan

    2017-04-01

    Vegetation plays a vital role for sustainable rehabilitation of degraded lands. However, the selection of suitable and effective plant species remains a long-lasting challenge in most parts of the sub-humid tropics. To address this challenge 18 multipurpose plant species (6 trees, 3 shrubs and 9 grasses), preselected from the regional species pool in Southwest Ethiopia were planted in severely degraded gullies and monitored from July 2011 to June 2014. The experiment had a split-plot design with farmyard manure (FYM) application, as main plot and plant species as sub-plot factors repeated in three blocks. The study revealed that grasses were the most successful to rehabilitate the gully within the monitoring period, compared to trees and shrubs. The survival rate of the four most successful grass species, Chrysopogon zizanioides, Pennisetum macrourum, Pennisetum polystachion and Pennisetum purpureum ranged from 61 to 90% with FYM application and from 20 to 85% without FYM, while most of the well-known indigenous and exotic trees and shrubs failed to survive. For the grass Pennisetum purpureum, shoot height, shoot and root dry biomass increased by 300%, 342% and 578% respectively due to FYM application, with a remarkably higher response to FYM compared to all the other studied species. The overall results demonstrate that severely degraded lands can be effectively restored by using early successional species such as locally adapted and selected grasses before the plantation of trees and shrubs.

  17. Controlled environment crop production - Hydroponic vs. lunar regolith

    Science.gov (United States)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  18. Genomic Selection in Multi-environment Crop Trials

    Directory of Open Access Journals (Sweden)

    Helena Oakey

    2016-05-01

    Full Text Available Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects. This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers.

  19. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley

    Science.gov (United States)

    Nema, Manish K.; Khare, Deepak; Chandniha, Surendra K.

    2017-11-01

    Estimation of evapotranspiration (ET) is an essential component of the hydrologic cycle, which is also requisite for efficient irrigation water management planning and hydro-meteorological studies at both the basin and catchment scales. There are about twenty well-established methods available for ET estimation which depends upon various meteorological parameters and assumptions. Most of these methods are physically based and need a variety of input data. The FAO-56 Penman-Monteith method (PM) for estimating reference evapotranspiration (ET0) is recommend for irrigation scheduling worldwide, because PM generally yields the best results under various climatic conditions. This study investigates the abilities of artificial neural networks (ANN) to improve the accuracy of monthly evaporation estimation in sub-humid climatic region of Dehradun. In the first part of the study, different ANN models, comprising various combinations of training function and number of neutrons were developed to estimate the ET0 and it has been compared with the Penman-Monteith (PM) ET0 as the ideal (observed) ET0. Various statistical approaches were considered to estimate the model performance, i.e. Coefficient of Correlation ( r), Sum of Squared Errors, Root Mean Square Error, Nash-Sutcliffe Efficiency Index (NSE) and Mean Absolute Error. The ANN model with Levenberg-Marquardt training algorithm, single hidden layer and nine number of neutron schema was found the best predicting capabilities for the study station with Coefficient of Correlation ( r) and NSE value of 0.996 and 0.991 for calibration period and 0.990 and 0.980 for validation period, respectively. In the subsequent part of the study, the trend analysis of ET0 time series revealed a rising trend in the month of March, and a falling trend during June to November, except August, with more than 90% significance level and the annual declining rate was found to 1.49 mm per year.

  20. The release of genetically modified crops into the environment - Part II. Overview of ecological risk assessment

    NARCIS (Netherlands)

    Conner, A.J.; Glare, T.R.; Nap, J.P.H.

    2003-01-01

    Despite numerous future promises, there is a multitude of concerns about the impact of GM crops on the environment. Key issues in the environmental assessment of GM crops are putative invasiveness, vertical or horizontal gene flow, other ecological impacts, effects on biodiversity and the impact of

  1. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Climate variability and change have been implicated to have significant impacts on global and regional food production particularly the common stable food crops performance in tropical sub-humid climatic zone. However, the extent and nature of these impacts still remain uncertain. In this study, records of crop yields and ...

  2. Matching of crop and environment for optimal water use: the case of Ethiopia

    Science.gov (United States)

    Tesfaye, K.; Walker, S.

    Water is the major limiting factor for crop production in the semi-arid regions of the world, particularly in sub-Saharan Africa where farming is predominantly subsistence. In such a system, the shortage of water for crop production results from not only scarcity of water but also mismatches between resource availability and demand. A study was conducted in Ethiopia to investigate the agroclimatic resource (particularly rainfall) of 10 stations, which are in the different ecoregions of the country, and the crop water use of three grain legume species which are traditionally grown in many parts of the country. The results showed the existence of mismatches between resource (agro-climate) and demand (crop water use) in many areas. In some areas, the crops could not utilize all the available water (e.g. Bahir Dar and Bako) whereas in others the water supply did not satisfy the water requirements of the crops (e.g. Dire Dawa and Jijiga). Bako, Awassa, Bole and Debre Zeit have high water supply suitable for long maturity crops (>150 days). Alemaya, Melkassa and Mekele have intermediate water supply which can support crops maturing within 90-120 days. Dire Dawa and Jijiga have low water supply with a growing season of less than 60 days. A crop, which best fits in a given region, does not perform well in another because of differences in rainfall distribution and amount. It was concluded that knowledge of both the growing environment and the crops inherent behaviour is crucial for efficient use of water. Therefore, recommendations for adjustment to management practices can be based on this type of crop-environment matching and thus reduce the impact of crop failure due to water shortage.

  3. Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery

    Directory of Open Access Journals (Sweden)

    Yuanwei Qin

    2016-11-01

    Full Text Available Accurately mapping the spatial distribution of forests in sub-humid to semi-arid regions over time is important for forest management but a challenging task. Relatively large uncertainties still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid regions. Numerous publications have used either optical or synthetic aperture radar (SAR remote sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma, USA, a transitional region with various climates and landscapes, using the integration of the L-band Advanced Land Observation Satellite (ALOS PALSAR Fine Beam Dual Polarization (FBD mosaic dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and 75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest products from Japan Aerospace Exploration Agency (JAXA, National Land Cover Database (NLCD, Oklahoma Ecological Systems Map (OKESM and Oklahoma Forest Resource Assessment (OKFRA, the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2, but much larger than those from JAXA (32,403 km2 and NLCD (37,628 km2. We analyzed annual forest cover dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area in 2010 and gain (3630 km2, 9.0% in southeast and central Oklahoma, and the total area of forests increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to semi-arid regions, and the resultant forest maps would be

  4. [Changes of China agricultural climate resources under the background of climate change. IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain].

    Science.gov (United States)

    Liu, Zhi-juan; Yang, Xiao-guang; Wang, Wen-feng

    2011-04-01

    Based on the 1961-2007 observation data from 66 meteorological stations in the sub-humid and warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain, this paper analyzed the spatiotemporal change characteristics of agro-climate resources for chimonophilous and thermophilic crops in the area in 1961-1980 and 1981-2007. The analyzed items included the length of temperature-defined growth season and the active accumulative temperature, sunshine hours, precipitation, reference evapotranspiration, and aridity index during the temperature-defined growth season. With climate warming, the length of temperature-defined growth season of chimonophilous and thermophilic crops in the area in 1981-2007 extended by 7. 4 d and 6. 9 d, and the > or = 0 degrees C and > or = 10 degrees C accumulative temperature increased at a rate of 4.0-137.0 and 1.0-142.0 degrees C d (10 a)(-1), respectively, compared with those in 1961-1980. The sunshine hours during the temperature-defined growth season of the crops decreased markedly; and the precipitation during the temperature-defined growing season decreased in most parts of the area, being obvious in Hebei and north Shandong Province, but increased in north Anhui and southeast Henan Province. In most parts of the area, the reference evapotranspiration of chimonophilous and thermophilic crops during their temperature-defined growth season decreased, and the aridity index increased.

  5. Partial Root-Zone Drying (PRD) Feasibility on Potato in a Sub-Humid Climate

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, C R; Liu, F

    2014-01-01

    A field experiment was carried out in Northern Italy, within the frame of the EU project SAFIR, to test the feasibility of partial root-zone drying (PRD) irrigation management in potatoes and to compare the PRD irrigation strategy with regulated deficit irrigation (RDI). PRD increased total and f...... not steadily and not sufficiently to overcome the higher irrigation system and management costs.......A field experiment was carried out in Northern Italy, within the frame of the EU project SAFIR, to test the feasibility of partial root-zone drying (PRD) irrigation management in potatoes and to compare the PRD irrigation strategy with regulated deficit irrigation (RDI). PRD increased total...... Efficiency (WUE, NUE) were similar between irrigation treatments. The income for each cubic meter of water or kg of nitrogen was highly variable and not statistically different between PRD and RDI. Crop gross margin per hectare shows a tendency to increase with PRD (average +256 euro ha-1), although...

  6. GM crops, the environment and sustainable food production.

    Science.gov (United States)

    Raven, Peter H

    2014-12-01

    Today, over 7.1 billion people rely on the earth's resources for sustenance, and nearly a billion people are malnourished, their minds and bodies unable to develop properly. Globally, population is expected to rise to more than 9 billion by 2050. Given the combined pressures of human population growth, the rapidly growing desire for increased levels of consumption, and the continued use of inappropriate technologies, it is not surprising that humans are driving organisms to extinction at an unprecedented rate. Many aspects of the sustainable functioning of the natural world are breaking down in the face of human-induced pressures including our individual and collective levels of consumption and our widespread and stubborn use of destructive technologies. Clearly, agriculture must undergo a redesign and be better and more effectively managed so as to contribute as well as possible to feeding people, while at the same time we strive to lessen the tragic loss of biodiversity and damage to all of its productive systems that the world is experiencing. For GM crops to be part of the solution, biosafety assessments should not be overly politically-driven or a burdensome impedance to delivering this technology broadly. Biosafety scientists and policy makers need to recognize the undeniable truth that inappropriate actions resulting in indecision also have negative consequences. It is no longer acceptable to delay the use of any strategy that is safe and will help us achieve the ability to feed the world's people.

  7. Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plain, Canada

    Directory of Open Access Journals (Sweden)

    R.M. Petrone

    2008-03-01

    Full Text Available In the Canadian Western Boreal Plain (WBP, wetlands (ponds and peatlands comprise up to 50% of the landscape and represent unique habitat where summer precipitation is often outpaced by evapotranspiration and hillslope groundwater position does not follow topography. In this sub-humid location, groundwater fluxes and stores in riparian peatlands influence pond water levels and root zone moisture sources for forested uplands. To accurately describe the transport and retention of water in peat, it is important to consider peat subsidence. This paper quantifies the amount and effect of seasonal subsidence in a riparian peatland in the Utikuma Lake region in north-central Alberta, Canada. Results demonstrate that the deep and poorly decomposed peat deposits are resistant to compression, and that thick (and persistent ground frost hinders pore collapse (shrinkage above the water table until late summer when the ground has thawed. Even then, subsidence is still limited to the top 50 cm and is not closely related to changes in peatland water table or pond water level. Thus the water balance of these ponds and riparian areas appears to be less sensitive to peat volume changes than it is to the persistence of a substantial frost layer well into the snow-free period.

  8. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  9. African Crop Science Journal - Vol 7, No 2 (1999)

    African Journals Online (AJOL)

    B R Ntare, F Waliyar. Heterotic responses of tetraploid and triploid plantain hybrids in southeast Nigeria under alley-cropping. V Wilson, A Tenkouano. Inheritance of male sterility in finger millet. S C Gupta. Agronomic performances, yield stability and field disease reaction of cassava genotypes in the sub-humid forest region ...

  10. Estimatation of evapotranspiration and crop coefficient of melon cultivated in protected environment

    Directory of Open Access Journals (Sweden)

    Cláudia S. Lozano

    Full Text Available ABSTRACT The objective of this work was to determine the water consumption and the crop coefficient of melon in a protected environment. The experiment was conducted in a greenhouse at the Technical Center of Irrigation of the State University of Maringá, in Maringá, PR. The melon hybrid used was Sunrise and the irrigations were performed daily by drip irrigation. Crop water requirement was quantified based on its evapotranspiration directly measured through constant water table lysimeters. Weather information was collected in an automatic weather station, installed inside the protected environment, which allowed to calculate the reference evapotranspiration by the Penman-Monteith method. The total water consumption of the melon crop was 295 mm, reaching maximum crop evapotranspiration of 5.16 mm d-1. The phenological stages were shorter in the initial, growth and intermediate phases, compared with the data from FAO. The determined crop coefficients were 0.87, 1.15 and 0.64 for the initial, intermediate and final stages, respectively

  11. A Comprehensive Characterisation of Rosemary tea Obtained from Rosmarinus officinalis L. Collected in a sub-Humid Area of Tunisia.

    Science.gov (United States)

    Achour, Mariem; Mateos, Raquel; Ben Fredj, Maha; Mtiraoui, Ali; Bravo, Laura; Saguem, Saad

    2018-01-01

    Rosemary (Rosmarinus officinalis L.) is an aromatic plant common in Tunisia and it is widely consumed as a tea in traditional cuisine and in folk medicine to treat various illnesses. Currently, most research efforts have been focused on rosemary essential oil, alcoholic and aqueous extracts, however, little is reported on rosemary infusion composition. To investigate compounds present in rosemary tea obtained from Rosmarinus officinalis L. collected in a sub-humid area of Tunisia in order to assess whether the traditional rosemary tea preparation method could be considered as a reference method for rosemary's compounds extraction. Qualitative characterisation of Rosmarinus officinalis tea obtained after rosemary infusion in boiled water was determined by high performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Quantitative analysis relies on high performance liquid chromatography with diode array detector (HPLC-DAD). Forty-nine compounds belonging to six families, namely flavonoids, phenolic acids, phenolic terpenes, jasmonate, phenolic glycosides, and lignans were identified. To the best of the authors' knowledge eucommin A is characterised for the first time in rosemary. Rosmarinic acid (158.13 μg/g dried rosemary) was the main compound followed then by feruloylnepitrin (100.87 μg/g) and luteolin-3'-O-(2″-O-acetyl)-β-d-glucuronide (44.04 μg/g). Among quantified compounds, luteolin-7-O-rutinoside was the compound with the lowest concentration. The infusion method allows several polyphenols present in rosemary tea to be extracted, therefore it could be a reference method for rosemary's compounds extraction. Moreover, traditional Tunisian Rosmarinus officinalis tea consumption is of interest for its rich phenolic content. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.

  13. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    of biosafety protocol is necessary to protect human health and environment from the possible adverse effects of the products of genetic engineering. The debate between proponents and opponents of GM technology has created major obstacles in hamessing benefits of the technology It has now become clear that transgenics willbe accepted by the public only when doubts related with general risks and environmental safety are adequately dispelled. Thus, there is need to organize public awareness and present the benefits of Bt transgenic crops to improve social attitude for their rational deployment. In this review, an attempt has been made to discuss social and environmental safety issues of Bt transgenic crops.

  14. Optimization of multi-environment trials for genomic selection based on crop models.

    Science.gov (United States)

    Rincent, R; Kuhn, E; Monod, H; Oury, F-X; Rousset, M; Allard, V; Le Gouis, J

    2017-08-01

    We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.

  15. Crop epigenetics and the molecular hardware of genotype x environment interactions

    Directory of Open Access Journals (Sweden)

    Graham John King

    2015-11-01

    Full Text Available Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalisation within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behaviour of epigenetic marks such as DNA cytosine methylation (5mC, and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localised ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involve specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the

  16. Estimation of crop water requirement for onion in Maiduguri, a semi-arid environment

    Directory of Open Access Journals (Sweden)

    M. Yaji

    2012-08-01

    Full Text Available The estimation of peak crop water requirement for matching farm sizes with available water is necessary for efficient water management. There are various methods of predicting crop water requirements ranging from those requiring several measured weather data (Penman, Jensen & Haise, and by Radiation; to those requiring single measured weather data (Blaney-Criddle and the direct evaporation from class “A” pan. Out of these methods the most suitable method for estimating the crop water requirements for onion in Maiduguri a semi arid environment was determined to be the modified Blaney-Criddle method. The method was used to estimate the peak irrigation requirement for onion and was found to be in April amounting to 67 m3/day/ha which is equivalent to 1.28 l/s/ha at 60% efficiency. This value is within the acceptable limits of 1.0-1.5 l/s/ha recommended for canal design in arid and semi-arid regions.

  17. Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment.

    Science.gov (United States)

    Gonzalez, Mariana; Miglioranza, Karina S B; Aizpún De Moreno, Julia E; Moreno, Víctor J

    2003-08-13

    Leek (Allium porrum) plants from organic farming were harvested at 15, 59, and 210 days after seed germination. Organochlorine pesticide (OCP) levels were quantified by GC-ECD in vegetative tissues (roots and aerial), bulk soil and rhizosphere. Leek plant bioaccumulate OCPs efficiently in their aerial and root tissues and alter the concentration of the soil where they are grown. OCPs distribution pattern of bulk soil was endosulfans > DDTs > dieldrin, while it was endosulfans > HCHs > DDTs in leek tissues. There were statistically significant declines in DDTs, chlordane, dieldrin, and heptachlor in the rhizosphere, indicating that recalcitrant residues of OCPs may be removed from contaminated soil using leek crops under normal growing conditions. The DDE/DDT and alpha-/gamma-HCH ratios of < 1 would indicate recent inputs of DDT and lindane in the environment. The occurrence of OCPs in this farm could be the result of atmospheric deposition and/or surface runoff of these pesticides.

  18. Impact of Climate Change on Irrigation Demand and Crop Growth in a Mediterranean Environment of Turkey

    Directory of Open Access Journals (Sweden)

    Tomokazu Haraguchi

    2007-10-01

    Full Text Available A simulation study was carried out to describe effects of climate change on cropgrowth and irrigation water demand for a wheat-maize cropping sequence in aMediterranean environment of Turkey. Climate change scenarios were projected using dataof the three general circulation models—GCMs (CGCM2, ECHAM4 and MRI—for theperiod of 1990 to 2100 and one regional climate model—RCM—for the period of 2070 to2079. Potential impacts of climate change based on GCMs data were estimated for the A2scenario in the Special Report on Emission Scenarios (SRES. The forcing data for theboundary condition of the RCM were given by the MRI model. Daily CGCM2 and RCMdata were used for computations of water balance and crop development. Predictionsderived from the models about changes in irrigation and crop growth in this study coveredthe period of 2070 to 2079 relative to the baseline period of 1994 to 2003. The effects ofclimate change on water demand and on wheat and maize yields were predicted using thedetailed crop growth subroutine of the SWAP (Soil-Water-Atmosphere-Plant model. Precipitation was projected to decrease by about 163, 163 and 105 mm during the periodof 1990 to 2100 under the A2 scenario of the CGCM2, ECHAM4 and MRI models,respectively. The CGCM2, ECHAM4 and MRI models projected a temperature rise of 4.3,5.3 and 3.1 oC, respectively by 2100. An increase in temperature may result in a higherevaporative demand of the atmosphere. However, actual evapotranspiration (ETa fromwheat cropland under a doubling CO2 concentration for the period of 2070 to 2079 wasSensors 2007, 7 2298 predicted to decrease by about 28 and 8% relative to the baseline period based on the CGCM2 and RCM data, respectively. According to these models, irrigation demand by wheat would be higher for the same period due to a decrease in precipitation. Both ETa and irrigation water for maize cropland were projected to decrease by 24 and 15

  19. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments

    Science.gov (United States)

    Bugbee, B. G.; Salisbury, F. B.

    1988-01-01

    The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20 hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment.

  20. Evaluating thermal image sharpening over irrigated crops in a desert environment

    KAUST Repository

    Rosas, Jorge

    2014-09-01

    Satellite remote sensing provides spatially and temporally distributed data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Multi-spectral platforms, including Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), acquire imagery in the visible to shortwave infrared and thermal infrared (TIR) domain at resolutions ranging from 30 to 1000 m. Land-surface temperature (LST) derived from TIR satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. As a result, several techniques for thermal sharpening have been developed. In this study, the data mining sharpener (DMS; Gao et al., 2012) technique is applied over irrigated farming areas located in harsh desert environments in Saudi Arabia. The DMS approach sharpens TIR imagery using finer resolution shortwave spectral reflectances and functional LST and reflectance relationships established using a flexible regression tree approach. In this study, the DMS is applied to Landsat 8 data (100m TIR resolution), which is scaled up to 240m, 480m, and 960m in order to assess the accuracy of the DMS technique in arid irrigated farming environments for different sharpening ratios. Furthermore, the scaling done on Landsat 8 data is consistent with the resolution of MODIS products. Potential enhancements to DMS are investigated including the use of ancillary terrain data. Finally, the impact of using sharpened LST, as input to a two-source energy balance model, on simulated ET will be evaluated. The ability to accurately monitor field-scale changes in vegetation cover, crop conditions and surface fluxes, are of main importance towards an efficient water use in areas where fresh water resources are scarce and poorly

  1. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  2. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  3. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  4. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    Science.gov (United States)

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  5. Cropping systems and control of soil erosion in a Mediterranean environment

    Science.gov (United States)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  6. Modeling the productivity of energy crops in different agro-ecological environments

    NARCIS (Netherlands)

    Jing, Q.; Conijn, J.G.; Jongschaap, R.E.E.; Bindraban, P.S.

    2012-01-01

    A relatively stable biomass productivity of perennial crop after plantation establishment makes it possible to calculate their total biomass yield through predicting the annual biomass yield. The generic model LINPAC (LINTUL model for Perennial and Annual Crops) is presented to predict annual

  7. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  8. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment

    Directory of Open Access Journals (Sweden)

    Geneille E. Greaves

    2016-11-01

    Full Text Available Crop simulation models have a pivotal role to play in evaluating irrigation management strategies for improving agricultural water use. The objective of this study was to test and validate the AquaCrop model for maize under deficit irrigation management. Field observations from three experiments consisting of four treatments were used to evaluate model performance in simulating canopy cover (CC, biomass (B, yield (Y, crop evapotranspiration (ETc, and water use efficiency (WUE. Statistics for root mean square error, model efficiency (E, and index of agreement for B and CC suggest that the model prediction is good under non-stressed and moderate stress environments. Prediction of final B and Y under these conditions was acceptable, as indicated by the high coefficient of determination and deviations <10%. In severely stressed conditions, low E and deviations >11% for B and 9% for Y indicate a reduction in the model reliability. Simulated ETc and WUE deviation from observed values were within the range of 9.5% to 22.2% and 6.0% to 32.2%, respectively, suggesting that AquaCrop prediction of these variables is fair, becoming unsatisfactory as plant water stress intensifies. AquaCrop can be reliably used for evaluating the effectiveness of proposed irrigation management strategies for maize; however, the limitations should be kept in mind when interpreting the results in severely stressed conditions.

  9. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  10. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Khaldoun Rishmawi

    2016-11-01

    Full Text Available In water limited environments precipitation is often considered the key factor influencing vegetation growth and rates of development. However; other climate variables including temperature; humidity; the frequency and intensity of precipitation events are also known to affect productivity; either directly by changing photosynthesis and transpiration rates or indirectly by influencing water availability and plant physiology. The aim here is to quantify the spatiotemporal patterns of vegetation responses to precipitation and to additional; relevant; meteorological variables. First; an empirical; statistical analysis of the relationship between precipitation and the additional meteorological variables and a proxy of vegetation productivity (the Normalized Difference Vegetation Index; NDVI is reported and; second; a process-oriented modeling approach to explore the hydrologic and biophysical mechanisms to which the significant empirical relationships might be attributed. The analysis was conducted in Sub-Saharan Africa; between 5 and 18°N; for a 25-year period 1982–2006; and used a new quasi-daily Advanced Very High Resolution Radiometer (AVHRR dataset. The results suggest that vegetation; particularly in the wetter areas; does not always respond directly and proportionately to precipitation variation; either because of the non-linearity of soil moisture recharge in response to increases in precipitation; or because variations in temperature and humidity attenuate the vegetation responses to changes in water availability. We also find that productivity; independent of changes in total precipitation; is responsive to intra-annual precipitation variation. A significant consequence is that the degree of correlation of all the meteorological variables with productivity varies geographically; so no one formulation is adequate for the entire region. Put together; these results demonstrate that vegetation responses to meteorological variation are more

  11. Genotypic and symbiotic diversity of Rhizobium populations associated with cultivated lentil and pea in sub-humid and semi-arid regions of Eastern Algeria.

    Science.gov (United States)

    Riah, Nassira; Béna, Gilles; Djekoun, Abdelhamid; Heulin, Karine; de Lajudie, Philippe; Laguerre, Gisèle

    2014-07-01

    The genetic structure of rhizobia nodulating pea and lentil in Algeria, Northern Africa was determined. A total of 237 isolates were obtained from root nodules collected on lentil (Lens culinaris), proteaginous and forage pea (Pisum sativum) growing in two eco-climatic zones, sub-humid and semi-arid, in Eastern Algeria. They were characterised by PCR-restriction fragment length polymorphism (RFLP) of the 16S-23S rRNA intergenic region (IGS), and the nodD-F symbiotic region. The combination of these haplotypes allowed the isolates to be clustered into 26 distinct genotypes, and all isolates were classified as Rhizobium leguminosarum. Symbiotic marker variation (nodD-F) was low but with the predominance of one nod haplotype (g), which had been recovered previously at a high frequency in Europe. Sequence analysis of the IGS further confirmed its high variability in the studied strains. An AMOVA analysis showed highly significant differentiation in the IGS haplotype distribution between populations from both eco-climatic zones. This differentiation was reflected by differences in dominant genotype frequencies. Conversely, no host plant effect was detected. The nodD gene sequence-based phylogeny suggested that symbiotic gene diversity in pea and lentil nodulating rhizobial populations in Algeria was low compared to that reported elsewhere in the world. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    DEFF Research Database (Denmark)

    Webber, Heidi; White, Jeffrey W; Kimball, Bruce

    2018-01-01

    Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies...... to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences...... between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions....

  13. Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic mulch conditions in arid environment

    DEFF Research Database (Denmark)

    Ai, Zhipin; Yang, Yonghui; Wang, Qinxue

    2017-01-01

    was satisfactorily validated and can be used in other studies under the same or similar pedo-climatic and management conditions. Cotton LAI and ESW were found to be important factors influencing Kc, particularly their critical values of 3.0 in LAI and 0.5 for ESW. Moreover, the results showed that irrigation...... agronomy practice such as plastic mulching and drip irrigation in arid environments. This study calculated and analyzed Kc of a drip-irrigated and plastic-mulched cotton field in Aksu Oasis of the arid Tarim River Basin, China, and its relationships with several crop-, soil- and management variables...... significantly increased Kc, i.e., 29% on average, partly due to arid advection. This study provided up-to-date and detailed information on cotton crop coefficient under plastic mulching and drip irrigation conditions in arid environment, and it is useful for improved management of agricultural water resources....

  14. Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment

    Directory of Open Access Journals (Sweden)

    Timothy S. George

    2014-05-01

    Full Text Available Unsustainable agronomic practices and environmental change necessitate a revolution in agricultural production to ensure food security. A new generation of crops that yield more with fewer inputs and are adapted to more variable environments is needed. However, major changes in breeding programmes may be required to achieve this goal. By using the genetic variation in crop yield in specific target environments that vary in soil type, soil management, nutrient inputs and environmental stresses, robust traits suited to specific conditions can be identified. It is here that long-term experimental platforms and field phenotyping have an important role to play. In this review, we will provide information about some of the field-based platforms available and the cutting edge phenotyping systems at our disposal. We will also identify gaps in our field phenotyping resources that should be filled. We will go on to review the challenges in producing crop ideotypes for the dominant management systems for which we need sustainable solutions, and we discuss the potential impact of three-way interactions between genetics, environment and management. Finally, we will discuss the role that modelling can play in allowing us to fast-track some of these processes to allow us to make rapid gains in agricultural sustainability.

