Sample records for sub-continental lithospheric deformation

  1. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Scott, James M.; van der Meer, Quinten Har Adriaan


    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasma...... Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand...... and that contained a HIMU component. The volcanics have tapped two adjacent but chemically contrasting upper mantle domains: a fertile eastern domain and an extremely depleted western domain. Both domains underlie Mesozoic metasedimentary crust. Radiogenic isotope compositions of the clinopyroxene have 87Sr/86Sr...

  2. Platinum-group element contents of Karelian kimberlites: Implications for the PGE budget of the sub-continental lithospheric mantle (United States)

    Maier, W. D.; O'Brien, H.; Peltonen, P.; Barnes, Sarah-Jane


    We present high-precision isotope dilution data for Os, Ir, Ru, Pt, Pd and Re in Group I and Group II kimberlites from the Karelian craton, as well as 2 samples of the Premier Group I kimberlite pipe from the Kaapvaal craton. The samples have, on average, 1.38 ppb Pt and 1.33 ppb Pd, with Pt/Pd around unity. These PGE levels are markedly lower, by as much as 80%, than those reported previously for kimberlites from South Africa, Brazil and India, but overlap with PGE results reported recently from Canadian kimberlites. Primitive-mantle-normalised chalcophile element patterns are relatively flat from Os to Pt, but Cu, Ni and, somewhat less so, Au are enriched relative to the PGE (e.g., Cu/Pd > 25.000). Pd/Ir ratios are 3,6 on average, lower than in most other mantle melts. The PGE systematics can be largely explained by two components, (i) harzburgite/lherzolite detritus of the SCLM with relatively high IPGE (Os-Ir-Ru)/PPGE (Rh-Pt-Pd) ratios, and (ii) a melt component that has high PPGE/IPGE ratios. By using the concentrations of iridium in the kimberlites as a proxy for the proportion of mantle detritus in the magma, we estimate that the analysed kimberlites contain 3-27% entrained and partially dissolved detritus from the sub-continental lithospheric mantle, consistent with previous estimates of kimberlites elsewhere (Tappe S. et al., 2016, Chem. Geol. 10.1016/j.chemgeo.2016.08.019).

  3. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle (United States)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray


    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  4. Deformation in the continental lithosphere (United States)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  5. Vertically Integrated Rheology of Deforming Oceanic Lithosphere (United States)

    Mishra, J. K.; Gordon, R. G.


    The tectonics of the oceans have traditionally been modeled in terms of rigid plates interacting at narrow boundaries. The now well-documented existence of diffuse oceanic plate boundaries, across which relative motion is distributed over hundreds to thousands of kilometers, demonstrates the need for a different approach to understanding the tectonics and geodynamics of a substantial fraction of oceanic lithosphere. A model that has usefully been applied to diffuse zones of continental deformation is that of a thin viscous sheet of fluid obeying a power-law rheology. The model has few adjustable parameters, typically a power-law exponent, n, and the Argand number [England & McKenzie, 1982], which is a measure of the size of buoyancy forces caused by the deformation, and which can be neglected for deformation of oceanic lithosphere. In prior investigations of a thin sheet of power-law fluid for continental regions, most studies have found that the most appropriate power-law exponent is ≈3 [e.g., England & Molnar 1991, 1997], but a value as large as ≈10 has been recently suggested by Dayem et al. [2009]. Because the rheology of oceanic lithosphere differs significantly from that of continental lithosphere, the most appropriate exponent may be larger than 3, and should in some sense be an appropriately weighted average between the properties of the upper lithosphere, which deforms brittlely and semi-brittlely, and for which the power-law exponent is n → ∞, and the lower lithosphere, which deforms by dislocation glide [Goetze 1978; Evans & Goetze 1979; Ratteron et al. 2003; Dayem et al. 2009; Mei et al. 2010], which obeys an exponential law, and by dislocation creep for which n≈3 [Sonder & England, 1986]. To estimate the appropriate power-law exponent consistent with laboratory experiments we determine strain rate as a function of applied end load on the lithosphere for various ages of lithosphere. We find that a power-law fluid well approximates the

  6. The geomorphic record of deep lithospheric deformation (United States)

    Clark, M. K.


    Where deformation of the upper crust is minimal or absent, a young history of topographic change can be related to active or recent processes occurring in the lower crust and mantle lithosphere. Geomorphic systems, fluvial systems in particular, are sensitive indicators of topographic change manifested by the erosional/depositional record, drainage pattern perturbations and landscape form. Evolution of landscape form over geologically relevant timescales (Myr) is commonly derived from low-temperature (form. Examples from the eastern Tibetan Plateau and the Sierra Nevada, California illustrate how geomorphic evolution of mountain ranges and plateaus may be related to lower crustal flow and mantle lithosphere removal. In these cases, a combination of multi-disciplinary data is used to delineate a holistic view of lithospheric evolution from the surface to the upper mantle that can be used to quantify rates of deformation and improve our understanding of deformation mechanisms. Future directions in linking surface and deep lithospheric processes will be aided by new thermochronometric techniques and further development of quantitative laws that govern surface processes, which will allow us to better understand landscape response to tectonic forcing. In turn, these advances may be applied for a more complete understanding of lithospheric dynamics.

