Sample records for sub-daily earth rotation

  1. The signature of atmospheric tides in sub-daily variations of Earth rotation as unveiled by globally-gridded atmospheric angular momentum functions (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.


    Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.

  2. The Earth's rotation problem (United States)

    Brumberg, V. A.; Ivanova, T. V.


    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  3. Earth's variable rotation (United States)

    Hide, Raymond; Dickey, Jean O.


    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  4. On general Earth's rotation theory (United States)

    Brumberg, V.; Ivanova, T.


    This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  5. Rotation of a Moonless Earth (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.


    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  6. Astrogeodynamic Studies of Earth Rotation (United States)

    Pacheco, A.; Alonso, E.; Podesta, R.; Actis, E.


    From OAFA's Photoelectric Astrolabe Pa II systematic observations of stellar fundamental groups on period 1992 - 2002 we have determined (UT0-UTC) Time Variation Curve corresponding to Earth Rotation and its comparison with data (UT1-UTC) given by International Earth Rotation Service (IERS) We have obtained values of the curve from the average of observations of each night with their respective weights, and have corrected them by Pole Movement. We have also studied the possibility of relations between anomalies on Time Variation (UT0-UTC) and important earthquakes happened on the neighborhood of the Astrolabe.

  7. High-frequency signals of oceans and atmosphere in Earth rotation (United States)

    Böhm, S.; Nilsson, T.; Schindelegger, M.; Schuh, H.


    Dynamic processes in the atmosphere and oceans with diurnal and sub-diurnal variability leave measurable short-period footprints in polar motion and length of day (LOD)/Universal Time (UT1). The integral effect of all geophysical and extra-terrestrial influences is seen in the Earth rotation variations observed by space geodetic techniques. Allocating the signal components to their generating mechanisms requires appropriate model representations of the individual phenomena. We give a general overview of the known geophysical effects on Earth rotation from sub-daily to multi-annual time scales with particular attention paid to the high-frequency impact of the oceans and atmosphere. The signals are examined in terms of geophysical modeling as well as with regard to Earth rotation observations. Recent results from the analysis of numerical weather model data and available ocean tide models with respect to sub-daily Earth rotation excitation are shown. As to the observational aspect, we illustrate different methods for the determination of short-period Earth rotation variations by means of VLBI (Very Long Baseline Interferometry) and present respective results, obtained from the analysis of 24-hour sessions covering the years 1984-2010. Furthermore the potential of a combined analysis of VLBI and ring laser measurements, concerning the estimation of Earth rotation parameters with sub-diurnal resolution, is outlined.

  8. Tidal variations of earth rotation (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.


    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  9. Leeuwenhoek's "Proof" of the Earth's Rotation. (United States)

    Kruglak, Haym; Johnson, Rand H.


    Leeuwenhoek's demonstration proving the Earth's rotation, which leads to some significant errors in reasoning, can be reproduced from this article and used to provide an interesting discussion in undergraduate astronomy and physics courses or clubs. (LZ)

  10. Earth Rotation Dynamics: Review and Prospects (United States)

    Chao, Benjamin F.


    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  11. Aryabha~ and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Aryabhata and Axial Rotation of Earth - Naksatra Dina (the Sidereal Day). Amartya Kumar Dutta. General Article Volume 11 Issue 4 April 2006 pp 56-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Theoretical aspects of the Earth rotation. (United States)

    Kinoshita, H.; Sasao, T.

    Contents: 1. Basic equations and Woolard's theory of a rigid Earth. 2. Description of a rotational motion with use of Andoyer variables. 3. Disturbing potential and the Hamiltonian referred to a moving plane. 4. Nutation and precession. 5. Effects of non-rigidity: Tisserand mean system; general formulation of the problem; Molodensky's approach; theory of Wahr; recent observations and their implications.

  13. New ERP predictions based on (sub-)daily ocean tides from satellite altimetry data (United States)

    Madzak, Matthias; Böhm, Sigrid; Böhm, Johannes; Bosch, Wolfgang; Schuh, Harald


    A new model for Earth rotation variations based on ocean tide models is highly desirable in order to close the gap between geophysical Earth rotation models and geodetic observations. We have started a project, SPOT (Short Period Ocean Tidal variations in Earth Rotation), with the goal to develop a new model of short period Earth rotation variations based on one of the best currently available empirical ocean tide models obtained from satellite altimetry. We employ the EOT11a model which is an upgrade of EOT08a, developed at DGFI, Munich. As EOT11a does not provide the tidal current velocities which are fundamental contributors to Earth rotation excitation, the calculation of current velocities from the tidal elevations is one of three main areas of research in project SPOT. The second key aspect is the conversion from ocean tidal angular momentum to the corresponding ERP variations using state-of-the-art transfer functions. A peculiar innovation at this step will be to consider the Earth's response to ocean tidal loading based on a realistic Earth model, including an anelastic mantle. The third part of the project deals with the introduction of the effect of minor tides. Ocean tide models usually only provide major semi-diurnal and diurnal tidal terms and the minor tides have to be inferred through admittance assumptions. Within the proposed project, selected minor tidal terms and the corresponding ERP variations shall be derived directly from satellite altimetry data. We determine ocean tidal angular momentum of four diurnal and five sub-daily tides from EOT11a and apply the angular momentum approach to derive a new model of ocean tidal Earth rotation variations. This poster gives a detailed description of project SPOT as well as the status of work progress. First results are presented as well.

  14. Shoot the Stars--Focus on Earth's Rotation. (United States)

    Russo, Richard


    Provides background information on the equipment and knowledge necessary to do an astronomy activity on the earth's rotation. Details an activity in which students can measure the rotation of the earth using a camera and the stars. (CW)

  15. Diurnal and Semidiurnal Variations in Earth Rotation (United States)

    Weijing, Q.; Xu, X.; Dong, D.; Zhou, Y.


    In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including Satellite Laser ranging (SLR), Very Long Baseline Interferometry (VLBI) and the Global Positioning System (GPS). We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1 with Consistency of 90% , and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. This work add the motivating term libration to the empirical tidal models, which can reduce the difference between the high frequency earth rotation model and observations. Then the numerical simulated ocean tidal model is obtained with the newest ERP datas from GPS, and the Scaled Sensitivity Matrix (SSM) approach is used to separate the sidebands in major ocean tides.

  16. Short period tidal variations of earth rotation (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.


    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  17. Monitoring of Earth Rotation by VLBI (United States)

    Ma., Chopo; Macmillan, D. S.


    Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.

  18. Observations of Stratospheric Sudden Warmings in Earth Rotation Variations


    Neef, Lisa Johanna; Walther, Sophia; Matthes, Katja; Kodera, Kunihiko


    Stratospheric sudden warmings (SSWs) are extreme events in the polar stratosphere that are both caused by and have effects on the tropospheric flow. This means that SSWs are associated with changes in the angular momentum of the atmosphere, both before and after their onset. Because these angular momentum changes are transferred to the solid Earth, they can be observed in the rate of the Earth's rotation and the wobble of its rotational pole. By comparing observed Earth rotation variations to...

  19. Changes in the earth's rotation by tectonics : gravito-elastodynamics

    NARCIS (Netherlands)

    Vermeersen, L.L.A.


    The rotation of the Earth is not regular. It changes on virtually every timescale we know in both position of the rotation axis and rotation rate. Even in our daily lives we sometimes experience the consequences of such changes, such as the second that is subtracted or added to clocks at the

  20. A survey of the theory of the Earth's rotation (United States)

    Cannon, W. H.


    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  1. Long-Period Tidal Variations of the Earth's Rotation Rate (United States)

    Desai, S.; Gross, R.; Wahr, J.


    Long-period tidal variations of the Earth's rotation rate are caused by the redistribution of mass associated with the respective elastic solid Earth tides, the ocean tide heights, and the anelasticity of the Earth's mantle, and by the relative angular momentum associated with the long-period ocean tide currents.

  2. A supplementary note on constructing the general Earth's rotation theory (United States)

    Brumberg, Victor A.; Ivanova, Tamara V.


    Representing a post-scriptum supplementary to a previous paper of the authors Brumberg & Ivanova (2011) this note aims to simplify the practical development of the Earth's rotation theory, in the framework of the general planetary theory, avoiding the non-physical secular terms and involving the separation of the fast and slow angular variables, both for planetary-lunar motion and Earth's rotation. In this combined treatment of motion and rotation, the fast angular terms are related to the mean orbital longitudes of the bodies, the diurnal and Euler rotations of the Earth. The slow angular terms are due to the motions of pericenters and nodes, as well as the precession of the Earth. The combined system of the equations of motion for the principal planets and the Moon and the equations of the Earth's rotation is reduced to the autonomous secular system with theoretically possible solution in a trigonometric form. In the above-mentioned paper, the Earth's rotation has been treated in Euler parameters. The trivial change of the Euler parameters to their small declinations from some nominal values may improve the practical efficiency of the normalization of the Earth's rotation equations. This technique may be applied to any three-axial rigid planet. The initial terms of the corresponding expansions are given in the Appendix.

  3. Rotationally driven 'zebra stripes' in Earth's inner radiation belt. (United States)

    Ukhorskiy, A Y; Sitnov, M I; Mitchell, D G; Takahashi, K; Lanzerotti, L J; Mauk, B H


    Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

  4. The earth rotation parameters - Conceptual and conventional definitions (United States)

    Capitaine, N.


    Conceptual definitions of the earth rotational parameters (ERP) used for obtaining astronomical references with an accuracy of 0.001 arcsec are reviewed, along with the fit between conceptual and conventional values. Conceptually, the instantaneous rotation of the earth is selected for calculating the ERP from a terrestrial frame of reference. It is shown that in calculating the third parameter, the UT1 value becomes unclear when it is related to the mean sidereal time using conventional models, and can be improved by using the stellar angle to obtain the angular speed of the earth in space directly. The accuracy of the value for the Celestial Ephemeris Pole (CEP) is demonstrated to be higher if considered conventionally in terms of the model of the precessional nutation of the earth. This formation accounts for the terrestrial motion of the instantaneous pole of rotation and the corresponding celestial motion.

  5. The Three-Axial Earth Rotation: A New Mathematical Approach (United States)

    Mioc, Vasile; Stavinschi, Magda

    The three-axial Earth's rotation is generally treated by quantitative methods. The seldom used qualitative analysis, which depicts the general evolution all along the motion, can offer supplementary information. Tackling the problem from such a viewpoint, we exploit its Hamiltonian description using Andoyer-type variables, and consider it via KAM (Kolmogorov-Arnold-Moser) theory. The system of motion equations fulfils the condition of so-called "isoenergetic nondegeneracy". In astronomical translation, this means that the Earth's rotation is "sure" for almost all initial conditions: the chances for a drastic change are extremely improbable; this corroborates the data provided by observations and quantitative analysis. Another result offered by KAM theory is that the polhody will always be confined to a relatively negligible area. As a final conclusion, the most various methods of mathematics, classical mechanics, celestial mechanics must be used to understand astronomical problems of essential importance, as the Earth's rotation is.

  6. Measurement of the Earth's rotation: 720 BC to AD 2015


    Stephenson, F. R.; Morrison, L.V.; C. Y. Hohenkerk


    New compilations of records of ancient and medieval eclipses in the period 720 BC to AD 1600, and of lunar occultations of stars in AD 1600?2015, are analysed to investigate variations in the Earth?s rate of rotation. It is found that the rate of rotation departs from uniformity, such that the change in the length of the mean solar day (lod) increases at an average rate of +1.8?ms per century. This is significantly less than the rate predicted on the basis of tidal friction, which is +2.3?ms ...

  7. Earth tides, precession-nutation and the secular retardation of earth's rotation

    National Research Council Canada - National Science Library

    Melchor, P; Georis, B


    It is shown that both the precessionnutation in space of the axis of inertia and the diurnal nutations inside the Earth of the instantaneous axis of rotation are produced by the horizontal components...

  8. The Translational-Rotational Motion of an Earth Spheroid Satellite (United States)

    Elshaboury, S. M.; Mostafa, A.


    In this paper we consider the translational-rotational motion of a spheroid satellite in the gravitational field, taking into account the asphericity of the earth. The harmonic coefficients of the earth's gravitational field are taken up to J 4. The equations of motion are obtained in terms of the canonical elements of Delaunay-Andoyer. A first order solution is obtained using the perturbing technique of Lie series.

  9. Observations of stratospheric sudden warmings in Earth rotation variations (United States)

    Neef, Lisa; Walther, Sophia; Matthes, Katja; Kodera, Kunihiko


    Stratospheric sudden warmings (SSWs) are extreme events in the polar stratosphere that are both caused by and have effects on the tropospheric flow. This means that SSWs are associated with changes in the angular momentum of the atmosphere, both before and after their onset. Because these angular momentum changes are transferred to the solid Earth, they can be observed in the rate of the Earth's rotation and the wobble of its rotational pole. By comparing observed Earth rotation variations to reanalysis data, we find that an anomaly in the orientation of the Earth's rotational pole, up to 4 times as large as the annual polar wobble, typically precedes SSWs by 20-40 days. The polar motion signal is due to pressure anomalies that are typically seen before SSW events and represents a new type of observable that may aid in the prediction of SSWs. A decline in the length of day is also seen, on average, near the time of the SSW wind reversal and is found to be due to anomalous easterly winds generated in the tropical troposphere around this time, though the structure and timing of this signal seems to vary widely from event to event.

  10. Aryabha~a and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Aryabha~a and Axial Rotation of Earth. 2. Naksatra ... there are plenty of articles on Aryabhata, their contents have remained confined to research journals and ...... system often called the "Bh- iitasankhya" (whose roots too can be traced to Vedic literature) or adopted a Classical alphabetical decimal ...

  11. The effect of the earth's rotation on ground water motion. (United States)

    Loáiciga, Hugo A


    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  12. Earth rotation prevents exact solid body rotation of fluids in the laboratory

    CERN Document Server

    Boisson, J; Moisy, F; Cortet, P -P


    We report direct evidence of a secondary flow excited by the Earth rotation in a water-filled spherical container spinning at constant rotation rate. This so-called {\\it tilt-over flow} essentially consists in a rotation around an axis which is slightly tilted with respect to the rotation axis of the sphere. In the astrophysical context, it corresponds to the flow in the liquid cores of planets forced by precession of the planet rotation axis, and it has been proposed to contribute to the generation of planetary magnetic fields. We detect this weak secondary flow using a particle image velocimetry system mounted in the rotating frame. This secondary flow consists in a weak rotation, thousand times smaller than the sphere rotation, around a horizontal axis which is stationary in the laboratory frame. Its amplitude and orientation are in quantitative agreement with the theory of the tilt-over flow excited by precession. These results show that setting a fluid in a perfect solid body rotation in a laboratory exp...

  13. Effect of the Earth's rotation on subduction processes (United States)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.


    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  14. Kinematical Relativistic Corrections for Earth’s Rotation Parameters (United States)


    Kinematical Relativistic Corrections for Earth’s Rotation Parameters V.A. Brumberg Institute of Applied Astronomy, 191187 St. Petersburg, Russia...1998) are to be considered in a DGRS (dynamically nonrotating geocentric reference system) ( Brumberg et al., 1996). Such a theory gives the explicit... Brumberg et al.(1996) and Brumberg (1997a). Using the VSOP87 series for the motion of the major planets (Bretagnon and Francou, 1988) this work was started

  15. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter (United States)

    Ferland, R.; Piraszewski, M.


    The International GNSS Service (IGS) routinely generates a number of weekly, daily and sub-daily products. Station coordinates and velocities, earth rotation parameters (ERPs) and apparent geocenter are among these products generated weekly by the IGS Reference Frame Coordinator. They have been determined since 1999 by combining independent estimates from at least seven IGS Analysis Centers (ACs). Two Global Network Associate Analysis Centers (GNAACs) also provide independent combinations using the same AC weekly solutions and they are currently used to quality control the IGS combination. The combined solutions are aligned to an IGS realization (IGS05) of the ITRF2005 using a carefully selected set of the IGS Reference Frame (RF) stations (nominally 132). During the combination process, the contributing solutions are compared and outliers are removed to ensure a high level of consistency of the estimated parameters. The ACs and the weekly combined solution are consistent at the 1-2 and 3-4 mm levels for the horizontal and vertical components. Similarly, the excess Length of Day (LOD), the pole positions and pole rates are consistent at the 10μs, 0.03-0.05 mas and 0.10-0.20 mas/day levels, respectively. The consistency of the apparent geocenter estimate is about 5 mm in the X and Y components and 10 mm in the Z component. Comparison of the IGS-combined ERP estimates with the IERS Bulletin A suggests a small bias of the order of -0.04 mas and + 0.05 mas (both ±0.05 mas) in the x and y components.

  16. Solar rotation effects on the thermospheres of Mars and Earth. (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G


    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  17. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity (United States)

    Ray, Richard D.; Egbert, Gary D.


    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  18. Intercomparison of lunar laser and traditional determinations of earth rotation (United States)

    Fliegel, H. F.; Dickey, J. O.; Williams, J. G.


    Since August, 1969, ranges to one or more retroreflector arrays on the lunar surface have been measured by means of a laser procedure. Analysis of these measurements improves determination, not only of the orbit and librations of the moon, but also of the rotational parameters of the earth, including the X and Y coordinates of the terrestrial pole, and the true rotational angle of the earth with respect to atomic or to broadcast time. The considered approach for deriving the Universal Time 1 (UT1) involves two steps. During the first step the parameters of the lunar orbit and librations are solved along with the coordinates of the retroreflectors on the moon and of the observatory. Improved values of the Universal Time 0 (UT0) and range corrections at the observatory are obtained in the second step. Attention is given to lunar laser ranging (LLR), raw data in UT1, an harmonic analysis of the LLR UT1 data, and data obtained in 1980. The results provide UT1 with an accuracy of a factor of 2 or more better than was previously available from conventional astrometric data.

  19. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio


    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  20. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.

    Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  1. Ocean tide models for satellite geodesy and Earth rotation (United States)

    Dickman, Steven R.


    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  2. 2nd Workshop on Tidal Friction and the Earth's Rotation

    CERN Document Server

    Sündermann, Jürgen


    In the four years which elapsed between our first workshop on .Tidal Friction and the Earth's Rotation and the second, the proceedings of which are presented here, many of the disciplines involved made ad­ vances which we felt should be exchanged. We were encouraged by the good reception our first report met with. Of course, more insight often means more problems. Therefore, this volume contains new results and revisions of matters which previously appeared settled. We are certainly far from "final answers". For this reason, differing opinions on some issues are to be found in this book. Moreover, we have refrained from making mathematical symbols uniform to avoid the risk of errors and non-compatibility with the earlier work of an author. The two workshops have stimulated collaboration between participants working in various fields. The final versions of the contributions have already profited from these discussions. We are convinced that they will also influence further investigations. This advancement of ...

  3. Creating a global sub-daily precipitation dataset (United States)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley


    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  4. Variations of the Earth's rotation rate and cyclic processes in geodynamics

    Directory of Open Access Journals (Sweden)

    B.W. Levin


    Full Text Available The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity. The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space systems and technologies.

  5. SDCLIREF - A sub-daily gridded reference dataset (United States)

    Wood, Raul R.; Willkofer, Florian; Schmid, Franz-Josef; Trentini, Fabian; Komischke, Holger; Ludwig, Ralf


    Climate change is expected to impact the intensity and frequency of hydrometeorological extreme events. In order to adequately capture and analyze extreme rainfall events, in particular when assessing flood and flash flood situations, data is required at high spatial and sub-daily resolution which is often not available in sufficient density and over extended time periods. The ClimEx project (Climate Change and Hydrological Extreme Events) addresses the alteration of hydrological extreme events under climate change conditions. In order to differentiate between a clear climate change signal and the limits of natural variability, unique Single-Model Regional Climate Model Ensembles (CRCM5 driven by CanESM2, RCP8.5) were created for a European and North-American domain, each comprising 50 members of 150 years (1951-2100). In combination with the CORDEX-Database, this newly created ClimEx-Ensemble is a one-of-a-kind model dataset to analyze changes of sub-daily extreme events. For the purpose of bias-correcting the regional climate model ensembles as well as for the baseline calibration and validation of hydrological catchment models, a new sub-daily (3h) high-resolution (500m) gridded reference dataset (SDCLIREF) was created for a domain covering the Upper Danube and Main watersheds ( 100.000km2). As the sub-daily observations lack a continuous time series for the reference period 1980-2010, the need for a suitable method to bridge the gap of the discontinuous time series arouse. The Method of Fragments (Sharma and Srikanthan (2006); Westra et al. (2012)) was applied to transform daily observations to sub-daily rainfall events to extend the time series and densify the station network. Prior to applying the Method of Fragments and creating the gridded dataset using rigorous interpolation routines, data collection of observations, operated by several institutions in three countries (Germany, Austria, Switzerland), and the subsequent quality control of the observations

  6. Probable Rotation States of Rocket Bodies in Low Earth Orbit (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.


    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  7. Manifestations of the Rotation and Gravity of the Earth in Spin Physics Experiments (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    An influence of the rotation and gravity of the Earth on the particle motion and the spin evolution is not negligible and it should be taken into account in spin physics experiments. The Earth rotation brings the Coriolis and centrifugal forces in the lab frame and also manifests in the additional rotation of the spin and in the change of the Maxwell electrodynamics. The change of the Maxwell electrodynamics due to the Earth gravity is much smaller and can be neglected. One of manifestations of the Earth rotation is the Sagnac effect. The electric and magnetic fields acting on the spin in the Earth's rotating frame coincide with the corresponding fields determined in the inertial frame instantly accompanying a lab. The effective electric field governing the particle motion differs from the electric field in the instantly accompanying frame. Nevertheless, the difference between the conventional Lorentz force and the actual force in the Earth's rotating frame vanishes on average in accelerators and storage rings due to the beam rotation. The Earth gravity manifests in additional forces acting on particles/nuclei and in additional torques acting on the spin. The additional forces are the Newton-like force and the reaction force provided by a focusing system. The additional torques are caused by the corresponding focusing field and by the geodetic effect. As a result, the Earth gravity leads to the additional spin rotation about the radial axis which may not be negligible in EDM experiments.

  8. Three-Dimensional Orbits of Earth Satellites, Including Effects of Earth Oblateness and Atmospheric Rotation (United States)

    Nielsen, Jack N.; Goodwin, Frederick K.; Mersman, William A.


    The principal purpose of the present paper is to present sets of equations which may be used for calculating complete trajectories of earth satellites from outer space to the ground under the influence of air drag and gravity, including oblateness effects, and to apply these to several examples of entry trajectories starting from a circular orbit. Equations of motion, based on an "instantaneous ellipse" technique, with polar angle as independent variable, were found suitable for automatic computation of orbits in which the trajectory consists of a number of revolutions. This method is suitable as long as the trajectory does not become nearly vertical. In the terminal phase of the trajectories, which are nearly vertical, equations of motion in spherical polar coordinates with time as the independent variable were found to be more suitable. In the first illustrative example the effects of the oblateness component of the earth's gravitational field and of atmospheric rotation were studied for equatorial orbits. The satellites were launched into circular orbits at a height of 120 miles, an altitude sufficiently high that a number of revolutions could be studied. The importance of the oblateness component of the earth's gravitational field is shown by the fact that a satellite launched at circular orbital speed, neglecting oblateness, has a perigee some 67,000 feet lower when oblateness forces are included in the equations of motion than when they are not included. Also, the loss in altitude per revolution is double that of a satellite following an orbit not subject to oblateness. The effect of atmospheric rotation on the loss of altitude per revolution was small. As might be surmised, the regression of the line of nodes as predicted by celestial mechanics is unchanged when drag is included. It is clear that the inclination of the orbital plane to the equator will be relatively unaffected by drag for no atmospheric rotation since the drag lies in the orbital plane in

  9. A possible interrelation between Earth rotation and climatic variability at decadal time-scale

    Directory of Open Access Journals (Sweden)

    Leonid Zotov


    Full Text Available Using multichannel singular spectrum analysis (MSSA we decomposed climatic time series into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic oscillations have been found in the global mean Earth temperature anomaly (HadCRUT4 and global mean sea level (GMSL. Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes.

  10. The use of Full Earth Rotation Vector Derived from Ring Laser Data (United States)

    Hugentobler, Urs; Schreiber, Ulrich; Panafidina, Natascha; Gebauer, André


    Current active ring laser technology demonstrates the capability to measure variations of the rotation of the Earth. The large ring laser gyroscope "G" at the Geodetic Observatory Wettzell, Germany, shows a stability which allows the measurement of the wobble of the Earth axis. Earth rotation currently is determined routinely in the framework of the International Earth Rotation and Reference Systems Service (IERS) using space geodetic techniques such as Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). These techniques measure the rotation of the Earth kinematically by determining the motion of ground stations with respect to space objects, i.e., based on a technique also called "stellar compass". Ring laser gyroscopes on the other hand measure Earth rotation locally based on the observation of inertial accelerations, i.e., based on a technique also called "inertial compass". The fundamentally different measurement principles complement each other. It is, e.g., well known that forced polar motion, the so called Oppolzer terms, are not observable by space geodetic techniques due to strong correlation with the motion of the Earth axis in space. For the same reason the determination of subdaily Earth rotation parameters with space geodetic techniques is prone to strong systematic errors while exact knowledge of such terms is relevant, e.g., to determine high quality orbits of GNSS satellites. This presentation shall highlight the potential of the ring laser technology as additional sensor for monitoring Earth rotation, in particular with the upcoming capability to measure the full Earth rotation vector.

  11. Effect of Earth's rotation on the trajectories of free-fall bodies in Equivalence Principle Experiment


    Shao, C.G.; Y. Z. Zhang; Luo, J.; Liu, Z. Z.


    Owing to Earth's rotation a free-fall body would move in an elliptical orbit rather than along a straight line forward to the center of the Earth. In this paper on the basis of the theory for spin-spin coupling between macroscopic rotating bodies we study violation of the equivalence principle from long-distance free-fall experiments by means of a rotating ball and a non-rotating sell. For the free-fall time of 40 seconds, the difference between the orbits of the two free-fall bodies is of th...

  12. Estimation of Data Uncertainty Adjustment Parameters for Multivariate Earth Rotation Series (United States)

    Sung, Li-yu; Steppe, J. Alan


    We have developed a maximum likelihood method to estimate a set of data uncertainty adjustment parameters, iccluding scaling factors and additive variances and covariances, for multivariate Earth rotation series.

  13. Global Navigation Satellite System (GNSS) Ultra-Rapid Earth Rotation Product from NASA CDDIS (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Ultra-Rapid Earth Rotation Product (ERP) from the NASA Crustal Dynamics Data Information...

  14. Daily GPS-Derived Estimates Of Axis Of Rotation Of Earth (United States)

    Lindqwister, Ulf J.; Blewitt, Geoffrey; Freedman, Adam


    Report describes study in which data gathered by worldwide network of 21 Global Positioning System (GPS) receivers during 3-week experiment in January and February 1991 used to estimate location of axis of rotation of Earth.