  15. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments

    Science.gov (United States)

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  16. Irrigation treatments, water use efficiency and crop sustainability in cereal-forage rotations in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2012-10-01

    Full Text Available Agricultural systems based on crop rotation are beneficial to crop sustainability and productivity. Wheat-forage rotations combined with irrigation are the agronomic techniques best able to exploit Mediterranean environmental conditions. This paper describes a long-term field trial to ascertain the effect of combined irrigation and durum wheat-forage rotations on crop yield and soil chemical properties. The two forage crops: annual grass-clover winter binary mixture and perennial lucerne were carried out through 1991-2008 under rainfed and irrigated treatments. The experiments were used to highlight the effect of irrigation and wheat-forage crop rotations on water use efficiency (WUE and sustainability of organic matter (OM in topsoil. Irrigation increased the dry matter (DM of annual binary mixture and lucerne by 49.1% and 66.9%, respectively. Continuous wheat rotation reduced seed yield (SY, stability of production, and crude protein (CP characteristics of kernel and OM in topsoil. The yearly gain in wheat after forage crops was 0.04 t (ha yr-1 under rainfed and 0.07 t (ha yr-1 under irrigation treatments. The CP and soil OM of wheat forage crops rotations, compared with those of continuous wheat under rainfed and irrigated was a 0.8 and 0.5 % increase in CP and 5.1 and 4.4 in OM, respectively. The rotations of annual grass-clover winter binary mixture and lucerne meadow under both irrigated treatments increased the OM over continuous wheat (9.3 % and 8.5 in annual grass-clover winter binary mixture and 12.5 and 9.5 lucerne meadow under rainfed and irrigation, respectively. Irrigation reduced the impact of weather on crop growing, reducing water use efficiency (mean over rotations for DM production (15.5 in meadow and 17.5 in annual grass-clover winter binary mixture [L water (kg DM-1] and wheat SY. However, the agronomic benefits achieved by forage crops in topsoil are exhausted after three years of continuous wheat rotation.

  17. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.

    Science.gov (United States)

    Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti

    2014-10-01

    Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.

  18. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Directory of Open Access Journals (Sweden)

    Pierre Casadebaig

    Full Text Available A crop can be viewed as a complex system with outputs (e.g. yield that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background. The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90 was evaluated in a wide target population of environments (4 sites × 125 years, management practices (3 sowing dates × 3 nitrogen fertilization levels and CO2 (2 levels. The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total. The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear and interaction (i.e. non-linear and interaction sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model improvement.

  19. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    Science.gov (United States)

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  20. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Science.gov (United States)

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  1. Accuracy of an anaemia scoring chart applied on goats in sub-humid Kenya and its potential for control of Haemonchus contortus infections.

    Science.gov (United States)

    Ejlertsen, M; Githigia, S M; Otieno, R O; Thamsborg, S M

    2006-11-05

    We tested the practical application of an anaemia scoring chart (the FAMACHA chart) as a method for controlling Haemonchus contortus in goats kept under smallholder conditions in a sub-humid area of Central Kenya. The objectives were: (1) to test the accuracy of the FAMACHA chart in identifying anaemic goats (PCVFAMACHA group (F1 (n=34) and F2 (n=31) on farms 1 and 2, respectively) and a control group (C1 (n=34) and C2 (n=30)). In F1 and F2 goats with a FAMACHA score of 3, 4 or 5 were treated with anthelmintic after scoring. In C1 and C2 goats were treated every 4 weeks from 15 February to 20 July. Every 2 weeks all goats were scored with the FAMACHA chart and weighed. Furthermore, faecal samples were collected for faecal egg counts (FEC) and blood samples were collected for packed cell volume (PCV) determination. H. contortus was found to be the predominant nematode on both farms. The mean FECs were higher on farm 1 compared to farm 2, while in contrast the mean PCV levels were lowest on farm 2. The latter was most likely due to the presence of Fasciola spp., flea and tick infections on farm 2. The accuracy of the chart was evaluated by using PCV as the gold standard for anaemia (PCVFAMACHA chart can be a valuable tool for decision-making in control of H. contortus in goats kept under smallholder conditions, without morbidity or mortality unacceptable to the farmer. The application may further reduce the risk of development of anthelmintic resistance by increasing refugia. However, caution should be taken under conditions where other anaemia-causing parasites are present (e.g. Fasciola spp. and ecto-parasites), since this possibly decreases the accuracy of the FAMACHA chart.

  2. Processes and factors controlling N{sub 2}O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ju Xiaotang; Lu Xing [Key Laboratory of Plant Nutrition, Chinese Ministry of Agriculture, and College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193 (China); Gao Zhiling [College of Agricultural Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001 (China); Chen Xinping; Su Fang [Key Laboratory of Plant Nutrition, Chinese Ministry of Agriculture, and College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193 (China); Kogge, Martin; Roemheld, Volker [Institute for Plant Nutrition, University of Hohenheim, Stuttgart 70599 (Germany); Christie, Peter [Key Laboratory of Plant Nutrition, Chinese Ministry of Agriculture, and College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193 (China); Agri-Environment Branch, Agri-Food and Biosciences Institute, BelfastBT9 5PX (United Kingdom); Zhang Fusuo, E-mail: zhangfs@cau.edu.cn [Key Laboratory of Plant Nutrition, Chinese Ministry of Agriculture, and College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193 (China)

    2011-04-15

    An automated system for continuous measurement of N{sub 2}O fluxes on an hourly basis was employed to study N{sub 2}O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N{sub 2}O emissions occurred mainly within two weeks of application of NH{sub 4}{sup +}-based fertilizer and total N{sub 2}O emissions in wheat (average 0.35 or 0.21 kg N ha{sup -1} season{sup -1}) and maize (average 1.47 or 0.49 kg N ha{sup -1} season{sup -1}) under conventional and optimum N fertilization (300 and 50-122 kg N ha{sup -1}, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N{sub 2}O was produced mainly from nitrification of NH{sub 4}{sup +}-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N{sub 2}O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH{sub 4}{sup +}- to NO{sub 3}{sup -}-based fertilizers. - Research highlights: > N{sub 2}O was produced mainly from nitrification of NH{sub 4}{sup +} based fertilizers. > Denitrification played minor role on N{sub 2}O emission due to C and soil moisture limitation. > Using NO{sub 3}{sup -} base fertilizer or NI is an effective way to reduce N{sub 2}O emission. - Nitrification of NH{sub 4}{sup +}-based fertilizer is the main N{sub 2}O production process with little denitrification due to limited readily oxidizable carbon and low soil moisture.

  3. QTL-based physiological modelling of leaf photosynthesis and crop productivity of rice (Oryza sativa L.) under well-watered and drought environments

    NARCIS (Netherlands)

    Gu, J.

    2013-01-01

    Key words: Drought, ecophysiological crop modelling, GECROS, genotype, G×E interaction, modelling, Oryza sativa L., photosynthesis, quantitative trait locus, rice.   Improving grain yield of rice (Oryza sativa L.) crop for both favourable and stressful environments is the main breeding

  4. Integrated soil and plant phosphorus management for crop and environment in China

    NARCIS (Netherlands)

    Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; Jiang, R.; Zhang, F.

    2011-01-01

    Crop production in China has been greatly improved by increasing phosphorus (P) fertilizer input, but overuse of P by farmers has caused low use efficiency, increasing environmental risk and accumulation of P in soil. From 1980 to 2007, average 242 kg P ha-1 accumulated in soil, resulting in average

  5. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    Science.gov (United States)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  6. Improving water use efficiency of wheat (triticum aestivum l. Giza 168) crop using 15N tracer technique under Egyptian environment

    Science.gov (United States)

    Refaie Emara, Eman Ibrahim; Hamed, Lamy Mamdoh Mohamed; Bocchi, Stefano; Galal, Yehia

    2015-04-01

    The Mediterranean environment is characterized by low and erratic rainfall amount which varies between (200-600 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency. In this context, two field experiments were carried out in northern Cairo-Egypt, during November and December 2012 and April 2013, with two different textured soils. The soil in the first location (30° 16' N latitude, 30° 56' E longitude) is clay soil, while in the second one (30° 24' N latitude, 31° 35' E longitude) is sandy soil. The interaction effect of soil types, soil water regimes, nitrogen fertilizer application rates and timing on nitrogen balance of soil were studied, in terms of nitrogen gained by plant portions, remained in soil and losses through different ways for the wheat crop (Triticum aestivum L. Giza 168). The aim of this research is to increase the water use efficiency of wheat crop, in addition to identify the most proper and effective combinations of above-studied variables that provide a satisfactory grain wheat yield and finally to minimize the use of chemical nitrogen fertilizers. Three water regimes (100%, 75% and 50% of crop water requirements) using drip irrigation system and the application methods of Nitrogen rates, 100%, 80% and 60% of recommended rates, which are 178 Kg of Nitrogen for the clay soil and 238 Kg of Nitrogen for sandy soil, were applied to the two experimental fields. Ineed, two modes of agricultural management, mode A and B, were applied. Each mode is different than the other in terms of seedling and tillering practices, where mode A performed with 25% at seedling, 25% at tillering and 50% at jointing while mode B performed with 35% at seedling and 65% at tillering. The greatest limitation to growth and Nitrogen use efficiency was the amount

  7. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and

  8. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Directory of Open Access Journals (Sweden)

    Ramalingam Radhakrishnan

    2017-09-01

    Full Text Available Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport

  9. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and

  10. Zearalenone contamination of the aquatic environment as a result of its presence in crops.

    Science.gov (United States)

    Waśkiewicz, Agnieszka; Gromadzka, Karolina; Bocianowski, Jan; Pluta, Paulina; Goliński, Piotr

    2012-12-01

    The aim of this study was to establish a relation between zearalenone contamination of crops in the Polish province of Wielkopolska and its occurrence in aquatic ecosystems close by the crop fields. Water samples were collected from water bodies such as drainage ditches, wells, or watercourses located in four agricultural areas. Moreover, control water samples were collected from the Bogdanka river, which was located outside the agricultural areas and near an urban area. Cereal samples were collected in the harvest season from each agricultural area close to tested water bodies. Zearalenone (ZEA) was found in all water and cereal samples. The highest concentrations were recorded in the postharvest season (September to October) and the lowest in the winter and spring. Mean ZEA concentrations in water ranged between 1.0 ng L(-1) and 80.6 ng L(-1), and in cereals from 3.72 ng g(-1) to 28.97 ng g(-1). Our results confirm that mycotoxins are transported to aquatic systems by rain water through soil.

  11. Soil Compressibility under Irrigated Perennial and Annual Crops in a Semi-Arid Environment

    Directory of Open Access Journals (Sweden)

    Rafaela Watanabe

    Full Text Available ABSTRACT In irrigated soils, a continuous state of high moisture reduces resistance of the soil to applied external forces, favouring compaction. The aim of this study was to evaluate the susceptibility to compaction of developed calcareous soils in irrigated annual and perennial cropping systems of the Apodi Plateau, located in the Brazilian semi-arid region. Four areas of irrigated crops were evaluated: banana after two (B2 and 15 (B15 years cultivation, pasture (P, and a corn and beans succession (MB, as well as the reference areas for soil quality and corresponding natural vegetation (NVB2, NVB15, NVP and NVMB. Samples were collected at layers of 0.00-0.10 and 0.20-0.30 m; and for B2 and B15, samples were collected in the row and inter-row spaces. The following properties were determined: degree of compactness (DC, preconsolidation pressure (σp, compression index (Cc, maximum density (ρmax, critical water content (WCcrit, total organic carbon (TOC and carbon of light organic matter (Clom. Mean values were compared by the t-test at 5, 10, 15 and 20 % probability. An increase was seen in DC at a layer of 0.20-0.30 m in MB (p<0.15, showing the deleterious effects of preparing the soil by ploughing and chiselling, together with the cumulative traffic of heavy machinery. The TOC had a greater influence on ρmax than the stocks of Clom. Irrigation caused a reduction in Cc, and there was no effect on σp at field capacity. The planting rows showed different behaviour for Cc, ρmax, and WCcrit,, and in general the physical properties displayed better conditions than the inter-row spaces. Values for σp and Cc showed that agricultural soils display greater load-bearing capacity and are less susceptible to compaction in relation to soils under natural vegetation.

  12. Biomass and genotype × environment interactions of Populus energy crops in the midwestern United States

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Richard B. Hall; Jill A. Zalesny; Bernard G. McMahon; William E. Berguson; Glen R. Stanosz

    2009-01-01

    Using Populus feedstocks for biofuels, bioenergy, and bioproducts is becoming economically feasible as global fossil fuel prices increase. Maximizing Populus biomass production across regional landscapes largely depends on understanding genotype × environment interactions, given broad genetic variation at strategic (...

  13. Assessing the Influence of Summer Organic Fertilization Combined with Nitrogen Inhibitor on a Short Rotation Woody Crop in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Anita Maienza

    2014-01-01

    Full Text Available The European Union Directive 91/676/EEC, known as Nitrates Directive, has dictated basic agronomic principles regarding the use of animal manure source as well as livestock and waste waters from small food companies. The use of nitrification inhibitors together with animal effluents as organic fertilizers could be beneficial for nutrient recycling, plant productivity, and greenhouse gas emission and could offer economic advantages as alternative to conventional fertilizers especially in the Mediterranean region. The aim of the present study was to investigate differences in plant productivity between bovine effluent treatments with (or without addition of a nitrification inhibitor (3,4 DMPP in a short rotation woody crop system. Results of the field experiment carried out in a Mediterranean dry environment indicated that the proposed strategy could improve tree growth with indirect, beneficial effects for agroforestry systems.

  14. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    Science.gov (United States)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    hypothesis: what may benefit the human system (farms, refineries, cities) may damage the environment. The hydrological and optimization models will be run interactively, with the optimization model run for 10 years and the resulting land use solution then used in the SWAT hydrologic model to provide more detailed information on river/ecosystem impacts, which are assessed using low flow analysis. Problem areas highlighted by this analysis can be targeted by implementing flow requirements at different locations in the watershed; these constraints are then added to the optimization model which is run for another 10 years, and the new solution again analyzed in more detail to assess the effectiveness of the imposed environmental measures. Preliminary results show that under proposed subsidies and current crop prices, the percentage of land planted with Miscanthus will increase to environmentally unsustainable levels, but that implementing flow and water quality constraints can mitigate the damage to some extent. Moreover, tributary and mainstem subwatersheds in the Sangamon do not respond equally, even in this very homogenous region, and thus the spatial context is important for understanding the tradeoffs between economic and hydrologic benefits, which become increasingly important in creating sustainable biofuel production.

  15. The effect of managing improved fallows of Mucuna pruriens on maize production and soil carbon and nitrogen dynamics in sub-humid Zimbabwe

    NARCIS (Netherlands)

    Whitbread, A.M.; Jiri, O.; Maasdorp, B.

    2004-01-01

    Mucuna pruriens has emerged as a successful forage or green manure legume for use in the smallholder animal-livestock systems of Zimbabwe. The efficiency of N recovery from mucuna residues in subsequent maize crops can be low and the loss of nitrate nitrogen from the soil profile prior to maize N

  16. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments

    Directory of Open Access Journals (Sweden)

    Mariela Torres

    2017-10-01

    Full Text Available Olive (Olea europaea L. is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a chilling requirements for flowering, (b water requirements and irrigation management, and (c environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil

  17. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments.

    Science.gov (United States)

    Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián

    2017-01-01

    Olive (Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration

  18. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments

    Science.gov (United States)

    Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M. Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián

    2017-01-01

    Olive (Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration

  19. Using fitness parameters to evaluate three oilseed Brassicaceae species as potential oil crops in two contrasting environments

    Science.gov (United States)

    Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...

  20. The release of genetically modified crops into the environment - Part I. Overview of current status and regulations

    NARCIS (Netherlands)

    Nap, J.P.H.; Metz, P.L.J.; Escaler, M.; Conner, A.J.

    2003-01-01

    In the past 6 years, the global area of commercially grown, genetically modified (GM) crops has increased more than 30-fold to over 52 million hectares. The number of countries involved has more than doubled. Especially in developing countries, the GM crop area is anticipated to increase rapidly in

  1. Climate change and crop wild relatives: can species track their suitable environment and what do they lose in the process

    NARCIS (Netherlands)

    Cobben, M.M.P.; Treuren, van R.; Hintum, van T.J.L.

    2013-01-01

    Crop wild relatives are an increasingly important source of plant genetic resources for plant breeders. Several studies have estimated the effects of climate change on the distribution of crop wild relatives, using species distribution models. In this approach, two important aspects, i.e. species'

  2. Engineering food crops to grow in harsh environments [v1; ref status: indexed, http://f1000r.es/5f1

    Directory of Open Access Journals (Sweden)

    Damar López-Arredondo

    2015-09-01

    Full Text Available Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

  3. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2017-04-01

    Full Text Available Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L. Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement.Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  4. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.

    Science.gov (United States)

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  5. Hydrologic and Erosional Response to Natural Rainfall and Effects of Conservation and Rehabilitation Measures in a Degraded Dry Sub-Humid Watershed of the Ethiopian Highlands

    Science.gov (United States)

    McHugh, O. V.; Liu, B. M.; Steenhuis, T. S.

    2005-12-01

    A good understanding of runoff and erosion under actual field conditions is essential for effective planning of land conservation in the Ethiopian highlands. Hydrologic and sediment yield response to natural rainfall was measured during 3 rainy seasons (2003-2004) at plot and catchment scales with and without conservation practices. Results show that as expected surface runoff generation and erosion rates are significantly influenced by rainfall intensity, land use, scale of measurement, land slope, and the presence or not of conservation measures. Seasonal runoff coefficient and sediment yield were significantly better correlated to number of storms with high 30-minute maximum rainfall intensity (I30 > 20 mm h-1) than to total seasonal rainfall depth. Under conventional management systems cropland on slopes greater than 3 % generated significantly more (over twice) surface runoff and sediment yield compared with shrub and open forest grazing land on steep slopes (34 %). Plot measured surface runoff coefficients (for crop and grazing land uses which cover over 90 % of the catchment area) exceeded total catchment streamflow discharge demonstrating a scale effect. The observed scale effect, a stronger correlation of runoff with maximum rainfall intensity than rainfall depth and average rainfall intensity, and observed significant increases in runoff with steeper land slopes indicate that Hortonian overland flow is the primary runoff generation mechanism in the study zone. Concerning slope effects, cropland on mild slopes produced relatively low seasonal sediment yields (land preparation practice. However, sediment yield was drastically high (up to 35 t ha-1) on steep slopes (9 -11 %) especially during seasons with several high intensity rainfall events. The community protected open forest grazing area soil loss was low at sustainable levels (land exceeded sustainable soil loss rates (7.4 t ha-1 season-1) during a season with high intensity rainfall. Gully

  6. Crop-water-environment models; selected papers to the workshop organized by the ICID Working Group on `Sustainable Crops and Water Use' at the occasion of the 16th Congress of the International Commission on Irrigation and Drainage at Cairo, Egypt

    NARCIS (Netherlands)

    Ragab, R.; El-Din El-Quosy, D.; Broek, van den B.J.; Pereira, L.S.

    1996-01-01

    The main aim of this workshop was to bring individuals and organizations together who contribute to the development and upgrading of crop-water-environment models. Twenty-four model papers were presented in three sessions: pesticides and nitrates, salinity, and crop water balance. Each presentation

  7. Integrated crop protection and environment exposure to pesticides: methods to reduce use and impact of pesticides in arable farming

    NARCIS (Netherlands)

    Wijnands, F.G.

    1997-01-01

    Prototypes of Integrated Farming Systems for arable farming are being developed in the Netherlands based on a coherent methodology elaborated in an European Union concerted action. The role of crop protection in Integrated systems is, additional to all other methods, to efficiently control the

  8. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  9. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  10. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kiyotada, E-mail: hayashi@affrc.go.jp [Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Nagumo, Yoshifumi [Crop Research Center, Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata 940-0826 (Japan); Domoto, Akiko [Mie Prefecture Agricultural Research Institute, 530 Kawakita-cho, Ureshino, Matsusaka, Mie 515-2316 (Japan)

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  11. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Meier

    2016-07-01

    Full Text Available The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1 reduce emissions (e.g. those that reduce nitrous oxide (N2O emissions by avoiding excess nitrogen (N fertilizer application, and (2 increase soil organic carbon (SOC stocks (e.g. by retaining instead of burning crop residues. Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’. Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location  soil  fertilizer  trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 yr after trash blanketing commenced. After this period, there was potential to

  12. 13th IUPAC International Congress of Pesticide Chemistry: Crop, Environment, and Public Health Protection, Technologies for a Changing World.

    Science.gov (United States)

    McConnell, Laura L; Racke, Kenneth D; Hapeman, Cathleen J; Seiber, James N

    2016-01-13

    This introductory paper provides an overview of Perspectives papers written by plenary speakers from the 13th IUPAC International Congress of Pesticide Chemistry held in San Francisco, CA, USA, in August 2014. This group of papers emphasizes some of the emerging issues and challenges at the forefront of agricultural research: sustainability; agriculture's response to climate change and population growth; pollinator health and risk assessment; and global food production and food security. In addition, as part of the Congress, a workshop on "Developing Global Leaders for Research, Regulation, and Stewardship of Crop Protection Chemistry in the 21st Century" identified specific recommendations to attract the best scientists to agricultural science, to provide opportunities to study and conduct research on crop protection chemistry topics, and to improve science communication skills.

  13. Ecological and agriculture impacts of bakery yeast wastewater use on weed communities and crops in an arid environment.

    Science.gov (United States)

    Abu-Dieyeh, Mohammed H; Diab, Mahmoud; Al-Ghouti, Mohammad A

    2017-06-01

    The goal of this study was to evaluate the impact of using yeast wastewater (YW) on weed communities. The study showed that all ecological parameters including species richness, dispersion, density, frequency, and % of vegetation cover were significantly increased in the site irrigated with YW compared to a natural rain fed site and another site irrigated with fresh water. The vegetation cover (%) was significantly increased by 2-folds in the site irrigated with YW (52%) than the one irrigated with fresh water (27%). Species richness increases to 23 in the site irrigated with yeast wastewater compared to 12 species in natural rain fed site and 7 species in areas irrigated with fresh water. The 10 studied weed species germinated better at 10 and 20% dilutions of baker's YW. However, only five species achieved few germination (3-25%) at 50% of YW and the two species Sisymbrim irio and Cardariia droba achieved (6-13%) germination using 100% YW. No germination occurred for the crop seeds (tomato, squash, lentil, and barley) at 50 and 100% YW. For tomato, 10 and 20% of YW achieved better germination (82 and 63%, respectively) than the seeds of other species, followed by barley with 80 and 53% of germination. Squash showed the lowest germination percentage with 59 and 42% at 10 and 20% of YW, respectively. Yeast wastewater seems to be crop specific and can affect weed species composition and relative abundances and care should be taken before using the effluent for irrigation of tree plantations and crops.

  14. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment.

    Science.gov (United States)

    Zhang, Ge; Wen, Yangping; Guo, Chaoqun; Xu, Jingkun; Lu, Baoyang; Duan, Xuemin; He, Haohua; Yang, Jun

    2013-12-17

    A highly selective and sensitive fluorescent chemosensor suitable for practical measurement of palladium ion (Pd(2+)) in agricultural crops and environment samples has been successfully fabricated using polybenzanthrone (PBA). PBA was facilely electrosynthesized in the mixed electrolyte of acetonitrile and boron trifluoride diethyl etherate. The fluorescence intensity of PBA showed a linear response to Pd(2+) in the concentration range of 5 nM-0.12 mM with a detection limit of 0.277 nM and quantification limit of 0.925 nM. Different compounds existing in agricultural crops and environment such as common metal ions, anions, natural amino acids, carbohydrates, and organic acids were used to examine the selectivity of the as-fabricated sensor, and no obvious fluorescence change could be observed in these interferents and their mixtures. A possible mechanism was proposed that the coordination of PBA and Pd(2+) enhance the aggregation of polymer chains, which led to a significant quenching of PBA emission, and this was further confirmed by absorption spectra monitoring and transmission electron microscopy. The excellent performance of the proposed sensor and satisfactory results of the Pd(2+) determination in practical samples suggested that the PBA-based fluorescent sensor for the determination of Pd(2+) will be a good candidate for application in agriculture and environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    Science.gov (United States)

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    Science.gov (United States)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  17. Modeling the exposure of children and adults via diet to chemicals in the environment with crop-specific models

    Energy Technology Data Exchange (ETDEWEB)

    Legind, Charlotte N. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, 2800 Kongens Lyngby (Denmark); Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Hojbakkegard Alle 13, 2630 Taastrup (Denmark); Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, 4000 Roskilde (Denmark)], E-mail: cnl@env.dtu.dk; Trapp, Stefan [Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, 2800 Kongens Lyngby (Denmark)

    2009-03-15

    Exposure to chemicals via diet is a major uptake pathway for many compounds but is often estimated in a rather generic way. We use a new model framework (NMF) with crop-specific models to predict the dietary intake by 4-5-year-old children and 14-75-year-old women of three environmental compounds from their background concentrations in soil and air. Calculated daily intakes of benzo(a)pyrene and 2,3,7,8-TCDD are in good agreement with measured results from diet studies. The major source of both compounds in human diet is deposition from air. Inhalation of air and ingestion of soil play a minor role. Children take up more than twice the amount than adults per kg bodyweight, due to higher consumption per kg bodyweight. Contrary, the methods for indirect human exposure suggested in the Technical Guidance Document (TGD) for chemical risk assessment in the EU lead to overprediction, due to unrealistic consumption data and a false root model. - This paper addresses exposure of children and adults to environmental chemicals via the terrestrial food chain using crop-specific plant uptake models.

  18. Understanding the impact of crop and food production on the water environment--using sugar as a model.

    Science.gov (United States)

    Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze-Aurich, Jochen

    2014-01-15

    The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops. © 2013 Society of Chemical Industry.

  19. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  20. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Lucía Quebrajo

    2015-03-01

    Full Text Available Regardless of the crop production system, nutrients inputs must be controlled at or below a certain economic threshold to achieve an acceptable level of profitability. The use of management zones and variable-rate fertilizer applications is gaining popularity in precision agriculture. Many researchers have evaluated the application of final yield maps and geo-referenced geophysical measurements (e.g., apparent soil electrical conductivity-ECa as a method of establishing relatively homogeneous management zones within the same plot. Yield estimation models based on crop conditions at certain growth stages, soil nutrient statuses, agronomic factors, moisture statuses, and weed/pest pressures are a primary goal in precision agriculture. This study attempted to achieve the following objectives: (1 to investigate the potential for predicting winter wheat yields using vegetation measurements (the Normalized Difference Vegetation Index—NDVI at the beginning of the season, thereby allowing for a yield response to nitrogen (N fertilizer; and (2 evaluate the feasibility of using inexpensive optical sensor measurements in a Mediterranean environment. A field experiment was conducted in two commercial wheat fields near Seville, in southwestern Spain. Yield data were collected at harvest using a yield monitoring system (RDS Ceres II-volumetric meter installed on a combine. Wheat yield and NDVI values of 3498 ± 481 kg ha−1 and 0.67 ± 0.04 nm nm−1 (field 1 and 3221 ± 531 kg ha−1 and 0.68 ± 0.05 nm nm−1 (field 2 were obtained. In both fields, the yield and NDVI exhibited a strong Pearson correlation, with rxy = 0.64 and p < 10−4 in field 1 and rxy = 0.78 and p < 10−4 in field 2. The preliminary results indicate that hand-held crop sensor-based N management can be applied to wheat production in Spain and has the potential to increase agronomic N-use efficiency on a long-term basis.