  7. Characterization of the sub-continental lithospheric mantle beneath the Cameroon volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes (United States)

    Pintér, Zsanett; Patkó, Levente; Tene Djoukam, Joëlle Flore; Kovács, István; Tchouankoue, Jean Pierre; Falus, György; Konc, Zoltán; Tommasi, Andréa; Barou, Fabrice; Mihály, Judith; Németh, Csaba; Jeffries, Teresa


    We carried out detailed petrographic, major and trace element geochemical, microstructural and FTIR analyses on eight characteristic ultramafic xenoliths from Nyos and Barombi Mbo Lakes in the continental sector of the Cameroon Volcanic Line (CVL). The studied xenoliths are spinel lherzolites showing lithologies similar to the other xenoliths reported previously along the CVL. They have protogranular and porphyroclastic textures. One of the Barombi xenolith contains amphibole, which had not been previously reported in this locality. Amphibole is common in the Nyos xenoliths suite. Peridotite xenoliths from both localities show some chemical heterogeneity, but Barombi xenoliths generally are less depleted in basaltic elements with respect to Nyos xenoliths. Trace element compositions of Nyos spinel lherzolites show a moderately depleted initial (premetasomatic) composition and variable enrichment in REE. Evidence for both modal and cryptic metasomatism is present in Nyos xenoliths. Rare earth element patterns of clinopyroxene suggest that interaction between mafic melts and the upper mantle occurred beneath the Nyos locality. Barombi Mbo xenoliths, on the other hand, record a small degree of partial melting. The Barombi Mbo xenoliths have weak, dominantly orthorhombic olivine crystal preferred orientations, whereas Nyos ones have strong axial-[010] patterns, which may have formed in response to transpression. Nominally anhydrous mantle minerals (NAMs) of the Barombi Mbo xenoliths show generally higher bulk concentrations of 'water' (70-127 ppm) than Nyos xenoliths (32-81 ppm). The Barombi Mbo xenoliths could originate from a juvenile segment of the lithospheric mantle, which had been originally part of the asthenosphere. It became a part of the lithosphere in response to thermal relaxation following the extension, forming a weakly deformed lower lithospheric mantle region along the CVL. The Nyos xenoliths, however, represent a shallow lithospheric mantle bearing

  8. Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto; Cowie, Leanne


    A kinematic model of lithosphere and asthenosphere deformation has been used to investigate lithosphere stretching and thinning modes during continental rifting leading to breakup and seafloor spreading. The model has been applied to two conjugate profiles across the Iberia-Newfoundland rifted margins and quantitatively calibrated using observed present-day water loaded subsidence and crustal thickness, together with observed mantle exhumation, subsidence and melting generation histories. The kinematic model uses an evolving prescribed flow-field to deform the lithosphere and asthenosphere leading to lithospheric breakup from which continental crustal thinning, lithosphere thermal evolution, decompression melt initiation and subsidence are predicted. We explore the sensitivity of model predictions to extension rate history, deformation migration and buoyancy induced upwelling. The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require; (1) an initial broad region of lithosphere deformation with passive upwelling, (2) lateral migration of deformation, (3) an increase in extension rate with time, (4) focussing of the deformation and (5) buoyancy induced upwelling. The model prediction of exhumed mantle at the Iberia-Newfoundland margins, as observed, requires a critical threshold of melting to be exceeded before melt extraction. The preferred calibrated models predict faster extension rates and earlier continental crustal separation and mantle exhumation for the Iberia Abyssal Plain-Flemish Pass conjugate margin profile than for the Galicia Bank-Flemish Cap profile to the north. The predicted N-S differences in the deformation evolution give insights into the 3D evolution of Iberia-Newfoundland margin crustal separation.


    Directory of Open Access Journals (Sweden)

    S. I. Sherman


    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with


    Directory of Open Access Journals (Sweden)

    S. I. Sherman


    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  11. Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation (United States)

    Mueller, S.; Choy, G.L.; Spence, W.


    Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.