  15. Global Navigation Satellite System (GNSS) Final Earth Rotation Product from NASA CDDIS (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Earth Rotation Product (ERP) from the NASA Crustal Dynamics Data Information System...

  16. Global Navigation Satellite System (GNSS) Rapid Earth Rotation Product from NASA CDDIS (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Rapid Earth Rotation Product (ERP) from the NASA Crustal Dynamics Data Information System...

  17. Global vorticity and the definition of the rotation of a deformable earth (United States)

    Georgiadou, P.; Grafarend, E.

    Within the framework of Newtonian kinematics the local vorticity vector is introduced and averaged with respect to global earth geometry, namely the ellipsoid of revolution. For a deformable body like the earth the global vorticity vector is defined as the earth rotation. A decomposition of the Lagrangian displacement and of the Lagrangian vorticity vector into vector spherical harmonics, namely into spheroidal and toroidal parts, proves that the global vorticity vector only contains toroidal coefficients of degree and order cone (polar motion) and toroidal coefficients of degree one and order zero (length of the day) in the case of an ellipsoidal earth. When an ellipsoid of revolution earth model is assumed, the earth rotation is also slightly dependent on the ellipsoidal flattering and the radial derivative of the spheroidal coefficients of degree two and order one. Finally these coefficients are computed for a Kelvin-type earth model under conservative external forces like tidal gravity.

  18. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth (United States)

    Veto, B.


    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  19. Probable Rotation States of Rocket Bodies in Low Earth Orbit (United States)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.


    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  20. Theory of the rotation of the rigid earth (United States)

    Kinoshita, H.


    Equations of motion for a triaxial rigid earth are derived in Andoyer variables. The reference plane is the ecliptic of date which is moving as a result of planetary perturbations. By using this noninertial system, the development of the disturbing function for the sun and moon is simplified, with an additional term appearing in the Hamiltonian which, however, contributes only to precessional motion. The nutation terms derived are compared with those of Woolard.

  1. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity (United States)

    Hoots, F. R.; Fitzpatrick, P. M.


    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  2. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers (United States)

    Chao, B. F.


    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  3. On rotational normal modes of the Earth: Resonance, excitation, convolution, deconvolution and all that

    Directory of Open Access Journals (Sweden)

    Benjamin Fong Chao


    Full Text Available Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are confirmed observationally and some remain elusive. Here we bring together from literature assertions about an excited resonance system in terms of the Green's function and temporal convolution. We raise caveats against taking the face values of the oscillational motion which have been “masqueraded” by the convolution, necessitating deconvolution for retrieving the excitation function which reflects the true variability. Lastly we exemplify successful applications of the deconvolution in estimating resonance complex frequencies.

  4. Nystagmus responses in a group of normal humans during earth-horizontal axis rotation (United States)

    Wall, Conrad, III; Furman, Joseph M. R.


    Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.

  5. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity (United States)

    Ray, Richard; Egbert, Gary


    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  6. Earth Rotation and Coupling to Changes in Atmospheric Angular Momentum (United States)

    Rosen, Richard D.; Frey, H. (Technical Monitor)


    The research supported under the contract dealt primarily with: (a) the mechanisms responsible for the exchange of angular momentum between the solid Earth and atmosphere; (b) the quality of the data sets used to estimate atmospheric angular momentum; and (c) the ability of these data and of global climate models to detect low-frequency signals in the momentum and, hence, circulation of the atmosphere. Three scientific papers reporting on the results of this research were produced during the course of the contract. These papers identified the particular torques responsible for the peak in atmospheric angular momentum and length-of-day during the 1982-93 El Nino event, and, more generally, the relative roles of torques over land and ocean in explaining the broad spectrum of variability in the length-of-day. In addition, a tendency for interannual variability in atmospheric angular momentum to increase during the last several decades of the 20th century was found in both observations and a global climate model experiment.

  7. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H.; Jochmann, H.


    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  8. Detection and Modeling of Non-Tidal Oceanic Effects on the Earth's Rotation Rate (United States)

    Marcus, S. L.; Chao, Y.; Dickey, J. O.; Gegout, P.


    Sub-decadal changes in the Earth's rotation rate, and hence in the length-of-day (LOD), are largely controlled by variations in atmospheric angular momentum. Results from two oceanic general circulation models (OGCMs), forced by observed wind stress and heat flux for the years 1992-1994, show that ocean current and mass distribution changes also induce detectable LOD variations.

  9. NATO Advanced Research Workshop on Earth Rotation : Solved and Unsolved Problems

    CERN Document Server


    The idea for an Advanced Research Workshop entirely devoted to the Earth rotation was born in 1983 when Professor Raymond Hide suggested this topic to the special NATO panel of global transport mechanism in the Geosciences. Such a specialized meeting did not take place since the GEOP research conference on the rotation of the Earth and polar motion which was held at the Ohio State University (USA) in 1973. In the last ten years, highly precise measurements of the Earth's rotation parameters and new global geophysical data have become available allowing major advance to be made in the under­ standing of the various irregularities affecting the Earth's rotation. The aim of the workshop was to bring together scientists who have made important contributions in this field during the last decade both at the observational and geophysical interpretation levels. The confe­ rence was divided into four main topics. The first session was dedicated to the definition, implementation and maintenance of the te...

  10. Observations of Shuffling Rotation of the Earth's Inner Core and its Time Correlation With Geomagnetic Jerks (United States)

    Tkalcic, H.; Young, M.; Bodin, T.; Sambridge, M.


    We report the first observational evidence that the complex rotational dynamics of the Earth's inner core appear to be in close relationship with the geomagnetic field. We infer from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles", exhibiting both prograde and retrograde rotation in the reference frame of the mantle. Evidence for a complex pattern in the rotation of the inner core characterized by episodes of both prograde and retrograde motion is presented. A key feature of the new analysis is that the number of parameters in the inversion controlling the rotation rate of the Earth's inner core may itself be treated as an unknown, which is robustly constrained by the data itself in a manner consistent with the inherent noise. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. A significant result is that all three time-intervals in which the inner core distinctively accelerates with respect to the rest of the planet are in agreement with known occurrences of geomagnetic jerks. However, we do not find a correlation between the other three reported geomagnetic jerks and the changes in rotation rate. Hence, intriguingly, a geomagnetic jerk appears to be a necessary, but not sufficient, condition for a change in the inner core rotation rate. Because there is also a documented correlation between the geomagnetic jerks and the Length of Day time series, this all points to the same source and works in favour of a differential rotation rather than processes at the inner core boundary. Last but not least, when we integrate the rotation rate over different

  11. Gravitomagnetic field of the universe and Coriolis force on the rotating Earth

    Energy Technology Data Exchange (ETDEWEB)

    Veto, B, E-mail: [Department of Physics of Roland Eoetvoes University, Pazmany Peter setany 1/A, Budapest, H-1117 (Hungary)


    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe-deduced from a simple model-exerts a gravitomagnetic Lorentz force on moving bodies, a force parallel to and with comparable strength to the Coriolis force observed on the rotating Earth. It seems after simple considerations that the Coriolis force happens to be the gravitomagnetic Lorentz force exerted by the mass of a black hole universe. The description of the phenomenon is simpler using the gravitomagnetic approach than the standard formulation of general relativity, so the method relying on gravitomagnetism is advisable in lectures intended for master's degree level physics students and advanced undergraduates.

  12. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths (United States)

    Auclair-Desrotour, P.; Laskar, J.; Mathis, S.; Correia, A. C. M.


    The competition between the torques induced by solid and thermal tides drives the rotational dynamics of Venus-like planets and super-Earths orbiting in the habitable zone of low-mass stars. The resulting torque determines the possible equilibrium states of the planet's spin. Here we have computed an analytic expression for the total tidal torque exerted on a Venus-like planet. This expression is used to characterize the equilibrium rotation of the body. Close to the star, the solid tide dominates. Far from it, the thermal tide drives the rotational dynamics of the planet. The transition regime corresponds to the habitable zone, where prograde and retrograde equilibrium states appear. We demonstrate the strong impact of the atmospheric properties and of the rheology of the solid part on the rotational dynamics of Venus-like planets, highlighting the key role played by dissipative mechanisms in the stability of equilibrium configurations.

  13. A fluid Foucault pendulum: the impossibility of achieving solid-body rotation on Earth (United States)

    Blum, Robert; Zimmerman, Daniel; Triana, Santiago; Lathrop, Daniel


    Rotating fluid dynamics is key to our understanding of the Earth's atmosphere, oceans, and core, along with a plethora of astrophysical objects. Laboratory study of these natural systems often involves spinning experimental devices, which are assumed to tend to rigid rotation when unstirred. We present results showing that even at the tabletop scale, there is a measurable oscillatory flow driven by the precession of the experiment's axis as the earth rotates. We measure this flow in a rotating cylinder with an adjustable aspect ratio. The horizontal flow in the rotating frame is measured using particle tracking. The steady state is well-described by an inertial mode whose amplitude is maximum when the height to diameter ratio is 0.995, which matches theoretical predictions. We also quantify the resonant amplitude of the inertial mode in the cylinder and estimate the amplitude in other devices. We compare our results to similar studies done in spherical devices. [Triana et al., JGR, 117 (2012), B04103][Boisson et al., EPL, 98 (2012), 59002].

  14. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.


    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  15. Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Directory of Open Access Journals (Sweden)

    Perron Stéphane


    Full Text Available Abstract Background While the effects of daily fine particulate exposure (PM have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours and arrhythmia, ischemia and myocardial infarction (MI as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays. Methods Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles. Results Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events. Conclusions Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size

  16. Evidence for a 20° tilting of the Earth's rotation axis 110 millions years ago


    Prévot, Michel; Mattern, Estelle; Camps, Pierre; Daignières, Marc


    1 Table, 3 Figures; True polar wander (TPW), the shift of the Earth's rotation axis with respect to the entire globe, is most probably due to mass redistribution in the Earth's mantle as a result of convection. Using a new rigorously selected palaeomagnetic database gathering only directions obtained from magmatic rocks, we find that TPW has been clearly intermittent over the last 200 Ma with two long periods of strict standstill from the present to 80 Ma and from approximately 150 to 200 Ma....

  17. The Goal of the IAU/IAG Joint Working Group on the Theory of Earth Rotation (United States)

    Ferrandiz, J. M.; Gross, R. S.


    In 2012 the International Association of Geodesy (IAG) and the International Astronomical Union (IAU) initiated a process to establish a Joint Working Group (JWG) on theory of Earth rotation with the purpose of promoting the development of improved theories of the Earth rotation which reach the accuracy required to meet the needs of the near future as recommended by, e.g. GGOS, the Global Geodetic Observing System of the IAG. The JWG was approved by both organizations in April 2013 with the chairs being the two authors of this paper. Its structure comprises three Sub Working Groups (SWGs) addressing Precession/Nutation, Polar Motion and UT1, the Numerical Solutions and Validation, respectively. The SWGs should work in parallel for the sake of efficiency, but should keep consistency as an overall goal. This paper offers a view of the objectives and scope of the JWG and reports about its initial activities and plans.

  18. The Earth rotation and revolution effect on the daily and annual variation of sporadic meteor echo (United States)

    Ohnishi, Kouji; Hattori, Shinobu; Nishimura, Osamu; Ishikawa, Toshiyuki; Aoki, Yoshie; Iijima, Yukiko; Kobayashi, Aya; Maegawa, Kimio; Abe, Shinsuke


    The Earth rotation and revolution will affect the daily and annual variation of sporadic meteor echo. We try to investigate such effect using Ham-band Radio Observation (HRO). Our system is constructed with paired two-element loop antennas (F/B ratio is 10 dB) at Nagano, Japan using the beacon signals at 53.750 MHz, 50W from Sabae, Fukui, Japan. The direction of one of this paired antenna was West toward Sagae and the other was East, so that this system could be roughly detected the direction of the reflected radio echoes. Using this system, (1) The total echo rose from midnight with the peak coming at about 6:00 and decreasing to the noon. This is well known daily variation due to the Earth rotation. (2) The peak echoes time by Eastward antenna and by Westward antennas was different; Westward was at 3:00 and Eastward was at 10:00. This daily variation is interpreted as the effect of the Earth rotation and revolution and the specular reflection property of forward meteor scattering observation.

  19. Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity (United States)

    Chao, B. F.; Gross, R. S.


    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.

  20. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity (United States)

    Chao, B. F.; Gross, R. S.


    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  1. Dynamic Effects of the Earth's Rotation Caused by the Annual and Semi-Annual Cyclic Mass Redistribution of the Planet

    Directory of Open Access Journals (Sweden)

    M. Yu. Barkin


    Full Text Available The paper deals with development of the theory of perturbed rotational motion of a celestial body with variable geometry of the masses. Its main task is to study the impact of annual and semi-annual variations of the Earth's mass geometry (a component of its inertia tensor, as well as a component of its relative angular momentum, on the movement of the Earth's poles and its axial rotation. The body is considered to be a free (isolated, and the problem formulation corresponds to the classical Liouville problem on rotation of a variable body. Euler conical movement of the axially symmetric body with an arbitrary constant half-angle  is assumed as the unperturbed motion. In the classical theory of the Earth's rotation this angle is usually assumed to be zero.In the last 20 years, accuracy to determine the Earth rotation parameters owing to using methods of space geodesy and method of Very Long Baseline Interferometry (VLBI has increased by about three orders of magnitude and has made about  i.e., in angle measure it is about 10 - 20 arc-microseconds. According to experts, the theory of the Earth's rotation with such precision is not created yet. The paper is focused just on the new dynamic studies of the Earth rotation at a higher level of accuracy than has been done in previous studies, using a new approach to the problem, based on the new forms of the equations of motion (in the Andoyer variables and the analytical methods of perturbation theory (small parameter method.The problem of perturbed rotational motion with variable geometry and variable mass relative angular momentum in the first approximation is solved in Andoyer variables and projections of the angular velocity of the planet rotation. The analytical solution allows us to run applications to study dynamic effects from above factors for various bodies in the solar system, including the Earth. The solution allowed us to obtain the following parameters of the fundamental effects in the

  2. Lateral Earth Pressure behind Walls Rotating about Base considering Arching Effects

    Directory of Open Access Journals (Sweden)

    Dong Li


    Full Text Available In field, the earth pressure on a retaining wall is the common effect of kinds of factors. To figure out how key factors act, it has taken into account the arching effects together with the contribution from the mode of displacement of a wall to calculate earth pressure in the proposed method. Based on Mohr circle, a conversion factor is introduced to determine the shear stresses between artificial slices in soil mass. In the light of this basis, a modified differential slices solution is presented for calculation of active earth pressure on a retaining wall. Comparisons show that the result of proposed method is identical to observations from model tests in prediction of lateral pressures for walls rotating about the base.

  3. Earth's rotation and a feasibility study of a possible mexican participation with a VLBI station (United States)

    Saucedo Morales, Julio Cesar; Kokina, Tatiana; Mendoza Araiza, Daniel

    This work begins by presenting a historical introduction on how the change in the Earth's rotation axis was first detected, and on related aspects of the discovery of precession and nutation phenomena. Newton's explanation of precession, the dynamical theory of nutation by Délambert as well as an acount of the first observatories dedicated to these studies are also discussed. In 1899 the International Latitude Service "ILS" was established, defining their main objectives, and started to determine the mean pole (1900 - 1905). In 1961 ILS was substituted by the International Polar Motion Service "IPMS". This service used laser telemetry to the Earth's artificial satelites "SAT", as well as to the Moon. Also in that period, the International Astronomical Union (IAU) aproved the MERIT international program, dedicated to monitor the Earth rotation intercomparing techniques of observation and analysis. It was in this program that "very long base interferometry" VLBI was used for the fist time, obtaining very good results. In 1987 the IAU started the International Earth Rotation Service "IERS" suported by its two networks ICRF and ITRF. The VLBI is said to be a powerful tool that could be used to solve global problems which have an impact in the countries' economies. In México we lack a rigid link in the geodesic network, which is linked to the global positional system NAVSTAR (GPS), as well as to the international system of coordinates (ITRF), and on the other hand there is a very high sysmic activity. We conclude by arguing that México ought to participate in IERS, as it has both scientists and infraestructure, such as the GMT, Sierra la Negra, Puebla, México. To achieve this a companion radiotelescope is needed. For this purpose, 5 telescopes are discussed, showing estimates for simultaneous reception as well as for the precission of the position of these radiotelescopes.

  4. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong


    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future. PMID:25635416

  5. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations. (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong


    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  6. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity (United States)

    Chao, Ben F.; Cox, C. M.


    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  7. Environmental Effects in Earth Rotation Data from the Large Laser-Gyroscope 'G (United States)

    Gebauer, André; Schreiber, Ulrich; Klügel, Thomas


    Large laser gyroscopes allow the observation of the global rotation rate of the Earth and provide a direct reference to the instantaneous axis of rotation with high temporal resolution. This measurement method is independent and complementary to the VLBI technique, because it does not depend on external reference objects. Periodic signals from geophysical processes are analyzed in the measured datasets. Based on changes of the G ring laser hardware (see contribution Schreiber et al., this session) the instrumental sensitivity and stability improved significantly. Thus more geophysical processes both on global and local scale become visible. The time series of the measurements also contain irregular transient signals of different origin and magnitude. Several studies were carried out to identify the origin of these signals. First studies showed that the contribution of barometric loading is too small to account for the observed rotational signals. Then the effect of wind load on a local scale was studied. A detailed Finite-Element (FE) Model was developed with a dimension of about 10 km x 10 km and a minimum height of about 2 km. The topography is derived from a digital terrain model (DTM) of 25 m spatial resolution. Depending on the topography and land use the measured wind force loads the model. The results yields rotations in comparable order of magnitude as the observed ring laser data. The talk outlines the current state of ring laser data treatment.

  8. Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation (United States)

    Ponte, Rui M.


    A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.

  9. Planet Within a Planet: Rotation of the Inner Core of Earth (United States)

    Su; Dziewonski; Jeanloz


    The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field.

  10. High Frequency Variability In Earth Rotation From VLBI And GNSS Data (United States)

    Englich, S.; Snajdrova, K.; Weber, R.; Schuh, H.


    High resolution Earth Rotation Parameter time series are derived from VLBI and GNSS observation data for a period of four months (Jul. 3^rd - Oct. 29^th, 2005). Earth Rotation Parameters (ERP), i.e. polar motion and lod are computed from GPS observation data with hourly resolution using the Bernese GPS Software. For this purpose a subset of 79 fairly stable stations out of the IGb00 reference frame sites were selected. To gather a comparable time series from VLBI data routine VLBI campaigns as well as the continuous observation campaign CONT05 are processed by means of the OCCAM software. All computations are performed with respect to the IAU2000 nutation model. Both software packages allow to choose between two different a priori models for the effect of oceanic tides on polar motion and lod/dUT1 - the Ray model and the Eanes model (according to IERS Conventions 1996 and 2003, respectively). In order to analyze the resulting residuals to the specific model we generate two separate series for each technique. The primarily subtracted models are then re-applied to the ERP estimates to study diurnal and subdiurnal tidal variations. From these ERP time series frequencies and amplitudes are estimated using spectral analysis. From the remaining series (after correction for ocean tides) the geodetic excitation is calculated and compared with atmospheric excitation (AAM) provided by the NCEP.

  11. Tests on the reliability of atmospheric reanalysis models in the context of Earth rotation (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.


    A valuable but somewhat less discussed complement to the plain quantification of geophysical and specifically atmospheric excitation of Earth rotation is the reliability assessment of the underlying models and the quantities calculated from them. In this study, we assess the validity of present-day atmospheric reanalysis models by numerical verification of the three-dimensional atmospheric angular momentum (AAM) budget equation, which requires that the total torque acting on the atmosphere exactly balances the time derivative of AAM. The thoroughly consistent analysis utilizes two novel, five-year records of AAM and atmospheric torques, as computed from the 3-hourly output of ERA-Interim of the ECMWF (European Centre for Medium Range-Weather Forecasts) and MERRA (Modern Era-Retrospective Analysis for Research and Applications) of NASA's GMAO (Global Modeling and Assimilation Office). We detail the AAM budget validation from the semi-diurnal band up to seasonal periodicities and address both equatorial and axial components. At most frequencies, the equivalence of torques and AAM derivatives is well established. Large discrepancies however are found in particular at high frequencies in the axial direction; we investigate their subtleties in more detail. An additional, successful term-to-term comparison of both AAM and torque terms provides another endorsement for using atmospheric interaction torques as a measure complementary to angular momentum in Earth rotation studies.

  12. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)


    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  13. Numerical analysis of the rigid Earth rotation with the quadruple precision (United States)

    Eroshkin, G. I.; Pashkevich, V. V.; Brzeziński, A.

    The present investigation is a development of the previous research on the rigid Earth rotation problem (Eroshkin et al., 2002). The problem is studied numerically by using a high-performance computer Parsytec CCe20. All the calculations are carried out with the quadrupole precision. Numerical integration of the differential equations is performed over the time interval of 2000 years, from AD 1000 to 3000, with the initial epoch January 1, 2000. The ephemerides DE404/LE404 (Standish et al., 1995) are used as a generator of the positions and velocities of the disturbing bodies. The problem is solved both for the Newtonian case (dynamical case) and for the relativistic one (kinematical case) in which the geodetic perturbations in the Earth rotation are taken into account. Over the whole time interval of the numerical integration the solutions are compared with the corresponding solutions of the semi-analytical theory SMART97 (Bretagnon et al., 1998), corrected previously in accordance with the reuslts of (Brumberg and Bretagnon, 2000).

  14. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core (United States)

    Voorhies, C. V.


    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  15. Earth rotation parameter and variation during 2005–2010 solved with LAGEOS SLR data

    Directory of Open Access Journals (Sweden)

    Yi Shen


    Full Text Available Time series of Earth rotation parameters were estimated from range data measured by the satellite laser ranging technique to the Laser Geodynamics Satellites (LAGEOS-1/2 through 2005 to 2010 using the dynamic method. Compared with Earth orientation parameter (EOP C04, released by the International Earth Rotation and Reference Systems Service, the root mean square errors for the measured X and Y of polar motion (PM and length of day (LOD were 0.24 and 0.25 milliarcseconds (mas, and 0.068 milliseconds (ms, respectively. Compared with ILRSA EOP, the X and Y of PM and LOD were 0.27 and 0.30 mas, and 0.054 ms, respectively. The time series were analyzed using the wavelet transformation and least squares methods. Wavelet analysis showed obvious seasonal and interannual variations of LOD, and both annual and Chandler variations of PM; however, the annual variation could not be distinguished from the Chandler variation because the two frequencies were very close. The trends and periodic variations of LOD and PM were obtained in the least squares sense, and PM showed semi-annual, annual, and Chandler periods. Semi-annual, annual, and quasi-biennial cycles for LOD were also detected. The trend rates of PM in the X and Y directions were 3.17 and −1.60 mas per year, respectively, and the North Pole moved to 26.8°E relative to the crust during 2005–2010. The trend rate of the LOD change was 0.028 ms per year.

  16. Examination of the eclipse records of Japanese medieval times and the Earth's rotation (United States)

    Sôma, Mitsuru; Tanikawa, Kiyotaka; Kawabata, Kin-Aki; Imae, Hiromichi

    Timed records of solar and lunar eclipses were written in many medieval Japanese books. The present article examines those in the 9-12 centuries for studying the Earth's rotation. Recordings of timed data of solar and lunar eclipses started in the 9th century in Japan. Because the moon was in the penumbral area of the Earth's shadow in many of lunar eclipses recorded in Japanese books, the definition of the time of the beginning and the end of eclipses in not clear cut and then we can't use them for studies of the Earth's rotation. The time of the beginning of solar eclipses written by predictions was very early comparing with the true values in all the cases and then these are not suitable to use for our studies. The predicted time of the maximum and the end for solar eclipses in the 10th century are confirmed to be those in Kyoto. The eclipses were actually observed at the predicted time in Kyoto as we can confirm from these books. In the 11th-12th centuries, the predicted time of the maximum and the end of solar eclipses were, curiously, those in China and then observed eclipses were different from the prediction in Kyoto. In cases of solar eclipses predicted to end before the sunrise in China, Japanese book sometimes recorded that the predictor did not report to the authorized office of the Government because the event was nighttime eclipse and that the solar eclipse was observed at the time of sunrise contradicting the prediction. In cases of solar eclipses predicted to occur just before the sunset in China, Japanese books sometimes recorded predicted time of the beginning, the maximum, and the end in China as those in Kyoto and that the solar eclipse did not occur contradicting the prediction.

  17. Reconciling past changes in Earth's rotation with 20th century global sea-level rise: Resolving Munk's enigma. (United States)

    Mitrovica, Jerry X; Hay, Carling C; Morrow, Eric; Kopp, Robert E; Dumberry, Mathieu; Stanley, Sabine


    In 2002, Munk defined an important enigma of 20th century global mean sea-level (GMSL) rise that has yet to be resolved. First, he listed three canonical observations related to Earth's rotation [(i) the slowing of Earth's rotation rate over the last three millennia inferred from ancient eclipse observations, and changes in the (ii) amplitude and (iii) orientation of Earth's rotation vector over the last century estimated from geodetic and astronomic measurements] and argued that they could all be fit by a model of ongoing glacial isostatic adjustment (GIA) associated with the last ice age. Second, he demonstrated that prevailing estimates of the 20th century GMSL rise (~1.5 to 2.0 mm/year), after correction for the maximum signal from ocean thermal expansion, implied mass flux from ice sheets and glaciers at a level that would grossly misfit the residual GIA-corrected observations of Earth's rotation. We demonstrate that the combination of lower estimates of the 20th century GMSL rise (up to 1990) improved modeling of the GIA process and that the correction of the eclipse record for a signal due to angular momentum exchange between the fluid outer core and the mantle reconciles all three Earth rotation observations. This resolution adds confidence to recent estimates of individual contributions to 20th century sea-level change and to projections of GMSL rise to the end of the 21st century based on them.

  18. Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. (United States)

    Grabherr, Luzia; Nicoucar, Keyvan; Mast, Fred W; Merfeld, Daniel M


    Perceptual direction detection thresholds for yaw rotation about an earth-vertical axis were measured at seven frequencies (0.05, 0.1, 0.2, 0.5, 1, 2, and 5 Hz) in seven subjects in the dark. Motion stimuli consisted of single cycles of sinusoidal acceleration and were generated by a motion platform. An adaptive two-alternative categorical forced-choice procedure was used. The subjects had to indicate by button presses whether they perceived yaw rotation to the left or to the right. Thresholds were measured using a 3-down, 1-up staircase paradigm. Mean yaw rotation velocity thresholds were 2.8 deg s(-1) for 0.05 Hz, 2.5 deg s(-1) for 0.1 Hz, 1.7 deg s(-1) for 0.2 Hz, 0.7 deg s(-1) for 0.5 Hz, 0.6 deg s(-1) for 1 Hz, 0.4 deg s(-1) for 2 Hz, and 0.6 deg s(-1) for 5 Hz. The results show that motion thresholds increase at 0.2 Hz and below and plateau at 0.5 Hz and above. Increasing velocity thresholds at lower frequencies qualitatively mimic the high-pass characteristics of the semicircular canals, since the increase at 0.2 Hz and below would be consistent with decreased gain/sensitivity observed in the VOR at lower frequencies. In fact, the measured dynamics are consistent with a high pass filter having a threshold plateau of 0.71 deg s(-1) and a cut-off frequency of 0.23 Hz, which corresponds to a time constant of approximately 0.70 s. These findings provide no evidence for an influence of velocity storage on perceptual yaw rotation thresholds.