  1. Phenology of Migration and Decline in Colony Numbers and Crop Hosts of Giant Honeybee (Apis dorsata F. in Semiarid Environment of Northwest India

    Directory of Open Access Journals (Sweden)

    Ram Chander Sihag

    2014-01-01

    Full Text Available The colonies of the giant honeybee (Apis dorsata immigrate in the semiarid environment of Northwest India in October-November with the onset of flowering on pigeon pea (Cajanus cajan/toria (Brassica campestris var. toria, stay here during the rich pollen and nectar flow period from December to mid-May, and emigrate in late May/early June when floral dearth is witnessed. This honeybee was free from any conspicuous viral, bacterial, and fungal diseases and also did not have any serious predators and enemies. However, about 20 percent of the old colonies were infested with Tropilaelaps clareae and 100 percent of the old colonies with Galleria mellonella; none of the swarm colonies had these pests. While the migration schedule of this honeybee remained similar year after year, the number of colonies immigrating in this region declined markedly over the years; the number in 2012 was even less than half of that recorded in 1984. During its stay in this region, this honeybee acted as an important pollinator of more than 30 crop plants of this region. The causes of seasonal migration and decline in the number of colonies of this honeybee and its importance in crop pollination have been discussed.

  2. Nurse crop

    Science.gov (United States)

    Wayne D. Shepperd; John R. Jones

    1985-01-01

    In forestry, a nurse crop generally is a crop of trees or shrubs that fosters the development of another tree species, usually by protecting the second species, during its youth, from frost, insolation, or wind (Ford-Robertson 1971). Aspen may be a nurse crop for shade-tolerant tree species that do not become established in full sunlight (e.g., Engelmann spruce)....

  3. Cover crops support ecological intensification of arable cropping systems.

    Science.gov (United States)

    Wittwer, Raphaël A; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G A

    2017-02-03

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  4. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  5. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

    Science.gov (United States)

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Zahir, Zahir Ahmad; Javaid, Arshad; Ashraf, Muhammad

    2014-01-01

    Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for

  6. Agronomical evaluation and chemical characterization of Linum usitatissimum L. as oilseed crop for bio-based products in two environments of Central and Northern Italy

    Directory of Open Access Journals (Sweden)

    Silvia Tavarini

    2016-06-01

    Full Text Available In the recent years, new perspectives for linseed (Linum usitatissimum L. are open as renewable raw material for bio-based products (Bb, due to its oil composition, and the interesting amounts of coproducts (lignocellulosic biomass. Therefore, the possibility to introduce linseed crop in two environments of central and northern Italy, traditionally devoted to cereal cultivation, has been evaluated. Twoyears field trials were carried out in the coastal plain of Pisa (Tuscany region and in the Po valley (Bologna, Emilia Romagna region, comparing two linseed varieties (Sideral and Buenos Aires. Agronomical evaluation (yield and yield components, seed and oil characterization (oil, protein content, and fatty acid composition, together with carbon (C and nitrogen (N content of the residual lignocellulosic biomass were investigated. The two varieties, grown as autumn crop, showed a different percentage of plant survival at the end of winter, with Sideral most resistant to cold. The achieved results showed significant influence of cultivar, location and growing season on yield and yield components, as well as on chemical biomass composition. In particular, Sideral appeared to be the most suitable variety for tested environments, since higher seed yield (3.05 t ha–1 as mean value over years and locations and above-ground biomass (6.98 t ha–1 as mean value over years and locations were recorded in comparison with those detected for Buenos Aires (1.93 and 4.48 t ha–1 of seed production and lignocellulosic biomass, respectively. Interestingly, in the northern area, during the 1st year, Buenos Aires was the most productive, despite its low plant survival at the end of winter, which determined a strong reduction in plant density and size. In such conditions, the plants produced a larger number of capsules and, consequently, high seed yield (3.18 t ha–1. Relevant differences were also observed between the two years, due to the variability of climatic

  7. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment.

    Science.gov (United States)

    Rigby, Hannah; Clarke, Bradley O; Pritchard, Deborah L; Meehan, Barry; Beshah, Firew; Smith, Stephen R; Porter, Nichola A

    2016-01-15

    International controls for biosolids application to agricultural land ensure the protection of human health and the environment, that it is performed in accordance with good agricultural practice and that nitrogen (N) inputs do not exceed crop requirements. Data from the scientific literature on the total, mineral and mineralizable N contents of biosolids applied to agricultural land under a wide range of climatic and experimental conditions were collated. The mean concentrations of total N (TN) in the dry solids (DS) of different biosolids types ranged from 1.5% (air-dried lime-treated (LT) biosolids) to 7.5% (liquid mesophilic anaerobic digestion (LMAD) biosolids). The overall mean values of mineralizable N, as a proportion of the organic N content, were 47% for aerobic digestion (AeD) biosolids, 40% for thermally dried (TD) biosolids, 34% for LT biosolids, 30% for mesophilic anaerobic digestion (MAD) biosolids, and 7% for composted (Com) biosolids. Biosolids air-dried or stored for extended periods had smaller total and mineralizable N values compared to mechanically dewatered types. For example, for biosolids treated by MAD, the mean TN (% DS) and mineralizable N (% organic N) contents of air-dried materials were 3% and 20%, respectively, compared to 5% and 30% with mechanical dewatering. Thus, mineralizable N declined with the extent of biological stabilization during sewage sludge treatment; nevertheless, overall plant available N (PAN=readily available inorganic N plus mineralizable N) was broadly consistent across several major biosolids categories within climatic regions. However, mineralizable N often varied significantly between climatic regions for similar biosolids types, influencing the overall PAN. This may be partly attributed to the increased rate, and also the greater extent of soil microbial mineralization of more stable, residual organic N fractions in biosolids applied to soil in warmer climatic zones, which also raised the overall PAN

  8. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M.

    2015-07-01

    Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality. (Author)

  9. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  10. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.A.; Zhang, S.; Hua, S.; Rao, X.

    2016-11-01

    The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer), N (nitrogen), P (phosphorus), and NP (nitrogen plus phosphorus) in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008) on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil. (Author)

  11. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage. Financial support was obtained from Belspo under research contract SD/RI/03A.

  12. Net Returns of Alternative Crops on Flood-Prone Land: Louisa County, Iowa, and Saline County, Missouri

    OpenAIRE

    John Kruse; Mitchell, Paul D.; Aziz Bouzaher; Smith, Darnell B.

    1995-01-01

    Researchers evaluate the profitability of planting flood-tolerant crops in flood plains relative to traditional row crops under different assumptions concerning flood frequency and the level of government crop subsidy. Short rotation woody crops and herbaceous energy crops are evaluated for two growing environments. Results suggest that row crops dominate the flood-tolerant crops until flood frequency approaches 50 percent.

  13. Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica, flow environment, and siphon-cropping fishes.

    Science.gov (United States)

    Peterson, Charles H; Skilleter, Gregory A

    1994-12-01

    Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower. In addition, exclosure and fish inclosure experiments demonstrated that juvenile demersal fishes influence feeding behavior of Macoma by cropping exposed siphons and inducing reduction in deposit-feeding activity. Effects of croppers were substantial in early to midsummer, when juvenile fish abundances were greatest in trawl samples from this estuarine

  14. Crop model usefulness in drylands of southern Africa: an application ...

    African Journals Online (AJOL)

    Crop models are useful tools for simulating impacts of climate and agricultural practices on crops. Models have to demonstrate the ability to simulate actual crop growth response in particular environments before application. Data limitations in southern Africa frequently hinder adequate assessment of crop models before ...

  15. 40 CFR 264.276 - Food-chain crops.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be grown...

  16. Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate, N-(n-butyl) thiophosphoric triamide and dicyandiamide of a wheat cultivated soil under sub-humid monsoon conditions

    Science.gov (United States)

    Ding, W. X.; Chen, Z. M.; Yu, H. Y.; Luo, J. F.; Yoo, G. Y.; Xiang, J.; Zhang, H. J.; Yuan, J. J.

    2015-02-01

    A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT plus DCD) and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 kg N2O-N ha-1 and were significantly (P nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.

  17. Socio-economic evaluation of energy crops as a means for a better environment; Samfundsoekonomisk vurdering af energiafgroeder som virkemiddel for et bedre miljoe

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Brian H.; Dubgaard, A.

    2012-10-15

    The purpose of the economic analysis is to describe the economy by growing willow compared to alternative rotations in order to assess whether there would be an economic interest, to grow willow on selected soil types. The goal of the socio-economic analysis is to assess whether the price to reduce N leaching or emissions of greenhouse gases is cost-effective compared to other instruments. The analysis shows that it is economically attractive to grow energy crops on moist marginal soils (+1.800 Kr. / hectare / year) and in some cases also on sandy soil (600 kr. / hectare / year). A low grain prices will make energy crops attractive to all soil types, while a high grain prices would mean that it is only economically viable on marginal soils. There is some uncertainty about yields and prices for energy crops. Generally, a decrease in yield of two tonnes per year per hectare means a reduction in the contribution margin of almost 1,200 Kr. per hectare. Conversely, an increase in price from 42 to 45 Kr. per GJ will mean an increase in the contribution margin of DKK 400 per hectare. The welfare economic analyses show that there are negative costs (= gain) associated with energy crops, both in relation to the reduction of greenhouse gases and compared to N leaching from agricultural land. The assessment also includes the effect of reduced ammonia volatilization. It is estimated that willow cultivation reduces pesticide use calculated as the frequency of treatment of 50-97% and the load index of 19-89% compared to cereals cultivation. There is therefore a significant reduction of pesticide use. Compared to the cost of alternative measures, 23 DKK. per. kg N or 140 DKK per. tonnes of CO{sub 2}, it is therefore a cost-effective instrument under specified conditions. (LN)

  18. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    synergies or trade-offs between the two crops are scant to address the concerns that cash cropping can ..... production and productivity, we develop indices of intensity of PCC and enset cultivation. We define household i's ... study the impact of these indices on food crop production and productivity, we specify models for i.

  19. Crop-insurance

    NARCIS (Netherlands)

    Wijk, van der S.

    1945-01-01

    Crop insurance was fairly new in the Netherlands but there was no legal objection or limitation to particular crops. If a crop were insured, it was important that the whole area of the crop were insured. Speculative insurance seemed preferable to mutual insurance.

    Crop insurance covered all risks

  20. Ethics and Transgenic Crops: a Review

    OpenAIRE

    Robinson, Jonathan

    1999-01-01

    This article represents a review of some of the ethical dilemmas that have arisen as a result of the development and deployment of transgenic crop plants. The potential for transgenic crops to alleviate human hunger and the possible effects on human health are discussed. Risks and benefits to the environment resulting from genetic engineering of crops for resistance to biotic and abiotic stresses are considered, in addition to effects on biodiversity. The socio-economic impacts and distributi...

  1. Biodiversity, evolution and adaptation of cultivated crops

    OpenAIRE

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-01-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on...

  2. Can satellites help organic crop certification?

    OpenAIRE

    Denis, Antoine; Desclee, Baudouin; Migdall, Silke; Hanssen, Herbert; Bach, Heike; Ott, Pierre; Tychon, Bernard

    2012-01-01

    Organic agriculture, while producing healthy food and contributing to protect the environment, needs to be certified in order to meet the consumers confidence. The objective of this study was to investigate how earth observation techniques could enhance the crop certification process and in particular the possibility to discriminate organic and conventional fields. These different crop management methods results in crop biophysical differences which are supposed to be observable by earth obse...

  3. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Directory of Open Access Journals (Sweden)

    Emiliano Trigo-Córdoba

    2015-12-01

    Full Text Available Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014 to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L. located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.; and SC, subterranean clover (Trifolium subterraneum L.. Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST. Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality.

  4. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2008-09-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  5. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Acosta Orlando

    2008-12-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  6. Effects of atmospheric VPD, plant canopies, and low-water years on leaf stomatal conductance and photosynthetic water use efficiency in fifteen potential crop species for use in arid environments

    Science.gov (United States)

    Lue, A.; Jasoni, R. L.; Arnone, J.

    2011-12-01

    When evaluating the potential for growing alternative crop species in arid environments, high vapor pressure deficits (VPDs) that could potentially inhibit crop productivity by limiting stomatal conductance and CO2 uptake must be considered. The objective of this study was to quantify the effects of VPD and irrigation levels on leaf stomatal conductance (gs) and photosynthetic water use efficiency (PWUE) for a range of alternative crop species for aridland agriculture. We evaluated fifteen alternative crops in a field trial in the northern Nevada Walker River Basin. Plots of each species were subjected to two irrigation treatments, 4 and 2 acre-feet per growing season, to simulate normal-year and dry-year irrigation levels. We quantified gs and photosynthesis (A) under decreasing relative humidity (RH) (increasing VPDs) in 10% increments, from about 75% to 2%. About seventeen leaves per species were measured throughout the 2010 growing season over eleven days of samplings. Canopy air temperature and RH were logged in experimental plots to calculate diel and seasonal patterns in canopy VPD. Volumetric water content was also collected to quantify the effects of irrigation treatments on soil moisture and leaf gas exchange. Species varied in their gs and PWUE responses to increasing VPD. Stomatal conductance (gs) of leaves of all species generally increased initially as RH was lowered but then decreased at differing rates as RH dropped further. Average gs (across all measurement VPDs), maximum gs, maximum PWUE, and corresponding VPDs differed among species and between irrigation treatments. Some species (Medicago sativa, Leymus racemosus) showed higher gs across the range of measurement VPDs than other species (Bothrichloa ischaemum, Sorghastrum nutans), while some species exhibited maximum gs and maximum PWUE at higher VPDs (Erograstis tef, Calamovilfa longifolia) than other species (Leymus cinereus, Sorghastrum nutans). These results suggest that some species may

  7. Soil erosion and runoff response in almond orchards under two shrub cover-crops strips in a high slope in semi-arid environment

    Energy Technology Data Exchange (ETDEWEB)

    Carceles-Rodriguez, B.; Francia-Martinez, J. R.; Martinez-Raya, A.; Duran-Zuazo, V. H.; Rodriguez-Pleguezuelo, C. R.; Casado-Mateos, J. P.

    2009-07-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. (Author)

  8. African Crop Science Journal

    African Journals Online (AJOL)

    The African Crop Science Journal, a quarterly publication, publishes original research papers dealing with all aspects of crop agronomy, production, genetics and breeding, germplasm, crop protection, post harvest systems and utilisation, agro-forestry, crop-animal interactions, information science, environmental science ...

  9. Putting mechanisms into crop production models.

    Science.gov (United States)

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  10. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    Increased crop production and sale of part of production during the main harvest season led households to ... Ethiopia, crop income accounts for the largest share of total income, 71%, followed by share of off-farm ... and Olinto (2001), in Colombia, off-farm employment contributes a significant share. (45%) to household ...

  11. PHOSPHORUS IN THE SUB-HUMID ZONES DE WESTERN KENYA

    African Journals Online (AJOL)

    Thé statistically significant treatments of this experiment were subjected to economie analysis using the partial budget procedure to determine rates ofN: P that would give acceptable returns at low risk to farmers. Économie analysis on the interaction across location showed that two N: P combinations. i.e. 3010 and 60: 40 kg ...

  12. PHOSPHORUS IN THE SUB-HUMID ZONES OF WESTERN KENYA

    African Journals Online (AJOL)

    Key Words: Dominance analysis, grain yield, interaction effects, partial budget, price variability. RÉSUMÉ. Les expériences ... l'interaction entre les différentes locations a montré que les deux combinaisons i.e 30:0 et 60:40 kg ha4 étaient économiquement ... homogeneity of farming conditions have thus, partly contributed to ...

  13. A spatially based field specific crop recordkeeping system prototype ...

    African Journals Online (AJOL)

    Results have shown that a record keeping system may link crop records to respective mapped crop fields in a GIS environment. This was then used to view crop field area, update new field data in the non spatial database and query and display field data for a specified period of interest. New data were added to their ...

  14. 40 CFR 265.276 - Food chain crops.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food chain crops. 265.276 Section 265... FACILITIES Land Treatment § 265.276 Food chain crops. (a) An owner or operator of a hazardous waste land treatment facility on which food chain crops are being grown, or have been grown and will be grown in the...

  15. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  16. How effective are slurry storage, cover or catch crops, woodland creation, controlled trafficking or break-up of compacted layers, and buffer strips as on-farm mitigation measures for delivering an improved water environment?

    Directory of Open Access Journals (Sweden)

    Randall Nicola P

    2012-10-01

    Full Text Available Abstract Background Agriculture has intensified over the last 50 years resulting in increased usage of fertilizers and agrochemicals, changes in cropping practices, land drainage and increased stocking rates. In Europe, this has resulted in declines in the quality of soils and waters due to increased run off and water pollution. Fifty percent of nitrates in European rivers are derived from agricultural sources in the UK this value is as high as 70%, where agriculture also contributes to approximately 28% of phosphates and 76% of sediments recorded in rivers. Catchments dominated by agricultural land use have increased levels of pesticides and bacterial pathogens. European member states have a policy commitment to tackle water pollution through the Water Framework Directive. An analysis of the effectiveness of water pollution mitigation measures should enable decision makers and delivery agencies to better facilitate catchment planning. The aim of this systematic review is to assess the effectiveness of slurry storage, cover/catch crops, woodland creation, controlled trafficking/break-up of compacted layers and buffer strips, as on farm mitigation measures, for delivering an improved water environment. Methods The systematic review will consist of a searchable systematic map database for all the named interventions. Where possible, quantitative analysis will be used to assess the effectiveness of interventions. Electronic databases, the internet, and organisational websites will be searched, and stakeholders will be contacted for studies that investigate the impact of the on-farm mitigation measures on water quality. All studies found will be assessed for suitability for inclusion in the next stage. Inclusion criteria will be based on subject, intervention, comparator and outcome. The details of included studies will be incorporated into the systematic map database, and studies scored for effectiveness of intervention and study design. Where

  17. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  18. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    Science.gov (United States)

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  19. 77 FR 41709 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions

    Science.gov (United States)

    2012-07-16

    ... quality of the human environment, health, or safety. Therefore, neither an Environmental Assessment nor an... commodities'' as ``oranges,'' ``grapefruit,'' ``tangelos,'' ``mandarins/tangerines,'' ``tangors,'' ``lemons... current ``citrus fruit crop'' named ``Citrus VI (Lemons and Limes)'' will become two separate ``citrus...

  20. Ethical reflections on herbicide-resistant crops

    DEFF Research Database (Denmark)

    Sandøe, Peter; Madsen, Kathrine Hauge

    2005-01-01

    The introduction of genetically modified (GM) crops has caused a fierce public debate in Europe.Much of the controversy centres on possible risks to the environment. A specific problem here is thatrisk perception of the scientific experts differs from that of the public. In this paper, risks...... associatedwith herbicide-resistant crops are presented from the point of view of experts and lay people. In thepublic perception, herbicide-resistant (HR) crops are troublesome because of their association with twotechnologies: genetic engineering of crops and the use of herbicides. These technologies...... are perceived asrisky because they seem to share certain features: in particular, their long-term effects are unknown andthey are dreaded. Other value questions also come into play. The public seems to be concerned that risksare not outweighed by usefulness, that using HR crops is the wrong path to sustainable...

  1. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. [Mechanism on biodiversity managing crop diseases].

    Science.gov (United States)

    Yang, Jing; Shi, Zhu-Feng; Gao, Dong; Liu, Lin; Zhu, You-Yong; Li, Cheng-Yun

    2012-11-01

    Reasonable utilization of natural resource and protection of ecological environment is the foundation for implementing agricultural sustainable development. Biodiversity research and protection are becoming an important issue concerned commonly in the world. Crop disease is one of the important natural disasters for food production and safety, and is also one of the main reasons that confine sustainable development of agricultural production. Large-scale deployment of single highly resistant variety results in reduction of agro-biodiversity level. In this case, excessive loss of agro-biodiversity has become the main challenge in sustainable agriculture. Biodiversity can not only effectively alleviate disease incidence and loss of crop production, but also reduce pollution of agricultural ecological environment caused by excessive application of pesticides and fertilizers to the agricultural ecological environment. Discovery of the mechanism of biodiversity to control crop diseases can reasonably guide the rational deployment and rotation of different crops and establish optimization combinations of different crops. This review summarizes recent advances of research on molecular, physiological, and ecological mechanisms of biodiversity managing crop diseases, and proposes some research that needs to be strengthened in the future.

  3. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  4. Numerical simulation of cropping

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2014-01-01

    Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic-plastic model of a plate subject to s...

  5. Winter cover crops decrease weediness in organic cropping systems

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Vyacheslav; Alaru, Maarika; Maeorg, Erkki; Luik, Anne

    2017-01-01

    By inserting cover crops into organic cropping systems, the number and biomass of weeds decreased. Winter cover crops clearly have a suppressive effect on weeds by providing competition for light, water and space.

  6. Pendulous Crop in Broilers

    Directory of Open Access Journals (Sweden)

    PD Ebling

    2015-09-01

    Full Text Available ABSTRACTPendulous crop is a physiological disorder, which etiology is still unknown and it is characterized by abnormal dilation of the crop of poultry. This article aims at reporting a case of high incidence of pendulous crop in male and female broilers Cobb 500, as well as to discuss its possible causes and consequences. In an experiment with broilers performed at the experimental facilities of Laboratório de Ensino Zootécnico of UFRGS, a high incidence (9.5% of pendulous crop was observed. Genetic predisposition is the most frequently documented and accepted cause of that condition. Despite presenting the same live weight as normal broilers, birds with pendulous crop had lower carcass weight due to dehydration and malnourishment, and should be culled after diagnosis. Therefore, further studies on the origin and control of this physiological disorder are warranted.

  7. Allelopathic potential of oil seed crops in production of crops: a review.

    Science.gov (United States)

    Shah, Adnan Noor; Iqbal, Javaid; Ullah, Abid; Yang, Guozheng; Yousaf, Muhammad; Fahad, Shah; Tanveer, Mohsin; Hassan, Waseem; Tung, Shahbaz Atta; Wang, Leishan; Khan, Aziz; Wu, Yingying

    2016-08-01

    Agricultural production enhancement has been realized by more consumption of fossil energy such as fertilizer and agrochemicals. However, the production provides the present human with sufficient and diversified commodities, but at the same time, deprives in some extent the resources from the future human as well. In the other hand, it is known that synthetic herbicides face worldwide threats to human's health and environment as well. Therefore, it is a great challenge for agricultural sustainable development. The current review has been focussed on various oilseed crop species which launch efficient allelopathic intervention, either with weeds or other crops. Crop allelopathic properties can make one species more persistent to a native species. Therefore, these crops are potentially harmful to both naturalized as well as agricultural settings. On the other side, allelopathic crops provide strong potential for the development of cultivars that are more highly weed suppressive in managed settings. It is possible to utilize companion plants that have no deleterious effect on neighbor crops and can be included in intercropping system, thus, a mean of contributing to agricultural sustainable development. In mixed culture, replacement method, wherein differing densities of a neighbor species are planted, has been used to study phytotoxic/competitive effects. So, to use alternative ways for weed suppression has become very crucial. Allelochemicals have the ability to create eco-friendly products for weed management, which is beneficial for agricultural sustainable development. Our present study assessed the potential of four oilseed crops for allelopathy on other crops and associated weeds.

  8. Adaptation of cotton cultivars | Wondimu | African Crop Science ...

    African Journals Online (AJOL)

    A set of 12 cotton genotypes were evaluated during the main growing seasons, from 1985 to 1990 at Abobo , which is characterised by low elevation (530 meters above sea level) and a sub-humid climate. The same genotypes were tested in all years. Combined analysis of yield data indicated significant differences among ...

  9. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  10. Applied crop protection 2016

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Jensen, Peter Kryger

    This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of agricultural crops. Most of the results come from field trials, but results from greenhouse and semi-field trials are also included. The report contains results...... that throw light upon: • Effects of new pesticides • Results of different control strategies, including how to control specific pests, as part of an integrated control strategy involving both cultivars and control thresholds • Results with pesticide resistance • Trial results from different cropping systems...

  11. Effects of mineral and organic fertilizers on crop productivity and ...

    African Journals Online (AJOL)

    Effects of mineral and organic fertilizers on crop productivity and nutrient use efficiency in smallholder farms of Southern Rwanda. ... served as control treatment. In addition, a greenhouse experiment was run to assess crop response in semi-controlled environment. Soils were the most fertile in Simbi and in wealthier farms.

  12. Integrated and Ecological Crop Protection (I/ECP)

    NARCIS (Netherlands)

    Sukkel, W.; Garcia Diaz, A.

    2002-01-01

    Information on integrated/ecological crop protection, which is the prevention or minimisation of economical damage to crops caused by harmful species with a minimum of negative effects on the environment. The main elements of an integrated strategy are: Prevention; Establish need of treatment;

  13. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  14. Cereal Crops Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Cereal Crops Research Unit is to 1) conduct basic research to identify and understand the biological processes affecting the growth, development...

  15. Organic fertigation for greenhouse crops

    DEFF Research Database (Denmark)

    Pokhrel, Bhaniswor

    2017-01-01

    Production and consumption of organic food is on the rise globally mainly due to a greater consumer awareness of issues related to health and the environment. However, the productivity of organic farming systems is considerably lower than for conventional systems. A key factor behind the low...... productivity is suboptimal nutrient management resulting from poor synchronization between crop nutrient demand and nutrient release from organic fertilizers, affecting the physical, chemical and biological characteristics of the root zone environment, and thus plant growth and productivity. Compared to solid...... of acidic water with ammonia. These fertilizers and commercially available lupin sap as well as pH-controlled chicken manure extract were applied either alone or in combinations to tomato, parsley or coriander grown in a peat-based medium. Their effect on nutrient availability, pH, electrical conductivity...

  16. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  17. Contribution of crop models to adaptation in wheat

    DEFF Research Database (Denmark)

    Chenu, Karine; Porter, John Roy; Martre, Pierre

    2017-01-01

    With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s...... to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact...

  18. Controlled delivery of 1-MCP from R1, R2-B-methylene cyclopropane complexes: an effective approach to be used both in closed environments and open crop fields

    Science.gov (United States)

    1-methylcycloprene (1-MCP) is a synthetic plant growth regulator used for the confined treatment of perishable agricultural commodities, such as fruits, flowers and vegetables, to retard ripening and thus prolong shelf-life. Previous investigations have shown that 1-MCP protects crops from yield los...

  19. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  20. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  1. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Science.gov (United States)

    2010-09-27

    ... Insurance Corporation 7 CFR Part 457 RIN 0563-AB96 Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... make corrections relating to the insurance of cotton and macadamia nuts that published March 30, 2010...

  2. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  3. Enhancing crop innate immunity: new promising trends

    Directory of Open Access Journals (Sweden)

    Pin-Yao eHuang

    2014-11-01

    Full Text Available Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs, plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signalling.

  4. Trends and Bioclimatic Assessment of Extreme Indices: Emerging Insights for Rainfall Derivative Crop Microinsurance in Central-West Nigeria

    Science.gov (United States)

    Awolala, D. O.

    2015-12-01

    Scientific predictions have forecasted increasing economic losses by which farming households will be forced to consider new adaptation pathways to close the food gap and be income secure. Pro-poor adaptation planning decisions therefore must rely on location-specific details from systematic assessment of extreme climate indices to provide template for most suitable financial adaptation instruments. This paper examined critical loss point to water stress in maize production and risk-averse behaviour to extreme local climate in Central West Nigeria. Trends of extreme indices and bio-climatic assessment based on RClimDex for numerical weather predictions were carried out using a 3-decade time series daily observational climate data of the sub-humid region. The study reveals that the flowering and seed formation stage was identified as the most critical loss point when seed formation is a function of per unit soil water available for uptake. The sub-humid has a bi-modal rainfall pattern but faces longer dry spell with a fast disappearing mild climate measured by budyko evaporation of 80.1%. Radiation index of dryness of 1.394 confirms the region is rapidly becoming drier at an evaporation rate of 949 mm/year and rainfall deficit of 366 mm/year. Net primary production from rainfall is fast declining by 1634 g(DM)/m2/year. These conditions influenced by monthly rainfall uncertainties are associated with losses of standing crops because farmers are uncertain of rainfall probability distribution especially during most important vegetative stage. In a simulated warmer climate, an absolute dryness of months was observed compared with 4 dry months in a normal climate which explains triggers of food deficits and income losses. Positive coefficients of tropical nights (TR20), warm nights (TN90P) and warm days (TX90P), and the negative coefficient of cold days (TX10P) with time are significant at Pfinancial instruments capable of sharing covariate shocks with farmers within an

  5. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability......, and cannot be applied for intercropping and agroforestry systems. The allocation approaches take into account the cropping system effects by establishing a mathematical relationship between crops present in the cropping systems. The model for integrative life-cycle assessment in agriculture (MiLA) approach...

  6. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  7. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  8. Engineering crops, a deserving venture.

    Science.gov (United States)

    Lanfranco, Luisa

    2003-01-01

    Plant transformation has had a deep impact on several aspects of basic and applied research. Genetic transformation has offered new opportunities compared to traditional breeding practises since it allows the integration into a host genome of specific sequences leading to a strong reduction of the casualness of gene transfer. One of the first target areas was plant protection against pests, pathogens and environmental stresses while the recent plant engineering programs are aimed at increasing food quality, in particular at increasing nutritional characteristics of food crops. Moreover, transgenic plants, tissue or cell cultures represent an attractive biological system for producing heterologous proteins since they offer economic and qualitative benefits. High yield production can be obtained and large-scale commercial production will take advantage of the existing infrastructure for crop cultivation, processing and storage. There are also qualitative benefits since protein synthesis secretion and post-translational modifications are similar in plants and animal cells. There are no human viral pathogens harboured by plants: thus, especially for pharmaceuticals, plants represent the safer production system. Plant transformation has become an essential instrument also for basic research, in particular for the functional characterisation of genes identified by sequencing of whole genomes. Large collections of insertion mutants have been obtained in the model plant Arabidopsis to provide a high level of genome saturation that means 95% chance of inactivating any gene at least once. To instil greater public confidence in modern plant biotechnology recent advances have already been made to overcome the potential risks for human health and environment.

  9. Availability and utility of crop composition data.

    Science.gov (United States)

    Kitta, Kazumi

    2013-09-04

    The safety assessment of genetically modified (GM) crops is mandatory in many countries. Although the most important factor to take into account in these safety assessments is the primary effects of artificially introduced transgene-derived traits, possible unintended effects attributed to the insertion of transgenes must be carefully examined in parallel. However, foods are complex mixtures of compounds characterized by wide variations in composition and nutritional values. Food components are significantly affected by various factors such as cultivars and the cultivation environment including storage conditions after harvest, and it can thus be very difficult to detect potential adverse effects caused by the introduction of a transgene. A comparative approach focusing on the identification of differences between GM foods and their conventional counterparts has been performed to reveal potential safety issues and is considered the most appropriate strategy for the safety assessment of GM foods. This concept is widely shared by authorities in many countries. For the efficient safety assessment of GM crops, an easily accessible and wide-ranging compilation of crop composition data is required for use by researchers and regulatory agencies. Thus, we developed an Internet-accessible food composition database comprising key nutrients, antinutrients, endogenous toxicants, and physiologically active substances of staple crops such as rice and soybeans. The International Life Sciences Institute has also been addressing the same matter and has provided the public a crop composition database of soybeans, maize, and cotton.

  10. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  11. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D.S.

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  12. Combined production of free-range pigs and energy crops – animal behaviour and crop damages

    DEFF Research Database (Denmark)

    Horsted, Klaus; Kongsted, Anne Grete; Jørgensen, Uffe

    2012-01-01

    Intensive free-range pig production on open grasslands has disadvantages in that it creates nutrient hotspots and little opportunity for pigs to seek shelter from the sun. Combining a perennial energy crop and pig production might benefit the environment and animal welfare because perennial energy...

  13. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    National Research Council Canada - National Science Library

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-01-01

    .... Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially...

  14. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    Science.gov (United States)

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  15. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  16. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    Science.gov (United States)

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  17. Increasing crop diversity mitigates weather variations and improves yield stability.

    Directory of Open Access Journals (Sweden)

    Amélie C M Gaudin

    Full Text Available Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops and tillage (conventional or reduced tillage on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple

  18. Governing the GM crop revolution

    OpenAIRE

    Paarlberg, Robert L.

    2000-01-01

    Will developing countries adopt policies that promote the planting of genetically modified (GM) crops, or will they select policies that slow the spread of the GM crop revolution? The evidence so far is mixed. In some prominent countries such as China, policies are in place that encourage the independent development and planting of GM crops. Yet in a number of other equally prominent countries the planting of GM crops is not yet officially approved. The inclination of developing countries to ...

  19. [Cultivation and environmental impacts of GMO crops].

    Science.gov (United States)

    Pelletier, Georges

    2009-01-01

    Transgenic plant varieties are grown since 1996 on surfaces increasing each year. They covered 114 million hectares worldwide in 2007, which shows their success among the farmers in developed as well as developing countries, despite the propaganda campaigns of the environmental movements and advocates of decline. The first transgenic crops (soybean, corn, coton and rapeseed) offer benefits in terms of health, economy and environment. Europe and especially France, which reject this technology, sentence their research to death and penalize their agriculture.

  20. CROPS : high tech agricultural robots

    NARCIS (Netherlands)

    Bontsema, J.; Hemming, J.; Pekkeriet, E.J.

    2014-01-01

    In the EU-funded CROPS (Clever Robots for Crops) project high tech robots are developed for site-specific spraying and selective harvesting of fruit and fruit vegetables. The harvesting robots are being designed to harvest high-value crops such as greenhouse vegetables, fruits in orchards and grapes

  1. [Ecological effects of cover crops].

    Science.gov (United States)

    Liu, Xiaobing; Song, Chunyu; Herbert, Stephen J; Xing, Baoshan

    2002-03-01

    This paper reviewed the effects of cover crops in reducing soil loss, surface runoff, NO3- leaching and water pollution, and elucidated roles of cover crops in controlling pest insects, weeds and diseases, and increasing soil nutrients. The potential roles and appropriate application of cover crops in sustainable development of agriculture were also discussed.

  2. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  3. Regulating innovative crop technologies in Canada: the case of regulating genetically modified crops.

    Science.gov (United States)

    Smyth, Stuart; McHughen, Alan

    2008-04-01

    The advent of genetically modified crops in the late 1980s triggered a regulatory response to the relatively new field of plant genetic engineering. Over a 7-year period, a new regulatory framework was created, based on scientific principles that focused on risk mitigation. The process was transparent and deliberately sought the input of those involved in crop development from non-governmental organizations, industry, academia and federal research laboratories. The resulting regulations have now been in place for over a decade, and the resilience of the risk-mitigating regulations is evident as there has been no documented case of damage to either environment or human health.

  4. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  5. Salt resistant crop plants.

    Science.gov (United States)

    Roy, Stuart J; Negrão, Sónia; Tester, Mark

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. IMPORTANCE OF MAIZE CROPPING

    OpenAIRE

    Mohammed Dhary Yousif EL-JUBOURI

    2012-01-01

    The Corn, wheat and rice together are the main crops. It is a plant that responds well to chemical and organic fertilization and the irrigation. But compliance is sensitive to optimum sowing time and integrated control of weeds, pests and diseases (2). The maize is the most important plant product, from the point of view commercially and is used primarily as fodder. The maize is an important source of vegetable oil and has many applications in industry, the manufacture of diverse items: cosme...

  7. Challenges Associated with Crop Breeding for Adaptation to ...

    African Journals Online (AJOL)

    A number of improved cultivars of different crops have also been released for production in different countries. As related to the situation under normal environments, it is yet hardly possible to say that these investments and efforts have modernized the production under drought-prone environments as a whole and boosted ...

  8. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co......-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  9. Unintended effects and their detection in genetically modified crops

    DEFF Research Database (Denmark)

    Cellini, F; Chesson, A; Colquhoun, I

    2004-01-01

    The commercialisation of GM crops in Europe is practically non-existent at the present time. The European Commission has instigated changes to the regulatory process to address the concerns of consumers and member states and to pave the way for removing the current moratorium. With regard...... to the safety of GM crops and products, the current risk assessment process pays particular attention to potential adverse effects on human and animal health and the environment. This document deals with the concept of unintended effects in GM crops and products, i.e. effects that go beyond that of the original...

  10. Integrating crops and livestock in subtropical agricultural systems.

    Science.gov (United States)

    Wright, Iain A; Tarawali, Shirley; Blümmel, Michael; Gerard, Bruno; Teufel, Nils; Herrero, Mario

    2012-03-30

    As the demand for livestock products increases, and is expected to continue to increase over the next few decades, especially in developing countries, smallholder mixed systems are becoming more intensive. However, with limited land and water resources and concern about the environmental impact of agricultural practices and climate change, the challenge is to find ways of increasing productivity that do not compromise household food security, but rather increase incomes equitably and sustain or enhance the natural resource base. In developed countries there has been increased specialisation of crop and livestock production. In contrast, the majority of livestock in developing countries is kept in mixed crop/livestock systems. Crops (cereal grains and pulses) and crop residues provide the basis of the diet for animals, e.g. cereal straw fed to dairy cattle or sweet potato vines fed to pigs. Animal manure can provide significant nutrient inputs to crops. Water productivity is higher in mixed crop/livestock systems compared with growing crops alone. Mixed systems allow for a more flexible and profitable use of family labour where employment opportunities are limited. They also spread risks across several enterprises, a consideration in smallholder systems that may become even more important under certain climate change scenarios. Integrated crop/livestock systems can play a significant role in improving global food security but will require appropriate technological developments, institutional arrangements and supportive policy environments if they are to fulfil that potential in the coming decades. Copyright © 2011 Society of Chemical Industry.

  11. Assessing cover crop management under actual and climate change conditions.

    Science.gov (United States)

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2017-10-22

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Epistatic association mapping in homozygous crop cultivars.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Lü

    Full Text Available The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs, environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted.

  13. 75 FR 65423 - Crop Assistance Program

    Science.gov (United States)

    2010-10-25

    ..., for a producer ] in a disaster county as of October 22, 2010. Subsequent crops, replacement crops.... Replacement crop means the planting or approved prevented planting of any crop for harvest following the... cotton, soybeans, or sweet potatoes not in a recognized double- cropping sequence. Replacement crops are...

  14. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

    Science.gov (United States)

    Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  15. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    Science.gov (United States)

    Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150

  16. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    Directory of Open Access Journals (Sweden)

    Amy Marshall-Colon

    2017-05-01

    Full Text Available Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org, an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  17. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  18. genotype by environment interaction and grain yield stability ...

    African Journals Online (AJOL)

    Preferred Customer

    Ethiopia, during the 2011 main cropping season) in .... Several authors also reported for various crops that .... and preferential adaptation environment using .... In: Documentation of the CIMMTY, pp. 71–. 79. Mexico. 17. Lelley, T. (2006).

  19. Reform's stunted crop

    OpenAIRE

    Orden, David

    2002-01-01

    Congress is on the verge of finalizing a new long-term farm bill to replace legislation passed in 1996. The earlier legislation, when it was enacted, received attention for ist potential to end farm subsidies as they had been known. If Congress had adhered to the 1996 law, both the level and year-to-year variability of previous farm support outlays would have been reduced. Instead, when a three-year run of high crop prices collapsed in 1998, lawmakers began appropriating extra support payment...

  20. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  1. Male sterility and fertility restoration in crops.

    Science.gov (United States)

    Chen, Letian; Liu, Yao-Guang

    2014-01-01

    In plants, male sterility can be caused either by mitochondrial genes with coupled nuclear genes or by nuclear genes alone; the resulting conditions are known as cytoplasmic male sterility (CMS) and genic male sterility (GMS), respectively. CMS and GMS facilitate hybrid seed production for many crops and thus allow breeders to harness yield gains associated with hybrid vigor (heterosis). In CMS, layers of interaction between mitochondrial and nuclear genes control its male specificity, occurrence, and restoration of fertility. Environment-sensitive GMS (EGMS) mutants may involve epigenetic control by noncoding RNAs and can revert to fertility under different growth conditions, making them useful breeding materials in the hybrid seed industry. Here, we review recent research on CMS and EGMS systems in crops, summarize general models of male sterility and fertility restoration, and discuss the evolutionary significance of these reproductive systems.

  2. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Science.gov (United States)

    2010-07-01

    ... production of food-chain crops (interim final). 257.3-5 Section 257.3-5 Protection of Environment... Application to land used for the production of food-chain crops (interim final). (a) Cadmium. A facility or... for the production of food-chain crops shall not exist or occur, unless in compliance with all...

  3. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  4. Stable Food Crops Turning Into Commercial Crops: Case Studies Of ...

    African Journals Online (AJOL)

    Stable Food Crops Turning Into Commercial Crops: Case Studies Of Teff, Wheat And Rice In Ethiopia. ... attention is needed to female headed households in the process of commercial transformation of subsistence agriculture. The development and institutionalization of marketing extension warrants due consideration.

  5. Stable Food Crops Turning Into Commercial Crops: Case studies of ...

    African Journals Online (AJOL)

    RahelYilma

    Sustainable food security and welfare cannot be achieved through subsistence agriculture (Pingali, 1997). ... Hence, in this study,. 3 Teff is a grass-like fine seeded staple food crop grown in Ethiopia. 4 APA is the .... the suitability of the agro-ecology for the crop, while distance to milling service affects cost of consumption.

  6. 605 Salad crops: Root, bulb, and tuber Crops

    Science.gov (United States)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  7. Interactions between Bt crops and aquatic ecosystems: A review.

    Science.gov (United States)

    Venter, Hermoine J; Bøhn, Thomas

    2016-12-01

    The term Bt crops collectively refers to crops that have been genetically modified to include a gene (or genes) sourced from Bacillus thuringiensis (Bt) bacteria. These genes confer the ability to produce proteins toxic to certain insect pests. The interaction between Bt crops and adjacent aquatic ecosystems has received limited attention in research and risk assessment, despite the fact that some Bt crops have been in commercial use for 20 yr. Reports of effects on aquatic organisms such as Daphnia magna, Elliptio complanata, and Chironomus dilutus suggest that some aquatic species may be negatively affected, whereas other reports suggest that the decreased use of insecticides precipitated by Bt crops may benefit aquatic communities. The present study reviews the literature regarding entry routes and exposure pathways by which aquatic organisms may be exposed to Bt crop material, as well as feeding trials and field surveys that have investigated the effects of Bt-expressing plant material on such organisms. The present review also discusses how Bt crop development has moved past single-gene events, toward multigene stacked varieties that often contain herbicide resistance genes in addition to multiple Bt genes, and how their use (in conjunction with co-technology such as glyphosate/Roundup) may impact and interact with aquatic ecosystems. Lastly, suggestions for further research in this field are provided. Environ Toxicol Chem 2016;35:2891-2902. © 2016 SETAC. © 2016 SETAC.

  8. Biosolarization in garlic crop

    Science.gov (United States)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  9. Cell wall proteomics of crops

    Directory of Open Access Journals (Sweden)

    Setsuko eKomatsu

    2013-02-01

    Full Text Available Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improving crop productivity, particularly under unfavorable environmental conditions. To better understand the mechanisms underlying stress response in crops, cell wall proteomic analyses are being increasingly utilized. In this review, the methods of purification and purity assays of cell wall protein fractions from crops are described, and the results of protein identification using gel-based and gel-free proteomic techniques are presented. Furthermore, protein composition of the cell walls of rice, wheat, maize and soybean are compared, and the role of cell wall proteins in crops under flooding and drought stress is discussed. This review will be useful for clarifying the role of the cell wall of crops in response to environmental stresses.

  10. Crop drying programme in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Oztekin, S.; Bascetincelik, A.; Soysal, Y. [Cukurova Univ., Agricultural Machinery Dept., Adana (Turkey)

    1999-01-01

    The present status of agricultural crop drying practices in Turkey is investigated in this study. The emphasis of drying on market value, annual production and export values of some commercially important crops is given in a broad perspective. In the recent years, developing international market conditions in Europe, Middles East, and Central Asia has been encouraging to Turkey`s fresh and dry agricultural crop export due to the rapidly increasing internal and external market demands. Grapes, apricots, black tea, figs, red pepper, and medicinal and aromatic plants are the major exported agricultural crops, contributing annually 35 to 40 millions of USD$ to Turkey`s economics. From the view point of dried crop quality, drying of special crops are still an important topic for the agricultural sector. Traditionally used drying methods have many drawbacks. High air temperatures and relative humidity during the drying season promote the inset and mold development in harvested crops. Furthermore, the intensive solar radiation causes several quality reductions like vitamin losses of color changes in dried crops. Thus, the conventional drying methods do not meet the particular requirements of the related standards. To overcome these problems, producers should be made aware of the fact that the high quality of dried products can be sold to three of four fold prices and directed to the dryer investments. Moreover, the introduction of low cost and locally manufactured dryer offers a promising alternative to reduce the excessive postharvest losses and also improve the economical situation of the farmers. (Author)

  11. Analysis of rose crop production.

    NARCIS (Netherlands)

    Kool, M.T.N.; Koning, de J.C.M.

    1996-01-01

    Measured and simulated dry-matter production of two rose crops different in cultivar and growing conditions were compared. Differences in dry-matter production between the two crops could be explained to a large extend by differences in harvest index, leaf area index, supplementary lighting and

  12. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  13. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised

  14. Soil erosion: perennial crop plantations

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Plantation agriculture is an important form of land-use in the tropics. Large areas of natural and regenerated forest have been cleared for growing oil palm, rubber, cocoa, coffee, and other perennial tree crops. These crops grown both on large scale plantations and by smallholders are important

  15. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  16. Archives: African Crop Science Journal

    African Journals Online (AJOL)

    Items 1 - 50 of 98 ... Archives: African Crop Science Journal. Journal Home > Archives: African Crop Science Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 50 of 98 ...

  17. Climate Impacts of Cover Crops

    Science.gov (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  18. GM as a route for delivery of sustainable crop protection.

    Science.gov (United States)

    Bruce, Toby J A

    2012-01-01

    Modern agriculture, with its vast monocultures of lush fertilized crops, provides an ideal environment for adapted pests, weeds, and diseases. This vulnerability has implications for food security: when new pesticide-resistant pest biotypes evolve they can devastate crops. Even with existing crop protection measures, approximately one-third yield losses occur globally. Given the projected increase in demand for food (70% by 2050 according to the UN), sustainable ways of preventing these losses are needed. Development of resistant crop cultivars can make an important contribution. However, traditional crop breeding programmes are limited by the time taken to move resistance traits into elite crop genetic backgrounds and the limited gene pools in which to search for novel resistance. Furthermore, resistance based on single genes does not protect against the full spectrum of pests, weeds, and diseases, and is more likely to break down as pests evolve counter-resistance. Although not necessarily a panacea, GM (genetic modification) techniques greatly facilitate transfer of genes and thus provide a route to overcome these constraints. Effective resistance traits can be precisely and conveniently moved into mainstream crop cultivars. Resistance genes can be stacked to make it harder for pests to evolve counter-resistance and to provide multiple resistances to different attackers. GM-based crop protection could substantially reduce the need for farmers to apply pesticides to their crops and would make agricultural production more efficient in terms of resources used (land, energy, water). These benefits merit consideration by environmentalists willing to keep an open mind on the GM debate.

  19. Increased nutritional value in food crops.

    Science.gov (United States)

    Goicoechea, Nieves; Antolín, M Carmen

    2017-09-01

    Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: 'End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  1. 78 FR 55171 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Science.gov (United States)

    2013-09-10

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC37 Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Final rule. SUMMARY: The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance...

  2. 76 FR 75805 - Common Crop Insurance Regulations; Prune Crop Insurance Provisions

    Science.gov (United States)

    2011-12-05

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC36 Common Crop Insurance Regulations; Prune Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed rule. SUMMARY: The Federal Crop Insurance Corporation (FCIC) proposes to amend the Common Crop Insurance...

  3. 78 FR 13454 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2013-02-28

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Final rule. SUMMARY: The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations...

  4. Consideration in selecting crops for the human-rated life support system: a linear programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  5. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  6. Automatic image cropping for republishing

    Science.gov (United States)

    Cheatle, Phil

    2010-02-01

    Image cropping is an important aspect of creating aesthetically pleasing web pages and repurposing content for different web or printed output layouts. Cropping provides both the possibility of improving the composition of the image, and also the ability to change the aspect ratio of the image to suit the layout design needs of different document or web page formats. This paper presents a method for aesthetically cropping images on the basis of their content. Underlying the approach is a novel segmentation-based saliency method which identifies some regions as "distractions", as an alternative to the conventional "foreground" and "background" classifications. Distractions are a particular problem with typical consumer photos found on social networking websites such as FaceBook, Flickr etc. Automatic cropping is achieved by identifying the main subject area of the image and then using an optimization search to expand this to form an aesthetically pleasing crop. Evaluation of aesthetic functions like auto-crop is difficult as there is no single correct solution. A further contribution of this paper is an automated evaluation method which goes some way towards handling the complexity of aesthetic assessment. This allows crop algorithms to be easily evaluated against a large test set.

  7. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  8. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  9. Plant biotechnology for crop improvement.

    Science.gov (United States)

    Pauls, K P

    1995-01-01

    The typical crop improvement cycle takes 10-15 years to complete and includes germplasm manipulations, genotype selection and stabilization, variety testing, variety increase, proprietary protection and crop production stages. Plant tissue culture and genetic engineering procedures that form the basis of plant biotechnology can contribute to most of these crop improvement stages. This review provides an overview of the opportunities presented by the integration of plant biotechnology into plant improvement efforts and raises some of the societal issues that need to be considered in their application.

  10. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    dryland Mediterranean cropping systems, and to discuss and recommend sustainable cropping technologies that could be used at the small-scale farm level. Four crop management practices were evaluated: crop rotations, reduced tillage, use of organic manure, and supplemental and deficit irrigation. Among......In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  11. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead

    NARCIS (Netherlands)

    Bac, C.W.; Henten, van E.; Hemming, J.; Edan, Y.

    2014-01-01

    This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state-of-the-art of harvesting robots using quantitative

  12. Development of a Crop Adapted Spray Application (CASA) sprayer for orchards

    NARCIS (Netherlands)

    Zande, van de J.C.; Doruchowski, G.; Balsari, P.; Wenneker, M.

    2010-01-01

    In the EU-FP6 ISAFRUIT project a Crop Adapted Spray Application system (CASA) for precision crop protection was developed (Doruchowski et al., 2009). The system ensures efficient and safe spray application in orchards according to actual needs and with respect to the environment. The developed CASA

  13. Culture de la pomme de terre : enjeux écologiques : Key issues in potato crop ecology

    NARCIS (Netherlands)

    Haverkort, A.J.

    2010-01-01

    This paper mainly deals with the societal and scientific background of the ‘Planet’aspects of sustainability: improved use of resources and reduced emission of chemicals to the environment. The potato crop – mainly due to the higher value addition than other crops and its global role in food

  14. From natural forest to tree crops, co-domestication of forests and tree species: an overview.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    The process of domestication of tree crops has only been given limited attention. This process starts with the protection of natural forests and ends with the cultivation of domesticated tree crops. In this evolutionary process three types of human-influenced forest environments may be

  15. Microbial biomass and nutrient dynamics during decomposition of cover crop mixtures

    NARCIS (Netherlands)

    Drost, S.M.

    2016-01-01

    Sustainable agriculture is needed to reduce losses of soil organic matter (SOM) and to ensure crop production with a minimum of negative impact on the environment. Cover crops, planted in the fallow season, are commonly used to improve soil functions, such as soil structure, nutrient cycling,

  16. The Environmental Benefits and Costs of Genetically Modified (GM) Crops

    NARCIS (Netherlands)

    Wesseler, J.H.H.; Scatasta, S.; Fall, E.H.

    2011-01-01

    The widespread introduction of genetically modified (GM) crops may change the effect of agriculture on the environment. The magnitude and direction of expected effects are still being hotly debated, and the interests served in this discussion arena are often far from those of science and social

  17. Optimum Plans For Oilpalm And Food Crop Combinations In Edo ...

    African Journals Online (AJOL)

    The study there for generated optimal farm plans in the dynamic decision environment of the farmers using a recursive linear programming model for oil palm/food crops enterprise combinations in Edo and Delta States of Nigeria. The model integrates technical and economic constraints with farmers' objectives. The seven ...

  18. Crop-Livestock Farming Systems Varying with Different Altitudes in ...

    African Journals Online (AJOL)

    In Sub-Saharan Africa, rangeland is increasingly converted to cropland, creating diverse crop-livestock practices in different environments. As these practices lead to highly adapted livestock production systems using resources that vary locally and seasonally, not much is known about their similarities and differences.

  19. Climate Change and Crop Vulnerability in Nigeria | Kalu | Agro ...

    African Journals Online (AJOL)

    Unfavorable environmental conditions such as caused by climate change would create some level of vulnerability of the crops and thus have implication on food security. Two components of the Agricultural Value Chain, production and storage, appear to be most responsive to changes in environments with production ...

  20. Gender and Health Impacts of Genetically Engineered Crops in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    But along with the benefits come potential risks to health, the environment, livelihoods and farming systems. ... Expected outputs include reports on the impact of GE crops on women and men, and on human health; a series of journal articles; country-specific policy briefs; and a framework and platform for sharing knowledge ...

  1. Influence of mycorrhizal inoculation on alley cropped farms in a ...

    African Journals Online (AJOL)

    The use of Arbuscular mycorrhizal (AM) fungi under farmers' conditions was tried at Ajibode Village, a humid tropical environment on maize/cassava intercropped farms in an alley cropping system. Four species of AM fungi (Glomus clarum, Glomus mosseae Glomus etunicatum and Acaulospora dilatata) were used in ...

  2. Pathways to sustainable intensification through crop water management

    Science.gov (United States)

    MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.

    2016-09-01

    How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.

  3. African Crop Science Journal: Submissions

    African Journals Online (AJOL)

    Submit your manuscript electronically to: The Secretariat, African Crop Science Journal, College of Agricultural and Environmental Sciences, Makerere University, ... Materials and Methods or Methodology, Results, Discussion (or Results and Discussion), Conclusion, Acknowledgement, References and Illustrations (Tables, ...

  4. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2010-01-01

    In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass measuring...... means (108) and with crop moisture content measurement means (106), measuring crop biomass (107a, 107b) and crop moisture content (109a, 109b) of the crop, providing a spatial crop biomass and crop moisture content characteristics map of the field based on the biomass data (107a, 107b) provided from...... moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather forecast...