  19. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Czech Academy of Sciences Publication Activity Database

    Beranová, Romana; Kyselý, Jan; Hanel, M.

    in press (2017) ISSN 0177-798X R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : sub-daily precipitation * regional climate models * extremes * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.640, year: 2016

  20. Sub-daily extreme events distribution and changes in Northeastern Brazil in the 20th century

    Directory of Open Access Journals (Sweden)

    R. Basso


    Full Text Available The regional analysis of extreme hydrological events is connected with the availability of a dense network of rainfall data that is absent or inaccessible in Brazil, especially for sub-daily information. In engineering, extreme events rainfall information is represented by intensity–duration–frequency (IDF relationships which are the most commonly used tools in water resources engineering for planning and design. Even if the sub-daily information that is included in the relationships is not available, the extreme rainfall information rest in the fundamentals of the IDF. This paper analyzes spatial distribution and track changes in sub-daily precipitation over Northeastern (NE Brazil. Precipitation was estimated from IDF relationships information in Brazil based in rainfall measured from 1920's to 1950's (but still used in engineering projects and information from the last half of the 20th century obtained from several IDFs gathered from municipalities' manuals, local symposia and books in many cases not easily obtainable. Results showed an intensification of extreme events in recent years, especially in shorter duration rainfall (less than 12 h. Hourly rainfall is bigger in almost all the Brazilian region, but especially in littoral and Northern portion, however, 12 and 24 h rainfall exhibit increases in the North, but, lower values in the Southern half of the region in concordance with flood changes reported by Milly et al. (2005. Analyzing the ratio between 1 and 24 h rainfall is possible to confirm its increase in all the region, with up to 35% in some areas. These results were able to show insight of sub-daily extreme events changes during 20th century in NE Brazil were previous reports were not found. The results also alerts for the necessity of engineering projects review, as outdated information is still being used for design purposes.

  1. A comparison of methods to estimate future sub-daily design rainfall (United States)

    Li, J.; Johnson, F.; Evans, J.; Sharma, A.


    Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.

  2. Axis of eye rotation changes with head-pitch orientation during head impulses about earth-vertical. (United States)

    Migliaccio, Americo A; Schubert, Michael C; Clendaniel, Richard A; Carey, John P; Della Santina, Charles C; Minor, Lloyd B; Zee, David S


    The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) "impulses" about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30 degrees nose down, 15 degrees nose down, 0 degrees, 15 degrees nose up, 30 degrees nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 80 degrees /s, and peak-acceleration of approximately 1000 degrees /s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 150 degrees /s, and peak-acceleration of approximately 3000 degrees /s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 +/- 0.09), to the starting pitch head orientation (P rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR.

  3. Revised predictions of long-period ocean tidal effects on Earth's rotation rate (United States)

    Dickman, S. R.; Nam, Young S.


    The rotational response of Earth to long-period tidal forces, embodied in a 'zonal response function,' can be expected to vary with frequency because of variable contributions by the oceans, mantle, and core. The zonal response function has been estimated from 9 years of International Radio Interferometric Surveying (IRIS) universal time (UT1) data and compared with theoretical predictions, using a spherical harmonic tide model to compute the oceans' dynamic response, at semiannual, monthly, fortnightly, and 9-day lunisolar tidal frequencies. Different amounts of mantle anelasticity have been considered for both the oceanic and soild earth responses; predictions have been made assuming axial core-mantle coupling which is either complete or absent. Additionally, an extensive recalibration of the ocean model's frictional parameters was performed using constraints derived in part from Space92 polar motion data; zonal response function predictions have also been made employing this recalibrated ocean tide model. Our results indicate that any amount of core coupling can be ruled out at a fortnightly period and probably at a 9-day period, but not at a monthly period. Our results also suggest that the mantle responds purely elastically at a 9-day period but may behave increasingly anelastically at longer periods. A simple dispersive rule is postulated for periods ranging up to the 14-month Chandler wobble period.

  4. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation. (United States)

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan


    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  5. Rotations (United States)

    John R. Jones; Wayne D. Shepperd


    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  6. The Global Non-Holonomity of the Rotating Space of the Earth Affects Hafele-Keating Experiment (United States)

    Rabounski, Dmitri; Borissova, Larissa


    The deviation of time registered in the ``around-the-world clocks experiment'' (Hafele J. and Keating R., Science, 14 July 1972, 166-170) is originally explained due to: 1) General Relativity (gravitation is lower at the flying airplane's altitude); 2) Special Relativity (the airplane's speed and the Earth's rotation). However as was shown in the 1940's by Schouten and then Zelmanov, if the observer cannot be moved to the rotation-free frame, the space rotation is a non-vanishing effect of General Relativity, and is due to the non-holonomity of space (the non-orthogonality of the three-space to the lines of time). This is the case of Hafele-Keating experiment (the Earth's rotation cannot be stopped). We thus constructed the metric of the real space of the Earth which bears the gravitational field and rotation. We then proved that this metric satisfies Einstein's equations. Finally, an exact formula is deduced for Hafele-Keating experiment. Despite a hundred nanoseconds of the time correction, and the use of the GPS navigation, the obtained result is useful in the case where is no the GPS connexion, in a long-term submarine travel for instance.

  7. Antihysteresis of perceived longitudinal body axis during continuous quasi-static whole-body rotation in the earth-vertical roll plane. (United States)

    Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A


    Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.

  8. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman


    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  9. Evapotranspiration partition at sub-daily scale using laser and chamber techniques (United States)

    Wang, L.; Parkes, S. D.; McCabe, M. F.; Azcurra, C.; Wang, J.


    Evapotranspiration (ET) partitioning is important for quantifying the water budget and understanding vegetation control on water cycles in various ecosystems. With the development of spectroscopy-based techniques for in-situ isotope measurements, the use of stable isotope based ET partition is rising rapidly. The sub-daily scale ET partition, however, is still rarely seen in the literature. In this study, we conducted an intensive field campaign measuring ET partition using laser-based isotope and chamber techniques in a pasture system between May and June 2012 in eastern Australia. Six soil collars were used, three of which had natural vegetation and the other three were bare soil collars where vegetation was artificially removed. The vegetated and bare soil collars were used to determine the isotopic composition of ET and evaporation, respectively. The isotopic composition of the transpiration flux was determined using a Licor leaf chamber for grasses inside the vegetated collars. The diurnal patterns in isotopic compositions were observed. In the morning, the isotopic compositions were depleted. The isotopic composition of ET became more enriched and leveled off during midday. Similar patterns were found for the isotopic composition of evaporation. Overall the total ET flux over the campaign was dominated by evaporation, though transpiration contributions were high between 10am and 12pm. This study demonstrated the use of chamber-based measurements for direct partitioning of ET at sub-daily scale and showed a rarely observed diurnal pattern of ET partition.

  10. Diurnal atmosphere-ocean signals in Earth's rotation rate and a possible modulation through ENSO (United States)

    Schindelegger, M.; Salstein, D.; Einšpigel, D.; Mayerhofer, C.


    Space geodetic determinations of a 6 μs length-of-day (LOD) anomaly at the diurnal S1 frequency are reconciled with excitation estimates from geophysical fluid models. Preference is given to a hybrid excitation scheme that combines atmospheric torques with oceanic angular momentum (OAM) terms from hydrodynamic forward modeling. A joint inversion of all data sets yields an LOD in-phase and quadrature estimate of (5.91, -0.22) μs, matching space geodetic S1 terms well within their formal uncertainties. Non-harmonic LOD excitations, while less than 30% of the time-averaged rotation rate contribution, are conclusively linked to El Niño-Southern Oscillation (ENSO) as the main perturbation of diurnal cycle characteristics in the troposphere. ENSO modulations of particular relevance are those in OAM, associated with the barotropic ocean response to regional modifications in the diurnal atmospheric pressure wave. The study thus highlights previously unexplored aspects of non-tidal mass-field variability in the Earth system.

  11. Application of the spectral analysis for the mathematical modelling of the rigid Earth rotation (United States)

    Pashkevich, V. V.; Eroshkin, G. I.

    The new semi-analytical series - S9000 - describing the high-precision rigid Earth rotation, dynamically adequate to the ephemerides DE404/LE404 over 2000 year time interval, are constructed. The series S9000 are obtained by processing the discrepancies of the comparison between the quadruple precision numerical solutions of the problem and the semi-analytical ones - SMART97 solutions - (Bretagnon et al., 1998), (Brumberg and Bretagnon, 2000) by means of the spectral analysis methods. The comparison between the quadruple precision numerical solutions of the problem and S9000 series reveals the discrepancies less than 10μas over 2000 year time interval. The residuals of the comparison between S9000 series and the high-precision numerical integration are processed for the determination of the diurnal and sub-diurnal harmonics. The addition of the short-period terms to S9000 are constructed over 200 year time interval for the Kinematical case. The comparison between the quadruple precision numerical solutions of the problem and S9000 series with short-periodical part reveals the discrepancies less than 1.2μas over 200 year time interval.

  12. Sub-daily precipitation disaggregation for a simulation of annual runoff maxima (United States)

    Sikorska, Anna; Seibert, Jan


    Measurement of precipitation has been often restricted to daily totals only. This applies especially to observations from the previous century which constitutes a valuable source of long-term precipitation records needed for statistical analysis such as for annual runoff maxima. In this respect, the knowledge about the exact temporal distribution of these precipitation totals at sub-daily time steps can play an important role on the magnitude of simulated runoff maxima using these data. But it is difficult to estimate the sub-daily temporal distribution of precipitation if it was not measured. Instead, the effect of the precipitation in the form of runoff measured at the catchment outlet, which is usually available at sub-daily time steps for longer periods, provides an alternative to evaluate the potential effect of the need to disaggregate precipitation data. In this study we assess how the choice of the temporal distribution of daily precipitation totals might affect the simulation of the catchment runoff annual maxima when using a hydrological model. To examine this issue, we tested six different settings of precipitation total distribution within the day. These are: 1) uniform distribution (daily totals uniquely divided over 24 hours); all daily totals fall within a respective time window, i.e., 2) one hour, 3) two successive hours, 4) three successive hours, 5) six successive hours, and 6) twelve successive hours, each time randomly selected for each observation day independently. To assess the effect on simulated runoff maxima, such generated hourly precipitation datasets were next used as input into a pre-calibrated HBV model. As a reference, we used model simulations with observed hourly precipitation data. This study was conducted using thirty years of precipitation and runoff observations in three Swiss catchments. Our results showed that the annual maxima were best simulated when distributing daily totals over twelve successive hours randomly selected

  13. Non-stationarity in daily and sub-daily intense rainfall – Part 1: Sydney, Australia

    Directory of Open Access Journals (Sweden)

    D. Jakob


    Full Text Available This study was driven by a need to clarify how variations in climate might affect intense rainfall and the potential for flooding. Sub-daily durations are of particular interest for urban applications. Worldwide, few such observation-based studies exist, which is mainly due to limitations in data. While there are still large discrepancies between precipitation data sets from observations and models, both show that there is a tendency for moist regions to become wetter and for dry regions to become drier. However, changes in extreme conditions may show the opposite sign to those in average conditions. Where changes in observed intense precipitation have been studied, this has typically been for daily durations or longer.

    The purpose of this two-part study is to examine daily and sub-daily rainfall extremes for evidence of non-stationarity. Here the problem was addressed by supplementing one long record (Part 1 by a set of shorter records for a 30-yr concurrent period (Part 2. Variations in frequency and magnitude of rainfall extremes across durations from 6 min to 72 h were assessed using data from sites in the south-east of Australia. For the analyses presented in this paper, a peaks-over-threshold approach was chosen since it allows investigating changes in frequency as well as magnitude. Non-parametric approaches were used to assess changes in frequency, magnitude, and quantile estimates as well as the statistical significance of changes for one station (Sydney Observatory Hill for the period 1921 to 2005. Deviations from the long-term average vary with season, duration, and threshold. The effects of climate variations are most readily detected for the highest thresholds. Deviations from the long-term average tend to be larger for frequencies than for magnitudes, and changes in frequency and magnitude may have opposite signs.

    Investigations presented in this paper show that variations in frequency and magnitude of events at

  14. Variational approach to the rotational dynamics of a three-layer Earth model: fluid outer core interactions (United States)

    Escapa, A.; Getino, J.; Ferrándiz, J. M.

    By means of the Hamiltonian theory of the rotation of the non-rigid Earth, we have obtained explicit expressions of the torques exerted by the fluid on the solid layers of two and three-layer Earth models as functions of the canonical Andoyer variables. When rewriting these formulae in terms of the components of angular velocities and symmetry axes of the layers, the transformated expressions are the same as those derived by other authors using different methods. Anyway, here the derivation is obtained in a much more simple way without the concurrence of hydrodynamics equations.

  15. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes (United States)

    Pegram, Geoff; Bardossy, Andras; Sinclair, Scott


    The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this presentation we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the presentation is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to un-sampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the sub-daily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. In addition, a statistical procedure not based on a matching day by day correction is tested. In this last procedure, as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these 12 day maxima is first interpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest 12 radar based days in each year. Of course, the timings of radar and gauge maxima can be different, so the new method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated

  16. Regional frequency analysis of observed sub-daily rainfall maxima over eastern China (United States)

    Sun, Hemin; Wang, Guojie; Li, Xiucang; Chen, Jing; Su, Buda; Jiang, Tong


    Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (-10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.

  17. The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables


    Efroimsky, Michael; Escapa, Alberto


    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In...

  18. Dynamics of the accumulation process of the Earth group of planets: Formation of the reverse rotation of Venus (United States)

    Koslov, N. N.; Eneyev, T. M.


    A numerical simulation of the process of formation of the terrestrial planets is carried within the framework of a new theory for the accumulation of planetary and satellite systems. The numerical simulation permitted determining the parameters of the protoplanetary disk from which Mercury, Venus and the Earth were formed as result of the evolution. The acquisition of a slow retrograde rotation for Venus was discovered during the course of the investigation, whereas Mercury and the Earth acquired direct rotation about their axes. Deviations of the semimajor axes of these three planets as well as the masses of the Earth and Venus from the true values are small as a rule (l 10%). It is shown that during the accumulation of the terrestrial planets, there existed a profound relationship between the process of formation of the orbits and masses of the planet and the process of formation of their rotation about their axes. Estimates are presented for the radii of the initial effective bodies and the time of evolution for the terrestrial accumulation zone.

  19. On the theory of canonical perturbations and its application to Earth rotation


    Efroimsky, Michael


    Both orbital and rotational dynamics employ the method of variation of parameters. We express, in a non-perturbed setting, the coordinates (Cartesian, in the orbital case, or Eulerian in the rotation case) via the time and six adjustable constants called elements (orbital elements or rotational elements). If, under disturbance, we use this expression as ansatz and endow the "constants" with time dependence, then the perturbed velocity (Cartesian or angular) will consist of a partial derivativ...

  20. Rotation of the elastic Earth: the role of the angular-velocity-dependence of the elasticity-caused perturbation (United States)

    Kubo, Yoshio


    We calculate the so-called convective term, which shows up in the expression for the angular velocity of the elastic Earth, within the Andoyer formalism. The term emerges due to the fact that the elasticity-caused perturbation depends not only on the instantaneous orientation of the Earth but also on its instantaneous angular velocity. We demonstrate that this term makes a considerable contribution into the overall angular velocity. At the same time the convective term turns out to be automatically included into the correction to the nutation series due to the elasticity, if the series is defined by the perturbation of the figure axis (and not of the rotational axis) in accordance with the current IAU resolution. Hence it is not necessary to take the effect of the convective term into consideration in the perturbation of the elastic Earth as far as the nutation is related to the motion of the figure axis.

  1. Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes (United States)

    Pegram, G. G. S.; Bardossy, A.


    Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and

  2. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study (United States)

    Gómez, Natalia Ortiz; Walker, Scott J. I.


    The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.

  3. Detection of the Earth rotation response to a rapid fluctuation of Southern Ocean circulation in November 2009 (United States)

    Marcus, S. L.; Dickey, J. O.; Fukumori, I.; de Viron, O.


    At seasonal and shorter periods the solid Earth and its overlying geophysical fluids form a closed dynamical system, which (except for tidal forcing) conserves its total angular momentum. While atmospheric effects dominate changes in the Earth's rate of rotation and hence length-of-day (LOD) on these time scales, the addition of oceanic angular momentum (OAM) estimates has been shown to improve closure of the LOD budget in a statistical sense. Here we demonstrate, for the first time, the signature of a specific, sub-monthly ocean current fluctuation on the Earth's rotation rate, coinciding with recently-reported anomalies which developed in southeast Pacific surface temperature and bottom pressure fields during late 2009. Our results show that concurrent variations in the Antarctic Circumpolar Current (ACC), which saw a sharp drop and recovery in zonal transport during a two-week period in November, were strong enough to cause a detectable change in LOD following the removal of atmospheric angular momentum (AAM) computed from the Modern Era Retrospective Analysis for Research and Applications (MERRA) database. The strong OAM variations driving the LOD-AAM changes were diagnosed from ocean state estimates of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) and involved roughly equal contributions from the current and pressure terms, with in situ confirmation for the latter provided by tide-corrected bottom pressure recorder data from the South Drake Passage site of the Antarctic Circumpolar Current Levels by Altimetry and Island Measurements (ACCLAIM) network.

  4. Effects of the Triaxiality on the Rotation of Celestial Bodies: Application to the Earth, Mars and Eros (United States)

    Souchay, Jean; Folgueira, Marta; Bouquillon, Sébastien


    In this paper we discuss the influence of the triaxiality of a celestial body on its free rotation, i.e. in absence of any external gravitational perturbation. We compare the results obtained through two different analytical formalisms, one established from Andoyer variables by using Hamiltonian theory, the other one from Euler's variables by using Lagrangian equations. We also give a very accurate formulation of the polar motion (polhody) in the case of a small amplitude of this motion. Then, we carry out a numerical integration of the problem, with a Runge-Kutta-Felberg algorithm, and for the two kinds of methods above, that we apply to three different celestial bodies considered as rigid : the Earth, Mars, and Eros. The reason of this choice is that each of this body corresponds to a more or less triaxial shape. In the case of the Earth and Mars we show the good agreement between analytical and numerical determinations of the polar motion, and the amplitude of the effect related to the triaxial shape of the body, which is far from being negligible, with some influence on the polhody of the order of 10 cm for the Earth, and 1 m for Mars. In the case of Eros, we use recent output data given by the NEAR probe, to determine in detail the nature of its free rotational motion, characterized by the presence of important oscillations for the Euler angles due to the particularly large triaxial shape of the asteroid.

  5. Expanding HadISD: quality-controlled, sub-daily station data from 1931 (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Parker, David E.; Mitchell, Lorna


    HadISD is a sub-daily, station-based, quality-controlled dataset designed to study past extremes of temperature, pressure and humidity and allow comparisons to future projections. Herein we describe the first major update to the HadISD dataset. The temporal coverage of the dataset has been extended to 1931 to present, doubling the time range over which data are provided. Improvements made to the station selection and merging procedures result in 7677 stations being provided in version of this dataset. The selection of stations to merge together making composites has also been improved and made more robust. The underlying structure of the quality control procedure is the same as for HadISD.1.0.x, but a number of improvements have been implemented in individual tests. Also, more detailed quality control tests for wind speed and direction have been added. The data will be made available as NetCDF files at and updated annually.

  6. A proof of the cancellation of the redistribution tidal potential effects on the rotation of an elastic Earth model (United States)

    Baenas, Tomás; Escapa, Alberto; Ferrándiz, Jose Manuel


    The gravitational action of the Moon and the Sun on the elastic Earth originates a redistribution of its mass. In turn, this redistribution is responsible of an additional term in the gravitational potential energy of the system, commonly referred to as tidal potential of redistribution. Its effects on the Earth rotation were previously discussed in Escapa et al. (2004) and Lambert & Mathews (2006). A numerical approach was followed in those works to show that for an elastic Earth model, assumed to be spherical and non-rotating in the undeformed state, there is no net contribution to the motion of the figure axis. This result is consistent with the corresponding one deduced from the torque approach, where one can derive analytically that the redistribution torque for that elastic Earth model vanishes (e.g., Krasinsky 1999). However, it is far from being a trivial question to recover the same result when working directly with the tidal potential of redistribution, as in Escapa et al. (2004) or Lambert & Mathews (2006). In this investigation we revisit the issue, enhancing and completing former results by Escapa et al. (2004). In particular, we aim at proving, by analytical means, that the redistribution tidal potential of the former elastic Earth model does not affect its rotational motion. To this end we expand that potential in terms of an Andoyer-like set of canonical variables, and then compute the torque associated to it. This choice was motivated by the suitability of this set of variables to extend our calculations to the nutations of other different elastic or anelastic Earth models, through the Hamiltonian framework (e.g., Ferrándiz et al. 2012). We show the exact cancellation of the derived expressions as a consequence of certain properties fulfilled by the expansions of the orbital motion of the perturbing bodies. Acknowledgement. - This work has been partially supported by the Spanish government trhough the MINECO projects I+D+I AYA201022039-C02-01, AYA

  7. Simulating sub-daily Intensity-Frequency-Duration curves in Australia using a dynamical high-resolution regional climate model (United States)

    Mantegna, Gabriel A.; White, Christopher J.; Remenyi, Tomas A.; Corney, Stuart P.; Fox-Hughes, Paul


    Climate change has the potential to significantly alter the characteristics of high-intensity, short-duration rainfall events, potentially leading to more severe and more frequent flash floods. Research has shown that future changes to such events could far exceed expectations based on temperature scaling and basic physical principles alone, but that computationally expensive convection-permitting models are required to accurately simulate sub-daily extreme rainfall events. It is therefore crucial to be able to model future changes to sub-daily duration extreme rainfall events as cost effectively as possible, especially in Australia where such information is scarce. In this study, we seek to determine what the shortest duration of extreme rainfall is that can be simulated by a less computationally expensive convection-parametrizing Regional Climate Model (RCM). We examine the ability of the Conformal Cubic Atmospheric Model (CCAM), a ∼10 km high-resolution convection-parametrizing RCM, to reproduce sub-daily Intensity-Frequency-Duration (IFD) curves corresponding to two long-term observational stations in the Australian island state of Tasmania, and examine the future model projections. We find that CCAM simulates observed extreme rainfall statistics well for 3-h durations and longer, challenging the current understanding that convection-permitting models are needed to accurately model sub-daily extreme rainfall events. Further, future projections from CCAM for the end of this Century show that extreme sub-daily rainfall intensities could increase by more than 15% per °C, far exceeding the 7% scaling estimate predicted by the Clausius-Clapeyron vapour pressure relationship and the 5% scaling estimate recommended by the Australian Rainfall and Runoff guide.

  8. Calculation of new snow densities from sub-daily automated snow measurements (United States)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc


    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1

  9. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni


    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  10. Influence of earth's shadow on the rotational motion of an artificial satellite perturbed by solar radiation torque (United States)

    de Moraes, R. Vilhena; Zanardi, M. C.

    A semi-analytical approach is proposed to study the rotational motion of an artificial satellite under the influence of the torque due to the solar radiation pressure and taking into account the influence of Earth's shadow. The Earth's shadow is introduced in the equations for the rotational motion as a function depending on the longitude of the Sun, on the ecliptic's obliquity and on the orbital parameters of the satellite. By mapping and computing this function, we can get the periods in which the satellite is not illuminated and the torque due to the solar radiation pressure is zero. When the satellite is illuminated, a known analytical solution is used to predict the satellite's attitude. This analytical solution is expressed in terms of Andoyer's variables and depends on the physical and geometrical properties of the satellite and on the direction of the Sun radiation flux. By simulating a hypothetical circular cylindrical type satellite, an example is exhibited and the results agree quite well when compared with a numerical integration.

  11. Spectral and rotational properties of near-Earth asteroid (162173) Ryugu, target of the Hayabusa2 sample return mission (United States)

    Perna, D.; Barucci, M. A.; Ishiguro, M.; Alvarez-Candal, A.; Kuroda, D.; Yoshikawa, M.; Kim, M.-J.; Fornasier, S.; Hasegawa, S.; Roh, D.-G.; Müller, T. G.; Kim, Y.


    Context. The JAXA Hayabusa2 mission will perform the first ever sample return from a primitive asteroid. The target near-Earth asteroid (162173) Ryugu will be reached in mid-2018 and its samples will be returned to the Earth by the end of 2020. Aims: We want to improve the current knowledge of the compositional and rotational properties of Ryugu, which are still presenting some uncertainties that might affect the mission operations and scientific return. Methods: We acquired high-quality photometric time-series data with the FORS2 instrument at the Very Large Telescope of the European Southern Observatory (ESO-VLT, Chile). We also acquired four FORS2 visible spectra and three X-shooter spectra in the 0.35-2.15 μm range, at different rotational phases. Results: We obtained the currently highest-quality visual light-curve of Ryugu. A best solution of 7.63 h is found for the rotational period, while a short-period solution (i.e., P ≈ 3.8 h) is ruled out by the clearly non-symmetric light-curve. The obtained spectra are generally similar and featureless, but present a drop-off of the reflectance at team for the mission preparation and implementation, improving our knowledge of Ryugu's spin properties. Our new spectra constrain the compositional and geological context of the Ryugu's surface in order to prepare the planning of mission observations and support the working group for the selection of possible landing and sampling sites. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0248.

  12. Characterizing effects of hydropower plants on sub-daily flow regimes (United States)

    Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer


    A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets

  13. General Theory of the Rotation of the Non-rigid Earth at the Second Order. I. The Rigid Model in Andoyer Variables (United States)

    Getino, J.; Escapa, A.; Miguel, D.


    This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 μas adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.

  14. Sensing earth's rotation with a helium-neon ring laser operating at 1.15  μm. (United States)

    Ulrich Schreiber, K; Thirkettle, Robert J; Hurst, Robert B; Follman, David; Cole, Garrett D; Aspelmeyer, Markus; Wells, Jon-Paul R


    We report on the operation of a 2.56  m2 helium-neon based ring laser interferometer at a wavelength of 1.152276 μm using crystalline coated intracavity supermirrors. This work represents the first implementation of crystalline coatings in an active laser system and expands the core application area of these low-thermal-noise cavity end mirrors to inertial sensing systems. Stable gyroscopic behavior can only be obtained with the addition of helium to the gain medium as this quenches the 1.152502 μm (2s4→2p7) transition of the neon doublet which otherwise gives rise to mode competition. For the first time at this wavelength, the ring laser is observed to readily unlock on the bias provided by the earth's rotation alone, yielding a Sagnac frequency of approximately 59 Hz.