  5. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  6. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    Directory of Open Access Journals (Sweden)

    Peter J. Thorburn

    2017-09-01

    Full Text Available Sugarcane production relies on the application of large amounts of nitrogen (N fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE, yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1 the impacts of climate on factors determining NUE, (2 the range and drivers of NUE, and (3 regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N-1, where yields were low (i.e., <50 Mg ha-1 and N inputs were high, to >5 Mg cane (kg N-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management, the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting

  7. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop

    National Research Council Canada - National Science Library

    Tian, Yang; Zeng, Yan; Zhang, Jing; Yang, ChengGuang; Yan, Liang; Wang, XuanJun; Shi, ChongYing; Xie, Jing; Dai, TianYi; Peng, Lei; Zeng Huan, Yu; Xu, AnNi; Huang, YeWei; Zhang, JiaJin; Ma, Xiao; Dong, Yang; Hao, ShuMei; Sheng, Jun

    2015-01-01

    The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments...

  8. Global Food Security Support Analysis Data (GFSAD) Crop Dominance 2010 Global 1 km V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Dominance Global 1...

  9. Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...

  10. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    , tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less...

  11. A global overview of biotech (GM) crops: adoption, impact and future prospects.

    Science.gov (United States)

    James, Clive

    2010-01-01

    In the early 1990s, some were skeptical that genetically modified (GM) crops, now referred to as biotech crops, could deliver improved products and make an impact at the farm level. There was even more skepticism that developing countries would adopt biotech crops. The adoption of and commercialization of biotech crops in 2008 is reviewed. The impact of biotech crops are summarized including their contribution to: global food, feed and fiber security; a safer environment; a more sustainable agriculture; and the alleviation of poverty, and hunger in the developing countries of the world. Future prospects are discussed. Notably, Egypt planted Bt maize for the first time in 2008 thereby becoming the first country in the Arab world to commercialize biotech crops.

  12. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska

    Science.gov (United States)

    Williams, Karina; Gornall, Jemma; Harper, Anna; Wiltshire, Andy; Hemming, Debbie; Quaife, Tristan; Arkebauer, Tim; Scoby, David

    2017-03-01

    The JULES-crop model (Osborne et al., 2015) is a parametrisation of crops within the Joint UK Land Environment Simulator (JULES), which aims to simulate both the impact of weather and climate on crop productivity and the impact of croplands on weather and climate. In this evaluation paper, observations of maize at three FLUXNET sites in Nebraska (US-Ne1, US-Ne2 and US-Ne3) are used to test model assumptions and make appropriate input parameter choices. JULES runs are performed for the irrigated sites (US-Ne1 and US-Ne2) both with the crop model switched off (prescribing leaf area index (LAI) and canopy height) and with the crop model switched on. These are compared against GPP and carbon pool FLUXNET observations. We use the results to point to future priorities for model development and describe how our methodology can be adapted to set up model runs for other sites and crop varieties.

  13. Evaluation of Crop-Livestock Integration Systems among Farm ...

    African Journals Online (AJOL)

    USER

    ... of crops and livestock. Keywords: Crop-livestock integration systems, adopted village, farm family. .... crop is planted at about the time when the first crop is being harvested. Crop residues ..... Agronomy Monograph, 54. Madison, WI.

  14. Recent advances in fruit crop genomics

    OpenAIRE

    Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG

    2014-01-01

    In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis....

  15. 78 FR 53370 - Common Crop Insurance Regulations; Forage Seed Crop Provisions

    Science.gov (United States)

    2013-08-29

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC24 Common Crop Insurance Regulations; Forage... provides forage seed insurance. The provisions will be used in conjunction with the Common Crop Insurance... crop programs. The intended effect of this action is to convert the Forage Seed pilot crop insurance...

  16. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Science.gov (United States)

    2012-05-11

    ...; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC37 Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed rule. SUMMARY: The Federal Crop Insurance Corporation (FCIC) proposes to...

  17. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops......) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  18. Governing the co-existence of GM crops : ex-ante regulation and ex-post liability under uncertainty and irreversibility

    NARCIS (Netherlands)

    Beckmann, V.; Soregaroli, C.; Wesseler, J.H.H.

    2006-01-01

    The future institutional environment for the co-existence of genetically modified (GM) crops, conventional crops and organic crops in Europe combines measures of ex-ante regulation and ex-post liability rules. Against this background we ask the following two questions: How does ex-ante regulation

  19. Automated phenotyping of permanent crops

    Science.gov (United States)

    McPeek, K. Thomas; Steddom, Karl; Zamudio, Joseph; Pant, Paras; Mullenbach, Tyler

    2017-05-01

    AGERpoint is defining a new technology space for the growers' industry by introducing novel applications for sensor technology and data analysis to growers of permanent crops. Serving data to a state-of-the-art analytics engine from a cutting edge sensor platform, a new paradigm in precision agriculture is being developed that allows growers to understand the unique needs of each tree, bush or vine in their operation. Autonomous aerial and terrestrial vehicles equipped with multiple varieties of remote sensing technologies give AGERpoint the ability to measure key morphological and spectral features of permanent crops. This work demonstrates how such phenotypic measurements combined with machine learning algorithms can be used to determine the variety of crops (e.g., almond and pecan trees). This phenotypic and varietal information represents the first step in enabling growers with the ability to tailor their management practices to individual plants and maximize their economic productivity.

  20. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  1. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion...... resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given...

  2. The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era.

    Science.gov (United States)

    Dossa, Komivi; Diouf, Diaga; Wang, Linhai; Wei, Xin; Zhang, Yanxin; Niang, Mareme; Fonceka, Daniel; Yu, Jingyin; Mmadi, Marie A; Yehouessi, Louis W; Liao, Boshou; Zhang, Xiurong; Cisse, Ndiaga

    2017-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.

  3. Advances and prospects: biotechnologically improving crop water use efficiency.

    Science.gov (United States)

    Zhengbin, Zhang; Ping, Xu; Hongbo, Shao; Mengjun, Liu; Zhenyan, Fu; Liye, Chu

    2011-09-01

    Bio-water saving can be defined as the reduction of crop water consumption employing biological measures. This is the focus of efforts to save water in agriculture. Different levels of water-use efficiency (WUE) have been developed. The genetic diversity of WUE has been confirmed in several crops. WUE is the basis of bio-watering and physiological WUE is the key. The degree to develop physiological WUE potential decides the performance of bio-watering in the field. During this process, fine management is important. Thus bio-watering is closely related to WUE. Crop WUE has improved and evolved as a result of breeding programs. Many WUE genes have been located in different genomic and aneuploid materials and have been mapped by various molecular markers in a number of crops. Two genes, (Erecta and alx8), which control water use efficiency; have been cloned in Arabidopsis thaliana. Eleven WUE genes have been identified by microarray analysis. Six genes associated with drought resistance and photosynthesis have been transfered into crops which have resulted in improving WUE and drought resistance. WUE is important on the basis of functional identification of more drought resistant gene resources. The popularity on the industrial-scale of transgenic plants is still in its infancy and one of the reasons for this is the lack of knowledge regarding molecular mechanisms and it is a very immature technology. Enhanced agricultural practices and the theoretical aspects of improving crop WUE have been developed and are discussed in this review paper. Rapid progress will be made in bio-water savings and that crop WUE can be substantially improved under both favorable and unfavorable water-limited environments. This will be achieved by a combination of traditional breeding techniques and the introduction of modern biotechnology.

  4. Possible changes to arable crop yields by 2050.

    Science.gov (United States)

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  5. Environmental health impacts of feeding crops to farmed fish.

    Science.gov (United States)

    Fry, Jillian P; Love, David C; MacDonald, Graham K; West, Paul C; Engstrom, Peder M; Nachman, Keeve E; Lawrence, Robert S

    2016-05-01

    Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Multi-Crop Specific Area Frame Stratification Based on Geospatial Crop Planting Frequency Data Layers

    Science.gov (United States)

    Boryan, C. G.; Yang, Z.; Willis, P.; Di, L.

    2016-12-01

    Area sampling frames (ASFs) are the basis of many statistical programs around the world. When an ASF's stratification is based on generalized percent cultivation, the ASF usually cannot identify the planting location of specific crops targeted for agricultural surveys. To improve the accuracy, objectivity and efficiency of crop survey estimates, an automated stratification method based on geospatial crop planting frequency data is proposed. The Crop Planting Frequency Data Layers are crop specific geospatial data sets derived from multi-year Cropland Data Layers. Therefore, the ASF stratification based on the crop planting frequency data is crop specific. This paper investigates using 2008-2013 geospatial Crop Frequency Data Layers to create a novel multi-crop specific stratification for South Dakota, U.S. The crop specific ASF stratification is developed based on crop frequency statistics calculated at the primary sampling unit (PSU) level based on the corn, soybean and wheat planting frequency data layers, three major crops in South Dakota. Strata are formed using a k means clustering algorithm. It is observed that the crop frequency based ASF stratification predicts corn, soybean and wheat planting patterns well as verified by 2014 Farm Service Agency (FSA) Common Land Unit (CLU) and 578 administrative data. This finding demonstrates that the novel multi-crop specific stratification based on crop planting frequency data is crop type independent and applicable to all major crops. Further, these results indicate that the new multi-crop specific ASF stratification has great potential to improve ASF accuracy, efficiency and crop estimates.

  7. Allelopathy in crop/weed interactions--an update.

    Science.gov (United States)

    Belz, Regina G

    2007-04-01

    Since varietal differences in allelopathy of crops against weeds were discovered in the 1970s, much research has documented the potential that allelopathic crops offer for integrated weed management with substantially reduced herbicide rates. Research groups worldwide have identified several crop species possessing potent allelopathic interference mediated by root exudation of allelochemicals. Rice, wheat, barley and sorghum have attracted most attention. Past research focused on germplasm screening for elite allelopathic cultivars and the identification of the allelochemicals involved. Based on this, traditional breeding efforts were initiated in rice and wheat to breed agronomically acceptable, weed-suppressive cultivars with improved allelopathic interference. Promising suppressive crosses are under investigation. Molecular approaches have elucidated the genetics of allelopathy by QTL mapping which associated the trait in rice and wheat with several chromosomes and suggested the involvement of several allelochemicals. Potentially important compounds that are constitutively secreted from roots have been identified in all crop species under investigation. Biosynthesis and exudation of these metabolites follow a distinct temporal pattern and can be induced by biotic and abiotic factors. The current state of knowledge suggests that allelopathy involves fluctuating mixtures of allelochemicals and their metabolites as regulated by genotype and developmental stage of the producing plant, environment, cultivation and signalling effects, as well as the chemical or microbial turnover of compounds in the rhizosphere. Functional genomics is being applied to identify genes involved in biosynthesis of several identified allelochemicals, providing the potential to improve allelopathy by molecular breeding. The dynamics of crop allelopathy, inducible processes and plant signalling is gaining growing attention; however, future research should also consider allelochemical release

  8. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, sorghum and wheat, a fact that could be attributed to the inadequacy of the model to accurately account for rainfall excess. On the other hand ...

  9. Progress update: crop development of biofortified staple food crops ...

    African Journals Online (AJOL)

    Over the past 15 years, biofortification, the process of breeding nutrients into food crops, has gained ample recognition as a cost-effective, complementary, feasible means of delivering micronutrients to populations that may have limited access to diverse diets, supplements, or commercially fortified foods. In 2008, a panel of ...

  10. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    This study demonstrates that a simple, robust and parametrically parsimonious model is capable of simulating the temporal dynamics of soil moisture content under distinctly different land covers. Also, results of sensitivity analysis revealed that exotic plant species such as Acacia have adapted themselves effectively to the ...

  11. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    Science.gov (United States)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were affected by initial slope-affected erosion, fire severity, vegetation type, and rate of vegetation recovery. The simulation results showed that fire types, such as high severity, was generally associated with low site BC retention related to low vertical transfer of BC into soils, buoyancy of BC particles, and surface runoff from unvegetated soils.

  12. Restoration and Carbon Sequestration Potential of Sub-Humid Shrublands in a Changing Climate

    Science.gov (United States)

    Adhikari, A.; White, J. D.

    2014-12-01

    Over the past century, various anthropogenic activities have resulted into loss of more than 95% shrub cover from the Lower Rio Grande Valley (LRGV), TX, USA. Restoration of these shrublands has been a priority for two endangered felids, ocelots and jaguarondis, that require contiguous shrub cover. While woody shrub restoration may be considered the antithesis of shrub encroachment, this type of habitat restoration also provides a substantial opportunity of increasing carbon sequestration. Restoration of these shrublands by U.S. federal refuge managers during the past three decades have resulted some successful reestablishment of native shrub communities. We assessed restoration efficacy, carbon storage capacity, and future climate change impacts using combined remote sensing and modeling techniques. We first developed a canopy identification algorithm using a spectral vegetation index from the Digital Ortho Quarter Quadrangle data to estimate individual shrub canopy area. The area was used as input into allometric equations to estimate aboveground biomass for dominant shrub species across this region. The accuracy of the automated canopy identification by the algorithm was 79% when compared to the number of visually-determined, hand-digitized shrub canopies. From this analysis, we found that naturally regenerated sites had higher average shrub densities of 174/ha when compared with 156 individuals/ha for replanted sites. However, average biomass for naturally regenerated sites (3.28 Mg C/ha) stored less biomass compared to that of replanted sites (3.71 Mg C/ha). We found that average biomass per shrub in naturally regenerated sites was lower compared to that of replanted sites (p < 0.05). Shrub density and biomass estimated from the remote sensing data was used as input for the Physiological Principles in Predicting Growth model to predict future shrub biomass for three GCM scenarios projected by IPCC (2007). Modeling showed that the LRGV may produce lower biomass per ha for the projected higher emission scenarios compared to lower emission scenarios. We conclude that restoration efforts within LRGV have contributed to increasing shrub density and sequestering carbon in tissue biomass, but future climate change is likely to reduce its carbon sequestration potential.

  13. Suspended sediment concentration–discharge relationships in the (sub- humid Ethiopian highlands

    Directory of Open Access Journals (Sweden)

    C. D. Guzman

    2013-03-01

    Full Text Available Loss of top soil and subsequent filling up of reservoirs in much of the lands with variable relief in developing countries degrades environmental resources necessary for subsistence. In the Ethiopia highlands, sediment mobilization from rain-fed agricultural fields is one of the leading factors causing land degradation. Sediment rating curves, produced from long-term sediment concentration and discharge data, attempt to predict suspended sediment concentration variations, which exhibit a distinct shift with the progression of the rainy season. In this paper, we calculate sediment rating curves and examine this shift in concentration for three watersheds in which rain-fed agriculture is practiced to differing extents. High sediment concentrations with low flows are found at the beginning of the rainy season of the semi-monsoonal climate, while high flows and low sediment concentrations occur at the end of the rainy season. Results show that a reasonably unique set of rating curves were obtained by separating biweekly data into early, mid, and late rainfall periods and by making adjustments for the ratio of plowed cropland. The shift from high to low concentrations suggests that diminishing sediment supply and dilution from greater base flow during the end of the rainfall period play important roles in characterizing changing sediment concentrations during the rainy season.

  14. Simulating cropping periods to parametrize varietieś phenology at the global scale

    Science.gov (United States)

    Minoli, Sara; Egli, Dennis B.; Müller, Christoph

    2017-04-01

    Phenology is a fundamental trait characterizing crop varieties, and it largely determines the selection of these in different environments. To simulate phenological development is a key feature of most crop models at any scale. There is a general lack of information on how crop varieties are distributed globally, and therefore on how to parametrize phenological traits in global-scale vegetation models. We address this issue by developing a model (routine) to simulate global cropping periods of six major grain crops. The sowing dates are estimated as proposed by Waha et al. (2012). With a consistent rule-based approach, we simulate the most suitable harvest dates. We derive from the literature some physiological traits of the crops, such as temperature thresholds for growth and development, and the time allocated to different phenophases. The occurrence of suitable periods for critical stages of the crop cycle is then used to classify the climate in each location and to identify the most suitable growing season for each crop. The simulated cropping periods are on average in agreement with the two most applied global datasets (MIRCA2000 and SAGE) in the modelling community. Our model highlights the central role of climate and crop physiology in the agronomic decision making process. The results show that a single set of rules (with crop-specific parameters) is valid for simulating the growing season of any of the grain crops. To set the sowing time and the reproductive phase in non-stressful periods are both strategies to optimize crop productivity. The species studied here have similar optimum temperature for the reproductive phase, while they differ more in the base temperature for sowing, as well as in the duration of the flowering to physiological maturity period. These aspects together largely influence the selection of the best growing period of the different grain crops. Due its simplicity, the model cannot capture the entire variability of the observed

  15. PHA bioplastics, biochemicals, and energy from crops.

    Science.gov (United States)

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. Plant Biotechnology Journal © 2013 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  17. to Phosphorus Fertilization, Crop Sequence and Tillage Management

    Directory of Open Access Journals (Sweden)

    Xiaopeng Gao

    2012-01-01

    Full Text Available Field experiments were conducted at two locations in Manitoba, Canada, to determine the effect of crop rotation, phosphorus (P fertilization and tillage on grain yield and grain concentrations of Cd and Zn in durum wheat (Triticum durum L.. Compared to conventional tillage (CT, reduced tillage (RT management decreased grain Cd and increased grain yield and grain Zn in half of the site-years. The type of preceding crops of spring wheat-flax or canola-flax had little influence. Rate and timing of P application had little effect on grain Cd, but increasing P rate tended to decrease grain Zn. No interactive effect was detected among tested factors. Grain Zn was not related to grain Cd, but positively to other nutrients such as Fe, Mn, P, Ca, K, and Mg. Both grain Zn and Fe correlated positively with grain protein content, suggesting protein may represent a sink for micronutrients. The study suggested that the tillage management may have beneficial effects on both grain yield and quality. Phosphorus fertilizer can remain available for subsequent crops and high annual inputs in the crop sequence may decrease crop grain Zn. Understanding the environment is important in determining the impact of agricultural management on agronomic and nutrient traits.

  18. Understanding soil organic matter dynamics to ecologically increase crop yields

    Science.gov (United States)

    Koorneef, Guusje; Zandbergen, Jelmer; Pulleman, Mirjam; Comans, Rob

    2017-04-01

    There is an increasing societal interest to develop farming systems that produce high yields while maintaining or even improving ecosystem functioning. Organic farming is such an ecological-intensive system with generally lower yields but better ecosystem functioning than conventional farming systems. In this project we therefore study how we can accelerate the development of soils in organically managed farming systems to improve yield. We specifically aim to unravel how the quality and quantity of Soil Organic Matter (SOM) drives crop yields. We hypothesize that a higher quality and quantity of different SOM pools leads to enhanced ecosystem functioning (e.g. nutrient availability, water provisioning) through mutual links between soil biota with their physico-chemical environment. To test our hypothesis we will link spatio-temporal variation in crop quality (e.g. leaf-N content) and quantity to variation in biotic and abiotic soil properties in an on-going long-term experiment at the Vredepeel, the Netherlands. We will specifically focus on the possible mechanisms via which SOM dynamics can improve soil functions to achieve high crop yields. We will identify the different SOM pools (e.g. SOM in macro- and microaggregates) and SOM dynamics and link that to soil functioning (e.g. nutrient cycling) and crop yield. Understanding the underlying mechanisms via which SOM influences soil functioning and crop yield will provide tools to accelerate the transition towards a sustainable intensification of farming systems.

  19. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  20. Crop growth analysis and yield of a lignocellulosic biomass crop (Arundo donax L. in three marginal areas of Campania region

    Directory of Open Access Journals (Sweden)

    Adriana Impagliazzo

    2017-03-01

    Full Text Available The depletion of energy resources from fossil fuels and global warming have pushed to consider the agro-energy as one of the renewable energy sources for mitigation of climate change. In this context, agro-energy based on cultivation of energy crops in marginal lands allows to reduce competition with food crops and marginal lands abandonment, producing incomes for farmers. The aim of this work is to improve the knowledge on a promising crop (Arundo donax L. for the production of bio-energy in marginal lands. Therefore, the behaviour of this crop was evaluated in three study areas of Campania region, under different energy inputs: two levels of nitrogen fertilisation, N100 and N50 in Sant’Angelo dei Lombardi (SA and Bellizzi (BL. In Acerra (AC site compost fertilisation was made to verify its effect on pollutant phytoextraction. In the last year, also crop growth analysis was done in the three sites. The results showed that giant reed confirms its adaptability to low fertility soils, allowing interesting biomass yield also in marginal lands. In more fertile environments, effect of fertilisation is not significant at least in the short term. Nevertheless, nitrogen uptake (65-130 kg N ha–1, also if lower than other highyielding crops, needs to be compensated with fertilisation to avoid depletion of soil nutrient reserves and to guarantee sustainability of this cropping system. Giant reed had a positive environmental impact, due to the improvement in soil fertility (soil organic matter and nitrogen increase and to the mitigation of climate change (C storage in the soil. In marginal soils of Southern Italy this crop confirms an increasing trend of yield during the first 3-4 years. High productivity levels of this crop are related to the extremely high duration of the vegetative period and thus of the photosynthetic activity (from March to November in the Mediterranean area. These last are well expressed by the leaf area duration index, which is

  1. Recent advances in fruit crop genomics

    Directory of Open Access Journals (Sweden)

    Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG

    2014-02-01

    Full Text Available In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

  2. Strategies and tools to improve crop productivity by targeting photosynthesis.

    Science.gov (United States)

    Nuccio, Michael L; Potter, Laura; Stiegelmeyer, Suzy M; Curley, Joseph; Cohn, Jonathan; Wittich, Peter E; Tan, Xiaoping; Davis, Jimena; Ni, Junjian; Trullinger, Jon; Hall, Rick; Bate, Nicholas J

    2017-09-26

    Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  3. GMO foods and crops: Africa's choice.

    Science.gov (United States)

    Paarlberg, Robert

    2010-11-30

    There is a scientific consensus, even in Europe, that the GMO foods and crops currently on the market have brought no documented new risks either to human health or to the environment. Europe has decided to stifle the use of this new technology, not because of the presence of risks, but because of the absence so far of direct benefits to most Europeans. Farmers in Europe are few in number, and they are highly productive even without GMOs. In Africa, by contrast, 60% of all citizens are still farmers and they are not yet highly productive. For Africa, the choice to stifle new technology with European-style regulations carries a much higher cost. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Coping Mechanisms for Crop Plants in Drought-prone Environments

    National Research Council Canada - National Science Library

    PETER M. NEUMANN

    2008-01-01

    .... • Scope After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought...

  5. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries.

    Science.gov (United States)

    Sinebo, Woldeyesus; Maredia, Karim

    2016-01-02

    The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human

  6. Economic impact of GM crops

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  7. Water, heat and crop growth

    NARCIS (Netherlands)

    Feddes, R.A.

    1971-01-01

    To a large extent the results of a farmer's efforts to get higher crop yields will be determined by the prevailing environmental conditions, i.e. by the existing complex of physical, chemical and biological factors. The possibilities of an efficient use of these factors are enlarged by our

  8. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph= Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rot are two of the most important fungal diseases of onion. The taxonomics of several of the

  9. Defining and identifying crop landraces

    NARCIS (Netherlands)

    Camacho Villa, T.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B.

    2005-01-01

    Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity

  10. A Neglected Crop in Ghana.

    African Journals Online (AJOL)

    during germplasm collection trips on cultivation and uses are also presented. Key words: African yam bean, food security, germplasm, Ghana, legume, neglected crop. Introduction. African yam bean (Sphenostylis stenocarpa Hochst ex A. Rich) is a herba- ceous leguminous plant occurring throughout tropical Africa (Porter ...

  11. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    Full Text Available This article explores that to successfully combat land degradation on lands occupied in agriculture, it is necessary to conduct complex soil conservation measures constitute a single interconnected system and protect soil from degradation. Found that rotation – a reasonable compromise between the main requirements of production, organization of territory and environment, placing crops in view of a favorable combination; compliance with acceptable saturation parameters optimally varying cultures, and thus the possible timing of a return to their previous cultivation while taking into account the duration of the accepted rotation. Determined that the implementation and observance of crop rotation and better ensure the replenishment of nutrients of the soil, improving and maintaining its favorable physical properties, prevent the emergence of weeds, pests and pathogens cultivated crops and preventing the depletion of soil degradation processes and development. Found that scientifically based crop rotation is the basis for the use of all complex farming practices, differentiated cultivation, rational use of fertilizers and caring for plants. Rotation is correct – it agroecosystem, which created the best conditions for growth and development of various crops, thus providing a growing high and stable yields, obtaining high quality products. Soil and climatic conditions, specialty farms, crops structure and their biological characteristics defined as the type of crop rotation and crop rotation order. Each rotation should be selected such status, which would provide the greatest yield per unit area of rational use of all land. Therefore, proper placement crops in crop rotation must necessarily take into account the requirements of crops to their predecessor, thus it must evaluate not only the direct action of the first culture, but also take into account the impact of the latter on the following crops rotation. On unproductive and degraded lands is

  12. Raising Crop Productivity in Africa through Intensification

    Directory of Open Access Journals (Sweden)

    Zerihun Tadele

    2017-03-01

    Full Text Available The population of Africa will double in the next 33 years to reach 2.5 billion by 2050. Although roughly 60% of the continent’s population is engaged in agriculture, the produce from this sector cannot feed its citizens. Hence, in 2013 alone, Africa imported 56.5 million tons of wheat, maize, and soybean at the cost of 18.8 billion USD. Although crops cultivated in Africa play a vital role in their contribution to Food Security, they produce inferior yields compared to those in other parts of the world. For instance, the average cereal yield in Africa is only 1.6 t·ha−1 compared to the global 3.9 t·ha−1. Low productivity in Africa is also related to poor soil fertility and scarce moisture, as well as a variety of insect pests, diseases, and weeds. While moisture scarcity is responsible for up to 60% of yield losses in some African staple cereals, insect pests inflict annually substantial crop losses. In order to devise a strategy towards boosting crop productivity on the continent where food insecurity is most prevalent, these production constraints should be investigated and properly addressed. This review focuses on conventional (also known as genetic intensification in which crop productivity is raised through breeding for cultivars with high yield-potential and those that thrive well under diverse and extreme environmental conditions. Improved crop varieties alone do not boost crop productivity unless supplemented with optimum soil, water, and plant management practices as well as the promotion of policies pertaining to inputs, credit, extension, and marketing. Studies in Kenya and Uganda have shown that the yield of cassava can be increased by 140% in farmers’ fields using improved varieties and management practices. In addition to traditional organic and inorganic fertilizers, biochar and African Dark Earths have been found to improve soil properties and to enhance productivity, although their availability and affordability to

  13. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Kumar Bhunia, Rupam; Ghosh, Ananta Kumar

    2016-01-01

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. We present a comprehensive review on the progress made in the field of developing environmental stress tolerant crops and the prospects that can be undertaken for achieving it. We review the effects of abiotic and biotic stresses on crop plants, and the use of different molecular genetic approaches to cope with these environmental stresses for establishment of sustainable agriculture. The various strategies employed in different crops have also been discussed. We also summarized the major patents in the field of plant stress tolerance that have been granted in the last five years. On the basis of these analyses, we propose that genetic engineering of crops is the preferred approach over the traditional methods for yielding healthier and viable agriculture in response to the different stressful environments. The wild progenitors of cultivated crop species can prove to be highly potential genetic resources in this regard and can be exploited to produce better crops that are relatively tolerant towards various environmental stresses. Thus, elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for sustainable agriculture.