  15. The effects of mantle and anelasticity on nutations, earth tides, and tidal variations in rotation rate (United States)

    Wahr, John; Bergen, Zachary


    The paper models the effects of mantle anelasticity on luni-solar nutations, on tidal deformation, on tidal variations in rotation rate, and on the eigenfrequency of the free core nutation. The results can be used to invert observations to solve for the anelastic contributions to the shear and bulk moduli of the upper and lower mantle. Specific anelastic models are used to numerically estimate the effects of anelasticity on these geodetic observables. The nutation estimates are compared with observational results. Among the conclusions: (1) mantle anelasticity is likely to be the most important source of damping for the free core nutation; (2) present VLBI nutation results are, in principle, accurate enough to usefully bound anelasticity at diurnal periods. But the discrepancy between the VLBI observed nutations and the 1984 IAU nutation model cannot be explained by anelasticity and is not yet well enough understood to allow anelasticity to be determined from the data.

  16. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles. (United States)

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H


    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  17. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder. (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong


    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  18. Assessment of the effect of three-dimensional mantle density heterogeneity on Earth rotation in tidal frequencies

    Directory of Open Access Journals (Sweden)

    Lanbo Liu


    Full Text Available In this paper, we report the assessment of the effect of the three-dimensional (3D density heterogeneity in the mantle on Earth orientation parameters (EOP (i.e., the polar motion, or PM, and the length of day, or LOD in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8 and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the preliminary reference earth model (PREM. Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal are estimated in both PM and LOD. When compared with mass or density perturbations originated on the Earth's surface such as the oceanic and barometric changes, the heterogeneous mantle contributes less than 10% of the total variation in PM and LOD in tidal frequencies. However, this is the gap that has not been explained to close the gap of the observation and modeling in PM and LOD. By computing the PM and LOD caused by 3D heterogeneity of the mantle during the period of continuous space geodetic measurement campaigns (e.g., CONT94 and the contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon in the same period, we got the lump-sum values of PM and LOD. The computed total effects and the observed PM and LOD are generally agree with each other. In another word, the difference of the observed PM and LOD and the model only considering ocean tides, at all tidal frequencies (long periods, diurnals, and semidiurnals contains the contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free Earth rotation may provide useful constraints to construct the reference earth model (REM, which is the next major objective in global

  19. Late Proterozoic and Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth (United States)

    Sonett; Kvale; Zakharian; Chan; Demko


    The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is dxi/dt approximately k2 sin(2delta) (where xi is the Earth-moon radius vector, k2 is the tidal Love number, and delta is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was approximately18 hours.

  20. Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth (United States)

    Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.


    The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.

  1. Toward uncertainties in gravimetrically derived excitation mechanisms of Earth rotation: A case study of degree-1 Stokes coefficients and C20 (United States)

    Göttl, Franziska; Bloßfeld, Mathis; Kehm, Alexander; Schmidt, Michael; Seitz, Florian


    Earth rotation variations are caused by redistribution and motion of masses within the Earth system. Since 2002, the satellite mission GRACE (Gravity Recovery And Climate Experiment) observes gravity field variations of the Earth which are caused by mass displacements within the Earth system. Therefore, time variable GRACE gravity field models can be used to determine mass-related excitation mechanisms of Earth rotation. By applying suitable filter techniques and masks not only the integral mass effect on Earth rotation but also the mass effects of the oceans, continental hydrosphere and cryosphere can be studied. These gravimetrically derived excitations suffer from uncertainties due to (1) the destriping and filtering of the GRACE data, (2) the separation of the individual contributions (leakage effect), (3) the reduction of glacial isostatic adjustment and (4) an appropriate replacement of the Stokes coefficients C10, C11, S11 and C20. The latter aspect shall be investigated in this study. Due to the fact that the GRACE data processing is performed in the Earth's center-of-mass (CM) frame the degree-1 Stokes coefficients are zero by definition. But due to the fact that processes at the Earth's surface and interior are referred to a coordinate system attached to the Earth's crust which moves relative to the CM this effect has to be taken into account within the determination of mass variations. This movement is described by the so called geocenter motion - the position of the CM wrt. the center-of-figure (CF) - or by the degree-1 Stokes coefficients, respectively. In this study SLR (Satellite Laser Ranging) solutions for geocenter motion and solutions for the degree-1 Stokes coefficients derived from GRACE and ocean models or from GPS, GRACE and ocean bottom pressure from a model are investigated with focus on gravimetrically derived excitation mechanisms of Earth rotation. The Stokes coefficient C20 obtained by GRACE still suffers from ocean tide model errors

  2. A graphical approach to characterize sub-daily flow regimes and evaluate its alterations due to hydropeaking. (United States)

    Alonso, Carlos; Román, Alfonso; Bejarano, Maria Dolores; Garcia de Jalon, Diego; Carolli, Mauro


    Most flow regime characterizations focus on long time scale flow patterns, which are not precise enough to capture key components of short-term flow fluctuations. Recent proposed methods describing sub-daily flow fluctuations are focused on limited components of the flow regime being unable to fully represent it, or on the identification of peaking events based on subjectively defined thresholds, being unsuitable for evaluations of short-term flow regime alterations through comparisons between regulated and free-flowing rivers. This study aims to launch an innovative approach based on the visual display of quantitative information to address the challenge of the short-term hydrologic characterization and evaluation of alteration resulting from hydropeaking. We propose a graphical method to represent a discrete set of ecologically relevant indices that characterize and evaluate the alteration of sub-daily flow regimes. The frequency of occurrence of classified values of a descriptive hydrological variable is represented in a map-like graph where longitude, latitude and altitude represent the Julian day, the value of the variable and the frequency of occurrence, respectively. Subsequently, we tested the method on several rivers, both free-flowing and subjected to hydropower production. The advantages of our approach compared to other analytical methods are: (i) it displays a great amount of information without oversimplification; (ii) it takes into account changes in the intensity, timing and frequency of the sub-daily flows, without needing a priori defined thresholds to identify hydropeaking events; and (iii) it supports the Water Framework Directive goal. Specifically, results from applications of our graphical method agree with Sauterleute and Charmasson (2014) analytical method. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rotational seismology (United States)

    Lee, William H K.


    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  4. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction (United States)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto


    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50

  5. How can one detect the rotation of the Earth "around the Moon"? Part 2: Ultra-slow fall

    CERN Document Server

    Roehner, Bertrand M


    The paper proposes an alternative to the Foucault pendulum for detecting various movements of rotation of the Earth. Calculations suggest that if the duration of a "free" fall becomes longer the eastward deflection will be amplified in proportion with the increased duration. Instead of 20 micrometers for a one-meter fall, one can expect deflections more than 1,000 times larger when the fall lasts a few minutes. The method proposed in this paper consists in using the buoyancy of a (non viscous) liquid in order to work in reduced gravity. Not surprisingly, as in many astronomical observations, the main challenge is to minimize the level of "noise". Possible sources of noise are discussed and remedies are proposed. In principle, the experiment should be done in superfluid helium. However, a preliminary experiment done in water gave encouraging results in spite of a fairly high level of noise. In forthcoming experiments the main objective will be to identify and eliminate the main sources of noise. This experimen...

  6. A Study of the Impact of the Inertial Modes of the Earth's Liquid Core on its Rotation. Clarifying their Contribution to the Free Core Nutation. (United States)

    Rekier, J.; Triana, S. A.; Laguerre, R.; Trinh, A.; Zhu, P.; Dehant, V. M. A.


    The Free Core Nutation is an essential feature to accurately describe the rotation of the Earth and is interpreted as the free mode describing the global motion of the liquid core. It is most common to describe it as a solid-body rotation around an axis tilted with respect to that of the mantle (Poincaré motion). From a fluid mechanics perspective, however, the contained fluid has a whole spectrum of modes which come about as the result of the combined restoring actions of the Coriolis and Buoyancy forces. The impact of these modes on the planetary rotation is still not well known. In previous studies, Rogister & Valette (2009) suggested that avoided crossing might happen when the inertial modes frequencies are close to that of the Chandler Wobble (CW), Free Core Nutation (FCN) or Free Inner Core Nutation (FICN) thus producing a shift in these frequencies. Here, we propose a new numerical formalism based on the simultaneous solution of the Liouville and equation for the rotation of the Earth and the Navier-Stokes equation for the motion of the liquid core. These equations are coupled through the pressure torque exerted at the Core-Mantle Boundary. Using this formalism, we explain the predominance of the Poincaré flow as a component of the FCN and investigate the influence of the other inertial modes on the frequencies of the free rotational modes.

  7. Earth

    CERN Document Server

    Carter, Jason


    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  8. Enhancement of sub-daily positioning solutions for surface deformation monitoring at Deception volcano (South Shetland Islands, Antarctica) (United States)

    Prates, G.; Berrocoso, M.; Fernández-Ros, A.; García, A.


    Deception Island is one of the most visited places in Antarctica. There are biological, geological, and archeological features that are major attractions within Port Foster, its horse shoe-shaped natural inner bay, and two scientific bases that are occupied during austral summers. Deception Island is an active volcano, however, and needs to be monitored in order to reduce risk to people on the island. Surface deformation in response to fluid pressure is one of the main volcanic activities to observe. Automated data acquisition and processing using the global navigation satellite systems allow measurements of surface deformation in near real time. Nevertheless, the positioning repeatability in sub-daily solutions is affected by geophysical influences such as ocean tidal loading, among others. Such periodic influences must be accurately modeled to achieve similar repeatability as daily solutions that average them. However, a single solution each 24 h will average out the deformation suffered during that period, and the position update waiting time can be a limitation for near real-time purposes. Throughout the last five austral summer campaigns in Deception, using simultaneous wireless communications between benchmarks, a processing strategy was developed to achieve millimeter-level half-hourly positioning solutions that have similar repeatability as those given by 24-h solutions. For these half-hourly solutions, a tidal analysis was performed to assess any mismodeling of ocean tide loading, and a discrete Kalman filter was designed and implemented to enhance the sub-daily positioning repeatability. With these solutions, the volcano-dynamic activity resulting in localized surface deformation for the last five austral summer campaigns is addressed. Although based on only three carefully located benchmarks, it is shown that Deception has been shortening and subsiding during these last 4 years. The method's accuracy in baselines up to a few hundred kilometers assures

  9. [Correlation of fine structures of distributions of amplitudes of a photomultiplier dark current fluctuations with the Earth rotations about its axis]. (United States)

    Fedorov, M V; Belousov, L V; Voeĭkov, V L; Zenchenko, K I; Zenchenko, T A; Konradov, A A; Shnol', S E


    The fine structures of distributions of photomultiplier dark current fluctuations measured in two laboratories 2000 km distant from other: in the international Institute of Biophysics (Neuss, Germany) and in the Moscow State University (Moscow, Russia) were compared. It is shown that similar forms of appropriate histograms are apparently more often realized at both locations at the same local time. This confirms the previous conclusion that the fine structure of distributions correlates with rotation of the Earth about its axis.

  10. Perception of self motion during and after passive rotation of the body around an earth-vertical axis. (United States)

    Sinha, N; Zaher, N; Shaikh, A G; Lasker, A G; Zee, D S; Tarnutzer, A A


    We investigated the perception of self-rotation using constant-velocity chair rotations. Subjects signalled self motion during three independent tasks (1) by pushing a button when rotation was first sensed, when velocity reached a peak, when velocity began to decrease, and when velocity reached zero, (2) by rotating a disc to match the perceived motion of the body, or (3) by changing the static position of the dial such that a bigger change in its position correlated with a larger perceived velocity. All three tasks gave a consistent quantitative measure of perceived angular velocity. We found a delay in the time at which peak velocity of self-rotation was perceived (2-5 s) relative to the beginning or to the end of chair rotation. In addition the decay of the perception of self-rotation was preceded by a sensed constant-velocity interval or plateau (9-14 s). This delay in the rise of self-motion perception, and the plateau for the maximum perceived velocity, contrasts with the rapid rise and the immediate decay of the angular vestibuloocular reflex (aVOR). This difference suggests that the sensory signal from the semicircular canals undergoes additional neural processing, beyond the contribution of the velocity-storage mechanism of the aVOR, to compute the percept of self-motion.

  11. Changes in sub-daily precipitation extremes in a global climate model with super-parameterization under CO2 warming (United States)

    Khairoutdinov, Marat; Zhou, Xin


    Virtually all of the projections for future change of extreme precipitation statistics under CO2 warming have been made using global climate models (GCMs) in which clouds and, in particular, convective cloud systems are not explicitly resolved, but rather parameterized. In our study, a different kind of a GCM, a super-parameterized Community Atmosphere Model (SP-CAM), is employed. In SP-CAM, all the conventional cloud parameterizations are replaced with a small-domain cloud resolving model (CRM), called super-parameterization (SP). The SP is embedded in each grid column of the host GCM. The resolution of each embedded CRM is 4 km, which is generally sufficient to explicitly represent deep convection, which is mostly responsible for extreme precipitation events. In this study, we use the SP-CAM to contrast to the present and to conventional climate model, CAM, the sub-daily extreme precipitation statistics in response to the sea-surface temperatures (SSTs) and CO2 levels as projected for the end of 21st century in response to the IPCC AR5 RCP8.5 emission scenario. Different mechanisms for extreme precipitation changes are discussed.

  12. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.


    The increase in extreme precipitation is likely to be one of the most significant impacts of climate change in cities due to increased pluvial flood risk. Hence, reliable information on changes in sub-daily extreme precipitation is needed for robust adaptation strategies. This study explores extr...

  13. Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth (United States)

    Escapa, Alberto


    We explore the evolution of the angular velocity of an elastic Earth model, within the Hamiltonian formalism. The evolution of the rotation state of the Earth is caused by the tidal deformation exerted by the Moon and the Sun. It can be demonstrated that the tidal perturbation to spin depends not only upon the instantaneous orientation of the Earth, but also upon its instantaneous angular velocity. Parameterizing the orientation of the Earth figure axis with the three Euler angles, and introducing the canonical momenta conjugated to these, one can then show that the tidal perturbation depends both upon the angles and the momenta. This circumstance complicates the integration of the rotational motion. Specifically, when the integration is carried out in terms of the canonical Andoyer variables (which are the rotational analogues to the orbital Delaunay variables), one should keep in mind the following subtlety: under the said kind of perturbations, the functional dependence of the angular velocity upon the Andoyer elements differs from the unperturbed dependence (Efroimsky in Proceedings of Journées 2004: Systèmes de référence spatio-temporels. l'Observatoire de Paris, pp 74-81, 2005; Efroimsky and Escapa in Celest. Mech. Dyn. Astron. 98:251-283, 2007). This happens because, under angular velocity dependent perturbations, the requirement for the Andoyer elements to be canonical comes into a contradiction with the requirement for these elements to be osculating, a situation that parallels a similar antinomy in orbital dynamics. Under the said perturbations, the expression for the angular velocity acquires an additional contribution, the so called convective term. Hence, the time variation induced on the angular velocity by the tidal deformation contains two parts. The first one comes from the direct terms, caused by the action of the elastic perturbation on the torque-free expressions of the angular velocity. The second one arises from the convective terms. We

  14. The analogue method for precipitation prediction: finding better analogue situations at a sub-daily time step (United States)

    Horton, Pascal; Obled, Charles; Jaboyedoff, Michel


    Analogue methods (AMs) predict local weather variables (predictands) such as precipitation by means of a statistical relationship with predictors at a synoptic scale. The analogy is generally assessed on gradients of geopotential heights first to sample days with a similar atmospheric circulation. Other predictors such as moisture variables can also be added in a successive level of analogy. The search for candidate situations similar to a given target day is usually undertaken by comparing the state of the atmosphere at fixed hours of the day for both the target day and the candidate analogues. This is a consequence of using standard daily precipitation time series, which are available over longer periods than sub-daily data. However, it is unlikely for the best analogy to occur at the exact same hour for the target and candidate situations. A better analogue situation may be found with a time shift of several hours since a better fit can occur at different times of the day. In order to assess the potential for finding better analogues at a different hour, a moving time window (MTW) has been introduced. The MTW resulted in a better analogy in terms of the atmospheric circulation and showed improved values of the analogy criterion on the entire distribution of the extracted analogue dates. The improvement was found to increase with the analogue rank due to an accumulation of better analogues in the selection. A seasonal effect has also been identified, with larger improvements shown in winter than in summer. This may be attributed to stronger diurnal cycles in summer that favour predictors taken at the same hour for the target and analogue days. The impact of the MTW on the precipitation prediction skill has been assessed by means of a sub-daily precipitation series transformed into moving 24 h totals at 12, 6, and 3 h time steps. The prediction skill was improved by the MTW, as was the reliability of the prediction. Moreover, the improvements were greater for days

  15. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT (United States)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier


    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  16. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS): Steps Towards Investigating Bz Propagation Between the Sun and the Earth (United States)

    Bisi, Mario M.; Fallows, Richard A.; Sobey, Charlotte; Eftekhari, Tarraneh; Jensen, Elizabeth A.; Jackson, Bernard V.; Yu, Hsiu-Shan; Hick, P. Paul; Odstrcil, Dusan; Tokumaru, Munetoshi; Oyuki Chang, M. T.


    Space weather - analogous to terrestrial weather (describing the changing pressure, temperature, wind, and humidity conditions on Earth) - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such on the Earth. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects including forecasting. Understanding and forecasting space weather near the Earth is of critical importance to protecting our modern-day reliance on satellites, global-communications and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. This includes both military and commercial considerations. Two ground-based radio-observing techniques that can add to and lead our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modelling and reconstruction techniques using other, additional data as input to support and better-interpret individual case-study results.

  17. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation. (United States)

    Guo, Peixuan; Schwartz, Chad; Haak, Jeannie; Zhao, Zhengyi


    Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Geodesy by radio interferometry - Determinations of baseline vector, earth rotation, and solid earth tide parameters with the Mark I very long baseline radio interferometery system (United States)

    Ryan, J. W.; Clark, T. A.; Coates, R. J.; Ma, C.; Wildes, W. T.


    Thirty-seven very long baseline radio interferometry experiments performed between 1972 and 1978 are analyzed and estimates of baseline vectors between six sites, five in the continental United States and one in Europe are derived. No evidence of significant changes in baseline length is found. For example, with a statistical level of confidence of approximately 85 percent, upper bounds on such changes within the United States ranged from a low of 10 mm/yr for the 850 km baseline between Westford, Massachusetts, and Green Bank, West Virginia, to a high of 90 mm/yr for the nearly 4000 km baseline between Westford and Goldstone, California. Estimates for universal time and for the x component of the position of the earth's pole are obtained. For the last 15 experiments, the only ones employing wideband receivers, the root-mean-square differences between the derived values and the corresponding ones published by the Bureau International de l'Heure are 0.0012 s and 0.018 arc sec respectively. The average value obtained for the radial Love number for the solid earth is 0.62 + or - 0.02 (estimated standard error).

  19. First-order theory for Earth's inner-core anisotropy due to super-rotation and Ramachandran interaction (United States)

    Arulsamy, Andrew Das


    Solidification mechanism at the Lehmann (inner core) boundary are postulated on the basis of Ramachandran interaction by taking the fluctuating inner core super-rotation into account. The postulates are found to be consistent with compressional or P-wave velocity obtained from seismic data analysis. We justify these postulates to be physically sound and precise, and show that the fluctuating inner core super-rotation causes significant changes to the strength of Fe-Fe Ramachandran interaction, which then leads to the observed asymmetric and anisotropic inner core. Our postulates also reliably explain that the depth-dependent anisotropic P-wave attenuation close to inner core surface (to about 100 km deep) is due to phonon excitation probability and different atomic orientation. We also discuss the consistency of our postulates with respect to asymmetric inner core anisotropy (between western and eastern inner core hemispheres).

  20. Assessment of the effect of three-dimensional mantle density heterogeneity on Earth rotation in tidal frequencies


    Liu, Lanbo; Chao, Benjamin F.; Sun, Wenke; Kuang, Weijia


    In this paper, we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth orientation parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the preliminary reference ...

  1. The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables (United States)

    Efroimsky, Michael,; Escapa, Alberto


    In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958 5977 (2003); Astron. Astrophys. 415, 1187 1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75 108 (2005); Ann. New York Acad. Sci. 1065, 346 374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a

  2. Goldstone radar evidence for short-axis mode non-principal-axis rotation of near-Earth asteroid (214869) 2007 PA8 (United States)

    Brozović, Marina; Benner, Lance A. M.; Magri, Christopher; Scheeres, Daniel J.; Busch, Michael W.; Giorgini, Jon D.; Nolan, Michael C.; Jao, Joseph S.; Lee, Clement G.; Snedeker, Lawrence G.; Silva, Marc A.; Lawrence, Kenneth J.; Slade, Martin A.; Hicks, Michael D.; Howell, Ellen S.; Taylor, Patrick A.; Sanchez, Juan A.; Reddy, Vishnu; Dykhuis, Melissa; Le Corre, Lucille


    We report radar and optical photometric observations of near-Earth asteroid (214869) 2007 PA8 obtained during October 2-November 13, 2012. We observed 2007 PA8 on sixteen days with Goldstone (8560 MHz, 3.5 cm) and on five days with the 0.6 m telescope at Table Mountain Observatory. Closest approach was on November 5 at a distance of 0.043 au. Images obtained with Goldstone's new chirp system achieved range resolutions as fine as 3.75 m, placing thousands of pixels on the asteroid's surface, and revealing that 2007 PA8 is an elongated, asymmetric object. Surface features include angularities, facets, and a concavity approximately 400 m in diameter. We used the Shape software to estimate the asteroid's 3D shape and spin state. 2007 PA8 has a broad, rounded end and a tapered, angular end with sharp-crested ridges. The asteroid's effective diameter is 1.35 ± 0.07 km, which in combination with the absolute magnitude of 16.30 ± 0.52 gives an optical albedo of pV = 0.29 ± 0.14. The shape modeling of the radar data revealed that 2007 PA8 is a non-principal axis (NPA) rotator in the short-axis mode with an average period of precession by the long axis around the angular momentum vector of 4.26 ± 0.02 days and an oscillatory period around the long axis of 20.55 ± 3.75 days. The amplitude of rolling around the long axis is 42 ± 7° . The angular momentum vector points toward ecliptic longitude and latitude of 273.6 ± 10°, +16.9 ± 5°. 2007 PA8 is only the second confirmed short-axis mode NPA rotator known in the near-Earth asteroid population after (99942) Apophis (Pravec et al., 2014). 2007 PA8 has a geopotential high at the equator, where the equator is defined as the plane that contains the long and intermediate axis. This geopotential extreme could be interpreted as a large, hidden surface depression, or as evidence that 2007 PA8 is a multi-component body.

  3. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation (United States)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)


    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  4. Google Earth and Map Projections

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula


    Full Text Available By starting Google Earth, the screen shows Earth from a great distance, e.g. from a satellite rotating around the Earth (Fig. 1. The graticule is drawn by using the Grid function from the View menu. Google Earth is a virtual globe which can be rotated in all directions using a mouse.

  5. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.


    The increase in extreme precipitation is likely to be one of the most significant impacts of climate change in cities due to increased pluvial flood risk. Hence, reliable information on changes in sub-daily extreme precipitation is needed for robust adaptation strategies. This study explores...... extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h......) are more consistent across all temporal aggregations in the representation of high-order moments and extreme precipitation. The biases in the spatial pattern of extreme precipitation change across temporal and spatial resolution. The hourly extreme value distributions of the HIRHAM-ECEARTH simulations...

  6. The Impact of the Processing Batch Length in GNSS Data Analysis on the Estimates of Earth Rotation Parameters with Daily and Subdaily Time Resolution (United States)

    Meindl, M.; Dach, R.; Thaller, D.; Schaer, S.; Beutler, G.; Jaeggi, A.


    Microwave observations from GNSS are traditionally analyzed in the post-processing mode using (solar) daily data batches. The 24-hour session length differs by only about four minutes from two revolution periods of a GPS satellite (corresponding to one sidereal day). The deep 2:1 resonance of the GPS revolution period with the length of the sidereal day may cause systematic effects in parameter estimates and spurious periodic signals in the resulting parameter time series. The selection of other (than daily) session lengths may help to identify systematic effects and to study their impact on GNSS-derived products. Such investigations are of great interest in a combined multi-GNSS analysis because of substantial differences in the satellites' revolution periods. Three years (2008-2010) of data from a global network of about 90 combined GPS/GLONASS receivers have been analyzed. Four different session lengths were used, namely the traditional 24 hours (UTC), two revolutions of a GLONASS satellite (16/17 sidereal days), two revolutions of a GPS satellite (one sidereal day), and a session length of 18/17 sidereal days, which does not correspond to either two GPS or two GLONASS revolution periods. GPS-only, GLONASS-only, and GPS/GLONASS-combined solution are established for each of the session lengths. Special care was taken to keep the GPS and GLONASS solutions fully consistent and comparable in particular where the station selection is concerned. We generate ERPs with a subdaily time resolution of about 1.4 hours (1/17 sidereal day). Using the session-specific normal equation systems (NEQs) containing the Earth rotation parameters with the 1.4 hours time resolution we derive in addition ERPs with a (sidereal) daily resolution. Note that this step requires the combination of the daily NEQs and a subsequent re-binning of 17 consecutive ERPs with 1/17 day time resolution into one (sidereal) daily parameter. These tests will reveal the impact of the session length on ERP

  7. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth (United States)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.


    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  8. ESOLIP - estimate of solid and liquid precipitation at sub-daily time resolution by combining snow height and rain gauge measurements (United States)

    Mair, E.; Bertoldi, G.; Leitinger, G.; Della Chiesa, S.; Niedrist, G.; Tappeiner, U.


    Measuring precipitation in mountain areas is a demanding task, but essential for hydrological and environmental themes. Especially in small Alpine catchments with short hydrological response, precipitation data with high temporal resolution are required for a better understanding of the hydrological cycle. Since most climate/meteorological stations are situated at the easily accessible bottom of valleys, and the few heated rain gauges installed at higher elevation sites are problematic in winter conditions, an accurate quantification of winter (snow) precipitation at high elevations remains difficult. However, there are an increasing number of micro-meteorological stations and snow height sensors at high elevation locations in Alpine catchments. To benefit from data of such stations, an improved approach to estimate solid and liquid precipitation (ESOLIP) is proposed. ESOLIP allows gathering hourly precipitation data throughout the year by using unheated rain gauge data, careful filtering of snow height sensors as well as standard meteorological data (air temperature, relative humidity, global shortwave radiation, wind speed). ESOLIP was validated at a well-equipped test site in Stubai Valley (Tyrol, Austria), comparing results to winter precipitation measured with a snow pillow and a heated rain gauge. The snow height filtering routine and indicators for possible precipitation were tested at a field site in Matsch Valley (South Tyrol, Italy). Results show a good match with measured data because variable snow density is taken into account, which is important when working with freshly fallen snow. Furthermore, the results show the need for accurate filtering of the noise of the snow height signal and they confirm the unreliability of heated rain gauges for estimating winter precipitation. The described improved precipitation estimate ESOLIP at sub-daily time resolution is helpful for precipitation analysis and for several hydrological applications like monitoring

  9. On the theory of canonical perturbations and its applications to Earth rotation: a source of inaccuracy in the calculation of angular velocity (United States)

    Efroimsky, M.


    When the dynamical equations, written in terms of variable "constants," are demanded to be symplectic, these "constants" make conjugated pairs and are called Delaunay elements, in the orbital case, or Serret-Andoyer elements, in the rotational case. These sets of elements share a feature not readily apparent: in certain cases, the standard equations render them non-osculating. Non-osculating orbital elements parametrise instantaneous conics not tangent to the orbit. The non-osculating i, may differ much from the physical inclination of the orbit, given by the osculating i. Similarly, in the case of rotation, non-osculating Serret-Andoyer variables yield correct orientation angles for the body figure but not for the instantaneous spin axis. As a result, the Kinoshita-Souchay theory (which tacitly employs non-osculating Serret-Andoyer elements) gives correct results for the figure axis but needs corrections for the rotation axis.

  10. Deepest Mantle Viscosity and Earth Rotation: A Further Refinement of the ICE-5G(VM2) Model of the Glacial Isostatic Adjustment Process (United States)

    Peltier, R.


    Recent analyses of the time-dependent gravity field delivered by the GRACE program have clearly demonstrated the accuracy of the ICE-5G(VM2) model of the global process of glacial isostatic adjustment insofar as the observed features of the signal associated with North American deglaciation are concerned. Since the model was published prior to the availability of GRACE measurements, this has been very satisfying. There are nevertheless minor misfits that continue to exist between the predictions of the model and other related observations. One of these concerns the ability of the model to fit observations of certain anomalies associated with the planet's rotational state, namely the non-tidal acceleration of planetary rotation and the ongoing wander of the pole towards the centroid of the ancient Laurentide ice sheet. I employ the fact that the viscosity of the mantle from the surface to ~1400 km depth is "pinned" by both relative sea level and GRACE data to investigate the modifications to the viscosity structure at greater depth that are required to eliminate the remaining misfits to the rotational constraints. These analyses demonstrate that both misfits are simultaneously removed by the introduction of a low viscosity region coincident with the D" boundary- layer adjacent to the core-mantle interface. This is a highly satisfactory result as such a low viscosity region is expected on a priori grounds. The result has implications concerning the accuracy of previously published models for the viscosity of the deepest mantle and these will be discussed.

  11. Synchronous Measurements of Alpha-Decay of 239-Pu Carried out at North Pole, Antarctic, and in Puschino Confirm that the Shapes of the Respective Histograms Depend on the Diurnal Rotation of the Earth and on the Direction of the Alpha-Particle Beam

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.


    Full Text Available Dependence of histogram shapes from Earth diurnal rotation, and from direction of alpha-particles issue at 239 Pu radioactive decay is confirmed by simultaneous measure- ments of fluctuation amplitude spectra — shapes of corresponding histograms. The measurements were made with various methods and in different places: at the North Pole, in Antarctic (Novolazarevskaya station, and in Puschino.

  12. Rotating Wavepackets (United States)

    Lekner, John


    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  13. Rotational elasticity (United States)

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  14. Aryabhata and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    which all the five visible planets (Mercury, Venus, Mars,. Jupiter, Saturn) along with the Sun and the Moon, have zero celestial longitude; that is, all of them are simulta- neously on the great circle through the vernal equinox and the pole of the ecliptic. In Gltika 4, one comes across the hypothesis that, at the beginning of the ...

  15. Earth Rotation Parameters from DSN VLBI: 1996 (United States)

    Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.


    A despcription of the DSN VLBI data set and of most aspects of the data analysis can be found in the IERS Technical Note 17, pp. R-19 to R-32 (see also IERS Technical Note 19, pp. R-21 to R-27). The main changes in this year's analysis form last year's are simply due to including another year's data.

  16. Aryabhala and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    In this three-part article, I shall discuss one im- portant contribution of Aryabha~a in astronomy involving the ... Therefore, a major portion of this article will introduce certain basic features of spherical astronomy in modern ..... The concept has inspired a literary metaphor for the firm, ('ver-present, shining, eternal Guide whose ...

  17. Rotational waves in geodynamics (United States)

    Gerus, Artyom; Vikulin, Alexander


    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  18. Solid Earth: Introduction (United States)

    Rummel, R.


    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  19. The Earth is Flat, and I Can Prove It! (United States)

    Klinger, Art


    Describes an educational program that asks students to attempt to prove that the earth is spherical and that it rotates. Presents tips to pique student interest and charts related to sensing the spin, nonrotation notions, flat earth fallacies, evidence that the earth is spherical and rotates, and the role of watersheds in proving that the earth…

  20. Bioreactor rotating wall vessel (United States)


    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  1. Current status of quantitative rotational spectroscopy for atmospheric research (United States)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois


    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  2. Perturbated rotational motion of weakly deformable celestial bodies (United States)

    Barkin, Yu. V.

    The rotation equations of weakly deformable celestial bodies (in canonical and non-canonical Andoyer variables) are developed in detail. A theory of the perturbed rotational motion of an isolated weakly deformable body has been developed. Applications to Earth's rotation theory are given.

  3. Rotator Cuff Exercises (United States)

    ... Home Prevention and Wellness Exercise and Fitness Injury Rehabilitation Rotator Cuff Exercises Rotator Cuff Exercises Share Print Rotator Cuff ... Best Rotator Cuff ExercisesNational Institutes of Health: MedlinePlus, ... and WellnessTags: Exercise Prescription, prevention, Shoulder Problems, ...

  4. Magnetic field of the Earth (United States)

    Popov, Aleksey


    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  5. Dagik Earth and IUGONET (United States)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.


    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  6. Rotating Space Elevators: Classical and Statistical Mechanics (United States)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  7. Faraday rotation effect in periodic graphene structure (United States)

    Liu, Daqing; Zhang, Shengli; Ma, Ning; Li, Xinghua


    We report the magneto-optical (MO) rotation effect in a periodic graphene-sheet structure. Due to the masslessness of carriers in graphene, the magnetic response is very sensitive and the magneto-optical rotation effect is therefore significant. We predict that the Verdet constant of the periodic graphene-sheet structure is roughly 10-100 times that of rare-earth-doped magneto-optical glass in the infrared region.

  8. Faraday rotation effect in periodic graphene structure


    Liu, Daqing; Zhang, Shengli; Ma, Ning; Li, Xinghua


    We report the magneto-optical rotation effect in a periodic graphene-sheet structure. Due to the masslessness of carriers in graphene, the magnetic response is very sensitive and the magneto-optical rotation effect is therefore significant. We predict that the Verdet constant of the periodic graphene-sheet structure is roughly 10-100 times that of rare-earth-doped magneto-optical glass in the infrared region.

  9. WegenerNet 1km-scale sub-daily rainfall data and their application: a hydrological modeling study on the sensitivity of small-catchment runoff to spatial rainfall variability (United States)

    Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried


    WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2

  10. Bound Motion of Bodies and Paticles in the Rotating Systems (United States)

    Pardy, Miroslav


    The Lagrange theory of particle motion in the noninertial systems is applied to the Foucault pendulum, isosceles triangle pendulum and the general triangle pendulum swinging on the rotating Earth. As an analogue, planet orbiting in the rotating galaxy is considered as the giant galactic gyroscope. The Lorentz equation and the Bargmann-Michel-Telegdi equations are generalized for the rotation system. The knowledge of these equations is inevitable for the construction of LHC where each orbital proton “feels” the Coriolis force caused by the rotation of the Earth.

  11. Rotating Cavitation Supression Project (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  12. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy


    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  13. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    Directory of Open Access Journals (Sweden)

    Tapio Schneider


    Full Text Available We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. Such simulations are of interest in the study of tidally locked terrestrial exoplanets and as illustrations of how planetary rotation and the insolation distribution shape climate. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature variations in the slowly rotating atmosphere are generally weaker than in the rapidly rotating atmosphere. Interestingly, the surface temperature on the night side of the planets does not fall below ~240 K in either the rapidly or slowly rotating atmosphere; that is, heat transport from the day side to the night side of the planets efficiently reduces temperature contrasts in either case. Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating atmosphere; in the slowly rotating atmosphere, these distributions are controlled by simpler divergent circulations. Both the slowly and rapidly rotating atmospheres exhibit equatorial superrotation. Systematic variation of the planetary rotation rate shows that the

  14. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others


    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  15. Rotational Preference in Gymnastics

    National Research Council Canada - National Science Library

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos


    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference...

  16. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  17. Galaxy cluster's rotation (United States)

    Manolopoulou, M.; Plionis, M.


    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  18. Physics of untied rotating space elevators (United States)

    Knudsen, Steven; Golubović, Leonardo


    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  19. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos


    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  20. Use of Radioactive Ion Beams for Biomedical Research 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

    CERN Multimedia


    % IS331 \\\\ \\\\ The use of radioactive metal ions (such as $^{90}$Y, $^{153}$Sm or $^{186}$Re) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the PET scanners at the Cantonal Hospital Geneva (PET~=~positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.\\\\ \\\\Some free rare earth chelatas are used presently in palliation of painful bone metastases. Curative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution...

  1. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard


    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...... than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy...

  2. Digital Earth - A sustainable Earth (United States)



    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  3. Earth-type planets (Mercury, Venus, and Mars) (United States)

    Marov, M. Y.; Davydov, V. D.


    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  4. The rotation of the Sun's core. (United States)

    Paterno, L.; Sofia, S.; di Mauro, M. P.


    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  5. Rotational Seismology: AGU Session, Working Group, and Website (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.


    . Igel, W.H.K. Lee, and M. Todorovska during the 2006 AGU Fall Meeting. The goal of this session was to discuss rotational sensors, observations, modeling, theoretical aspects, and potential applications of rotational ground motions. The session was accompanied by the inauguration of an International Working Group on Rotational Seismology (IWGoRS) which aims to promote investigations of all aspects of rotational motions in seismology and their implications for related fields such as earthquake engineering, geodesy, strong-motion seismology, and tectonics, as well as to share experience, data, software, and results in an open Web-based environment. The primary goal of this article is to make the Earth Science Community aware of the emergence of the field of rotational seismology.

  6. Cyclic variations in the Earth's flattening and questions of seismotectonics (United States)

    Levin, B. W.; Sasorova, E. V.; Steblov, G. M.; Domanskii, A. V.; Prytkov, A. S.; Tsyba, E. N.


    For more than a decade, the global network of GPS stations whose measurements are part of the International GPS Service (IGS) have been recording cyclic variations in the radius vector of the geodetic ellipsoid with a period of one year and amplitude of 10 mm. The analysis of the figure of the Earth carried out by us shows that the observed variations in the vertical component of the Earth's surface displacements can induce small changes in the flattening of the Earth's figure which are, in turn, caused by the instability of the Earth's rotation. The variations in the angular velocity and flattening of the Earth change the kinetic energy of the Earth's rotation. The additional energy is 1021 J. The emerging variations in the flattening of the Earth's ellipsoid lead to changes in the surface area of the Earth's figure, cause the development of deformations in rocks, accumulation of damage, activation of seismotectonic processes, and preparation of earthquakes. It is shown that earthquakes can be caused by the instability of the Earth's rotation which induces pulsations in the shape of the Earth and leads to the development of alternating-sign deformations in the Earth's solid shell.

  7. Faraday rotation measure synthesis

    NARCIS (Netherlands)

    Brentjens, MA; de Bruyn, AG


    We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2)


    Baumgarten, A.; Karalis, A.J.


    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  9. Units of rotational information (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping


    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  10. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel


    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...

  11. SMAP Faraday Rotation (United States)

    Le Vine, David


    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  12. Rotating stars in relativity. (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos


    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  13. A dynamic, rotating ring current around Saturn. (United States)

    Krimigis, S M; Sergis, N; Mitchell, D G; Hamilton, D C; Krupp, N


    The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001 (ref. 6). Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.

  14. Rapidly rotating red giants (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric


    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  15. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas


    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  16. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 4. Volume 124, Issue 4. June 2015, pages 681-908. pp 681-681 Editorial. Editorial · More Details Fulltext PDF. pp 683-695. First-order theory for Earth's inner-core anisotropy due to super-rotation and Ramachandran interaction · Andrew Das Arulsamy.

  18. Rotator Cuff Injuries (United States)

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  19. Rotator cuff repair - slideshow (United States)

    ... presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  20. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... to a non-linear manifold and re-normalization or orthogonalization must be applied to obtain proper rotations. These latter steps have been viewed as ad hoc corrections for the errors introduced by assuming a vector space. The article shows that the two approximative methods can be derived from natural...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation....

  1. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)


    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  2. Rotating Workforce Scheduling


    Granfeldt, Caroline


    Several industries use what is called rotating workforce scheduling. This often means that employees are needed around the clock seven days a week, and that they have a schedule which repeats itself after some weeks. This thesis gives an introduction to this kind of scheduling and presents a review of previous work done in the field. Two different optimization models for rotating workforce scheduling are formulated and compared, and some examples are created to demonstrate how the addition of...

  3. Ipsilateral Rotational Autokeratoplasty


    Yesim Altay


    Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opaci...

  4. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee


    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  5. Anticyclonic precession of a plume in a rotating environment (United States)

    Frank, D.; Landel, J. R.; Dalziel, S. B.; Linden, P. F.


    Motivated by potential effects of the Earth's rotation on the Deepwater Horizon oil plume, we conducted laboratory experiments on saltwater point plumes in a homogeneous rotating environment across a wide range of Rossby numbers 0.02≤Ro≤1.3. We report a striking physical instability in the plume dynamics near the source: after approximately one rotation period, the plume tilts laterally and starts to precess anticyclonically. The mean precession frequency ω¯ scales linearly with the rotation rate Ω as ω¯≈0.4Ω. We find no evidence of a critical Rossby number above which precession ceases. We infer that a conventionally defined Rossby number is not an appropriate parameter when the plume is maintained over a long time: provided Ω ≠ 0, rotation is always important to the dynamics. This indicates that precession may occur in persistent oceanic or atmospheric plumes even at low latitudes.

  6. Asteroid rotation control via a tethered solar sail (United States)

    Gao, Youtao; Wu, Jingyun


    The rotation of asteroids causes difficulties in the exploration of asteroids or prevention of asteroids impact on the Earth. We propose to use a solar sail to control, i.e., slow down or stop the rotational motion of an asteroid. First, the dynamic model of a tethered solar sail in the rotating gravitational field of an asteroid is presented. An optimal control method is employed to determine the control law of the tethered solar sail. The optimal control problem is converted into a nonlinear programming problem with the Gauss pseudospectral method. Simulation results show that this method can effectively slow down or even stop the rotation of an asteroid. A solar sail of 105 m2 can stop the rotation of the asteroid Apophis in 1000 days.

  7. A study by computer simulation of the generation and evolution of the Earth`s magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Hollerbach, R.; Roberts, P.H.


    Until recently very little has been known about the maintenance of the Earth`s magnetic field. The general consensus was that some type of convective motion edits in the Earth`s liquid iron alloy core that is affected by rotational forces in a way that continually generates new magnetic field to replace that which diffuses away. Magnetic-field reversals and secular variation have long been measured but no theory existed to explain these phenomena. To gain an understanding of the basic physical mechanisms of the ``geodynamo,`` we produced the first self-consistent computer simulation of convection and magnetic field generation in a rotating three-dimensional spherical fluid shell as an anologue to the Earth`s convective dynamo. This is a final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  8. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.


    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Boué, Gwenaël; Fabrycky, Daniel C., E-mail: [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)


    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  10. Nonlinear interaction between acoustic gravity waves in a rotating atmosphere

    Directory of Open Access Journals (Sweden)

    P. Axelsson


    Full Text Available The influence of the Earth's rotation on the resonant interaction of atmospheric waves is investigated. The explicit expressions for the coupling coefficients are presented. They are derived by means of two different techniques; first, by a direct expansion derivation from a set of reduced equations, and second, by a Hamiltonian method.

  11. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  12. Ipsilateral Rotational Autokeratoplasty

    Directory of Open Access Journals (Sweden)

    Yesim Altay


    Full Text Available Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opacity out of the visual axis. An important consideration when selecting cases for rotational autokeratoplasty is the dimensions of the corneal scar. Although ipsilateral autokeratoplasty may not provide as good a quality of vision as penetrating allokeratoplasty because of higher astigmatism and reduced corneal pupillary clear zone, these disadvantages are often outweighed when the risk of allograft rejection is high, as in pediatric patients and those with vascularised corneas. This technique would at least partially resolve the issue of scarcity of donor corneal tissue in developing countries.

  13. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel


    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  14. Rotation of Giant Stars (United States)

    Kissin, Yevgeni; Thompson, Christopher


    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  15. A precise modeling of Phoebe's rotation (United States)

    Cottereau, L.; Aleshkina, E.; Souchay, J.


    Aims: Although the rotation of some Saturn's satellites in spin-orbit has already been studied by several authors, this is not the case for the rotation of Phoebe, which stands out because it is non-resonant. The purpose of the paper is to determine for the first time and with precision its precession-nutation motion. Methods: We adopt an Hamiltonian formalism of the rotation motion of rigid celestial bodies set up by Kinoshita (1977, Celest. Mech., 15, 277) based on Andoyer variables and canonical equations. First we calculate Phoebe's obliquity at J2000,0 from available astronomical data as well as the gravitational perturbation caused by Saturn on Phoebe's rotational motion. Then we carry out a numerical integration and compare our results for the precession rate and the nutation coefficients with a purely analytical model. Results: Our results for Phoebe's obliquity (23°95) and Phoebe's precession rate (5580.65 arcsec/cy) are very close to the respective values for the Earth. Moreover the amplitudes of the nutations (26” peak to peak for the nutaton in longitude and 8” for the nutation in obliquity) are on the same order as the respective amplitudes for the Earth. We give complete tables of nutation, obtained from a fast fourier transform (FFT) analysis starting from the numerical signals. We show that a purely analytical model of the nutation is not accurate because Phoebe's orbital elements e, M and LS do not show a simple linear behaviour at all. Conclusions: The precession and nutation of Phoebe have been calculated for the first time in this paper. We will continue this study in the future by studying the additional gravitational effects of the Sun, of the large satellites such as Titan, as well as Saturn's dynamical ellipticity.

  16. Proceedings of the Geodesy/Solid Earth and Ocean Physics (GEOP) Research Conferences (United States)

    Mueller, I. I. (Editor)


    Papers are presented dealing with interdisciplinary research in the fields of geodesy, solid earth and ocean physics. Topics discussed include: solid earth and ocean tides; the rotation of the earth and polar motion; vertical crustal motions; the geoid and ocean surface; earthquake mechanism; sea level changes; and lunar dynamics.

  17. Daily and Sub-daily Precipitation for the Former USSR (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily and hourly meteorological observations for the former USSR initially obtained within the framework of several joint...

  18. Relating precipitation to fronts at a sub-daily basis (United States)

    Hénin, Riccardo; Ramos, Alexandre M.; Liberato, Margarida L. R.; Gouveia, Célia


    High impact events over Western Iberia include precipitation extremes that are cause for concern as they lead to flooding, landslides, extensive property damage and human casualties. These events are usually associated with low pressure systems over the North Atlantic moving eastward towards the European western coasts (Liberato and Trigo, 2014). A method to detect fronts and to associate amounts of precipitation to each front is tested, distinguishing between warm and cold fronts. The 6-hourly ERA-interim 1979-2012 reanalysis with 1°x1° horizontal resolution is used for the purpose. An objective front identification method (the Thermal Method described in Shemm et al., 2014) is applied to locate fronts all over the Northern Hemisphere considering the equivalent potential temperature as thermal parameter to use in the model. On the other hand, we settled a squared search box of tuneable dimension (from 2 to 10 degrees long) to look for a front in the neighbourhood of a grid point affected by precipitation. A sensitivity analysis is performed and the optimal dimension of the box is assessed in order to avoid over(under) estimation of precipitation. This is performed in the light of the variability and typical dynamics of warm/cold frontal systems in the Western Europe region. Afterwards, using the extreme event ranking over Iberia proposed by Ramos et al. (2014) the first ranked extreme events are selected in order to validate the method with specific case studies. Finally, climatological and trend maps of frontal activity are produced both on annual and seasonal scales. Trend maps show a decrease of frontal precipitation over north-western Europe and a slight increase over south-western Europe, mainly due to warm fronts. REFERENCES Liberato M.L.R. and R.M. Trigo (2014) Extreme precipitation events and related impacts in Western Iberia. Hydrology in a Changing World: Environmental and Human Dimensions. IAHS Red Book No 363, 171-176. ISSN: 0144-7815. Ramos A.M., R.M. Trigo and M.L.R. Liberato (2014) A ranking of high-resolution daily precipitation extreme events for the Iberian Peninsula, Atmospheric Science Letters 15, 328 - 334. doi: 10.1002/asl2.507. Shemm S., I. Rudeva and I. Simmonds (2014) Extratropical fronts in the lower troposphere - global perspectives obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141: 1686-1698, doi: 10.1002/qj.2471. ACKNOWLEDGEMENTS This work is supported by FCT - project UID/GEO/50019/2013 - Instituto Dom Luiz. Fundação para a Ciência e a Tecnologia, Portugal (FCT) is also providing for R. Hénin doctoral grant (PD/BD/114479/2016) and A.M. Ramos postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  19. Introduction to rotational motion by Andoyer variables (United States)

    Kinoshita, Hiroshi

    Eulerian angles are frequently used to describe the rotational motion of a rigid body. The equations of motion with use of the Eulerian angles have a complicated form and the treatment and the discussion of the equations of motion is difficult and troublesome. Here we introduce Andoyer variables and express the Hamiltonian with use of them, of which form is very simple and the analytical treatment of the rigid motion becomes much simpler than that with use of the Eulerian angles. Then we show the precession of a symmetric top and the rigid Earth, and the long-periodic motion of a planet as examples of the application of the Andoyer variables.

  20. The dynamo bifurcation in rotating spherical shells

    CERN Document Server

    Morin, Vincent; 10.1142/S021797920906378X


    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions. We show that the nature of the bifurcation, which can be either supercritical or subcritical or even take the form of isola (or detached lobes) strongly depends on the parameters. This dependence is described in a range of parameters numerically accessible (which unfortunately remains remote from geophysical application), and we show how the magnetic Prandtl number and the Ekman number control these transitions.

  1. Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics. (United States)

    Kane, M F


    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  2. Classical and statistical mechanics of celestial-scale spinning strings: Rotating space elevators (United States)

    Golubović, L.; Knudsen, S.


    We introduce novel and unique class of dynamical systems, Rotating Space Elevators (RSE). The RSEs are multiply rotating systems of strings reaching into outer space. Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. The RSEs exhibit interesting nonlinear dynamics and statistical physics phenomena.

  3. The Effects of Geometrical Factors on Pulsar Rotation Parameters (United States)

    Li, Liang; Wang, Guang-li; Guo, Li


    This paper presents a detailed investigation of the effects of geometrical factors on pulsar rotation parameters, for examples the Earth rotation parameter, precession-nutation model, pulsar velocity and acceleration relative to the solar system barycenter (SSB), and planetary ephemeris error. The relations of these factors with the pulsar rotation parameters are derived, and the magnitudes of the effects of these factors are estimated, assuming that pulsars have typical parameter values. The effects of the Earth rotation parameter and precession-nutation model are negligible at the current accuracy level of observation. As the effect of the planetary ephemeris error on the pulsar rotation parameters is much less than the rotation parameters themselves, so it is also negligible. The effect of pulsar radial velocity relative to the SSB is 4 orders of magnitude less than the pulsar period. However, the effects of the pulsar transverse velocity and radial acceleration on the period derivative are not ignorable, especially for millisecond pulsars, where they may dominate the observed value of period derivative.

  4. Rotationally Actuated Prosthetic Hand (United States)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.


    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  5. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan


    The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...

  6. Rotator Cuff Injuries. (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  7. Condensing the Moon from a MAD Earth (United States)

    Lock, S. J.; Stewart, S. T.; Petaev, M. I.; Leinhardt, Z. M.; Mace, M.; Jacobsen, S. B.; Cuk, M.


    The favored theory for lunar origin is the giant impact hypothesis, where a protoplanet collides with the growing Earth and creates an orbiting disk of material that forms the Moon. However, the astonishing isotopic similarity between the Earth and Moon cannot be explained by current giant impact models without appealing to highly specific circumstances. Here, we demonstrate that a condensation model for lunar origin, achieved via a previously unrecognized class of post-impact states, produces the Moon's major characteristics. The required class of post-impact states is defined by (i) a high degree of vaporization and (ii) rapid rotation. When these two criteria are met, the mantle, atmosphere and disk (MAD) form a dynamically and thermodynamically continuous structure that quickly mixes, thereby diluting initial compositional heterogeneities. Then, partial condensation from the pressure-supported mass beyond the Roche limit produces a Moon that is isotopically similar to the bulk silicate Earth and depleted in volatile and moderately volatile elements. Initially, the condensed liquid is composed of silicates. As the structure cools, metal exsolves in the accreting Moon and moonlets. We calculate ~2wt% metal is exsolved from a bulk silicate Earth composition, which is consistent with estimates of the mass of the lunar core. Thus, similar tungsten isotopes are established in the Earth and Moon as metal is exsolved in both bodies after mixing. In our model, the criterion for lunar origin shifts, away from specific impact parameters that inject terrestrial material into orbit, to any collision that transforms the Earth into a rapidly rotating and substantially vaporized MAD planet. Impacts that can transform the Earth are common during the end stages of planet formation. Therefore, the characteristics of our Moon are a natural consequence of forming the Earth.

  8. Rotation Theory of Celestial bodies in Angle-action Variables (United States)

    Barkin, Y. V.


    The theory of the unperturbed rotational motion of the deformable celestial bodies is developed. This motion describes the rotation of an isolated celestial body weakly deformed by its own rotation. On the base of equations in Andoyer variables describing rotational motion of the celestial bodies with a changeable in the time tensor of inertia (Barkin, 1979, 1984) the problem is reduced to the classical Euler-Poinsot problem for a rigid body, but with another set of constant moments of inertia. The unperturbed motion describes Chandler's pole motion and we have called it as the Chandler or Euler-Chandler motion (Barkin, 1992, 1998). The statement of the unperturbed theory is given in a exhaustive and detailed form. The solution of the Chandler problem (Andoyer's variables, components of angular velocity w.r.t to the body and space reference systems, direction cosines and their different functions) is presented in elliptical and theta-functions, and in the form of Fourier series in the angle-action variables of unperturbed motion. The construction of Fourier series for the products and squares of the direction cosines of the body has a central role. On the base of these results the Fourier series of the second harmonic of the Earth-Moon force function has been obtained in angle-action variables. The coefficients of these series are expressed through the complete and incomplete elliptical integrals of the first, second and third kinds with modulus which is the function of the action variables and moments of inertia of the body. As an illustration we give an application of unperturbed theory to the study of the Earth's rotation (the principal properties of the Earth's rotation and perturbations). The well known phenomenon of a distinction of Euler and Chandler periods is confirmed by unperturbed theory (433.2 and 304.4 days). A new phenomenon of a distinction of eccentricities of Euler and Chandler pole trajectories has been established (corresponding dynamical


    Energy Technology Data Exchange (ETDEWEB)

    Deines, Steven D. [Donatech Corporation, Fairfield, IA 52556 (United States); Williams, Carol A., E-mail:, E-mail: [Department of Mathematics and Statistics (Prof. emeritus), University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620 (United States)


    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.