  14. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?

    Science.gov (United States)

    Ryschawy, J; Choisis, N; Choisis, J P; Joannon, A; Gibon, A

    2012-10-01

    Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French 'Coteaux de Gascogne'. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers' crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass

  15. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    Science.gov (United States)

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Wireless surveillance sytem for greenhouse crops

    OpenAIRE

    Cama-Pinto, Alejandro; Gil-Montoya, Francisco; Gómez-López, Julio; García-Cruz, Amos; Manzano-Agugliaro, Francisco

    2014-01-01

    The agriculture in the southeast Spain has experimented important changes in the last years due to the greenhouse crops. In this kind of crops is very important the use of advanced techniques and new technologies to improve the crop efficiency. This work presents an advanced system to monitor the variables applied on greenhouse crops. The monitoring system uses a wireless sensor network (WSN) that works with 6LoWPAN and RPL as the routing protocol. It measures humidity, temperature, light, an...

  17. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  18. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Supply and Effects of Specialty Crop Insurance

    OpenAIRE

    Ethan Ligon

    2011-01-01

    The federal government has developed a large number of programs to insure various "specialty crops" over the last two decades; a given program is peculiar to a particular county and crop. This development has been particularly notable in California, because of its size and the diversity of crops produced there. If the extension of federal crop insurance programs to cover fruit and vegetable production has affected either producer or consumer welfare, then we would expect to see this reflected...

  20. Crop diversity prevents serious weed problems

    DEFF Research Database (Denmark)

    Melander, Bo

    2016-01-01

    Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified.......Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified....

  1. Crop protection and environmental health : legacy management and new concepts

    OpenAIRE

    Woignier, T.; Clostre, F.; Fernandes, P.; Rangon, Luc; Soler, A.; Lesueur-Jannoyer, M.

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost w...

  2. Nutrient management of soil grown crops

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The management of the fertilization of soil grown crops in greenhouses can be distinguished in the addition of fertilizers before cultivation, the base dressing and those added during the cultivations period of the crops, the top dressing. The growing period of the crops in greenhouse production

  3. Managing cover crops: an economic perspective

    Science.gov (United States)

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  4. Annual cropped area expansion and agricultural production ...

    African Journals Online (AJOL)

    This paper assesses the relationship between annual cropped area expansion and crop output and discusses the implication of such a relationship for environmental management in Benue State, Nigeria. The study was carried out using agricultural production survey (APS) data of five selected crops, namely: rice, sorghum, ...

  5. DETERMINANTS OF PESTICIDE REGISTRATION FOR FOOD CROPS

    OpenAIRE

    Courbois, Claude B.

    1998-01-01

    An examination of intertemporal, crop-specific pesticide registration data to assess claims that EPA requirements discourage registration of safer pesticides, especially for minor crops. Results show that the likelihood of registration is increasing in crop market value and decreasing in pesticide safety, but these biases diminished between 1991 and 1995.

  6. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  7. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain

  8. Transgenic crops: Current challenges and future perspectives

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... development of Genetically Modified (GM) crops. As the time went on, various social, political, environmental and technical issues related to transgenic crops took their birth. The development of transgenic crops has raised some issues more especially the problem of food and environmental safety, some ...

  9. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement.

    Science.gov (United States)

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-02-04

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  10. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    Science.gov (United States)

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  11. Contribution of organically grown crops to human health.

    Science.gov (United States)

    Johansson, Eva; Hussain, Abrar; Kuktaite, Ramune; Andersson, Staffan C; Olsson, Marie E

    2014-04-08

    An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely.

  12. Contribution of Organically Grown Crops to Human Health

    Science.gov (United States)

    Johansson, Eva; Hussain, Abrar; Kuktaite, Ramune; Andersson, Staffan C.; Olsson, Marie E.

    2014-01-01

    An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely. PMID:24717360

  13. Contribution of Organically Grown Crops to Human Health

    Directory of Open Access Journals (Sweden)

    Eva Johansson

    2014-04-01

    Full Text Available An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds, tocopherols (including vitamin E and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely.

  14. Crop cover the principal influence on non-crop ground beetle (Coleoptera, Carabidae) activity and assemblages at the farm scale in a long-term assessment.

    Science.gov (United States)

    Eyre, M D; Sanderson, R A; McMillan, S D; Critchley, C N R

    2016-04-01

    Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.

  15. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2012-04-16

    ... Market Tomato (Dollar Plan) Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION... Regulations, Fresh Market Tomato (Dollar Plan) Crop Provisions. The intended effect of this action is to... Tomato (Dollar Plan) Crop Provisions that were published by FCIC on November 17, 2011, as a notice of...

  16. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Science.gov (United States)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  17. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    is analyzed for the whole cropping system. The environmental conditions, crop choices and management will all affect the fate of the N left in the soil, and whether this will contribute mainly to leaching loss or be used for production in later crops. As an example, increasing pre-crop fertilization was shown...

  18. 76 FR 4201 - Common Crop Insurance Regulations, Macadamia Nut Crop Insurance Provisions; Correction

    Science.gov (United States)

    2011-01-25

    ... / Tuesday, January 25, 2011 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AB96 Common Crop Insurance Regulations, Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Correcting amendment...

  19. 78 FR 22411 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Science.gov (United States)

    2013-04-16

    ... / Tuesday, April 16, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Final rule...

  20. Genetically modified crops: success, safety assessment, and public concern.

    Science.gov (United States)

    Singh, Om V; Ghai, Shivani; Paul, Debarati; Jain, Rakesh K

    2006-08-01

    With the emergence of transgenic technologies, new ways to improve the agronomic performance of crops for food, feed, and processing applications have been devised. In addition, ability to express foreign genes using transgenic technologies has opened up options for producing large quantities of commercially important industrial or pharmaceutical products in plants. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of genetically modified (GM) crops on the environment. Potential contamination of the environment and food chains has prompted detailed consideration of how such crops and the molecules that they produce can be effectively isolated and contained. One of the reasonable steps after creating a transgenic plant is to evaluate its potential benefits and risks to the environment and these should be compared to those generated by traditional agricultural practices. The precautionary approach in risk management of GM plants may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Effective risk assessment and monitoring mechanisms are the basic prerequisites of any legal framework to adequately address the risks and watch out for new risks. Several agencies in different countries monitor the release of GM organisms or frame guidelines for the appropriate application of recombinant organisms in agro-industries so as to assure the safe use of recombinant organisms and to achieve sound overall development. We feel that it is important to establish an internationally harmonized framework for the safe handling of recombinant DNA organisms within a few years.

  1. Biofortification of staple food crops.

    Science.gov (United States)

    Nestel, Penelope; Bouis, Howarth E; Meenakshi, J V; Pfeiffer, Wolfgang

    2006-04-01

    Deficiencies of vitamin A, iron, and zinc affect over one-half of the world's population. Progress has been made to control micronutrient deficiencies through supplementation and food fortification, but new approaches are needed, especially to reach the rural poor. Biofortification (enriching the nutrition contribution of staple crops through plant breeding) is one option. Scientific evidence shows this is technically feasible without compromising agronomic productivity. Predictive cost-benefit analyses also support biofortification as being important in the armamentarium for controlling micronutrient deficiencies. The challenge is to get producers and consumers to accept biofortified crops and increase their intake of the target nutrients. With the advent of good seed systems, the development of markets and products, and demand creation, this can be achieved.

  2. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co......, being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas...

  3. Targeting carbon for crop yield and drought resilience.

    Science.gov (United States)

    Griffiths, Cara A; Paul, Matthew J

    2017-11-01

    Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors

  4. Crop rotations for grain production

    OpenAIRE

    Olesen, Jørgen E.; Rasmussen, Ilse Ankær; Askegaard, Margrethe

    2000-01-01

    There is an increasing demand for organically grown cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Such a change may reduce the stability of the farming systems, because of decreasing soil fertility and problems with weed control. There have only been a limited number of studies under temperate conditions in Europe and North America, where different crop rotations have been compared under ...

  5. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  6. Transportation fuels from energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V.K.; Kulsrestha, G.N.; Padmaja, K.V.; Kamra, S.; Bhagat, S.D. (Indian Inst. of Petroleum, Dehra Dun (India))

    1993-01-01

    Biomass constituents in the form of energy crops can be used as starting materials in the production of transportation fuels. The potential of biocrudes obtained from laticiferous species belonging to the families of Euphorbiaceae, Asclepiadaceae, Apocynaceae, Moraceae and Convolvulaceae for the production of hydrocarbon fuels has been explored. Results of studies carried out on upgrading these biocrudes by catalytic cracking using a commercial catalyst are presented. (author)

  7. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  8. Responsive Polymers for Crop Protection

    Directory of Open Access Journals (Sweden)

    Serban F. Peteu

    2010-08-01

    Full Text Available This review outlines the responsive polymer methods currently in use with their potential application to plant protection and puts forward plant-specific mechanisms as stimuli in newly devised methods for smart release of crop protection agents (CPAs. CPAs include chemicals (fungicides, insecticides, herbicides, biochemicals (antibiotics, RNA-based vaccines for plant viruses, semiochemicals (pheromones, repellents, allomones, microbial pesticides, growth regulators (insect and plant or micronutrients, all with crop protection effects. This appraisal focuses on emerging uses of polymer nano-encapsulated CPAs. Firstly, the most interesting advances in controlled release methods are critically discussed with their advantages and drawbacks. Secondly, several plant-specific stimuli-based smart methods are anticipated for use alongside the polymer nano- or micro-capsules. These new CPA release methods are designed to (i protect plants against infection produced by fungi or bacteria, and (ii apply micro-nutrients when the plants need it the most. Thus, we foresee (i the responsive release of nano- encapsulated bio-insecticides regulated by plant stress enzymes, and (ii the delivery of micro-nutrients synchronized by the nature or intensity of plant root exudates. Such continued advances of nano-scale smart polymer-based CPAs for the protection of crops herald a “small revolution” for the benefit of sustainable agriculture.

  9. MODELING WORLD BIOENERGY CROP POTENTIAL

    Science.gov (United States)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  10. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  11. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  12. Genomics Strategies for Germplasm Characterization and the Development of Climate Resilient Crops

    Directory of Open Access Journals (Sweden)

    Robert eHenry

    2014-02-01

    Full Text Available Food security requires the development and deployment of crop varieties resilient to climate variation and change. The study of variations in the genome of wild plant populations can be used to guide crop improvement. Genome variation found in wild crop relatives may be directly relevant to the breeding of environmentally adapted and climate resilient crops. Analysis of the genomes of populations growing in contrasting environments will reveal the genes subject to natural selection in adaptation to climate variations. Whole genome sequencing of these populations should define the numbers and types of genes associated with climate adaptation. This strategy is facilitated by recent advances in sequencing technologies. Wild relatives of rice and barley have been used to assess these approaches. This strategy is most easily applied to species for which a high quality reference genome sequence is available and where populations of wild relatives can be found growing in diverse environments or across environmental gradients.

  13. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Science.gov (United States)

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  14. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China

    Science.gov (United States)

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983–1999 and 2000–2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6–11.0% and 19.5–92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  15. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2008-01-01

      In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass...... measuring means (108) and with crop moisture content measurement means (106), measuring crop biomass (107a, 107b) and crop moisture content (109a, 109b) of the crop, providing a spatial crop biomass and crop moisture content characteristics map of the field  based on the biomass data (107a, 107b) provided...... from moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather...

  16. Extreme weather events and global crop production

    Science.gov (United States)

    Ray, D. K.; Gerber, J. S.; West, P. C.

    2014-12-01

    Extreme weather events can lead to significant loss in crop production and even trigger global price spikes. However it is still not clear where exactly and what types of extreme events have resulted in sharp declines in crop production. Neither is it clear how frequently such extreme events have resulted in extreme crop production losses. Using extreme event metrics with a newly developed high resolution and long time series of crop statistics database we identify the frequency and type of extreme event driven crop production losses globally at high resolutions. In this presentation we will present our results as global maps identifying the frequency and type of extreme weather events that resulted in extreme crop production losses and quantify the losses. Understanding how extreme events affects crop production is critical for managing risk in the global food system

  17. New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change

    Directory of Open Access Journals (Sweden)

    Robert Redden

    2013-05-01

    Full Text Available Extreme climatic variation is predicted with climate change this century. In many cropping regions, the crop environment will tend to be warmer with more irregular rainfall and spikes in stress levels will be more severe. The challenge is not only to raise agricultural production for an expanding population, but to achieve this under more adverse environmental conditions. It is now possible to systematically explore the genetic variation in historic local landraces by using GPS locators and world climate maps to describe the natural selection for local adaptation, and to identify candidate germplasm for tolerances to extreme stresses. The physiological and biochemical components of these expressions can be genomically investigated with candidate gene approaches and next generation sequencing. Wild relatives of crops have largely untapped genetic variation for abiotic and biotic stress tolerances, and could greatly expand the available domesticated gene pools to assist crops to survive in the predicted extremes of climate change, a survivalomics strategy. Genomic strategies can assist in the introgression of these valuable traits into the domesticated crop gene pools, where they can be better evaluated for crop improvement. The challenge is to increase agricultural productivity despite climate change. This calls for the integration of many disciplines from eco-geographical analyses of genetic resources to new advances in genomics, agronomy and farm management, underpinned by an understanding of how crop adaptation to climate is affected by genotype × environment interaction.

  18. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  19. An overview of genetically modified crop governance, issues and challenges in Malaysia.

    Science.gov (United States)

    Andrew, Johnny; Ismail, Normaz Wana; Djama, Marcel

    2018-01-01

    The application of agricultural biotechnology attracts the interest of many stakeholders. Genetically modified (GM) crops, for example, have been rapidly increasing in production for the last 20 years. Despite their known benefits, GM crops also pose many concerns not only to human and animal health but also to the environment. Malaysia, in general, allows the use of GM technology applications but it has to come with precautionary and safety measures consistent with the international obligations and domestic legal frameworks. This paper provides an overview of GM crop technology from international and national context and explores the governance and issues surrounding this technology application in Malaysia. Basically, GM research activities in Malaysia are still at an early stage of research and development and most of the GM crops approved for release are limited for food, feed and processing purposes. Even though Malaysia has not planted any GM crops commercially, actions toward such a direction seem promising. Several issues concerning GM crops as discussed in this paper will become more complex as the number of GM crops and varieties commercialised globally increase and Malaysia starts to plant GM crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Quinoa: An emerging new crop with potential for CELSS

    Science.gov (United States)

    Schlick, Greg; Bubenheim, David L.

    1993-01-01

    Chenopodium quinoa is being considered as a new crop for the Controlled Ecological Life Support System (CELSS) because of its high protein values (12 - 18%) and unique amino acid composition. Lysine, and essential amino acid that is deficient in many grain crops, is found in quinoa approaching Food and Agriculture Organization of the United Nations (FAO) standards set for humans. This 'new' crop, rich in protein and with desirable proportions of important amino acids, may provide greater versatility in meeting the needs of humans on long-term space missions. Initially, the cultivars CO407 x ISLUGA, CO407 Heat Tolerant Population 1, and Real' (a Bolivian variety) were examined. The first cultivar showed the most promise in greenhouse studies. When grown hydroponically in the greenhouse, with no attempt to maximize productivity, this cultivar produced 202 g m(exp -2) with a harvest index of 37%. None of the cultivars were greater than 70 cm in height. Initial results indicate that quinoa could be an excellent crop for CELSS because of the high concentration of protein, ease of use, versatility in preparation, and potential for greatly increased yields in controlled environments.

  1. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  2. Zoonotic bacterial pathogens and mixed crop-livestock farming.

    Science.gov (United States)

    Salaheen, S; Chowdhury, N; Hanning, I; Biswas, D

    2015-06-01

    Use of mixed crop-livestock farms (MCLFs) is one of the oldest and most traditional farming methods practiced all over the world, and MCLFs are still one of the major systems of food production, particularly for organic foods. On these typically small farms, livestock are reared primarily on grass and naturally grown crops, while composted animal wastes are used to fertilize the soil for growing crops. Specific to organic MCLFs, biosecurity challenges arise from the fact that animals are reared outdoors, which increases potential for contact with disease vectors including wild birds, rodents, and insects. Organic regulations do not allow the use of chemicals and antibiotics; therefore, alternative methods for control of disease and zoonotic pathogens must be used. Due to the biosecurity challenges and the complexity of the MCLF environment, methods for control of zoonotic pathogens need to be carefully considered in order to be effective and to abide by organic regulations if required. The objectives of this study are to define the complex routes of transmission, as well as the prevalence of potential zoonotic and possible interruption strategies of these pathogens among the food animals and crops produced on MCLFs.

  3. Utilization of economical threshold in management of pest control in field crops

    OpenAIRE

    František KOCOUREK

    2013-01-01

    In the methodology, basic principles of expert system for decision about using of pesticides according to economic threshold are described. Decision about using of pesticides is based on analysis of economical parameters and evaluation of pesticide impact on the environment. Methods of construction of damage curves for pests and diseases of field crops are described. Damage curves are quantified for economically important diseases and pests of field crops and injury levels are specified for 7...

  4. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  5. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  6. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  7. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  8. Minichromosomes: Vectors for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Jon P. Cody

    2015-07-01

    Full Text Available Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops.

  9. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  10. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  11. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    Science.gov (United States)

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log Kow), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  13. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... assessment. We collected 4,482 unique dissipation half-lives for 341 substances applied to 182 different crop species and fully characterize these data by describing their variance, distribution and uncertainty as well as by identifying the influence of substance, crop and environmental characteristics. We...

  14. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    E azizi

    2016-05-01

    Full Text Available Introduction Conventional operations in fields, soil and water management are not efficient and loss of and damage to the environment are considerable (Lal, 2000. Crop diversity and understanding the complex interactions between environmental and socioeconomic factors are approaches to make better use of limited resources (Tengberg et al., 1998. The most diverse ecosystems have a higher production under environment stress conditions compared with ecosystems with low diversity due to the better efficiency in the use of water, radiation and nutrients (Hulugalle & al, 1986; Walker & Ogindo, 2003. Materials and Methods In order to investigate the effects of crop diversity and nutrient source on resource use efficiency, a split plot experiment was conducted based on complete randomized blocks with 3 replications at the Agricultural Research Station, the Ferdowsi University of Mashhad, Iran, during 2006 and 2007. The treatments included manure and chemical fertilizers as the main plots and intercropping of 3 soybean varieties (Williams, Sahar and Gorgan3, intercropping of 3 Millet species (common millet, foxtail millet and pearl millet, intercropping of millet, soybean and sesame (Sesamum indicum and intercropping of millet, sesame, fenugreek (Trigonella foenum-graecum and ajowan (Trachyspermum ammi as sub plots. Results and Discussion The results indicated that in the first year, intercropping of 3 Millet species and intercropping of millet, soybean and sesame showed the highest water use efficiency (WUE based on biological yield. In the second year, intercropping of 3 millet species showed the highest WUE based on biological yield. The highest concentrations of nitrogen, phosphorous and potassium in crop tissues were observed in intercropping of 3 soybean varieties and intercropping of millet, soybean and sesame. In the first year, intercropping of 3 soybean varieties showed the highest nutrient use efficiency (NUE. In the second year, intercropping

  15. Are GM Crops for Yield and Resilience Possible?

    Science.gov (United States)

    Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar

    2018-01-01

    Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  17. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  18. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  19. IMPORTANCE OF PREDECESSORS IN MODERN CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Gavrail Kundurdzhiev

    2016-06-01

    Full Text Available The paper examines the peculiarities of modern systems of field crop rotations. A review is made of the criteria for selecting the precursors for basic cereals in arable crop rotations in Bulgaria. It reflects the results of years of comparative field trials with different combinations of factors - genotype-fertilization-predecessor. Conclusions are made on the impact of the predecessor on the energy productivity of crops.

  20. Introduction: food crops in a changing climate

    OpenAIRE

    Slingo, Julia M; Challinor, Andrew J.; Hoskins, Brian J.; Wheeler, Timothy R.

    2005-01-01

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. Th...

  1. Genetically Modified Crops and Food Security

    OpenAIRE

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  2. Expert system for controlling plant growth in a contained environment

    Science.gov (United States)

    May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)

    2011-01-01

    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system".

  3. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations.

    Science.gov (United States)

    Motavalli, P P; Kremer, R J; Fang, M; Means, N E

    2004-01-01

    effects on stimulating or suppressing soil nutrient transformations in field environments. Further consideration of the effects of a wide range of soil properties, including the amount of clay and its mineralogy, pH, soil structure, and soil organic matter, and variations in climatic conditions, under which transgenic crops may be grown, is needed in evaluating the impact of transgenic crops on soil nutrient transformations. Future environmental evaluation of the impact of the diverse transgenic crops under development could lead to an improved understanding of soil biological functions and processes.

  4. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions

    Directory of Open Access Journals (Sweden)

    Chengyan Zheng

    2014-10-01

    Full Text Available For smooth and wide application of conservation agriculture (CA, remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed to quantify the actual impacts of CA practices (NT: no/reduced-tillage only, CTSR: conventional tillage with straw retention, NTSR: NT with straw retention on crop yields as compared to conventional tillage without straw retention (CT. Although CA practices increased crop yield by 4.6% on average, there were large variations in their impacts. For each CA practice, CTSR and NTSR significantly increased crop yield by 4.9% and 6.3%, respectively, compared to CT. However, no significant effect was found for NT. Among ecological areas, significant positive effects of CA practices were found in areas with an annual precipitation below 600 mm. Similar effects were found in areas with annual mean air temperature above 5 °C. For cropping regions, CA increased crop yield by 6.4% and 5.5% compared to CT in Northwest and South China, respectively, whereas no significant effects were found in the North China and Northeast China regions. Among crops, the positive effects of CA practices were significantly higher in maize (7.5% and rice (4.1% than in wheat (2.9%. NT likely decreased wheat yield. Our results indicate that there are great differences in the impacts of CA practices on crop yield, owing to regional variation in climate and crop types. CA will most likely increase maize yield but reduce wheat yield. It is strongly recommended to apply CA with crop straw retention in maize cropping areas and seasons with a warm and dry climate pattern.

  5. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  6. Safer GM-Crops: Opportunities for Innovations

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Safer GM-Crops: Opportunities for Innovations. Rakesh Tuli. National Agri-Food Biotechnology Institute, Mohali. National Botanical Research Institute, Lucknow.

  7. Growing cover crops in organic arable crop rotations: Best practices from Denmark

    OpenAIRE

    Askegaard, Margrethe

    2017-01-01

    When sown correctly at the right time, in the right position within the rotation, cover crops retain nutrients, conserve water, prevent soil erosion, improve soil fertility and quality, and suppress weeds. Growing cover crops is recognized as a climate-smart agricultural practice. Practical recommendation Where to position and when to time cover crops in the rotation? • Grow cover crops in the 1st and 2nd year after ploughing of clover-grass to avoid nitrogen losses. • Grow nitrog...

  8. Influence of air pollution on cultivated crops

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, A.J.; Spierings, F.H.F.G.; van Raay, A.; Wolting, H.G.

    1971-01-01

    Fumigation of tomato plants during the complete growth period with 0.1 ppm NO2 resulted in a gradually increasing discoloration of the plants starting from the lowest leaves on upwards. The yield of the plants was less by 8%. In a similar fumigation experiment with a concentration of 0.9 ppb HF carried out with eight varieties of freesia, the plants with the heaviest injury had almost no flowers and a much lower yield of corns. Potatoes, variety Bintje, fumigated during some hours with 0.1 ppm ethylene, showed curling up of the margins of the young leaves. In the urbanized area west of Rotterdam, epinastic symptoms on potato and carrot leaves appearing during some hours, pointed to air pollution with ethylene. In the first half of October lettuce in glasshouses was damaged; with the aid of the characteristic symptoms on Poa annua and Urtica urens it could be demonstrated that PAN (peroxyacetylnitrate) was the cause of the trouble. With regard to the second aluminum factory in the south-west of The Netherlands, starting production in 1971, preliminary measurements of HF pollution have been carried out. The other aluminium factory in the northeastern part of The Netherlands, caused no damage to the agricultural crops in the surroundings of the plant. From the flower bulbs cultivated in the environment of the steel factory, west of Amsterdam the gladiolus plants showed increased HF injury on the leaves, probably as a consequence of application of a new method in steel production.

  9. Simulation of maize growth under conservation farming in tropical environments.

    NARCIS (Netherlands)

    Stroosnijder, L.; Kiepe, P.

    1998-01-01

    This book is written for students and researchers with a keen interest in the quantification of the field soil water balance in tropical environments and the effect of conservation farming on crop production. Part 1 deals with the potential production, i.e. crop growth under ample supply of water

  10. Status of market, regulation and research of genetically modified crops in Chile.

    Science.gov (United States)

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  12. Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification

    Directory of Open Access Journals (Sweden)

    Yolanda H. Chen

    2017-10-01

    Full Text Available Crop domestication has been embraced as a model system to study the genetics of plant evolution. Yet, the role of the environment, including biotic forces such as microbial and insect communities, in contributing to crop phenotypes under domestication and diversification has been poorly explored. In particular, there has been limited progress in understanding how human selection, agricultural cultivation (soil disturbance, fertilization, and irrigation, and biotic forces act as selective pressures on crop phenotypes. For example, geographically-structured pathogenic, pestiferous, and mutualistic interactions with crop plants have likely given rise to landraces that interact differently with local microbial and insect communities. In order to understand the adaptive role of crop traits, we argue that more studies should be conducted in the geographic centers of origin to test hypotheses on how abiotic, biotic, and human selective forces have shaped the phenotypes of domesticated plants during crop domestication and subsequent diversification into landraces. In these centers of origin, locally endemic species associated with wild ancestors have likely contributed to the selection on plant phenotypes. We address a range of questions that can only be studied in the geographic center of crop origin, placing emphasis on Mesoamerican polyculture systems, and highlight the significance of in situ studies for increasing the sustainability of modern agricultural systems.

  13. The Estimation of Regional Crop Yield Using Ensemble-Based Four-Dimensional Variational Data Assimilation

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2014-03-01

    Full Text Available To improve crop model performance for regional crop yield estimates, a new four-dimensional variational algorithm (POD4DVar merging the Monte Carlo and proper orthogonal decomposition techniques was introduced to develop a data assimilation strategy using the Crop Environment Resource Synthesis (CERES-Wheat model. Two winter wheat yield estimation procedures were conducted on a field plot and regional scale to test the feasibility and potential of the POD4DVar-based strategy. Winter wheat yield forecasts for the field plots showed a coefficient of determination (R2 of 0.73, a root mean square error (RMSE of 319 kg/ha, and a relative error (RE of 3.49%. An acceptable yield at the regional scale was estimated with an R2 of 0.997, RMSE of 7346 tons, and RE of 3.81%. The POD4DVar-based strategy was more accurate and efficient than the EnKF-based strategy. In addition to crop yield, other critical crop variables such as the biomass, harvest index, evapotranspiration, and soil organic carbon may also be estimated. The present study thus introduces a promising approach for operationally monitoring regional crop growth and predicting yield. Successful application of this assimilation model at regional scales must focus on uncertainties derived from the crop model, model inputs, data assimilation algorithm, and assimilated observations.