    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova


    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes


    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova


    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  12. Strain effects on rotational property in nanoscale rotation system. (United States)

    Huang, Jianzhang; Han, Qiang


    This paper presents a study of strain effects on nanoscale rotation system consists of double-walls carbon nanotube and graphene. It is found that the strain effects can be a real-time controlling method for nano actuator system. The strain effects on rotational property as well as the effect mechanism is studied systematically through molecular dynamics simulations, and it obtains valuable conclusions for engineering application of rotational property management of nanoscale rotation system. It founds that the strain effects tune the rotational property by influencing the intertube supporting effect and friction effect of double-walls carbon nanotube, which are two critical factors of rotational performance. The mechanism of strain effects on rotational property is investigated in theoretical level based on analytical model established through lattice dynamics theory. This work suggests great potentials of strain effects for nanoscale real-time control, and provides new ideas for design and application of real-time controllable nanoscale rotation system.

  13. Mitigating Climate Change with Earth Orbital Sunshades (United States)

    Coverstone, Victoria; Johnson, Les


    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  14. Experimental study of a rotating packed bed distillation column

    Directory of Open Access Journals (Sweden)

    J. V. S. Nascimento


    Full Text Available The purpose of this work was to study the mass transfer performance of rotating packed beds applying the "Higee" process. The operations were carried out with the n-hexane/n-heptane distilling system at atmospheric pressure and under total reflux conditions. The rotating speed could be varied between 300 and 2500 rpm, which provided centrifugal forces from 5 to 316 times the Earth's gravity. The effects of concentration, vapor velocity, rotating speed and packing type (two different Raschig ring sizes and structured wire mesh packing on mass transfer behavior were analyzed. Experimental results showed that the mass transfer coefficient depends on the liquid flow rates and rotating speed. The equipment had high separation efficiency in a reduced bed volume.

  15. Turbulent convection in liquid metal with and without rotation. (United States)

    King, Eric M; Aurnou, Jonathan M


    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  16. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch


    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  17. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH) (United States)

    Gholibeigian, Hassan


    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  18. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes


    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  19. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan


    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...

  20. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail:; Cabezas, Carlos, E-mail:; Mata, Santiago, E-mail:; Alonso, Josè L., E-mail: [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)


    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  1. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...... with the horizontal extent of many other parts of the Danish inland waters implies that the dynamics of these should also be discussed in terms of rotational effects....

  2. Marginal deformations & rotating horizons (United States)

    Anninos, Dionysios; Anous, Tarek; D'Agnolo, Raffaele Tito


    Motivated by the near-horizon geometry of four-dimensional extremal black holes, we study a disordered quantum mechanical system invariant under a global SU(2) symmetry. As in the Sachdev-Ye-Kitaev model, this system exhibits an approximate SL(2, ℝ) symmetry at low energies, but also allows for a continuous family of SU(2) breaking marginal deformations. Beyond a certain critical value for the marginal coupling, the model exhibits a quantum phase transition from the gapless phase to a gapped one and we calculate the critical exponents of this transition. We also show that charged, rotating extremal black holes exhibit a transition when the angular velocity of the horizon is tuned to a certain critical value. Where possible we draw parallels between the disordered quantum mechanics and charged, rotating black holes.

  3. Isotropic stochastic rotation dynamics (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten


    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  4. The Rotation of Europa (United States)

    Henrard, Jacques


    We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.

  5. Broadband Rotational Spectroscopy (United States)

    Pate, Brooks


    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  6. Method for Design Rotation (United States)


    central composite design and give the orthogonal matrix that yields the rotation, but they do not discuss how the orthogonal matrix was found. Doehlert ... Doehlert and Klee (1972) was to start with a known orthogonal matrix of simple form and then augment the matrix with additional rows and columns to get a...larger region, a symmetric treatment of the factors, or both. 114. SUBJECT TERMS 15. NUMBER OF PAGES Orthogonal matrix Response surface design 27

  7. Theory of inertial waves in rotating fluids (United States)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir


    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  8. JPRS Report, Science & Technology, USSR: Earth Sciences (United States)


    copyright owner. SCIENCE & TECHNOLOGY USSR: EARTH SCIENCES CONTENTS OCEANOGRAPHY Determination of Mean Thermohaline Characteristics of the...MEAN THERMOHALINE CHARACTERISTICS OF THE OCEAN Moscow VESTNIK MOSKOVSKOGO UNIVERSITETA: SERIYA 5, GEOGRAFIYA in Russian No 3, May-Jun 87 (manuscript...motions in general are anisotropic). However, during a cruise of the "Akademik A. Vinogradov" it was discovered that during a calm the rotation of

  9. Three-mode orthomax rotation

    NARCIS (Netherlands)

    Kiers, Henk A.L.


    Factor analysis and principal components analysis (PCA) are often followed by an orthomax rotation to rotate a loading matrix to simple structure. The simple structure is usually defined in terms of the simplicity of the columns of the loading matrix. In Three-made PCA, rotational freedom of the so

  10. Development of a Rotating Magnetized Plasma Device (United States)

    Cooke, David; Patton, James; Reid, Remington; Stiles, Ashley; Morrison, Patrik; Koch, Andrei


    Momentum coupling in plasma is a mechanism that is central to a wide range of interesting and important phenomena, magnetosphere-ionosphere coupling, solar eruptions, the interaction of an electro-dynamic tether system in the Earth's ionosphere, and the Critical Ionization Velocity (CIV) mechanism are a few examples. One result of the Space Shuttle Tethered Satellite experiment, TSS-1R, was that the current-voltage response of the experiment in all orbit conditions fell into a narrow range of curves when parameterized as a plasma probe [Thompson, GRL,1998]. Another striking result was the lack of dependence on the Alfvén velocity or other electro-magnetic parameters. This result has led us to revisit the understanding of the speed with which an electric field propagates along the magnetic field using EM-PIC simulation and experiments in our new magnetized plasma chamber. Our initial experiment is a rotating plasma using a solenoidal magnetic field and a radial electric field, with pulsed differential rotation of the plasma column to study the strength of coupling and propagation speed. Characteristics of our `first light' rotating plasma will be presented. Supported by Air Force Office Scientific Research 16RVCOR264.

  11. CISM Course on Rotating Fluids

    CERN Document Server


    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  12. The Lifeworld Earth and a Modelled Earth (United States)

    Juuti, Kalle


    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  13. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul


    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  14. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René


    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  15. ROTATING PLASMA DEVICE (United States)

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.


    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  16. Near-Earth Asteroid Lightcurve at CS3-Palmer Divide Station: 2017 April thru June (United States)

    Warner, Brian D.


    Lightcurves for 31 near-Earth asteroids (NEAs) obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 April thru June were analyzed for rotation period and signs of satellites or tumbling.

  17. Rotating Wheel Wake (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer


    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  18. Rotational Spectrum of Saccharine (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.


    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  19. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee


    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  20. NASA Earth Exchange (NEX) (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  1. EarthKAM (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  2. Unperturbed Chandler Motion and Perturbation Theory of the Rotation Motion of Deformable Celestial Bodies (United States)

    Barkin, Yu. V.

    New unperturbed motions are suggested for the study of the rotational motion of deformable celestial bodies. This motion describes the rotation of an isolated celestial body deformed by its own rotation. By some natural simplifications and by using special forms of canonical variables (similar to Andoyer's variables) the problem is reduced to the classical Euler-Poinsot problem for a rigid body, but with different moments of inertia. The suggested unpertubed motion describes Chandler's pole motion and we shall call it Chandler or Euler-Chandler motion. The development of the unperturbed theory is described in this paper. The solution of the Chandler problem (Andoyer's variables, components of angular velocity of the body's axes, and their direction cosines) is presented in elliptical and - functions, and in the form of Fourier series in the angle-action variables. Similar Fourier series were obtained for products and squares of the diraction cosines. The coefficients of these series are expressed through full elliptical integrals of the first, second and third kinds with modulus which is the defining function of the action variables. It is the principal peculiarity of these series. As an illustration we give a application of this unperturbed theory to the study of the Earth's rotation (the principal properties of the Earth's rotation and perturbations). So, the unperturbed motion describes the following phenomena of the Earth's rotation: Chandler's motion of the pole of the Earth's axis of rotation; the ellipticity of the trajectory of the Earth's pole; the non-uniformity of the pole motion along the elliptical trajectory; the variation with Chandler's period of the modulus of the Earth's angular velocity. Theory of the perturbed rotational motion of the Earth is constructed on the basis of the special forms of equations of the rotation of a deformable body (in angle-action variables and their modifications for the Chandler-Euler problem). For the construction of

  3. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann


    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  4. Isovector rotational model

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany))


    The explicit form of the canonical angle operator is found and the isovector rotor is quantized in canonical relative variables ensuring the exact separation of the spurious mode. The main characteristics of the resulting joint mode, together with the low- and high-frequency parts of the split mode are obtained. It is found that the isovector rotational mode exhausts all the non-spurious M1 strength at low and high energy, providing a strong support for the interpretation of all the orbital 1[sup +] excitations as a scissors mode. Self-consistent residual interactions do not change the non-spurious restoring force of the deformed potential. Simple numerical estimates, derived from a schematic deformed oscillator, are in a good qualitative agreement with microscopic RPA results. Relationships with the results of the two-rotor model and the microscopic realization of the scissors state are established. (orig.)

  5. Asteroid Ida Rotation Sequence (United States)


    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  6. Mercury rotation period determined from Mariner 10 photography (United States)

    Klaasen, K. P.


    The rotation period of Mercury has been determined to be 58.661 days by using high-resolution photography from the Mariner 10 mission. This value matches the period required for 3/2 synchronism with the orbital period (58.6462 days) within the 1-sigma errors assigned and is consistent with the latest values derived from radar and earth-based telescopic observations.

  7. Exact Steady Azimuthal Edge Waves in Rotating Fluids (United States)

    Ionescu-Kruse, Delia


    The full problem of water waves travelling along a constant sloping beach with the shoreline parallel to the Equator, written in a moving frame with the origin at a point on the rotating Earth is introduced. An exact steady solution of this problem moving only in the azimuthal direction, with no variations in this direction, is obtained. The solution is discussed in turn in spherical coordinates, in cylindrical coordinates and in the tangent-plan approximations.

  8. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L


    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  9. Mercury's rotational state from combined MESSENGER laser altimeter and image data (United States)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.


    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  10. Lightcurve Analysis for Near-Earth Asteroid (143404) 2003 BD44 (United States)

    Polakis, Tom; Warner, Brian D.; Skiff, Brian A.


    The synodic rotation period has been determined for the near-Earth asteroid (NEA) (143404) 2003 BD44. The asteroid was observed during three intervals with a rotation period on the order of 79 h determined in each case. The lightcurve exhibited rapidly changing morphology as the asteroid approached. Data have submitted to the ALCDEF database.

  11. Apparent relations between planetary spin, orbit, and solar differential rotation (United States)

    Tattersall, R.


    A correlation is found between changes in Earth's length of day [LOD] and the spatio-temporal disposition of the planetary masses in the solar system, characterised by the z axis displacement of the centre of mass of the solar system [CMSS] with respect to the solar equatorial plane smoothed over a bi-decadal period. To test whether this apparent relation is coincidental, other planetary axial rotation rates and orbital periods are compared, and spin-orbit relations are found. Earth's axial angular momentum moment of inertia, and internal dynamics are considered in relation to the temporal displacement between the potential stimulus and the terrestrial response. The differential rotation rate of the Sun is considered in relation to the rotational and orbital periods of the Earth-Moon system and Venus and Mercury, and harmonic ratios are found. These suggest a physical coupling between the bodies of an as yet undetermined nature. Additional evidence for a resonant coupling is found in the relation of total solar irradiance (TSI) and galactic cosmic ray (GCR) measurements to the resonant harmonic periods discovered.

  12. Distributed deformation and block rotation in 3D (United States)

    Scotti, Oona; Nur, Amos; Estevez, Raul


    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  13. Surface dimpling on rotating work piece using rotation cutting tool (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard


    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  14. Rotational energy surfaces of molecules exhibiting internal rotation (United States)

    Ortigoso, Juan; Hougen, Jon T.


    Rotational energy surfaces [W. G. Harter and C. W. Patterson, J. Chem. Phys. 80, 4241 (1984)] for a molecule with internal rotation are constructed. The study is limited to torsional states at or below the top of the barrier to internal rotation, where the extra (torsional) degree of freedom can be eliminated by expanding eigenvalues of the torsion-K-rotation Hamiltonian as a Fourier series in the rotational degree of freedom. For acetaldehyde, considered as an example, this corresponds to considering vt=0, 1, and 2 (below the barrier) and vt=3 (just above the barrier). The rotational energy surfaces are characterized by locating their stationary points (maxima, minima, and saddles) and separatrices. Rather complicated catastrophe histories describing the creation and annihilation of pairs of stationary points as a function of J are found at moderate J for given torsional quantum number (vt) and symmetry species (A,E). Trajectories on the rotational energy surface which quantize the action are examined, and changes from rotational to vibrational trajectories caused by changes in the separatrix structure are found as a function of J for vt=2. The concept of a ``best'' quantization axis for the molecule-fixed component of the total angular momentum is examined from a classical point of view, and it is shown that labeling ambiguities encountered in the literature for torsion-rotation energy levels, calculated numerically in the rho-axis system, can be eliminated by reprojecting basis-set K values onto an axis passing through an appropriate stationary point on the rotational energy surface.

  15. Simple System to Measure the Earth's Magnetic Field (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib


    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  16. High-Current Rotating Contactor (United States)

    Hagan, David W.; Wolff, Edwin D.


    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  17. Rotation of the planet mercury. (United States)

    Jefferys, W H


    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.


    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)


    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  19. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  20. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu


    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  1. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke


    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  2. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs (United States)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.


    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin I ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin I and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin I ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  3. Rotational Twin Paradox (United States)

    Smarandache, Florentin


    Two twins settle on a massive spherical planet at a train station S. Let's consider that each twin has an accompanying clock, and the two clocks are synchronized. One twin T1 remains in the train station, while the other twin T2 travels at a uniform high speed with the train around the planet (on the big circle of the planet) until he gets back to the same train station S. Assume the planet is not rotating. Since the planet is massive, we can consider that on a very small part on its surface the train rail road is linear, so the train is in a linear uniform motion. The larger is the planet's radius the more the rail road approaches a linear trajectory. Because the GPS clocks are alleged to be built on the Theory of Relativity, one can consider the twin T2 train's circular trajectory alike the satellite's orbit. In addition, the gravitation is the same for the reference frames of T1 and T2. Each twin sees the other twin as traveling, therefore each twin finds the other one has aged slower than him. Thus herein we have a relativistic symmetry. When T2 returns to train station S, he finds out that he is younger than T1 (therefore asymmetry). Thus, one gets a contradiction between symmetry and asymmetry.

  4. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  5. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  6. Measuring the Eccentricity of the Earth's Orbit with a Nail and a Piece of Plywood (United States)

    Lahaye, Thierry


    I describe how to obtain a rather good experimental determination of the eccentricity of the Earth's orbit, as well as the obliquity of the Earth's rotation axis, by measuring, over the course of a year, the elevation of the Sun as a function of time during a day. With a very simple "instrument" consisting of an elementary sundial, first-year…

  7. Magnetic pseudo-fields in a rotating electron-nuclear spin system (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.


    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  8. Radial velocity planet detection biases at the stellar rotational period (United States)

    Vanderburg, Andrew; Plavchan, Peter; Johnson, John Asher; Ciardi, David R.; Swift, Jonathan; Kane, Stephen R.


    Future generations of precise radial velocity (RV) surveys aim to achieve sensitivity sufficient to detect Earth mass planets orbiting in their stars' habitable zones. A major obstacle to this goal is astrophysical RV noise caused by active areas moving across the stellar limb as a star rotates. In this paper, we quantify how stellar activity impacts exoplanet detection with radial velocities as a function of orbital and stellar rotational periods. We perform data-driven simulations of how stellar rotation affects planet detectability and compile and present relations for the typical time-scale and amplitude of stellar RV noise as a function of stellar mass. We show that the characteristic time-scales of quasi-periodic RV jitter from stellar rotational modulations coincides with the orbital period of habitable-zone exoplanets around early M-dwarfs. These coincident periods underscore the importance of monitoring the targets of RV habitable-zone planet surveys through simultaneous photometric measurements for determining rotation periods and activity signals, and mitigating activity signals using spectroscopic indicators and/or RV measurements at different wavelengths.

  9. Rotating Space Elevator: Classical and Statistical Mechanics of cosmic scale spinning strings (United States)

    Knudsen, Steven; Golubovic, Leonardo


    We introduce a novel and unique nonlinear dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of cables (strings) reaching beyond the Earth geo-synchronous satellite orbit. Strikingly, objects sliding along the RSE cable do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE action employs, in a very fundamental way, basic natural phenomena -- gravitation and inertial forces. The RSE exhibits interesting nonlinear dynamics and statistical physics phenomena. Its kinetic phase diagram involves both chaotic and quasi-periodic states of motion separated by a morphological phase transition that occurs with changing the RSE angular frequency.

  10. Non-Hamiltonian perturbation theory for deformable fast rotators (United States)

    Varadi, F.; Moore, W. B.


    Deformable fast rotators, such as the Earth and Mars, change both their rotational states (spin axis direction) and shapes due to external forces and internal material motions. The standard approach to rigid-body dynamics is Hamiltonian perturbation theory in canonical action-angle (Andoyer) variables which incorporate the moments of inertia form the outset. Dealing with deformations is usually based on linear perturbation theory around rigid-body reference solutions which yields transfer functions from the rigid to the deformable case. We present the elements of a general, non-Hamiltonian perturbation theory in non-canonical variables based on Lie series. First, we present general results on non-Hamiltonian perturbation theory and averaging, such as a coordinate-free formula for the solution of the homological equation of the Lie series in the case of perturbed periodic orbits. In general, the averaged system does not fully Lie-commute with the unperturbed system and the reduction of the averaged system to the orbit space of unperturbed system has to allow for drift along the unperturbed orbits. In the case of a fast rotator, we start with rotation around the spin axis as the unperturbed system. The orientation of the body is represented as a rotation matrix and we derive the appropriate Lie bracket. After averaging over the rotation period, we reduce the system by eliminating the phase variable associated with pure rotation around the spin axis. The reduced system is expressed in terms of the spin axis in both inertial and body frames. We compare our results to those of traditional Hamiltonian theories and numerical simulations. This work is supported by NSF Planetary Astronomy.

  11. Canonical elements of rotational motion (United States)

    Fukushima, T.


    We present a new set of canonical variables to describe general rotation of a triaxial rigid body. Explicit are both the forward and backward transformations from the new variables to the Andoyer canonical variables, which are universal. The rotational kinetic energy is expressed as a quadratic monomial of one new momentum. Consequently, the torque-free rotations are expressed as a linear function of time for the conjugate coordinate and constants of time for the rest two coordinates and three momenta. This means that the new canonical variables are universal elements in a broad sense.

  12. Book Review: Precession, Nutation, and Wobble of the Earth (United States)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.


    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle

  13. Earth and ocean modeling (United States)

    Knezovich, F. M.


    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  14. Introducing Earth's Orbital Eccentricity (United States)

    Oostra, Benjamin


    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  15. Thinking the earth

    NARCIS (Netherlands)

    Blok, Vincent


    Quentin Meillassoux's call for realism is a call for a new interest in the Earth as un-correlated being in philosophy. Unlike Meillassoux, Martin Heidegger has not been criticized for being a correlationist. To the contrary, his concept of the Earth has to be understood as un-correlated being, as it

  16. Optical wheel-rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Veeser, L.; Rodriguez, P.; Forman, P. [Los Alamos National Lab., NM (United States); Deeter, M. [National Inst. of Standards and Technology, Boulder, CO (United States)


    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  17. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain


    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  18. Sensorimotor investigations for the Mars Gravity Biosatellite: a rotating spacecraft for partial gravity research. (United States)

    Wagner, Erika B; Fulford-Jones, Thaddeus R F


    The Mars Gravity Biosatellite will offer investigators a unique environment for sensorimotor research. Fifteen mice will fly for 5 weeks in low Earth orbit before being returned safely to the ground. Chronic 35-rpm rotation will produce artificial gravity equal to that on the surface of Mars (0.38 g). This groundbreaking flight will be the longest rodent spaceflight investigation and the first to explore the effects of accelerations between weightlessness and Earth's 1 g.

  19. Prediction of secular acceleration of axial rotation of Mars (United States)

    Barkin, Yu. V.


    Secular motion of the Earth pole and non-tidal acceleration of its diurnal rotation have obtained rather precise explanation with the help of simple one-point model of the directed transport of fluid masses from a southern hemisphere in northern hemisphere with the general direction, given by geocentric axis OP directed to pole P with coordinates 700N, 10403 E[1]. The another generalized model represents a system of two material points with masses m2 and m1, located on surface of the Earth at poles of geocentric axis OP. Masses are linearly changed in the time with velocities [2]: ṁ2 = 0.179 × 1015kg/yrand ṁ1 = 0.043 × 1015kg/yr. A reduction of fluid masses of the appropriate thin spherical layer of the Earth correspond to secular increasing of masses of model points. The specified model has allowed to explain values of fundamental geodynamic parameters observably and determined during decades: a direction and velocity of drift of a pole of the Earth; value of non-tidal acceleration of axial rotation; to explain a secular variations of coefficients of the second, third, fourth, sixth and eighth zonal harmonics of a geopotential; coefficients of secular changes of a surface of ocean for the last approximately 150 years; a direction of secular drift of a geocenter and other planetary phenomena [3]. The role of the angular momentum of redistributed masses of the Earth in rotation of the Earth appeared not essential at the given stage of researches. On the essence the offered model has semi-empirical character as it bases on values of velocities of change of masses of points and the given position of axis OP. For their determination and estimations the part of the observant data was used, and other parameters were designed under analytical formulas. The obtained results have precisely confirmed competency and affectivity of geodynamic model [4] about existence of secular drift of a liquid core along radial direction OP with velocity about 2.6 cm/yr in the

  20. Apparent rotation properties of space debris extracted from photometric measurements (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas


    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  1. Earth as art three (United States)



    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  2. Earth Science Informatics - Overview (United States)

    Ramapriyan, H. K.


    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  3. Earth before life. (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi


    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  4. Project Earth Science

    CERN Document Server

    Holt, Geoff


    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  5. The Earth's Magnetic Interior

    CERN Document Server

    Petrovsky, Eduard; Harinarayana, T; Herrero-Bervera, Emilio


    This volume combines review and solicited contributions, related to scientific studies of Division I of IAGA presented recently at its Scientific Assembly in Sopron in 2009. The book is aimed at intermediate to advanced readers dealing with the Earth's magnetic field generation, its historical records in rocks and geological formations - including links to geodynamics and magnetic dating, with magnetic carriers in earth materials, electromagnetic induction and conductivity studies of the Earth interior with environmental applications of rock magnetism and electromagnetism. The aim of the book

  6. On the genesis of the Earth's magnetism. (United States)

    Roberts, Paul H; King, Eric M


    Few areas of geophysics are today progressing as rapidly as basic geomagnetism, which seeks to understand the origin of the Earth's magnetism. Data about the present geomagnetic field pours in from orbiting satellites, and supplements the ever growing body of information about the field in the remote past, derived from the magnetism of rocks. The first of the three parts of this review summarizes the available geomagnetic data and makes significant inferences about the large scale structure of the geomagnetic field at the surface of the Earth's electrically conducting fluid core, within which the field originates. In it, we recognize the first major obstacle to progress: because of the Earth's mantle, only the broad, slowly varying features of the magnetic field within the core can be directly observed. The second (and main) part of the review commences with the geodynamo hypothesis: the geomagnetic field is induced by core flow as a self-excited dynamo. Its electrodynamics define 'kinematic dynamo theory'. Key processes involving the motion of magnetic field lines, their diffusion through the conducting fluid, and their reconnection are described in detail. Four kinematic models are presented that are basic to a later section on successful dynamo experiments. The fluid dynamics of the core is considered next, the fluid being driven into motion by buoyancy created by the cooling of the Earth from its primordial state. The resulting flow is strongly affected by the rotation of the Earth and by the Lorentz force, which alters fluid motion by the interaction of the electric current and magnetic field. A section on 'magnetohydrodynamic (MHD) dynamo theory' is devoted to this rotating magnetoconvection. Theoretical treatment of the MHD responsible for geomagnetism culminates with numerical solutions of its governing equations. These simulations help overcome the first major obstacle to progress, but quickly meet the second: the dynamics of Earth's core are too complex

  7. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D


    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  8. Earth retaining structures manual (United States)


    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  9. Gambling with the earth

    CERN Multimedia

    Muir, H


    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).


    National Research Council Canada - National Science Library


      The section features Earth Island's Dolphin Safe tuna . label (asking readers to look for tuna cans without the Dolphin Safe label and alert us so we can have the cans removed from store shelves...

  11. Whole-Earth Decompression Dynamics


    Herndon, J. Marvin


    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  12. Spline screw multiple rotations mechanism (United States)

    Vranish, John M. (Inventor)


    A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.

  13. Quantum communications and quantum metrology in the spacetime of a rotating planet

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrus, Jan; Louko, Jorma [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); Bruschi, David Edward [The Hebrew University of Jerusalem, Racah Institute of Physics and Quantum Information Science Centre, Jerusalem (Israel); University of York, York Centre for Quantum Technologies, Department of Physics, York (United Kingdom); Fuentes, Ivette [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); University of Vienna, Faculty of Physics, Wien (Austria)


    We study how quantum systems that propagate in the spacetime of a rotating planet are affected by the curved background. Spacetime curvature affects wavepackets of photons propagating from Earth to a satellite, and the changes in the wavepacket encode the parameters of the spacetime. This allows us to evaluate quantitatively how quantum communications are affected by the curved spacetime background of the Earth and to achieve precise measurements of Earth's Schwarzschild radius and equatorial angular velocity. We then provide a comparison with the state of the art in parameter estimation obtained through classical means. Satellite to satellite communications and future directions are also discussed. (orig.)

  14. Rotating space elevators: Physics of celestial scale spinning strings (United States)

    Knudsen, Steven; Golubović, Leonardo


    We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubović, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.

  15. Rotational Modes in Phononic Crystals (United States)

    Wu, Ying; Peng, Pai; Mei, Jun


    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  16. Instabilities in coaxial rotating jets (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie


    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  17. Rotationally actuated prosthetic helping hand (United States)

    Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)


    A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.

  18. Mercury's rotation axis and period (United States)

    Klaasen, K. P.


    Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 + or 0.005 days, in excellent agreement with the period required for a precise 2/3 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2 deg from the perpendicular to its orbital plane within a 50% probability error ellipse of + or - 2.6 deg by + or - 6.5 deg. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1 deg.

  19. Relativity on Rotated Graph Paper

    CERN Document Server

    Salgado, Roberto B


    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.

  20. Strongly interacting matter under rotation

    Directory of Open Access Journals (Sweden)

    Jiang Yin


    Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  1. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  2. Hamiltonian theory for the non-rigid Earth: Semidiurnal terms (United States)

    Getino, J.; Ferrándiz, J. M.; Escapa, A.


    The purpose of this paper is to determine the contributions to the nutation series arising from the triaxiality of a non-rigid Earth model composed of a rigid mantle and a liquid core. With this aim, the canonical formulation of the rotation of the non-rigid Earth developed by Getino and Ferrándiz is applied in order to study the semidiurnal terms arising from the C22 and S22 geopotential coefficients. Once the corresponding generating function is calculated, analytical expressions of the Andoyer and figure planes are derived. We also provide numerical nutation series based on the analytical formulae.

  3. The Coriolis Effect Apparently Described in Giovanni Battista Riccioli's Arguments Against the Motion of the Earth: An English Rendition of Almagestum Novum Part II, Book 9, Section 4, Chapter 21, Pages 425, 426-7

    CERN Document Server

    Graney, Christopher M


    In his encyclopedic work on astronomy, the 1651 Almagestum Novum, the Italian Jesuit Giovanni Battista Riccioli (1598-1671) argued against the movement of the Earth on the grounds that (among other things), if the Earth rotated, that rotation should produce a deflection in the trajectories of projectiles. This argument appears to be an early description of the Coriolis effect.

  4. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.


    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  5. The Sun and Earth (United States)

    Gopalswamy, Natchimuthuk


    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  6. Earth - Moon Conjunction (United States)


    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  7. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M


    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  8. A new trajectory concept for exploring the earth's geomagnetic tail (United States)

    Farquhar, R. W.; Dunham, D. W.


    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.


    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  10. Rotational alignment in soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Yadrena Fizika i Yadrena Energetika)


    It is shown that in transitional odd-A nuclei, where the rotation-aligned coupling scheme usually takes place, the low collective angular momentum states of the decoupled band are not completely aligned due to core softness. This is illustrated on the example of La-nuclei.

  11. Rotational dynamics with geometric algebra (United States)

    Hestenes, D.


    A new spinor formulation of rotational dynamics is developed. A general theorem is established reducing the theory of the symmetric top to that of the spherical top. The classical problems of Lagrange and Poinsot are treated in detail, along with a modern application to the theory of magnetic resonance.

  12. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.


    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  13. Rotating black hole and quintessence

    CERN Document Server

    Ghosh, Sushant G


    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole (BH), which has additional parameters ($\\alpha$ and $\\omega$) due to the quintessential matter, apart from the mass ($M$). In turn, we employ the Newman\\(-\\)Janis complex transformation to this spherical quintessence BH solution and present a rotating counterpart that is identified, for $\\alpha=-e^2 \

  14. Ultrasonography of the Rotator Cuff

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)


    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  15. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George


    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  16. The Mission Accessibility of Near-Earth Asteroids (United States)

    Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick; hide


    Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.

  17. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor (United States)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti


    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  18. Better Than Earth (United States)

    Heller, René


    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  19. NASA selects scientific investigations for Earth dynamics studies (United States)


    Forty two domestic investigators affiliated with U.S. universities, governmental agencies, or private concerns and 14 investigators from France, West Germany, the Netherlands, Switzerland, Spain, Sweden, Australia, New Zealand, Venezuela, and Canada were selected to use precise geodetic data obtained by laser ranging and very long base interferometry in a study of the Earth's tectonic plate movement, crustal deformation, and rotational dynamics. The studies to be made and the principal investigators for each are listed.

  20. Rotational breakup as the origin of small binary asteroids. (United States)

    Walsh, Kevin J; Richardson, Derek C; Michel, Patrick


    Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10 km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a 'rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999 KW(4) (refs 3, 4).

  1. Anisotropy in the deep Earth (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf


    and its relation to global mantle circulation, is to link macroscopic information from seismology and microscopic information mineral physics through geodynamics modeling. Anisotropy in the inner core was proposed 30 years ago to explain faster P wave propagation along the direction of the Earth's axis of rotation as well as anomalous splitting of core sensitive free oscillations. There is still uncertainty about the origin of this anisotropy. In particular, it is difficult to explain its strength, based on known elastic properties of iron, as it would require almost perfect alignment of iron crystals. Indeed, the strongly anomalous P travel times observed on paths from the South Sandwich Islands to Alaska may or may not be due to inner core anisotropy, and will need to be explained before consensus can be reached on the strength of anisotropy in the inner core and its origin.

  2. How Big is Earth? (United States)

    Thurber, Bonnie B.


    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory,, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is

  3. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez


    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  4. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley


    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  5. Controllable High-Speed Rotation of Nanowires (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.


    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  6. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro


    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  7. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes (United States)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.


    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  8. Atmospheric tides in Earth-like planets (United States)

    Auclair-Desrotour, P.; Laskar, J.; Mathis, S.


    Context. Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, which includes Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Aims: Unlike the solid core, the atmosphere of a planet is subject to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified for application to the wide variety of extrasolar planetary systems. Methods: We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the perturbation of pressure, density, temperature, and velocity field caused by a thermogravitational tidal perturbation. From these quantities, we deduce the expressions of atmospheric Love numbers and tidal torque exerted on the fluid shell by the star. The equations are written for the general case of a thick envelope and the simplified one of a thin isothermal atmosphere. Results: The dynamics of atmospheric tides depends on the frequency regime of the tidal perturbation: the thermal regime near synchronization and the dynamical regime characterizing fast-rotating planets. Gravitational and thermal perturbations imply different responses of the fluid, I.e. gravitational tides and thermal tides, which are clearly identified. The dependence of the torque on the tidal frequency is quantified using the analytic expressions of the model for Earth-like and Venus-like exoplanets and is in good agreement with the results given by global climate models (GCM) simulations.Introducing dissipative processes such as radiation regularizes the tidal response of the atmosphere, otherwise it is singular at synchronization. Conclusions: We demonstrate the

  9. DIORAMA Earth Terrain Model

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    When simulating near-surface nuclear detonations, the terrain of the Earth can have an effect on the observed outputs. The critical parameter is called the “height of burst”. In order to model the effect of terrain on the simulations we have incorporated data from multiple sources to give 9 km resolution data with global coverage.

  10. "Galileo Calling Earth..." (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  11. Bones of the Earth (United States)

    Correa, Jose Miguel


    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  12. Earth's City Lights (United States)


    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  13. The Earth's Changing Climate

    Indian Academy of Sciences (India)

    wavelength range between 0.2 and 4.0 microns (p,m). ... from the earth is in the long wavelength range from 4.0 to 80/-Lm. .... turing industry. But, it is removed from the atmosphere by the photosynthesis of plants. The largest reservoirs of carbon are in the deep oceans. Some of this reaches the atmosphere when waters.

  14. Modeling Earth's Climate (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara


    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  15. Understanding Earth's Albedo Effect (United States)

    Fidler, Chuck


    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  16. How life shaped Earth. (United States)

    Gross, Michael


    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  17. Earth's Reflection: Albedo (United States)

    Gillette, Brandon; Hamilton, Cheri


    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  18. Google Earth Science (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.


    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  19. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian


    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...

  20. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.


    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  1. A Hamiltonian theory for an elastic earth - Canonical variables and kinetic energy (United States)

    Getino, Juan; Ferrandiz, Jose M.


    This paper describes the first part of a project dedicated to elaborating a Hamiltonian theory for the rotational motion of a deformable earth. Here only the perturbation due to the deformation of the elastic mantle by tidal body force is studied. Two canonical systems of variables are developed, known as elastic variables of Euler and Andoyer, respectively. Next, they are used to obtain the canonical expression of rotational kinetic energy, which is valid for any earth model satisfying hypotheses as general as those established here.

  2. Integrated Optics Rotation Sensor (IORS) (United States)

    Fitzpatrick, Colleen M.; Vali, Victor; Youmans, Bruce R.; Yang, Ching Mei; Milbrodt, Michele; Minford, William J.


    The Integrated Optics Rotation SEnsor (IORS) is a rugged, lightweight, and low cost gyro instrument which is currently being sponsored by the Defense Advanced Research Projects Agency under funding from Small Business Innovative Research/Technology Reinvestment Program. It uses glass-on- silicon optical waveguide technology. The design of the IORS is quite simple, and can potentially be adapted to a number of military and commercial applications, including yaw rate sensing for an anti-skid safety device in automobiles, rotation rate sensing for robotics, weapon aiming,and guidance of smart munitions. The basic design is presented, along with preliminary performance specifications for an IORS prototype. The characteristics of the IORS is also compared to other gyros in terms of performance, size, weight, and price.

  3. Faraday rotation system. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, L.E.; Wang, W.


    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  4. Rotating concave eddy current probe (United States)

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM


    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  5. Gravitational lensing by rotating wormholes (United States)

    Jusufi, Kimet; Ã-vgün, Ali


    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

  6. Rotation sensing with trapped ions (United States)

    Campbell, W. C.; Hamilton, P.


    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  7. Shoulder Impingement/Rotator Cuff Tendinitis (United States)

    ... by the American Academy of Orthopaedic Surgeons. .org Shoulder Impingement/Rotator Cuff Tendinitis cont. Page ( 2 ) Symptoms Rotator cuff pain commonly causes local swelling and tenderness in the ...

  8. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob


    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  9. Area spectrum of slowly rotating black holes


    Myung, Yun Soo


    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  10. Rotating optical coupler for signal transmission (United States)

    Ivie, C. V.


    Optical coupler using Dove prism assembly to form stationary image of rotating object, transmits data across rotating interface without sliprings or other mechanical contacts. Device can handle many high-bit-rate data channels.

  11. TERA for Rotating Equipment Selection


    Khan, Raja S. R.


    This thesis looks at creating a multidisciplinary simulation tool for rotating plant equipment selection, specifically gas turbines, for the liquefaction of natural gas (LNG). This is a collaborative project between Shell Global Solutions and Cranfield University in the UK. The TERA LNG tool uses a Techno-economic, Environmental and Risk Analysis (TERA) approach in order to satisfy the multidisciplinary nature of the investigation. The benefits of the tool are to act as an aid ...

  12. 'Coronae' of rotating interstellar clouds (United States)

    Rosner, R.; Hartquist, T. W.


    This letter considers differential rotation of cool interstellar clouds in the presence of internal magnetic fields, and shows that because of the relative ineffectiveness of field dissipation within the clouds, magnetized gas experiences buoyant forces. The resulting field loops emerge from the cloud and dissipate their energy by field reconnection. The consequent heating is sufficient to produce relatively hot (T approximately 10,000 K) 'coronae' about the clouds.

  13. Crop rotations for grain production


    Olesen, Jørgen E.; Rasmussen, Ilse Ankær; Askegaard, Margrethe


    There is an increasing demand for organically grown cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Such a change may reduce the stability of the farming systems, because of decreasing soil fertility and problems with weed control. There have only been a limited number of studies under temperate conditions in Europe and North America, where different crop rotations have been compared under ...

  14. Semiclassics of rotation and torsion.


    Braun, Petr A.; Gerwinski, Peter; Haake, Fritz; Schomerus, Henning


    We discuss semiclassical approximations of the spectrum of the periodically kicked top, both by diagonalizing the semiclassically approximated Floquet matrix F and by employing periodic-orbit theory. In the regular case when F accounts only for a linear rotation periodic-orbit theory yields the exact spectrum. In the chaotic case the first method yields the quasienergies with an accuracy of better than 3% of the mean spacing. By working in the representation where the torsional part of the Fl...

  15. Developing an Asteroid Rotational Theory (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald


    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  16. Slowly rotating supercompact Schwarzschild stars (United States)

    Posada, Camilo


    The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.

  17. Simultaneity on the Rotating Disk (United States)

    Koks, Don


    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  18. Microseismic sources of rotational type (United States)

    Pasternak, Elena; Dyskin, Arcady; He, Junxian


    Traditionally the sources of seismic and microseismic events are related to shear fractures. The analysis of the seismic moment tensors of the sources associated with rock fracturing and hydraulic fracturing in the laboratory experiments and in-situ reveals that while there exist tensile and compressive sources, the shear sources prevail. The appearance of multiple shear sources, accompanied rock fracturing contradicts the results of the direct experiments suggesting that the rock as well as other materials not exhibiting clear plastic flow fail in tension. This contradiction is conventionally resolved by assuming the presence of multiple pre-existing shear fractures (faults or microfaults) whose sudden sliding provides microseismic events of shear type. We consider alternative mechanisms associated with bending of links between rotating particles and fragments of geomaterial and bending of bridges connecting opposite sides of hydraulic fractures. In both cases the fracturing is caused by the action of moments (or moment stresses) leading to bending, while at microscale the failure is associated with tensile microstresses leading to formation of tensile microcracks. In other words, at microscale the moment-related failure is failure in tension, as routinely observed in materials even in compression. It is easy to demonstrate that from a distance the sources of rotational type are equivalent to a standard double couple, similar to the one associated with shear fracturing. In other words what is currently interpreted as shear microseismic sources can in fact be rotational sources. This calls for new methods of detecting and interpreting microseismic sources; some possible methods are discussed.

  19. Gravity controlled anti-reverse rotation device (United States)

    Dickinson, Robert J.; Wetherill, Todd M.


    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  20. Self-rotations in simulated microgravity: performance effects of strategy training. (United States)

    Stirling, Leia; Newman, Dava; Willcox, Karen


    This research studies reorientation methodologies in a simulated microgravity environment using an experimental framework to reduce astronaut adaptation time and provide for a safety countermeasure during extravehicular activity. There were 20 subjects (10 men, 10 women, mean age of 23.6 +/- 3.5) who were divided into 2 groups, fully trained and minimally trained, which determined the amount of motion strategy training received. Subjects performed a total of 48 rotations about their pitch, roll, and yaw axes in a suspension system that simulated microgravity. In each trial subjects either rotated 90 degrees in pitch, 90 degrees in roll, or 180 degrees in yaw. Experimental measures include subject coordination, performance time, cognitive workload assessments, and qualitative motion control strategies. Subjects in the fully trained group had better initial performance with respect to performance time and workload scores for the pitch and yaw rotations. Further, trained subjects reached a steady-state performance time in fewer trials than those with minimal training. The subjects with minimal training tended to use motions that were common in an Earth environment since no technique was provided. For roll rotations they developed motions that would have led to significant off-axis (pitch and yaw) rotations in a true microgravity environment. We have shown that certain body axes are easier to rotate about than others and that fully trained subjects had an easier time performing the body rotations than the minimally trained subjects. This study has provided the groundwork for the development of an astronaut motion-control training program.

  1. Efficiency in Carrying Cargo to Earth Orbits: Spaceports Repositioning

    Directory of Open Access Journals (Sweden)

    Jakub Hospodka


    Full Text Available Space flights are in these days not any more question of technology, but more question of costs. One way how to decrease cost of launch is change of home spaceport. Change of home spaceport for different rockets is a way to achieve more efficient launches to space. The reason is different acceleration achieved from Earth rotation. We added several mathematical calculations of missions to Low Earth Orbit and Geostationary Earth Orbit to show bonuses from Earth rotation and effect of atmospheric drag on specific rockets used these days. We discussed only already used space vessels. Namely Arianne 5, Delta 4 heavy, Proton-M, Zenit and Falcon9. For reaching GEO we discuss possibility of using Hohmman transfer, because none of aforementioned vessels is available for direct GEO entry. As possible place for launch we discussed spaceports Baikonur, Kennedy Space center, Guyana Space center and Sea Launch platform. We present results in form of additional acceleration for each spaceport, and we also project this additional acceleration in means payload increase. In conclusion we find important differences between vessel effectivity based on spaceport used for launch. Change of launch location may bring significant cost decrease for operators.

  2. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard


    and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...

  3. Rotating structures and Bryan’s effect

    CSIR Research Space (South Africa)

    Joubert, SV


    Full Text Available In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes...

  4. What Is Rotating in Exploratory Factor Analysis? (United States)

    Osborne, Jason W.


    Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…

  5. Visualizing Compound Rotations with Virtual Reality (United States)

    Flanders, Megan; Kavanagh, Richard C.


    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  6. Rotational versions of the Crofton formula

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel


    Inspired by recent developments in stereology, rotational versions of the Crofton formula are derived. The first version involves rotation averages of Minkowski functionals. It is shown that for the special case where the Minkowski functional is surface area, the rotation average can be expressed...

  7. Measuring Stellar Rotation Periods with Kepler

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.


    We measure rotation periods for 12151 stars in the Kepler field, based on photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study rotation periods...

  8. Visualizing Earth Materials (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.


    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  9. Earth Science Multimedia Theater (United States)

    Hasler, A. F.


    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  10. Earth's surface fluid variations and deformations from GPS and GRACE in global warming

    CERN Document Server

    Jin, Shuanggen; Feng, Guiping


    Global warming is affecting our Earth's environment. For example, sea level is rising with thermal expansion of water and fresh water input from the melting of continental ice sheets due to human-induced global warming. However, observing and modeling Earth's surface change has larger uncertainties in the changing rate and the scale and distribution of impacts due to the lack of direct measurements. Nowadays, the Earth observation from space provides a unique opportunity to monitor surface mass transfer and deformations related to climate change, particularly the global positioning system (GPS) and the Gravity Recovery and Climate Experiment (GRACE) with capability of estimating global land and ocean water mass. In this paper, the Earth's surface fluid variations and deformations are derived and analyzed from global GPS and GRACE measurements. The fluids loading deformation and its interaction with Earth system, e.g., Earth Rotation, are further presented and discussed.

  11. Instability windows and evolution of rapidly rotating neutron stars. (United States)

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M


    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures.

  12. Numerical integration of relativistic equations of motion for Earth satellites (United States)

    San Miguel, A.


    The equations of motion proposed by Brumberg for an artificial satellite around the Earth (Celest Mech Dyn Astron 88:209, 2004), in which the relativistic effects due to the Earth’s oblatness and the gravitational action caused by a third body are added to those perturbations considered in the International Earth Rotation and Reference System Service (2003) convention, are here integrated numerically. To compute the solution of the time-dependent Langrangian system for a gravitational satellite Earth Sun model we consider a six-order partitioned Runge Kutta integrator, whose coefficients satisfy the condition of symplecticity. A comparison with the classical Adams Basforth Moulton method allows to verify the good-performance of the partitioned Runge Kutta method both in the description of the evolution of the satellite energy and in the efficiency of the method when applied to a long-term integration.

  13. Venus as a more Earth-like planet. (United States)

    Svedhem, Håkan; Titov, Dmitry V; Taylor, Fredric W; Witasse, Olivier


    Venus is Earth's near twin in mass and radius, and our nearest planetary neighbour, yet conditions there are very different in many respects. Its atmosphere, mostly composed of carbon dioxide, has a surface temperature and pressure far higher than those of Earth. Only traces of water are found, although it is likely that there was much more present in the past, possibly forming Earth-like oceans. Here we discuss how the first year of observations by Venus Express brings into focus the evolutionary paths by which the climates of two similar planets diverged from common beginnings to such extremes. These include a CO2-driven greenhouse effect, erosion of the atmosphere by solar particles and radiation, surface-atmosphere interactions, and atmospheric circulation regimes defined by differing planetary rotation rates.

  14. Planetary meteorology - A new perspective on the earth's weather (United States)

    Joels, K.


    Meteorological observations of other planets which may contribute to an understanding of the meteorological processes on the earth are discussed. The high solar input and extremely low rotation rate of Venus simplify the analysis of the interaction of solar energy with the atmosphere. The dust present in the atmosphere of Mars may provide a useful model for studying the effects of anthropogenic aerosols in the atmosphere of earth. Observations of Mars may also be expected to yield information on the evolution of severe storms and on atmospheric tides. The belts and zones in the Jovian atmosphere bear some similarities to cyclones on earth, although they are produced differently; careful modeling of Jupiter's atmosphere may cast light on terrestrial cyclonic activity.

  15. Ferroelectricity of domain walls in rare earth iron garnet films. (United States)

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K


    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  16. Extreme interplanetary rotational discontinuities at 1 AU (United States)

    Lepping, R. P.; Wu, C.-C.


    This study is concerned with the identification and description of a special subset of four Wind interplanetary rotational discontinuities (from an earlier study of 134 directional discontinuities by Lepping et al. (2003)) with some "extreme" characteristics, in the sense that every case has (1) an almost planar current sheet surface, (2) a very large discontinuity angle (ω), (3) at least moderately strong normal field components (>0.8 nT), and (4) the overall set has a very broad range of transition layer thicknesses, with one being as thick as 50 RE and another at the other extreme being 1.6 RE, most being much thicker than are usually studied. Each example has a well-determined surface normal (n) according to minimum variance analysis and corroborated via time delay checking of the discontinuity with observations at IMP 8 by employing the local surface planarity. From the variance analyses, most of these cases had unusually large ratios of intermediate-to-minimum eigenvalues (λI/λmin), being on average 32 for three cases (with a fourth being much larger), indicating compact current sheet transition zones, another (the fifth) extreme property. For many years there has been a controversy as to the relative distribution of rotational (RDs) to tangential discontinuities (TDs) in the solar wind at 1 AU (and elsewhere, such as between the Sun and Earth), even to the point where some authors have suggested that RDs with large ∣Bn∣s are probably not generated or, if generated, are unstable and therefore very rare. Some of this disagreement apparently has been due to the different selection criteria used, e.g., some allowed eigenvalue ratios (λI/λmin) to be almost an order of magnitude lower than 32 in estimating n, usually introducing unacceptable error in n and therefore also in ∣Bn∣. However, we suggest that RDs may not be so rare at 1 AU, but good quality cases (where ∣Bn∣ confidently exceeds the error in ∣Bn∣) appear to be uncommon, and further

  17. Data Association Algorithms for Tracking Satellites (United States)


    Geo- physical Research: Solid Earth, Vol. 107, No. B4, April 2002, pp. ETG 3–1–ETG 3.26. [23] Buffett, B. A., Mathews, P. M., and Herring, T. A...Methodology for the combination of sub-daily Earth rotation from GPS and BLBI observations,” Journal of Geodesy , Vol. 86, No. 3, March 2012, pp. 221–239

  18. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  19. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.


    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  20. Rotational parameters using linearized theory of rotational states

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, N.


    The problem of collective rotational parameters is studied using a new expansion of the good angular momentum states Vertical BarPsi/sub J/> and linearization procedure. It is shown that the approximation correctly reproduces Skyrme's formula. The approximation is applied to parametrize the value of the matrix element Vertical BarVertical Bar. The agreement with the values deduced from experimental data on the nuclei 1 /sub 64//sup 56/Gd/sub 92/ and 1 /sub 70//sup 76/Yb/sub 106/ is fairly good.

  1. Drag and lift forces on a counter-rotating cylinder in rotating flow

    NARCIS (Netherlands)

    Sun, Chao; Mullin, Tom; van Wijngaarden, L.; van Wijngaarden, L.; Lohse, Detlef


    Results are reported of an experimental investigation into the motion of a heavy cylinder free to move inside a water-filled drum rotating around its horizontal axis. The cylinder is observed to either co-rotate or, counter-intuitively, counter-rotate with respect to the rotating drum. The flow was

  2. Signatures of the Martian rotation parameters in the Doppler and range observables (United States)

    Yseboodt, Marie; Dehant, Véronique; Péters, Marie-Julie


    The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.

  3. Accurate free and forced rotational motions of rigid Venus (United States)

    Cottereau, L.; Souchay, J.; Aljbaae, S.


    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  4. Rotational joint assembly and method for constructing the same (United States)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)


    A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.

  5. Phaethon Near Earth (United States)

    Jewitt, David


    Planet-crossing asteroid (3200) Phaethon, source of the Geminid meteoroid stream, will pass close to Earth in December 2017. Observations with HST are proposed to image debris ejected from this object at 1 AU heliocentric distance, to estimate the ejection velocities as the Earth passes through the orbit plane, and to estimate the dust production rate for comparison with the rates needed to sustain the Geminid stream in steady-state. These measurements will help determine the mechanism behind the ejection of the Geminids, a long-standing puzzle. While the release of micron-sized particles (probably by thermal fracture) has been recorded at Phaethon's perihelion (0.14 AU), mass loss has never been detected otherwise, raising the puzzle of the ejection mechanism and duration. The close approach (0.07 AU) on December 17 gives a once-in-a-lifetime opportunity to observe Phaethon at high sensitivity with a resolution of a few kilometers.

  6. Marketing Earth science education (United States)

    Snieder, Roel; Spiers, Chris

    In the 1990s, the Department of Earth Sciences at Utrecht University in the Netherlands was struggling with a declining influx of students. For years, the department had been active in promoting its program, but this was insufficient to stem the decline in interest. To remedy the problem, the school's Earth science faculty carried out, with the help of consultants, a qualitative evaluation of its promotional activities. The faculty feared that their own image of the department might be in conflict with the image held by others; prospective students, in particular. The consultants interviewed secondary school students, parents, teachers, and study advisors in secondary schools. This article is a report on the results of this evaluation.

  7. Life Before Earth

    CERN Document Server

    Sharov, Alexei A


    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization, and emergence of novel functional niches associated with existing genes. Linear regression of genetic complexity on a log scale extrapolated back to just one base pair suggests the time of the origin of life 9.7 billion years ago. This cosmic time scale for the evolution of life has important consequences: life took ca. 5 billion years to reach the complexity of bacteria; the environments in which life originated and evolved to the prokaryote stage may have been quite different from those envisaged on Earth; there was no...

  8. Photosynthesis and early Earth. (United States)

    Shih, Patrick M


    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Earth Abides Arsenic Biotransformations


    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.


    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  10. Superhydrophobic diatomaceous earth (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN


    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  11. Life Before Earth


    Sharov, Alexei A; Gordon, Richard


    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization,...

  12. Testing MOND on Earth

    CERN Document Server

    Ignatiev, A Yu


    MOND is one of the most popular alternatives to Dark Matter (DM). While efforts to directly detect DM in laboratories have been steadily pursued over the years, the proposed Earth-based tests of MOND are still in their infancy. Some proposals recently appeared in the literature are briefly reviewed, and it is argued that collaborative efforts of theorists and experimenters are needed to move forward in this exciting new area. Possible future directions are outlined.

  13. Earth's heat budget: Clairvoyant geoneutrinos (United States)

    Korenaga, Jun


    The quantity of heat generated by radioactive decay in Earth's interior is controversial. Measurements of geoneutrinos emitted from the mantle during this decay indicate that this source contributes only about half of Earth's total outgoing heat flux.