  14. Regulatory challenges for GM crops in developing economies: the African experience.

    Science.gov (United States)

    Nang'ayo, Francis; Simiyu-Wafukho, Stella; Oikeh, Sylvester O

    2014-12-01

    Globally, transgenic or genetically modified (GM) crops are considered regulated products that are subject to regulatory oversight during trans-boundary movement, testing and environmental release. In Africa, regulations for transgenic crops are based on the outcomes of the historic Earth Summit Conference held in Rio, Brazil two decades ago, namely, the adoption of the Convention on Biological Diversity (CBD) and the subsequent adoption of the Cartagena Protocol on Biosafety. To exploit the potential benefits of transgenic crops while safeguarding the potential risks on human health and environment, most African countries have signed and ratified the CBD and the Cartagena Protocol on Biosafety. Consequently, these countries are required to take appropriate legal, administrative and other measures to ensure that the handling and utilization of living modified organisms are undertaken in a manner that reduces the risks to humans and the environment. These countries are also expected to provide regulatory oversight on transgenic crops through functional national biosafety frameworks (NBFs). While in principle this approach is ideal, NBFs in most African countries are steeped in a host of policy, legal and operational challenges that appear to be at cross-purposes with the noble efforts of seeking to access, test and deliver promising GM crops for use by resource-limited farmers in Africa. In this paper we discuss the regulatory challenges faced during the development and commercialization of GM crops based on experiences from countries in Sub-Saharan Africa.

  15. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  16. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  17. Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains

    Science.gov (United States)

    Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...

  18. Long-term perspective changes in winter wheat crop production technology

    Directory of Open Access Journals (Sweden)

    Adam Harasim

    2009-01-01

    Full Text Available Impact of 10 factors related to the environment, crop management and organisation on yields of commercially grown winter wheat was investigated at Błonie-Topola experiment farm over the years 1980-2007. From among the factors under investigation, yields of winter wheat were negatively affected by delayed seeding and excessively high seeding rates. Trends of grain yields, value of the preceding crops, NPK fertilization, percent of cereals in total cropland, labour consumption of crop production were also investigated. Due to changes in farming conditions (discontinuing of livestock production, employment reduction, increase of cereals in total cropland there was a tendency for the seedbed value to deteriorate and for potassium and phosphorus fertilization level to decrease. However, due to increased nitrogen rates and correctly applied other elements of crop management it was possible to obtain satisfactory yields of winter wheat.

  19. LAND FAVORABILITY TO CROPS IN INTERCOMMUNITY ASSOCIATION FOR DEVELOPMENT ALBA IULIA

    Directory of Open Access Journals (Sweden)

    Moldovan Nicolaie

    2016-06-01

    Full Text Available Land favorability to Crops in : Intercommunity Association For Development Alba Iulia. A Case Study. Specialty literature emphasizes on the major role of analyses and land pretability identification for different crops and agricultural use as a first step to economic evaluation of land productivity for different areas. Therefore, this study objective is represented by favourability identification for apple, pear, plum, cherry, sour cherry, peach and apricot crops. The framing on favourability classes for these crops gives the possibility to frame on favourability classes for orchards use for all the 11 administrative units belonging to AIDA. This was possible as a result of using GIS spatial analysis technique that allows modelling the favourability and restrictivity of environment factors on pomiculture and also drawing the areas having different favourability grades that will lead to making the best decisions regarding the land use for the studied territory.

  20. Letting the gene out of the bottle: the population genetics of genetically modified crops.

    Science.gov (United States)

    Chapman, Mark A; Burke, John M

    2006-01-01

    Genetically modified (GM) plants are rapidly becoming a common feature of modern agriculture. This transition to engineered crops has been driven by a variety of potential benefits, both economic and ecological. The increase in the use of GM crops has, however, been accompanied by growing concerns regarding their potential impact on the environment. Here, we focus on the escape of transgenes from cultivation via crop x wild hybridization. We begin by reviewing the literature on natural hybridization, with particular reference to gene flow between crop plants and their wild relatives. We further show that natural selection, and not the overall rate of gene flow, is the most important factor governing the spread of favorable alleles. Hence, much of this review focuses on the likely effects of transgenes once they escape. Finally, we consider strategies for transgene containment.

  1. Key global environmental impacts of genetically modified (GM) crop use 1996–2012

    Science.gov (United States)

    Barfoot, Peter; Brookes, Graham

    2014-01-01

    Against the background of increasing awareness and appreciation of issues such as global warming and the impact of mankind’s activities such as agriculture on the global environment, this paper updates previous assessments of some key environmental impacts that crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 503 million kg (-8.8%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator the Environmental Impact Quotient [EIQ]) by 18.7%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2012, was equivalent to removing 11.88 million cars from the roads. PMID:24637726

  2. Key environmental impacts of global genetically modified (GM) crop use 1996-2011.

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2013-01-01

    Given the increasing awareness and appreciation of issues such as global warming and the impact of mankind's activities such as agriculture on the global environment, this paper updates previous assessments of the environmental impact of an important and relatively new technology, crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 474 million kg (-8.9%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops [as measured by the indicator the Environmental Impact Quotient (EIQ)] by 18.1%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2011, was equivalent to removing 10.22 million cars from the roads.

  3. Key global environmental impacts of genetically modified (GM) crop use 1996-2012.

    Science.gov (United States)

    Barfoot, Peter; Brookes, Graham

    2014-01-01

    Against the background of increasing awareness and appreciation of issues such as global warming and the impact of mankind's activities such as agriculture on the global environment, this paper updates previous assessments of some key environmental impacts that crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 503 million kg (-8.8%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator the Environmental Impact Quotient [EIQ]) by 18.7%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2012, was equivalent to removing 11.88 million cars from the roads.

  4. Alcohol co-production from tree crops

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Folger, G.; Milne, T.

    1982-06-01

    A concept for the sustainable production of alcohol from fermentable substrates produced on an annual basis by the reproductive organs (pods, fruits, nuts, berries, etc.) of tree crops is presented. The advantages of tree-crop systems include suitability for use on marginal land, potential productivity equivalent to row crops, minimal maintenance and energy-input requirements, environmental compatibility, and the possibility of co-product production. Honeylocust, mesquite, and persimmon are examined as potential US tree-crop species. Other species not previously considered, including osage orange and breadfruit, are suggested as tree-crop candidates for North America and the tropical developing world, respectively. Fermentation of tree-crop organs and the economics of tree-crop systems are also discussed. Currently the greatest area of uncertainty lies in actual pod or fruit yields one can expect from large tree farms under real life conditions. However, ballpark ethanol yield estimates of from 880 to 3470 l hectare/sup -1/ (94 to 400 gal acre/sup -1/) justify further consideration of tree crop systems.

  5. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  6. Analysis of yield advantage in mixed cropping

    NARCIS (Netherlands)

    Ranganathan, R.

    1993-01-01

    It has long been recognized that mixed cropping can give yield advantages over sole cropping, but methods that can identify such yield benefits are still being developed. This thesis presents a method that combines physiological and economic principles in the evaluation of yield advantage.

  7. Engineering Sclerotinia Sclerotiorum Resistance in Oilseed Crops ...

    African Journals Online (AJOL)

    The fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is worldwide in distribution and pathogenic to more than 400 plant species. This disease causes significant yield losses of various important crops including sunflower, canola, and soybean. Applying fungicides and crop rotation are currently the major methods of ...

  8. Use of Cover Crops in Hardwood Production

    Science.gov (United States)

    Randy Rentz

    2005-01-01

    Cover crops are as essential a practice in hardwood production as in pine production or any other nursery operation. Without proper cover crop rotation in a nursery plan, we open ourselves up to an array of problems: more diseases, wrong pH, more weeds, reduced fertility, and less downward percolation of soil moisture due, in part, to compaction....

  9. 7 CFR 981.19 - Crop year.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 981.19 Section 981.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.19 Crop yea...

  10. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  11. Institutional Factors Influencing Crop Farmers Adoption of ...

    African Journals Online (AJOL)

    This study examined the institutional factors influencing adoption of recommended agrochemical practices (RAPs) among crop farmers in Nigeria. A total of 260 crop farmers who have sustained the use of agrochemicals for at least five years were selected for the study using multi-stage sampling technique. Data were ...

  12. Adoption of Recommended Agrochemical Practices among Crop ...

    African Journals Online (AJOL)

    This study assessed the level of adoption of recommended agrochemical practices among crop farmers in Kaduna and Ondo States of Nigeria. It measured the perception of farmers on pesticides and their knowledge on the harmful effects of pesticides. A total of 260 crop farmers who have sustained the use of ...

  13. Mathematical analysis and simulation of crop micrometeorology

    NARCIS (Netherlands)

    Chen, J.

    1984-01-01

    In crop micrometeorology the transfer of radiation, momentum, heat and mass to or from a crop canopy is studied. Simulation models for these processes do exist but are not easy to handle because of their complexity and the long computing time they need. Moreover, up to now such models can

  14. Genetically Engineered Crops: Experiences and Prospects

    NARCIS (Netherlands)

    Giller, K.E.

    2016-01-01

    Since their introduction in the mid-1990s, genetically engineered (GE) crops have been the topic of much debate. This report reviews evidence accumulated from experiences on the most widely grown GE crops to date: herbicide-resistant and insect-resistant varieties of maize, soybean, and cotton.

  15. Improving selenium nutritional value of major crops

    Science.gov (United States)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  16. Engineering insect-resistant crops: A review

    African Journals Online (AJOL)

    dgeorge

    food derived from animals fed GM feeds is anything other than as safe as that produced by conventional feed ingredients. Also, there has been no evidence to suggest that any commercial GM crops are deleterious to humans. To ensure that transgenic crops, including those expressing genes for enhanced resistance to ...

  17. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  18. (Hordeum Vulgare) Crop Coefficient and Comparative Assessment ...

    African Journals Online (AJOL)

    Bheema

    evapotranspiration, to estimate barley crop coefficient (kc), and to evaluate the water productivity taking into ... corresponding economic water productivity for tomato and onion were 87 – 89% and 81 – 82% higher than that of ... areas where water scarcity is critical problem and irrigation is a necessity for crop production.

  19. Kenaf and cowpea as sugarcane cover crops

    Science.gov (United States)

    The use of cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Typically, a Louisiana sugarcane field is replanted every four years due to declining yields, and,...

  20. Genetic diversity in a crop metapopulation

    NARCIS (Netherlands)

    Heerwaarden, van J.; Eeuwijk, van F.A.; Ross-Ibarra, J.

    2010-01-01

    The need to protect crop genetic resources has sparked a growing interest in the genetic diversity maintained in traditional farming systems worldwide. Although traditional seed management has been proposed as an important determinant of genetic diversity and structure in crops, no models exist that

  1. groundwater contribution to crop water requirement groundwater

    African Journals Online (AJOL)

    eobe

    A drum-culture lysimeter culture lysimeter culture lysimeter experiment was conducted at the Akwa Ibom State University, Obio Akpa campus experiment was conducted at the Akwa Ibom State University, Obio Akpa campus research farm to estimate the contribution of groundwater to crop water requirement of waterleaf crop ...

  2. Global conservation priorities for crop wild relatives

    NARCIS (Netherlands)

    Castañeda-Álvarez, Nora P.; Khoury, Colin K.; Achicanoy, Harold A.; Bernau, Vivian; Dempewolf, Hannes; Eastwood, Ruth J.; Guarino, Luigi; Harker, Ruth H.; Jarvis, Andy; Maxted, Nigel; Müller, Jonas V.; Ramirez-Villegas, Julian; Sosa, Chrystian C.; Struik, Paul C.; Vincent, Holly; Toll, Jane

    2016-01-01

    The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global

  3. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  4. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage seeding crop insurance provisions. 457.151... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage seeding crop insurance provisions. The Forage Seeding Crop Insurance Provisions for 2003 and succeeding crop...

  5. 7 CFR 457.118 - Malting barley crop insurance.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Malting barley crop insurance. 457.118 Section 457.118..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.118 Malting barley crop insurance. The malting barley crop insurance provisions for the 1996 and succeeding crop years are as follows: United...

  6. Assessing ecological risks and benefits of genetically modified crops

    OpenAIRE

    Bošković Jelena V.; Isajev Vasilije V.; Prijić Željana S.; Zečević Veselinka M.; Hojka Zdravko M.; Dozet Gordana K.

    2010-01-01

    Genetically modified (GM) crops and biotechnology are providing new opportunities for increasing crop productivity and tackling agriculture problems, such as diseases, pests and weeds, abiotic stress and nutritional limitations of staple food crops. As GM crops are being adopted in various locations with different ecosystems, a scientifically based understanding of the environmental effects of cultivations of GM crops would assist decision makers worldwide ...

  7. Crop insurance: Risks and models of insurance

    Directory of Open Access Journals (Sweden)

    Čolović Vladimir

    2014-01-01

    Full Text Available The issue of crop protection is very important because of a variety of risks that could cause difficult consequences. One type of risk protection is insurance. The author in the paper states various models of insurance in some EU countries and the systems of subsidizing of insurance premiums by state. The author also gives a picture of crop insurance in the U.S., noting that in this country pays great attention to this matter. As for crop insurance in Serbia, it is not at a high level. The main problem with crop insurance is not only the risks but also the way of protection through insurance. The basic question that arises not only in the EU is the question is who will insure and protect crops. There are three possibilities: insurance companies under state control, insurance companies that are public-private partnerships or private insurance companies on a purely commercial basis.

  8. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  9. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2009-01-01

    The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO3) leaching measurements and soil N...... on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from...

  10. Capitalizing on deliberate, accidental, and GM-driven environmental change caused by crop modification.

    Science.gov (United States)

    Knox, Oliver G G; Walker, Robin L; Booth, Elaine J; Hall, Clare; Crossan, Angus N; Gupta, Vadakattu V S R

    2012-01-01

    The transgenic traits associated with the majority of commercial genetically modified crops are focused on improving herbicide and insecticide management practices. The use of the transgenic technology in these crops and the associated chemistry has been the basis of studies that provide evidence for occasional improvement in environmental benefits due to the use of less residual herbicides, more targeted pesticides, and reduced field traffic. This is nicely exemplified through studies using Environmental Impact Quotient (EIQ) assessments. Whilst EIQ evaluations may sometimes illustrate environmental benefits they have their limitations. EIQ evaluations are not a surrogate for Environmental Risk Assessments and may not reflect real environmental interactions between crops and the environment. Addressing the impact cultivated plants have on the environment generally attracts little public attention and research funding, but the introduction of GM has facilitated an expansion of research to address potential environmental concerns from government, NGOs, industry, consumers, and growers. In this commentary, some evidence from our own research and several key papers that highlight EIQ assessments of the impact crops are having on the environment are presented. This information may be useful as an education tool on the potential benefits of GM and conventional farming. In addition, other deliberate, accidental, and GM-driven benefits derived from the examination of GM cropping systems is briefly discussed.

  11. Yield losses of soybean and maize by competition with interseeded cover crops and weeds in organic-based cropping systems

    OpenAIRE

    Uchino, H; Iwama, K.; Jitsuyama, Y; Yudate, T.; Nakamura, S

    2009-01-01

    Weed management is a major issue in organic farming systems. Although interseeding cover crops is one alternative to herbicides, cover crops often suppress not only weeds but also main crops. Therefore, using cover crops for weed control without adverse effects on main crop growth is important. To verify the effect of cover crops on competition between main crops, cover crops and weeds in a snowy-cold region, main crops soybean (Glycine max Merr.) in 2005 and maize (Zea mays L.) in 2006 were ...

  12. Embodied crop calories in animal products

    Science.gov (United States)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  13. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  14. Transfer of engineered genes from crop to wild plants

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier......, Such sexual reproduction has been the basis for breeding almost all crops....

  15. UAV-based high-throughput phenotyping in legume crops

    Science.gov (United States)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (pphenotyping traits.

  16. Feed legumes for truly sustainable crop-animal systems

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-06-01

    Full Text Available Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration, whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

  17. Consumer acceptance of food crops developed by genome editing.

    Science.gov (United States)

    Ishii, Tetsuya; Araki, Motoko

    2016-07-01

    One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk-benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk-benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

  18. Public Acceptance of Plant Biotechnology and GM Crops

    Directory of Open Access Journals (Sweden)

    Jan M. Lucht

    2015-07-01

    Full Text Available A wide gap exists between the rapid acceptance of genetically modified (GM crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  19. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  20. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  1. Pest Management Guide: Horticultural and Forest Crops, 2014

    OpenAIRE

    Hong, Chuanxue; Schultz, Peter B.

    2014-01-01

    This 2014 Virginia Pest Management Guide provides the latest recommendations for regulations and basic information, commercial small fruit, grapes, nursery crops, floral crops, turf, and low-management crops and areas.

  2. Incorporating soil health management practices into viable potato cropping systems

    Science.gov (United States)

    Soil health is critical to agricultural sustainability, environmental quality, and ecosystem function, but is generally degraded through intensive potato production. Soil and crop management practices beneficial to soil health, such as crop rotations, cover crops and green manures, organic amendment...

  3. 7 CFR 457.137 - Green pea crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... practices. The cultural practices generally in use in the county for the crop to make normal progress toward... of the field, time to crop maturity, and marketing window, that replanting the insured crop will...

  4. Modeling and control for closed environment plant production systems

    Science.gov (United States)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  5. Global crop improvement networks to bridge technology gaps.

    Science.gov (United States)

    Reynolds, Matthew P; Hellin, Jonathan; Govaerts, Bram; Kosina, Petr; Sonder, Kai; Hobbs, Peter; Braun, Hans

    2012-01-01

    To ensure future food security, there is an urgent need for improved co-ordination of agricultural research. While advances in biotechnology hold considerable promise, significant technology gaps exist that may reduce their impact. Examples include an incomplete knowledge of target breeding environments, a limited understanding and/or application of optimal crop management practices, and underfunded extension services. A better co-ordinated and more globalized approach to agricultural research through the implementation of Global Crop Improvement Networks (GCIN) is proposed. Such networks could underpin agricultural research and development by providing the following types of services: (i) increased resolution and precision of environmental information, including meteorological data, soil characteristics, hydrological data, and the identification of environmental 'hotspots' for a range of biotic, abiotic, and socio-economic constraints; (ii) augmented research capacity, including network-based variety and crop management trials, faster and more comprehensive diagnosis of emerging constraints, timely sharing of new technologies, opportunities to focus research efforts better by linking groups with similar productivity constraints and complementary skills, and greater control of experimental variables in field-based phenotyping; and (iii) increased communication and impacts via more effective dissemination of new ideas and products, the integration of information globally to elicit well-timed local responses to productivity threats, an increased profile, and the publicity of threats to food security. Such outputs would help target the translation of research from the laboratory into the field while bringing the constraints of rural communities closer to the scientific community. The GCIN could provide a lens which academia, science councils, and development agencies could use to focus in on themes of common interest, and working platforms to integrate novel research

  6. Weed infestation of field crops in different soils in the protective zone of Roztocze National Park. Part II. Root crops

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of root crops in different soils in the protective zone of Roztocze National Park was conducted in the years 1991-1995. As many as 240 phytosociological records, made with the use of Braun-Blanquet method, were taken in potato and sugar beet fields. The number of weed species in sugar beet and potato in the area depended on the soil and type of root crop. In the same environment conditions. the iiuinber of weed species was higher in potato than in sugar beet. The most difficult weed species iii all types of soil were: Chenopodium album, Stellaria media and Convolvulus arvensis. Podsolic soils were highly infested by two acidophylic species: Spergula arvensis and Raphanus raphanistum. Potato in loess soil and brown soil made of loamy sands were highly infested by Echinochloa crus-galli, Equisetum arvense and Galinsoga parviflora. Root crop plantations in brown soils formed from gaizes of granulometric loam texture and limestone soils were infested by: Galium aparine, Sonchus arvensis, Sinapis arvensis and Veronica persica.

  7. Introduction to a special issue on genotype by environment interaction

    Science.gov (United States)

    Expression of a phenotype is a function of the genotype, the environment, and the differential sensitivity of certain genotypes to different environments, also known as genotype by environment (G × E) interaction. This special issue of Crop Science includes a collection of manuscripts that reviews t...

  8. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  9. PETRO: Higher Productivity Crops for Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  10. Lithology rules badland distribution and typology in a montane Mediterranean environment (upper Llobregat basin, Catalan Pre-Pyrenees)

    Science.gov (United States)

    Moreno de las Heras, Mariano; Gallart, Francesc

    2016-04-01

    Badlands (i.e. highly dissected areas carved in soft bedrock with little or no vegetation) are pervasive in a wide range of environmental conditions across the Mediterranean region, including semiarid, sub-humid and humid environments, and represent hotspots of erosion and sediment production at the regional scale. On montane (cold sub-humid and humid) Mediterranean landscapes, harsh thermal conditions on north-facing slopes favors intense bedrock weathering and impose serious constraints for plant colonization, which has generally been argued to explain preferential distribution of badlands on shady aspects. We study the distribution and typology of badlands in the upper Llobregat basin (500 km2, 700-2400 m.a.s.l. elevation, 700-900 mm annual rainfall, 8-11°C mean temp.). We mapped regional badlands by manually digitizing affected areas on recent (2012) high resolution (50 cm pixel) ortophotos. Badlands extend over about 200 ha in the upper Llobregat basin and are developed on Paleocene continental lutites (Garumnian Facies, Tremp Formation) and Eocene marine marls (Sagnari, Armancies and Vallfogona Formations). While badlands on Eocene marls showed a preferential distribution on north-facing shady slopes, badland occurrence on the highly unstable smectite-rich Garumnian lutites did not reveal clear aspect trends. In addition, elevation, which broadly controls winter temperatures in the region, did not show a clear influence on badland distribution. A principal component analysis was applied to study badland type using general geomorphological and vegetation metrics (i.e. badland size, slope, aspect, elevation gradient, connection to the regional drainage network, vegetation greenness) derived from a high resolution digital elevation model (5 m pixel) and pan-sharpened Landsat 8 MSAVI imagery (15 m pixel). Lithology was found to largely impact badland type, with Garumnian lutite badlands showing lower slope gradients (20°-30° average slope) than badlands on

  11. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  12. The Ionomic Study of Vegetable Crops.

    Directory of Open Access Journals (Sweden)

    Toshihiro Watanabe

    Full Text Available Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit. For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum and eggplant (S. melongena indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families.

  13. Page 1 African CropScience Journal, Vol. 14. No. 1, pp. 1-15, 2006 ...

    African Journals Online (AJOL)

    Productivity of maize (Zea mays) is low in the small-holder sector of Zimbabwe because the crop is grown under stress-prone environments and limited resources. The objective of this study was to investigate farmer perceptions on maize cultivars and their implications for breeding. Participatory rural appraisal and ...

  14. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  15. Measured and computed volatilisation of the fungicide fenpropimorph from a sugar beet crop

    NARCIS (Netherlands)

    Leistra, M.; Smelt, J.H.; Berg, van den F.

    2005-01-01

    Depending on their vapour pressure, volatilisation can be one of the main pathways of emission of pesticides into the environment. The volatilisation of fenpropimorph was studied in a field experiment in which the fungicide was sprayed onto a sugar beet crop. Volatilisation rates were calculated by

  16. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  17. Broccoli Cultivar Performance under Organic and Conventional Management Systems and Implications for Crop Improvement

    NARCIS (Netherlands)

    Renaud, E.N.C.; Lammerts Van Bueren, E.; Caldas Paulo, M.J.; Eeuwijk, van F.A.; Juvik, J.A.; Hutton, M.G.; Myers, J.R.

    2014-01-01

    To determine if present commercial broccoli cultivars meet the diverse needs of organic management systems, such as adaptation to low N input, mechanical weed management, and no chemical pesticide use, and to propose the selection environments for crop improvement for organic production, we compared

  18. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Allelopathy refers to an ecological phenomenon where there is plant-plant interference through release of organic chemicals (allelochemicals) in the surrounding soil environment as water leachates or root exudates. Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I ...

  19. Assessing nutrient adequacy from the crop contents of free-ranging ...

    African Journals Online (AJOL)

    22379916

    2015-05-21

    May 21, 2015 ... The chickens consumed grains, kitchen waste, seeds from the environment, plant materials, worms and insects, and some ... concentration of a nutrient in crop contents indicates a deficiency, the chickens are likely to consume insufficient quantities of .... Green leaves of vegetables and grasses. Worms and ...

  20. Canola integration into semi-arid wheat cropping systems of the inland Pacific Northwestern USA

    Science.gov (United States)

    The inland Pacific Northwestern USA (iPNW) wheat-producing region has a diversity of environments and soils, yet it lacks crop diversity and is one of the few semi-arid wheat-growing regions without significant integration of oilseeds. Four major agroecological zones, primarily characterised by wate...

  1. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS.

    Science.gov (United States)

    Yin, Xinyou; Struik, Paul C

    2017-04-01

    Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice in tropical, subtropical, and temperate environments, to evaluate the following routes: (1) improving mesophyll conductance (gm); (2) improving Rubisco specificity (Sc/o); (3) improving both gm and Sc/o; (4) introducing C4 biochemistry; (5) introducing C4 Kranz anatomy that effectively minimizes CO2 leakage; (6) engineering the complete C4 mechanism; (7) engineering cyanobacterial bicarbonate transporters; (8) engineering a more elaborate cyanobacterial CO2-concentrating mechanism (CCM) with the carboxysome in the chloroplast; and (9) a mechanism that combines the low ATP cost of the cyanobacterial CCM and the high photosynthetic capacity per unit leaf nitrogen. All routes improved crop mass production, but benefits from Routes 1, 2, and 7 were ≤10%. Benefits were higher in the presence than in the absence of drought, and under the present climate than for the climate predicted for 2050. Simulated crop mass differences resulted not only from the increased canopy photosynthesis competence but also from changes in traits such as light interception and crop senescence. The route combinations gave larger effects than the sum of the effects of the single routes, but only Route 9 could bring an advantage of ≥50% under any environmental conditions. To supercharge crop productivity, exploring a combination of routes in improving the CCM, photosynthetic capacity, and quantum efficiency is required. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS

    Science.gov (United States)

    Struik, Paul C.

    2017-01-01

    Abstract Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice in tropical, subtropical, and temperate environments, to evaluate the following routes: (1) improving mesophyll conductance (gm); (2) improving Rubisco specificity (Sc/o); (3) improving both gm and Sc/o; (4) introducing C4 biochemistry; (5) introducing C4 Kranz anatomy that effectively minimizes CO2 leakage; (6) engineering the complete C4 mechanism; (7) engineering cyanobacterial bicarbonate transporters; (8) engineering a more elaborate cyanobacterial CO2-concentrating mechanism (CCM) with the carboxysome in the chloroplast; and (9) a mechanism that combines the low ATP cost of the cyanobacterial CCM and the high photosynthetic capacity per unit leaf nitrogen. All routes improved crop mass production, but benefits from Routes 1, 2, and 7 were ≤10%. Benefits were higher in the presence than in the absence of drought, and under the present climate than for the climate predicted for 2050. Simulated crop mass differences resulted not only from the increased canopy photosynthesis competence but also from changes in traits such as light interception and crop senescence. The route combinations gave larger effects than the sum of the effects of the single routes, but only Route 9 could bring an advantage of ≥50% under any environmental conditions. To supercharge crop productivity, exploring a combination of routes in improving the CCM, photosynthetic capacity, and quantum efficiency is required. PMID:28379522

  3. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

    Science.gov (United States)

    Kromdijk, Johannes; Long, Stephen P

    2016-03-16

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  4. Effects of changes in land use on soil physical properties and soil organic carbon content in a wheat-corn-sunflower crop sequence, in a loam soil of Argentina.

    Science.gov (United States)

    Aparicio, V.; Costa, J. L.