  14. Physics: clairvoyant of the Earth (United States)

    Haworth, R. T.


    The Earth is a vibrant body whose structure and dynamics can be investigated by geophysics. Earth movements not only constitute a hazard, but over many millenia have contributed to the development and location of our natural resources.

  15. Mirador - Earth Surface and Interior (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect...

  16. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov


    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  17. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui


    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  18. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen


    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  19. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R


    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  20. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.


    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  1. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu


    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  2. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator. (United States)

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V


    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  3. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)


    Abstract of WO 2008138346  (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  4. Collisional disruptions of rotating targets (United States)

    Ševeček, Pavel; Broz, Miroslav


    Collisions are key processes in the evolution of the Main Asteroid Belt and impact events - i.e. target fragmentation and gravitational reaccumulation - are commonly studied by numerical simulations, namely by SPH and N-body methods. In our work, we extend the previous studies by assuming rotating targets and we study the dependence of resulting size-distributions on the pre-impact rotation of the target. To obtain stable initial conditions, it is also necessary to include the self-gravity already in the fragmentation phase which was previously neglected.To tackle this problem, we developed an SPH code, accelerated by SSE/AVX instruction sets and parallelized. The code solves the standard set of hydrodynamic equations, using the Tillotson equation of state, von Mises criterion for plastic yielding and scalar Grady-Kipp model for fragmentation. We further modified the velocity gradient by a correction tensor (Schäfer et al. 2007) to ensure a first-order conservation of the total angular momentum. As the intact target is a spherical body, its gravity can be approximated by a potential of a homogeneous sphere, making it easy to set up initial conditions. This is however infeasible for later stages of the disruption; to this point, we included the Barnes-Hut algorithm to compute the gravitational accelerations, using a multipole expansion of distant particles up to hexadecapole order.We tested the code carefully, comparing the results to our previous computations obtained with the SPH5 code (Benz and Asphaug 1994). Finally, we ran a set of simulations and we discuss the difference between the synthetic families created by rotating and static targets.

  5. Optical wheel-rotation sensor (United States)

    Veeser, Lynn R.; Rodriguez, Patrick A.; Forman, Peter; Deeter, Merritt N.


    We describe a fiber-optic rotation sensor being developed for anti-lock braking systems. The basis of the sensor is the magneto-optic detection of the magnetic fields generated by a wheel of alternating magnetized magnets fixed to a wheel of the automobile. Highly sensitive iron garnet crystals serve as the magneto-optic sensing elements. For films with perpendicularly- magnetized domains, the domain structure produces diffraction which is magnetic-field dependent. Exploitation of this effect permits the construction of magneto-optic magnetic field sensors requiring no polarization elements or lenses.

  6. Generalization of stochastic visuomotor rotations.

    Directory of Open Access Journals (Sweden)

    Hugo L Fernandes

    Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.

  7. Parallel computation of rotating flows

    DEFF Research Database (Denmark)

    Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær


    This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...

  8. Generalization of Stochastic Visuomotor Rotations (United States)

    Fernandes, Hugo L.; Stevenson, Ian H.; Kording, Konrad P.


    Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty. PMID:22916198

  9. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria


    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  10. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew


    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  11. Rotational disorder in lithium borohydride

    Directory of Open Access Journals (Sweden)

    Remhof Arndt


    Full Text Available LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithium-ion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381 K which is associated with a large increase in rotational disorder of the [BH4]− anion and the increase of [Li]+ conductivity by three orders of magnitude. We investigated the [BH4]− anion dynamic in bulk LiBH4, in LiBH4-LiI solid solutions and in nano-confined LiBH4 by quasielastic neutron scattering, complemented by DFT calculations. In all cases the H-dynamics is dominated by thermally activated rotational jumps of the [BH4]− anion in the terahertz range. The addition of LiI as well as nano-confinement favours the disordered high temperature phase and lowers the phase transition below room temperatures. The results are discussed on the basis of first principles calculations and in relation to ionic conductivity of [Li]+.

  12. Metalloproteases and rotator cuff disease. (United States)

    Del Buono, Angelo; Oliva, Francesco; Longo, Umile Giuseppe; Rodeo, Scott A; Orchard, John; Denaro, Vincenzo; Maffulli, Nicola


    The molecular changes occurring in rotator cuff tears are still unknown, but much attention has been paid to better understand the role of matrix metalloproteinases (MMP) in the development of tendinopathy. These are potent enzymes that, once activated, can completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediatethe development of painful tendinopathy and tendon rupture. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP) that bind to the enzymes and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances intendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation, and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Biologic modulation of endogenous MMP activity to basal levels may reduce pathologic tissue degradation and favorably influence healing after rotator cuff repair. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  13. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.


    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  14. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons


    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  15. Differentiating the differential rotation effect. (United States)

    Boyarskaya, Evgenia; Hecht, Heiko


    As an observer views a picture from different viewing angles, objects in the picture appear to maintain their orientation relative to the observer. For instance, the eyes of a portrait appear to follow the observer as he or she views the image from different angles. We have explored this rotation effect, often called the Mona Lisa effect. We report three experiments that used portrait photographs to test variations of the Mona Lisa effect. The first experiment introduced picture displacements relative to the observer in directions beyond the horizontal plane. The Mona Lisa effect remained robust for vertical and/or diagonal observer displacements. The experiment also included conditions in which the portrait had averted gaze directions. An interaction between picture position relative to the observer and gaze direction was found. The second experiment followed up on very pronounced individual differences, suggesting that the Mona Lisa effect is even stronger than it should be for half of all observers (over-rotators). These individual differences do not correlate with any of the standard personality dimensions (Big Five) or with spatial intelligence. In the third experiment, we extended the experiment to virtual 3D heads using the same gaze directions and picture displacements as for the 2D portrait faces. Besides the picture displacements relative to the observer, we also added observer displacements relative to the picture. 3D pictures showed the Mona Lisa effect, but to a smaller extent than did 2D pictures. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Stovetop Earth Pecan Pie (United States)

    Robin, C. M.


    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  17. The Solid Earth (United States)

    Fowler, C. M. R.


    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  18. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa


    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  19. Solid Earth: The priorities (United States)

    Paquet, P.


    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  20. Kinetic Energy of a Non-Spherical Elastic Earth Mantle with Andoyer Variables (United States)

    Getino, Juan


    Continuing the study of the rotation of a deformable Earth begun by Getino and Ferrandiz (1990, 1991a, 1991b, 1993, 1994) for an Earth model with an elastic spherical mantle, in this paper on one hand we deal with the effect of the ellipticity, and on the other hand, we include the toroidal solution of the displacement vector. Taking an axis symmetrical, slightly ellipsoidal Earth, the modification due to the ellipticity is introduced into the solution of the displacement vector for both spheroidal and toroidal modes, and, after defining the adequate variables, we give the canonical formulation of the corresponding increase in the kinetic energy.

  1. Vestibulo-cardiorespiratory responses at the onset of chair rotation in endurance runners. (United States)

    Sato, Kohei; Katayama, Keisho; Katayama, Naomi; Hotta, Norio; Ishida, Koji; Miyamura, Miharu


    Stimulation of the vestibular system has been reported to elicit ventilatory and circulatory changes in humans. The purpose of this study was to clarify the characteristics of vestibular-mediated ventilatory and circulatory responses in male endurance runners at the onset of passive chair rotation, which selectively stimulates the semicircular canals. Fourteen runners and 14 male untrained subjects participated. The vestibular stimulus test, which consists of 180 degrees chair rotations (left or right half-turns on an earth-vertical axis) for a duration of 2 s, was carried out on each subject. Inspiratory minute ventilation, tidal volume, respiratory frequency, heart rate, and blood pressure were measured by breath-by-breath and beat-to-beat techniques before, during, and after the chair rotation for a total of 60 s. It was found in this study that (i) the relative change of minute ventilation response in the endurance runners was significantly (P untrained subjects during and after the rotation, and that (ii) no significant group differences were observed in heart rate and mean blood pressure responses during and after the rotation. In conclusion, vestibular-mediated ventilatory response, but not circulatory response, at the onset of the chair rotation in the endurance runners was significantly greater than that in the untrained subjects. The results from the present study suggest that an increase in vestibulo-ventilatory response would be attributed to an adaptation to long-term endurance training.

  2. The rotational state of Mercury after four years of MESSENGER observations (United States)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Hussmann, Hauke


    We measured the rotational state of Mercury with orbital data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. We use accurate co-registration of digital terrain models from stereo images (stereo DTMs) and laser altimeter data to measure the orientation of the rotation axis, the libration amplitude and the mean rotation rate with improved precision. In contrast to our previous study, we use the full four years of near-continuous Mercury Laser Altimeter (MLA) observations and stereo DTMs with a higher spatial coverage. We confirm a large libration amplitude and a mean rotation rate which is significantly higher than the assumed resonant rotation rate based on a perfect 3:2 spin orbit resonance. The estimated orientation of the rotation axis is consistent with the assumption that Mercury occupies a Cassini state. We compare our estimates with values based on Earth-based observations and MESSENGER radio science. Our results confirm that Mercury possesses a liquid outer core and we discuss further implications of our estimates on the interior structure of the planet.

  3. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.|info:eu-repo/dai/nl/344765490


    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  4. Seeing Earth's Orbit in the Stars: Parallax and Aberration (United States)

    Timberlake, Todd K.


    During the 17th century the idea of an orbiting and rotating Earth became increasingly popular, but opponents of this view continued to point out that the theory had observable consequences that had never, in fact, been observed. Why, for instance, had astronomers failed to detect the annual parallax of the stars that "must" occur if…

  5. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D


    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anch...

  6. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D

    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anch...

  7. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies


    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  8. Diatomaceous Earths - Natural Insecticides

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić


    Full Text Available The regulatory issues for diatomaceous earth (DE cover three fields: consumer safety,worker safety, and proof of efficacy against pests. For consumer safety, regulatory issuesare similar to those for other additives, and a principal benefit of DEs is their removal bynormal processing methods. For worker safety, regulatory issues are similar to those forother dusts, such as lime. The proof of potential insecticide values of DE may be assessedby using the analysis of physical and chemical properties of DE and its effect on grainproperties and the proof of efficacy may be regulated by bioassay of standard design.Integrated pest management (IPM, a knowledge-based system, is rapidly providing aframework to reduce dependence on synthetic chemical pesticides. The main principleof post-harvest IPM is to prevent problems rather than to react to them. The specificcurative measures using synthetic pesticides should be applied only when infestationoccurs. DE and enhanced diatomaceous earth (EDE formulations hold significant promiseto increase the effectiveness and broaden the adoption of IPM strategies, thereby reducingthe need for synthetic pesticides. By incorporating DE in an effective IPM program,grain is protected against infestation, loss caused by insects is prevented and grain qualityis maintained until the grain is processed. Cases study data on the use of DE for commodityand structural treatment show that DE is already a practical alternative to syntheticpesticides in some applications.

  9. Rotating Polygons on a Fluid Surface

    DEFF Research Database (Denmark)

    Bohr, Tomas; Jansson, Thomas; Haspang, Martin

    The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can bre...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small.......The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...

  10. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch


    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  11. Capacity for visual features in mental rotation (United States)

    Xu, Yangqing; Franconeri, Steven L.


    Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781

  12. Rotations with Rodrigues' vector

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E, E-mail: [Prof. Eugenio Mendez Docurro de la, Escuela Superior de Fisica y Matematicas del IPN, Zacatenco 07738, Mexico DF (Mexico)


    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  13. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André


    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  14. School, Earth and Imagination (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina


    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  15. ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3

    DEFF Research Database (Denmark)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan


    Sulphur trioxide (SO3) is a trace species in the atmospheres of the Earth and Venus, as well as being an industrial product and an environmental pollutant. A variational line list for 32S16O3, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model...

  16. Adaptation of the S-5-S Pendulím Seismometer for Measurement of Rotational Ground Motion

    Czech Academy of Sciences Publication Activity Database

    Knejzlík, Jaromír; Kaláb, Zdeněk; Rambouský, Zdeněk


    Roč. 16, č. 4 (2012), s. 649-656 ISSN 1383-4649 Institutional support: RVO:68145535 Keywords : rotational ground motion * experimental measurement * mining induced seismicity * S-5-S seismometer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.388, year: 2012

  17. Giant Faraday Rotation in Mesogenic Organic Molecules


    Vandendriessche, Stefaan; Cleuvenbergen, Stijn,; Willot, Pieter; Hennrich, Gunther; Srebro, Monika; V. K. Valev, Ventsislav; Koeckelberghs, Guy; Clays, Koen; Autschbach, Jochen; Verbiest, Thierry


    Faraday rotation, the rotation of the polarization of light due to a magnetic field in the direction of propagation of the light, is used in applications ranging from quantum memory to the detection of biomagnetic fields. For these applications large Faraday rotation is necessary, but absorption of light is detrimental. In search of these properties, we have characterized the Verdet constant of a so far unexplored class of mesogenic organic molecules. We report their spectra and provide an in...

  18. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  19. The Mission Accessible Near-Earth Objects Survey (MANOS): photometric results (United States)

    Thirouin, Audrey; Moskovitz, Nicholas; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca; Person, Michael J.; Polishook, David; Thomas, Cristina; Trilling, David E.; Willman, Mark; Hinkle, Mary L.; Burt, Brian; Avner, Dan


    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near-Earth Objects (NEOs) to provide physical data for several hundred mission accessible NEOs across visible and near-infrared wavelengths. Using a variety of 1-m to 8-m class telescopes, we observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties and taxonomic class.Rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present results of the MANOS photometric survey for more than 200 NEOs. We report lightcurves from our first three years of observing and show objects with rotational periods from a couple of hours down to a few seconds. MANOS found the three fastest rotators known to date with rotational periods below 20s. A physical interpretation of these ultra-rapid rotators is that they are bound through a combination of cohesive and/or tensile strength rather than gravity. Therefore, these objects are important to understand the internal structure of NEOs. Rotational properties are used for statistical study to constrain overall properties of the NEO population. We also study rotational properties according to size, and dynamical class. Finally, we report a sample of NEOs that are fully characterized (lightcurve and visible spectra) as the most suitable candidates for a future robotic or human mission. Viable mission targets are objects with a rotational period >1h, and a delta-v lower than 12 km/s. Assuming the MANOS rate of object characterization, and the current NEO population estimates by Tricarico (2016), and by Harris and D'Abramo (2015), 10,000 to 1,000,000 NEOs with diameters between 10m and 1km are expected to be mission accessible. We acknowledge funding support from NASA NEOO grant number NNX14AN82G, and NOAO survey program.

  20. Spontaneous Toroidal Rotation in Tokamaks (United States)

    Haines, Malcolm


    When two-fluid MHD theory of stability is employed the resulting growth rates are complex, and the perturbing magnetic fields move with a velocity that depends both on the components of the electron drift and heat flux perpendicular to the equilibrium magnetic field and on the diamagnetic velocity. On diffusing into a resistive wall a drag force is exerted on the wall which is proportional to the square-root of the velocity of the perturbing fields. The equal and opposite force or torque will be on the plasma, centred at the singular rational surface for each mode[1]. For typical experimental conditions this leads to a spontaneous, or intrinsic toroidal rotation of 20km/s occurring in a few milliseconds for perturbing magnetic fields of 0.0025tesla. The induced poloidal rotation by this mechanism is generally much larger, but there is considerable poloidal damping due to trapped particles on the ion-ion collision time- scale[2]. Furthermore poloidal angular momentum is in general not conserved for an isolated plasma, and any up-down asymmetry can act as a source or sink[3]; for example, Pfirsch-Schluter diffusion [3 damping by trapped particles[2] and the Ware pinch[4]. [1] J.B.Taylor, Phys.Rev.Lett. 91, 115002 (2003). [2] R.C.Morris, M.G.Haines and R.J.Hastie, Phys.Plasmas 3, 4513 (1996). [3] M.G.Haines, Phys.Rev.Lett. 25, 1480 (1970). [4] M.G.Haines and P.Martin, Phys.Plasmas 3, 4536 (1996).

  1. Current status of GFZ's operational Earth System model GFZESM (United States)

    Dill, Robert; Dobslaw, Henryk; Thomas, Maik


    GFZ revised his operational Earth system model GFZESM to provide in quasi-real-time a consistent product data-set of gravity variations, Earth rotation excitation, and surface load deformations related to modeled atmospheric, oceanic, and hydrological mass re-distributions. ECMWFs ERA Interim and operational atmospheric data is reduced to a fixed defined high-resolution reference topography in order to avoid inconsistencies between different ECMWF model setups and due to routinely updated orography background models in the operational atmospheric data. Consistently with the new GRACE de-aliasing product AOD1B release 06 the modeled mass re-distributions from atmospheric surface pressure (ECMWF)and oceanic bottom pressure (calculated by the oceanic model MPIOM) are corrected for tidal signals and the inverse barometric effect over the ocean. In combination with the hydrological model LSDM, the following consistent set of operational products is provided daily: GRACE AOD1B release 06 spherical harmonic coefficients (d/o 180, 3h); Earth rotation excitation AAM (3h), OAM (3h), and HAM (24); non-tidal Loading Surface Deformations NTAL (0.5°, 3h), NTOL (0.5°, 3h), and HYDL(0.5°, 24h). In addition, 6-day forecasts for all the products are available.

  2. Centrifugally driven convection in the rotating cylindrical annulus with modulated boundaries

    Directory of Open Access Journals (Sweden)

    M. Westerburg


    Full Text Available The effect of sinusoidally modulated conical end boundaries on convection in a rotating cylindrical annulus is investigated theoretically and experimentally. A quasiperiodic time dependence of convection in the form of thermal Rossby waves is found and semi-quantitative agreement between theory and measurements can be established. The results are relevant to convection in the Earth's outer core close to the tangent cylinder touching the inner core at its equator.

  3. Rotational averaging-out gravitational sedimentation of colloidal dispersions and phenomena


    Masri, Djamel El; Vissers, Teun; Badaire, Stephane; Stiefelhagen, Johan C. P.; Vutukuri, Hanumantha Rao; Helfferich, Peter; Zhang, Tian Hui; Kegel, Willem K; Imhof, Arnout; van Blaaderen, Alfons


    We report on the differences between colloidal systems left to evolve in the earth's gravitational field and the same systems for which a slow continuous rotation averaged out the effects of particle sedimentation on a distance scale small compared to the particle size. Several systems of micron-sized colloidal particles were studied: a hard sphere fluid, colloids interacting via long-range electrostatic repulsions above the freezing volume fraction, an oppositely charged colloidal system clo...

  4. Confirmation of bistable stellar differential rotation profiles (United States)

    Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.


    Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main

  5. Peculiar rotation of electron vortex beams. (United States)

    Schachinger, T; Löffler, S; Stöger-Pollach, M; Schattschneider, P


    Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Onset of chaos in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, S. (Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN (USA) Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))


    The onset of chaos is investigated for excited, rapidly rotating nuclei, utilizing a schematic two-body residual interaction added to the cranked Nilsson Hamiltonian. Dynamical effects at various degrees of mixing between regularity and chaos are studied in terms of fragmentation of the collective rotational strength. It is found that the onset of chaos is connected to a saturation of the average standard deviation of the rotational strength function. Still, the rotational-damping width may exhibit motional narrowing in the chaotic regime.

  7. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.


    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  8. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah


    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  9. Disentangling rotational velocity distribution of stars (United States)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra


    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  10. North-South asymmetry of the Earth and planets’ figure (United States)

    Rokityansky, I. I.


    Mars Orbiter Laser Altimeter (MOLA) team discovered «the striking difference» in elevation between northern and southern hemispheres: «on Mars, the South Pole lying about six km higher than the North Pole» (Physics Today, Oct 1999, p.34). The same topography we have for solid Earth. No sound explanation of NS asymmetry was proposed. Meanwhile, NS asymmetry is inherent property of any freely rotating flexible celestial body as it follows from Kozyrev’s Causal or asymmetrical mechanics. Kozyrev postulated absolute difference of past and future, right and left rotations, introduced new universal constant C - course of time. In a rotating system, course of time changes that creates an additional asymmetrical force in it. Laboratory measurements proved that asymmetric force carry energy and angular moment, but no momentum. It means, that in rapidly rotated parts asymmetrical force directed along axes of rotation, in slowly rotating parts (near the axes) - in opposite directions. Applying the result to rotating planets, one can expect that at some latitude asymmetrical force pass through zero changing the sign. Kozyrev’s measurements at northern latitudes φ from 45 to 84 degrees proved that causal force is directed to the North for φ73 degrees. The change of the direction occur at the distance 1860 km from the Earth’s axes. The magnitude of causal force has order (1-5)×10-5 of gravity force. Being directed to North in low and middle latitudes, asymmetrical force pull matter to North creating its excess in the Northern hemisphere, thus explaining predominance of continents, and its (matter)deficit in the Southern hemisphere, thus giving space for oceans predominance there. In high latitudes (φ>73) asymmetric force is directed to South almost normal to earth surface, that explains low Arctic and high Antarctica. Asymmetrical force can influence the liquid core dynamics. Liquid core has radius 3490 km, then at the distances from the Earth’s axes more than

  11. Booklets for children related with Earth Sciences published in Mexico (United States)

    Alaniz, S. A.; Nieto-Samaniego, A. F.


    The Centro de Geociencias, at the Universidad Nacional Autonoma de Mexico, has published a series of booklets for children, entitled "Simple experiments to understand a complex Earth". It is part of the activities of the Mexican committee of the International Year of the Planet Earth. Each booklet contains experiments related with an Earth Sciences topic and includes the procedure to do one of the "Ten most beautiful experiments in physics" (Crease, P., Physics World May 2002 p17 and September 2002 pp19-20). In Mexico, as in other developing countries, there is very little information about Science in general and Earth Sciences in particular, in the basic education programs. Also, there is poor bibliography in Spanish about science experiments. For this reason, we try to fill the vacuum by distributing free the booklets in Science Museums and rural basic schools in paper, and by Internet in the Centro de Geociencias web site ( At present, we have been distributed 100,000 copies of 5 issues: 1."Atmospheric pressure and the falling bodies", it deals with the Galileo experiment of falling bodies, he proposed that all the bodies fall down at the same velocity. We discuss the properties of the atmosphere air (temperature, pressure and volume) and concluded that Galileo is right but when the bodies are very light. 2. "The light and the colors" is based in the Newton's decomposition of sunlight with a prism experiment. This booklet contains nine experiments to explain the colors that we find in Earth like the blue of the sky, the orange of the sunset, the rainbow and the mirage. 3. "¿Eureka! oceans and continents float". This booklet presents seven experiments related with density and buoyancy to explain the principles of the Plate tectonics theory. 4. "Climate hanging by a thread", Foucault pendulum demonstrates the rotation of Earth without seeing the stars, in this booklet, we explain, through 9

  12. A Numerical Experiment to Test the Influence of the Uncertainty of Earth Model on Nutation (United States)

    Huang, C. L.; Zhang, M.


    From an infinite set of coupled ordinary differential equations that govern the infinitesimal elastic-gravitational oscillations of a rotating, slightly elliptical Earth, as well as a set of boundary conditions on displacement vector, stress tensor and gravity potential, the theoretical nutation model of non-rigid earth can be numerically obtained. In these differential equations and the boundary conditions, the distributions of density and elastic (Lame) parameters interior the Earth are key parameters and are usually input from 1D earth model like PREM. However, the influence of the uncertainty of a given earth model on nutation has never been checked. In this work, we made a numerical experiment to test it, and some primary results will be presented.

  13. The Use of Daily Geodetic UT1 and LOD Data in the Optimal Estimation of UT1 and LOD With the JPL Kalman Earth Orientation Filter (United States)

    Freedman, A. P.; Steppe, J. A.


    The Jet Propulsion Laboratory Kalman Earth Orientation Filter (KEOF) uses several of the Earth rotation data sets available to generate optimally interpolated UT1 and LOD series to support spacecraft navigation. This paper compares use of various data sets within KEOF.

  14. 3D Orbit Visualization for Earth-Observing Missions (United States)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.


    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  15. Earth's global climate. Das Klimasystem unserer Erde

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, C.


    Earth's global climate is a complex dynamic system with close interactions between atmosphere, hydrosphere, cryosphere, and biosphere. Also, geological events are strongly correlated with the history of climatic changes. Interpretation of the traces of past climates helps us understand this system. Throughout geological time climate by no means has been an invariant environment. There is evidence for ancient glaciations in the early Proterozoic period from the Canadian shield, in the Ordovician/Silurian period from the recent desert of Sahara and for a longer glaciation in the Permocarboniferous period. In between the earth enjoyed long warm periods in Cambrian, in Devonian, and during the Mesozoic era. But altogether the climate shows a remarkable stability. Throughout several billions of years - despite huge geological changes by floating continents - earth's life was given the possibility to develop and proceed from the earliest single cells to the recent variety of life. The small variations, however, have an immense influence on the evolution of the biosphere. There are several conceivable causes for climatic change. Extraterrestrial influence may result from variations of the energy supply from the sun due to variations of the earth's orbit or of the tilt of the earth's rotational axis. Terrestrial causes, changes of the earth's surface due to continental drift and orogenetic events, affect atmospheric and ocean circulation and hence influence the redistribution of the absorbed energy to different latitudes on earth's surface. The constitution of the atmosphere affects the absorption of radiation in the atmosphere and the penetration of radiation down to the surface. Also, the extent of polar ice, being a result of climatic change, influences the absorption of radiation and thus, represents a feedback mechanism of the climate system. Examining this system enables us to estimate the future climate by means of computer modelling

  16. Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

    Directory of Open Access Journals (Sweden)

    Jin Choi


    Full Text Available Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net. However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI. The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK and two line element (TLE technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.

  17. Rotating With Rotated Text: A Natural Behavior Approach to Investigating Cognitive Offloading

    National Research Council Canada - National Science Library

    Risko, Evan F; Medimorec, Srdan; Chisholm, Joseph; Kingstone, Alan


    ...) as a strategy in letter naming and reading stimuli that are upright or rotated. We demonstrate that the frequency of this natural behavior is modulated by the cost of stimulus rotation on performance...

  18. One Day on Earth

    CERN Multimedia


    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See for details on how to participate.

  19. Telephony Earth Station (United States)

    Morris, Adrian J.; Kay, Stan

    The Telephony Earth Station (TES), a digital full-mesh SCPC (single channel per carrier) system designed for satellite voice and data transmission is described. As compared to companded FM, the advanced speech compression and forward error correction techniques used by TES better achieve the quality, power, and bandwidth ideal for each application. In addition, the TES offers a fully demand-assigned voice call setup, handles point-to-point data channels, supports a variety of signaling schemes, and does not require any separate pilot receivers at the station, while keeping costs low through innovative technology and packaging. The TES can be used for both C-band and Ku-band (domestic or international) applications, and is configurable either as an VSAT (very small aperture terminal) using an SSPA, or as a larger station depending on the capacity requirements. A centralized DAMA processor and network manager is implemented using a workstation.

  20. Earth System Environmental Literacy (United States)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.