    2012-04-01

    The Argentinean Humid Pampas extend over about 60 million hectares, 90% of which are agricultural lands. The Southeast of the Buenos Aires Province is part of the Humid Pampas, it covers over 1,206,162 hectares, the mean annual temperature is 13.3 °C and the climate is sub-humid. At the present only 6% of the lands are used for pasture. The main activities are agriculture and cattle production. The main crops are wheat, sunflower, corn and soybean. The tillage systems used in the area are: moldboard plow (MP), chisel plow (CP) and no-till (NT). Excessive soil cultivation under MP generates decreases in the levels of soil organic carbon (SOC). The magnitude of such decrease depends on the intensity of the tillage system, the tillage timeliness and the amount and quality of the residues. Adopting NT may reduce the effects of intensive agriculture, through the maintenance and accumulation of SOC. However, there are evidences that, under NT, the bulk density (ρb) in the superficial layers of the soil increases. The soil compaction causes degradation of the soil structure, reduces the soil water availability and reduces the soil hydraulic conductivity. With this scenario and the tendency to increase the surface under NT in the Southeast Humid Pampas, we evaluated the evolution of some soil physical properties and the SOC in a 10-year experiment with a wheat-corn-sunflower rotation. The experiment was carried out in four localities at farmerś fields under three different tillage systems: MP, CP and NT in a randomized complete block design, considering each locality as a block. Each plot had 50 m in width by 100 m length and the treatments were: NT, MP and CP. The results of this experiment have allowed us to verify that: i) the wheat-corn-sunflower crop sequence showed a tendency to reduce the values of bulk density (ρb) but NT increased ρb in the superficial soil layers; ii) the more intensive the tillage system, the higher the change in the mean weight diameter

  5. Limited potential of crop management for mitigating surface ozone impacts on global food supply

    Science.gov (United States)

    Teixeira, Edmar; Fischer, Guenther; van Velthuizen, Harrij; van Dingenen, Rita; Dentener, Frank; Mills, Gina; Walter, Christof; Ewert, Frank

    2011-05-01

    Surface ozone (O 3) is a potent phytotoxic air pollutant that reduces the productivity of agricultural crops. Growing use of fossil fuel and climate change are increasing O 3 concentrations to levels that threaten food supply. Historically, farmers have successfully adapted agricultural practices to cope with changing environments. However, high O 3 concentrations are a new threat to food production and possibilities for adaptation are not well understood. We simulate the impact of ozone damage on four key crops (wheat, maize, rice and soybean) on a global scale and assess the effectiveness of adaptation of agricultural practices to minimize ozone damage. As O 3 concentrations have a strong seasonal and regional pattern, the adaptation options assessed refer to shifting crop calendars through changing sowing dates, applying irrigation and using crop varieties with different growth cycles. Results show that China, India and the United States are currently by far the most affected countries, bearing more than half of all global losses and threatened areas. Irrigation largely affects ozone exposure but local impacts depend on the seasonality of emissions and climate. Shifting crop calendars can reduce regional O 3 damage for specific crop-location combinations (e.g. up to 25% for rain-fed soybean in India) but has little implication at the global level. Considering the limited benefits of adaptation, mitigation of O 3 precursors remains the main option to secure regional and global food production.

  6. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms.

    Science.gov (United States)

    Yu, Hui-Lin; Li, Yun-He; Wu, Kong-Ming

    2011-07-01

    The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests. © 2011 Institute of Botany, Chinese Academy of Sciences.

  7. Silicon sources for rice crop

    Directory of Open Access Journals (Sweden)

    Pereira Hamilton Seron

    2004-01-01

    Full Text Available Although silicon is not an essential nutrient, its application is beneficial for plant growth and development. To evaluate silicon sources in relation to agronomic efficiency and economic viability in rice crops (Oryza sativa L., a greenhouse experiment was conducted, Quartzipsamment soil, in a completely randomized experimental design (n = 4. Treatments were 12 silicon sources and a control. Silicon was applied at the rate of 125 kg Si ha-1. Data were compared to a standard response curve for Si using the standard source Wollastonite at rates of 0, 125, 250, 375, and 500 kg Si ha-1. All treatments received CaCO3 and MgCO3 to balance pH, Ca and Mg. One hundred and fifty days after sowing, evaluations on dry matter yield in the above-ground part of plants, grain yield, and Si contents in the soil and plant tissues were performed. Wollastonite had linear response, increasing silicon in the soil and plants with increasing application rates. Differences between silicon sources in relation to Si uptake were observed. Phosphate slag provided the highest Si uptake, followed by Wollastonite and electric furnace silicates which however, did not show differed among themselves. The highest Si accumulation in grain was observed for stainless steel, which significantly differed from the control, silicate clay, Wollastonite, and AF2 (blast furnace of the company 2 slag. Silicate clay showed the lowest Si accumulation in grain and did not differ from the control, AF2 slag, AF1 slag, schist ash, schist, and LD4 (furnace steel type LD of the company 4 slag.

  8. Management swing potential for bioenergy crops

    NARCIS (Netherlands)

    Davis, S.C.; Boddey, R.M.; Alves, B.J.R.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; Noordwijk, van M.; Wijk, van M.T.

    2013-01-01

    Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production

  9. African Crop Science Journal: Editorial Policies

    African Journals Online (AJOL)

    . Kasem Zaki Ahmed. Faculty of Agriculture, Minia University, El-Minia, Egypt. Email: k.z.ahmed@mu.edu.eg, ahmed_kz@yahoo.com. Bamidele Fawole. Department of Crop Protection & Environmental Biology. University of Ibadan, Nigeria.

  10. 75 FR 65995 - Biomass Crop Assistance Program

    Science.gov (United States)

    2010-10-27

    ..., greater description of forestry resources, agricultural plastics, more precise definitions of eligible.... Perennial crops, and the use of corn stover and wheat straw, would shift away from conventional tillage to...

  11. Crop physiology calibration in the CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2015-04-01

    scalable and adaptive scheme based on sequential Monte Carlo (SMC. The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  12. Genome Engineering of Crops with Designer Nucleases

    Directory of Open Access Journals (Sweden)

    Shaun J. Curtin

    2012-07-01

    Full Text Available Recent advances in the field of genome engineering indicate that it will soon be routine to make site-directed modifications to the genomes of crop species, including targeted mutations, gene insertions, and gene replacements. This new technology will be used to help elucidate gene function and develop new and valuable traits. Key to enabling site-directed genome modifications are sequence-specific nucleases that generate targeted double-stranded DNA breaks in genes of interest. To date, three different sequence-specific nuclease systems have been used in crop plants: zinc finger nucleases, transcription activator-like effector nucleases (TALENs, and LAGLIDADG homing endonucleases, also termed “meganucleases.” In this review, we report on the current state of genome engineering in crop plants, comparing the different nuclease and gene delivery systems. We also consider some of the limitations that nuclease-mediated crop improvement technologies may encounter.

  13. Data summaries | | African Crop Science Journal

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (1999) >. Log in or Register to get access to full text downloads.

  14. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    ) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs....... In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  15. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  16. Feasibility Analysis for Mitigating the Contamination of POPs in Crops Through Inoculation with Functional Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    SUN Kai

    2017-08-01

    Full Text Available Contamination of food-crops with persistent organic pollutants(POPsposes a great concern to food safety because of their toxicity, persistence, long-range transport and potential to bioaccumulate. Thus, how to avoid the residual of POPs in food -crops grown in POPcontaminated areas is essential for ensuring the safety of agricultural products and human health. Plant-endophytic bacteria(EBsymbioses are ubiquitous and have attained increasing acceptance as viable cleanup technologies to remove POPs in planta due to its low cost and being environment-friendly. It has been indicated that functional EB can enhance plant growth, reduce plant disease, and stimulate plant resistance to harsh external environments. Notably, certain functional EB can also lessen POPs accumulation in plants. However, the information is limited regarding the impact of functional endophytic colonization on POPs biodegradation and biotransformation in food-crops. Aimed at the problems, this paper reviewed the situation of crop contaminated by POPs in agroecosystems and its regulatory role in the transformation of POPs. More importantly, the influence of endophytic colonization on the biodegradation and biotransformation of POPs in crop cells were systematically estimated. The effectiveness of POPs biodegradation mainly depended on the abundance and activity of inoculated functional EB in plant compartments. Additionally, the advances, challenges, and existing issues of functional EB for reducing the risk of food-crops POP contamination were also prospected. These findings can be applied for utilizing endophytes to treat POPs in food -crops at POP-contaminated matrices, with ultimate goal of protecting food security and human health.

  17. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    Science.gov (United States)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    productivity in water stressed environments. Results from these trials support our hypothesis that surfactants may be a viable management practice to improve crop water productivity in a water stressed environments.

  18. Forced Displacement: Legal Versus Illegal Crops

    OpenAIRE

    Palacios Rojas, Paola Andrea

    2012-01-01

    Anecdotal evidence suggests that, in stateless regions in Colombia, the establishment of oil palm 1 plantations generates more forced migration than the introduction of coca crops. We provide a theoretical model to study this phenomenon where an agent, allied with the illegal armed group that controls a region, chooses between buying an agricultural good from peasants or producing it himself by evicting farmers from their lands. We compare two crops that differ in their labor intensity. Resul...

  19. Biogas production from mediterranean crop silages

    OpenAIRE

    Carvalho, L.; Di Berardino, Santino; Duarte, E.

    2011-01-01

    Anaerobic digestion has proven to be an efficient way for the production of a renewable fuel. The aim of this work was to study the potential use of two crop silages, yellow lupine (Lupinus luteus L.) and oilseed radish (Raphanus sativus var. oleifera cv. Pegletta), for the production of biogas through the process of anaerobic digestion. The use of yellow lupine was due to its capacity for nitrogen fixation, reducing the fertilization needs for the succeeding crop cycle and reducing also the ...

  20. ALMOST IDEAL AREA YIELD CROP INSURANCE CONTRACTS

    OpenAIRE

    Smith, Vincent H.; Chouinard, Hayley H.; Baquet, Alan E.

    1994-01-01

    Using yield data for a sample of 123 dryland wheat producers in Montana, the effects of three area yield contracts, including the contract currently offered by the United States Federal Crop Insurance Corporation and two individual yield contracts on individual farm yield variability, are examined. The results indicate that while the Federal Crop Insurance Corporation area yield contract provides all farmers in the sample with some protection against yield variability, a simpler, actuarially ...

  1. Introduction: food crops in a changing climate.

    Science.gov (United States)

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-11-29

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given.

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  3. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement

    Directory of Open Access Journals (Sweden)

    Camilla Beate Hill

    2016-12-01

    Full Text Available Cereal crop species including bread wheat (Triticum aestivum L., barley (Hordeum vulgare L., rice (Oryza sativa L., and maize (Zea mays L. provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize, in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop

  4. Fitness and beyond: preparing for the arrival of GM crops with ecologically important novel characters.

    Science.gov (United States)

    Wilkinson, Mike; Tepfer, Mark

    2009-01-01

    The seemingly inexorable expansion of global human population size, significant increases in the use of biofuel crops and the growing pressures of multifunctional land-use have intensified the need to improve crop productivity. The widespread cultivation of high-yielding genetically modified (GM) crops could help to address these problems, although in doing so, steps must also be taken to ensure that any gene flow from these crops to wild or weedy recipients does not cause significant ecological harm. It is partly for this reason that new GM cultivars are invariably subjected to strict regulatory evaluation in order to assess the risks that each may pose to the environment. Regulatory bodies vary in their approach to decision-making, although all require access to large quantities of detailed information. Such an exhaustive case-by-case approach has been made tractable by the comparative simplicity of the portfolio of GM crops currently on the market, with four crops and two classes of traits accounting for almost all of the area under cultivation of GM crops. This simplified situation will change shortly, and will seriously complicate and potentially slow the evaluation process. Nowhere will the increased diversity of GM crops cause more difficulty to regulators than in those cases where there is a need to assess whether the transgene(s) will enhance fitness in a non-transgenic relative and thereafter cause ecological harm. Current practice to test this risk hypothesis focuses on attempting to detect increased fitness in the recipient. In this paper we explore the merits and shortcomings of this strategy, and investigate the scope for developing new approaches to streamline decision-making processes for transgenes that could cause unwanted ecological change.

  5. Investigating hydrometeorological impacts of perennial bioenergy crops under realistic scenario expansions

    Science.gov (United States)

    Wagner, M.; Wang, M.; Miguez-Macho, G.; Miller, J. N.; Bagley, J. E.; Bernacchi, C.; Georgescu, M.

    2016-12-01

    Perennial bioenergy crops, such as switchgrass and miscanthus, have been posed as a more sustainable energy pathway relative to annual bioenergy crops due to their reduced carbon footprint and ability to grow on abandoned and degraded land, thereby, avoiding competition with food crops. Previous studies that replaced annual bioenergy crops with perennial crops noted regional cooling associated with enhanced ET due to their deeper rooting systems extracting deeper soil moisture. This study provides a more realistic assessment by (1) analyzing perennial bioenergy expansion only in suitable abandoned and degraded farmlands, and (2) using field scale measurements of albedo in conjunction with known vegetation fraction and leaf area index (LAI) values. High-resolution (2 km grid spacing) simulations were performed using a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model system over the Southern Plains of the U.S., during a normal precipitation year (2007) and a drought year (2011). Our results show that perennial bioenergy crop expansion leads to regional cooling (1-2 oC), that is driven primarily by enhanced reflection of shortwave radiation, and secondarily, by enhanced ET. Perennial bioenergy crop expansion was also shown to mitigate drought impacts through moistening and cooling of the near-surface environment. These impacts, however, were reduced during the drought year as a result of differential environmental conditions, when compared to those of the normal cimate year. This study serves as a major step towards assessing the sustainability of perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.

  6. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    Science.gov (United States)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  7. Energy and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Kaechele, H. [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany); Rao, K.S. [Centre for Inter-disciplinary Studies of Mountain and Hill Environment, Academic Research Center, University of Delhi, Delhi 110007 (India); Maikhuri, R.K. [G.B. Pant Institute of Himalayan Environment and Development, Garhwal Unit, P.O. Box 92, Srinagar (Garhwal) 246174 (India); Saxena, K.G. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2007-12-15

    This study analyzed the energy and economics associated with cultivation of traditional and introduced crops in the mountains of the Central Himalaya, India. The production cost in terms of energy for introduced crops such as tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) cultivation was 90,358-320,516 MJ ha{sup -1} as compared to between 19,814 and 42,380 MJ ha{sup -1} for traditional crops within Himalayan agroecosystems. For the introduced crops, high energy and monetary input was associated with human labor, forest resources, chemical fertilizer and pesticides. However, energy threshold/projection for farmyard manure in traditional crop cultivation was 80-90% of the total energy cost, thus traditional crop cultivation was more efficient in energy and economics. During the study, the farm productivity of introduced crops cultivation declined with increasing years of cultivation. Consequently, the energy output from the system has been declining at the rate of -y20,598 to y20,748 MJ ha{sup -1} yr{sup -1} for tomato and y12,072 to y15,056 MJ ha{sup -1} yr{sup -1} for bell pepper under irrigated and rain-fed land use in the mountains, respectively. The comparative analysis on this paradigm shift indicates that more research is needed to support sustainable crop cultivation in the fragile Himalayan environment. (author)

  8. Early warning and crop condition assessment research

    Science.gov (United States)

    Boatwright, G. O.; Whitehead, V. S.

    1986-01-01

    The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.

  9. Ecophysiology of horticultural crops: an overview

    Directory of Open Access Journals (Sweden)

    Restrepo-Díaz Hermann

    2010-04-01

    Full Text Available

    Horticultural crops include a wide range of commodities, such as fruits and vegetables that are highly valuable for humanity. They are extensively grown worldwide, and their production can be described as an open and highly complex system affected by many factors, among which we can count weather, soil and cropping system, as well as the interaction between these factors. The aim of environmental physiology is to characterize the interaction between environmental stress and crop response, in order to maximize both yield quantity and quality. This review presents the most recent findings about the effects of the main abiotic environmental factors (light, temperature, and water on whole plant physiology of horticultural crops. Environmental stresses can cause morpho-anatomical, physiological and biochemical changes in crops, resulting in a strong profit reduction. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices (irrigation, light management, mineral nutrition, greenhouse design, etc., optimizing photosynthetic carbon assimilation and increasing fruit productivity and crop quality. In addition, the information obtained by ecophysiological studies can be incorporated into breeding programs or agricultural zoning strategies.

  10. Global conservation priorities for crop wild relatives.

    Science.gov (United States)

    Castañeda-Álvarez, Nora P; Khoury, Colin K; Achicanoy, Harold A; Bernau, Vivian; Dempewolf, Hannes; Eastwood, Ruth J; Guarino, Luigi; Harker, Ruth H; Jarvis, Andy; Maxted, Nigel; Müller, Jonas V; Ramirez-Villegas, Julian; Sosa, Chrystian C; Struik, Paul C; Vincent, Holly; Toll, Jane

    2016-03-21

    The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.

  11. Weed management in Solanaceae crops in Portugal.

    Science.gov (United States)

    Afonso, M Júlia

    2008-01-01

    Portugal has very good climatic-edafic conditions for Solanaceae crops, regarding to either yield quality or quantity. Tomato (Lycopersicon esculentum Miller.), potato (Solanum tuberosum L.) and pepper (Capsicum annuum L.) are the most social-economically important Solanaceae and aubergine (Solanum melongena L.) area of cultivation is increasing. Tomato is cultivated for fresh consumption and, primarily, for industrial processing. Is one of the most profitable vegetable crop and the main vegetable for industry. Potato is the annual vegetable crop with the largest cultivated area. Pepper is one of the main crops for vegetable frozen industry. Tomato, pepper and aubergine are cultivated in the field (outdoor) in Spring-Summer season. In greenhouses, they're also grown during other months and, at the southmost region (Algarve), during the whole year. Potato is cultivated almost the whole year through. Weed management is essential to achieve yield rentability and, for crops growing in the field, herbicides play an important role, due to their efficacy or inherent limitations of other control measures. This paper presents the state of art, in Portugal, regarding to some cultural and social-economical aspects of these crops (e.g., cultivated areas, productions, main producer regions), main weeds, weed control methods and, in particular, registered herbicides, with indication of their usage conditions (application timings and spectrum of weeds controlled) according to the principles of Good Plant Protection Practice and Integrated Weed Management.

  12. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    Science.gov (United States)

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.

  13. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  14. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    . In comparison with non-LBCC, LBCCs have the potential to partly replace the effect of manure application in organic cropping systems with greater crop production and less environmental footprint with respect to N2O emissions. However, harvest of the catch crops may reduce crop yield unless the harvested N......Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...... crops. The effect of two catch crop management strategies was also tested: autumn harvest of the catch crop versus incorporation of whole-crop residues by spring ploughing. LBCCs accumulated 59–67 kg N ha−1 in their tops, significantly more than those of the non-LBCC, 32–40 kg N ha−1. Macro...

  15. Regional simulation of soil nitrogen dynamics and balance in Swiss cropping systems

    Science.gov (United States)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2017-04-01

    We evaluated the regional-scale potential of various crop and soil management practices to reduce the dependency of crop N demand on external N inputs and N losses to the environment. The estimates of soil N balance were simulated and compared under alternative and conventional crop production across all Swiss cropland. Alternative practices were all combinations of organic fertilization, reduced tillage and winter cover cropping. Using the DayCent model, we simulated changes in crop N yields as well as the contribution of inputs and outputs to soil N balance by alternative practices, which was complemented with corresponding measurements from available long-term field experiments and site-level simulations. In addition, the effects of reducing (between 0% and 80% of recommended application rates) or increasing chemical fertilizer input rates (between 120% and 300% of recommended application rates) on system-level N dynamics were also simulated. Modeled yields at recommended N rates were only 37-87% of the maximum yield potential across common Swiss crops, and crop productivity were sensitive to the level of external N inputs, except for grass-clover mixture, soybean and peas. Overall, differences in soil N input and output decreased or increased proportionally with changing the amount of N input only from the recommended rate. As a result, there was no additional difference in soil N balance in response to N application rates. Nitrate leaching accounted for 40-81% of total N output differences, while up to 47% of total N output occurred through harvest and straw removal. Regardless of crops, yield potential became insensitive to high N rates. Differences in N2O and N2 emissions slightly increased with increasing N inputs, in which each gas was only responsible for about 1% of changes in total N output. Overall, there was a positive soil N balance under alternative practices. Particularly, considerable improvement in soil N balance was expected when slowly

  16. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems (e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  17. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  18. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    The current non-uniform crop spatial distributions of individual cereal plants and widerspaced row crops like maize and sugar beet can limit crop performance because of nonoptimal resource utilization. The aim of the present study was to investigate the potential influence of two-dimensional crop...

  19. Herbicide hormesis-can it be useful in crop production

    Science.gov (United States)

    The yield-enhancing effects of some pesticides may change the focus in their use in crop production, from crop protection to crop enhancement. While such beneficial uses of pesticides are specifically en vogue for fungicides and seed treatments, the use of herbicides for crop enhancement has not yet...

  20. 7 CFR 457.117 - Forage production crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage production crop insurance provisions. 457.117... production crop insurance provisions. The Forage Production Crop Insurance Provisions for the 2001 and... Forage Production Crop Insurance Provisions If a conflict exists among the policy provisions, the order...

  1. The effect of crop residue layers on evapotranspiration, growth and ...

    African Journals Online (AJOL)

    Initial stalk population in the plant crop and radiation capture in the plant and ratoon crop were affected negatively by crop residue layers, but without significantly reducing final stalk population and cane yield. Peak stalk population occurred later in crops grown in residue layers, but peak and final stalk populations were ...

  2. 7 CFR 457.158 - Apple crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    .... Optional Coverage for Fresh Fruit Quality Adjustment (a) In the event of a conflict between the Apple Crop... 7 Agriculture 6 2010-01-01 2010-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance...

  3. 76 FR 42112 - Specialty Crop Committee Stakeholder Listening Sessions

    Science.gov (United States)

    2011-07-18

    ... crops'' as fruits, vegetables, tree nuts, dried fruits and nursery crops (including floriculture). In...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Specialty Crop Committee Stakeholder Listening Sessions... Department of Agriculture announces two stakeholder listening sessions of the Specialty Crop Committee, under...

  4. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  5. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  6. Suppression of soilborne diseases of soybean with cover crops

    Science.gov (United States)

    Cover crops can foster the development of disease suppressive soils, and it has become common to use cover crops to manage soilborne diseases in high value crops. There is increasing interest in incorporating cover crops into agronomic systems in the Midwestern US for improving soil health. However,...

  7. 40 CFR 180.40 - Tolerances for crop groups.

    Science.gov (United States)

    2010-07-01

    ... fashion in the revised crop group. The name of the revised crop group will not be changed from the pre-existing crop group unless the revision so changes the composition of the crop group that the pre-existing... pesticide applied, the number of times applied, the timing of the first application, the interval between...

  8. Analysis of cost efficiency in food crop production among small ...

    African Journals Online (AJOL)

    Eleven cropping systems were identified with mixed cropping accounting for about 53% of the cropping systems and about 54% of the total hectarage allocations. The maximum likelihood estimates of the stochastic cost function revealed that the explanatory variables; extension contact, crop diversification and credit ...

  9. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    Science.gov (United States)

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  10. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  11. Do cover crop mixtures have the same ability to suppress weeds as competitive monoculture cover crops?

    Directory of Open Access Journals (Sweden)

    Brust, Jochen

    2014-02-01

    Full Text Available An increasing number of farmers use cover crop mixtures instead of monoculture cover crops to improve soil and crop quality. However, only little information is available about the weed suppression ability of cover crop mixtures. Therefore, two field experiments were conducted in Baden-Württemberg between 2010 and 2012, to compare growth and weed suppression of monoculture cover crops and cover crop mixtures. In the first experiment, heterogeneous results between yellow mustard and the cover crop mixture occurred. For further research, a field experiment was conducted in 2012 to compare monocultures of yellow mustard and hemp with three cover crop mixtures. The evaluated mixtures were: “MELO”: for soil melioration; “BETA”: includes only plant species with no close relation to main cash crops in Central Europe and “GPS”: for usage as energy substrate in spring. Yellow mustard, MELO, BETA and GPS covered 90% of the soil in less than 42 days and were able to reduce photosynthetically active radiation (PAR on soil surface by more than 96% after 52 days. Hemp covered 90% of the soil after 47 days and reduced PAR by 91% after 52 days. Eight weeks after planting, only BETA showed similar growth to yellow mustard which produced the highest dry matter. The GPS mixture had comparatively poor growth, while MELO produced similar dry matter to hemp. Yellow mustard, MELO and BETA reduced weed growth by 96% compared with a no cover crop control, while hemp and GPS reduced weeds by 85% and 79%. In spring, weed dry matter was reduced by more than 94% in plots with yellow mustard and all mixtures, while in hemp plots weeds were only reduced by 71%. The results suggest that the tested cover crop mixtures offer similar weed suppression ability until spring as the monoculture of the competitive yellow mustard.

  12. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  13. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  14. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  15. Epi-fingerprinting and epi-interventions for improved crop production and food quality.

    Science.gov (United States)

    Rodríguez López, Carlos M; Wilkinson, Mike J

    2015-01-01

    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality.

  16. CROP OF TRANSGENIC SOY-BEAN. PEASANT AND INDIGENOUS COMMUNITY EFFECTS OF EUSTERN PARAGUAY

    Directory of Open Access Journals (Sweden)

    Hugo Florencio Centurión Mereles

    2011-09-01

    Full Text Available The Word offers us a critical glance about the economic and socio-cultural impacts of the transgenic crops in peasant and indigenous communities of the eastern region of Paraguay, it is given special attention to the use of Roundup, with the undoubted environment cost and the uncertain risks to human and animal health. The impacts and interactions that the techno-commoditization of the organisms genetically modified OGM have on the affected populations and the environment-species, soil, water, woods, flora, fauna is discussed in the Word.The extent of use of glyphosate on transgenic crops would involve not only the environment of the crop, but go to generate profound cultural changes, technological, of management, environmental, economical, social and legal, whose effects we already see them come with the decline of peasant and indigenous communities, that at not finding adequate strategies to face them, collapse as collectivity. The Word contains important elements to renew the debate and the critical thought in relation to the problematic of transgenic crop and its impact in indigenous and peasant populations.

  17. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    Directory of Open Access Journals (Sweden)

    CARLOS Marcelino Rodriguez Lopez

    2015-06-01

    Full Text Available Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimise environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype x Environment (GxE interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality.

  18. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  19. The green, blue and grey water footprint of crops and derived crops products

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a highresolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc

  20. Could a crop model be useful for improving sunflower crop management?

    Directory of Open Access Journals (Sweden)

    Flénet Francis

    2008-05-01

    Full Text Available In France, there is a need for improved sunflower crop management, in order to meet the greater requirement for oil by increasing both seed yields and the area of this crop. The objective of this article is to review the main characteristics of sunflower crop management in France and in other countries, in order to emphasize the need for improvement, and to evaluate if the recent advances in crop modelling could help to find solutions. In France, a better adaptation of crop management to water availability is needed, as well as a more efficient control of diseases without applying more fungicides. The results of these objectives would also trigger major improvements in other countries, but there is also a need to control insects and to adapt crop management to the goals of oil quality. The main sunflower crop models are reviewed in this article, with an emphasis on the most recent ones. Their ability to contribute to improving sunflower crop management, although they do not take into account diseases and insects, is discussed. Confidence in the decisions based on simulations, and the way to evaluate it, is also examined.