  12. Impact of lithosphere deformation on stratigraphic architecture of passive margin basins. (United States)

    Rouby, Delphine; Huismans, Ritske; Braun, Jean; Robin, Cécile; Granjeon, Didier


    The aim of this study is to revise our view of the long-term stratigraphic trends of passive margins to include the impact of the coupling between the lithosphere deformation and the surface processes. To do this, we developed a new numerical procedure simulating interactions between lithosphere deformation and (un)loading effects of surface processes (erosion/sedimentation) in 3D with a special attention to the stratigraphic architecture of the associated sedimentary basins. We first simulate the syn-rift phase of lithosphere stretching by thermo-mechanical modeling. We then use the resulting lithosphere geometry as input of a 3D flexural modeling including coupling with surface processes to simulate the post-rift evolution of the margin. We then use the resulting accumulation and subsidence histories as input of the stratigraphic simulation to model the detailed stratigraphic architecture of the basin. We tested this procedure using synthetic examples of lithosphere stretching based on different rheologies of the lithosphere (i.e. strength of the lower crust) in the cases of narrow or ultrawide rifting. We determined the stratigraphic expression of the conjugate margins and show that they differ in terms of long-term stratigraphic trends, erosion/accumulation and lithological distribution in space and time. In all cases, uplift/subisdence rates decrease with time while the flexure wavelength increases as isotherms are re-equilibrated. Some areas show displacement inversion over time from uplift to subsidence (or vice-versa). As expected, the amplitude of vertical motion of the wide margin cases is very limited with respect to the narrow margin case. Vertical motions are very asymetric on conjugate margins. Accordingly, the stratigraphic architectures and the sedimentation/erosion patterns of the conjugate simulated margins are significantly different mostly because the duration and length of progradation and retrogradation differ. We evaluated the sensitivity of

  13. Three-dimensional finite-element modelling of Earth's viscoelastic deformation: effects of lateral variations in lithospheric thickness (United States)

    Zhong, Shijie; Paulson, Archie; Wahr, John


    We have developed a 3-D spherical finite-element model to study the dynamic response to surface loads of a self-gravitating and incompressible Earth with 3-D viscoelastic structure. We have forced our model with the ICE-3G deglaciation history of Tushingham & Peltier to study the effects of laterally varying lithospheric thickness on observations of post-glacial rebound (PGR). The laterally varying lithospheric thicknesses are derived from estimates of the thermal structure of the oceanic lithosphere and from elastic thicknesses on continents as estimated from studies of long-term geological loads. Our calculations show that the effects of lithospheric structure on the relative sea level change (RSLC) depend on the locations of the observation sites and on the size of loads. The RSLC at the centre of the North American ice sheet is significantly less sensitive to lithospheric thickness, compared with the RSLC at the centre of the Fennoscandian ice sheet. At the peripheral bulges the RSLC tends to be more sensitive to lithospheric thickness. The RSLC is controlled by local lithospheric thickness. The RSLC at a given location, as predicted using models with laterally varying lithospheric thickness, can be reproduced using a 1-D model with a uniform lithospheric thickness equal to the local lithospheric thickness. Coupled with efficient parallel computing, we believe that the finite-element model that we present here can be used to address a variety of viscoelastic deformation problems in geodynamics.

  14. Deformation Patterns and Subduction Behavior of Continental Lithosphere Entering a Trench (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.


    We perform 2-D numerical simulations of continental lithosphere entering a subduction zone, to better understand deformation patterns resulting from subduction of a continental margin. The model consists of a subduction zone in which an attached slab drives subduction of a passive continental margin beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study we employ this feature to study how lithospheric-scale deformation around and within the subduction zone is influenced by surface processes such as erosion, and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography and trench location, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the lithospheric age and temperature structure; the strength of the lower crust; the presence of a weak zone at the plate interface; the amounts of erosion; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. We find that the strength of the overriding plate influences surface uplift and the shape of subsurface deformation, and that the density and thermal structure of the subducting plate affects trench motion. Denser slab roll back, and younger, lighter slabs advance, while neither slab rheology nor the presence of erosion greatly affect trench location. For all cases

  15. Deformation and hydration state of the lithospheric mantle beneath the Styrian Basin (Pannonian Basin, Eastern Austria) (United States)

    Aradi, L. E.; Hidas, K.; Kovács, I. J.; Klébesz, R.; Szabo, C.


    In the Carpathian-Pannonian Region, Neogene alkali basaltic volcanism occurred in six volcanic fields, from which the Styrian Basin Volcanic Field (SBVF) is the westernmost one. In this study, we present new petrographic and crystal preferred orientation (CPO) data, and structural hydroxyl ("water") contents of upper mantle xenoliths from 12 volcanic outcrops across the SBVF. The studied xenoliths are mostly coarse granular lherzolites, amphiboles are present in almost every sample and often replace pyroxenes and spinels. The peridotites are highly annealed, olivines and pyroxenes do not show significant amount of intragranular deformation. Despite the annealed texture of the peridotites, olivine CPO is unambiguous, and varies between [010]-fiber, orthogonal and [100]-fiber symmetry. The CPO of pyroxenes is coherent with coeval deformation with olivine, showing [100]OL distributed subparallel to [001]OPX. The CPO of amphiboles suggest postkinematic epitaxial overgrowth on the precursor pyroxenes. The "water" content of the studied xenoliths exhibit rather high values, up to 10, 290 and 675 ppm in olivine, ortho- and clinopyroxene, respectively. Ortho- and clinopyroxene pairs show equilibrium in all samples, however "water" loss in olivines is observed in several xenoliths. The xenoliths show equilibrium temperatures from 850 to 1100 °C, which corresponds to lithospheric mantle depths between 30 and 60 km. Equilibrium temperatures show correlation with the varying CPO symmetries and grain size: coarser grained xenoliths with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which is characteristic for asthenospheric origin. Most of the samples display transitional CPO symmetry between [010]-fiber and orthogonal, which indicate extensive lithospheric deformation under varying stress field from transtensional to transpressional settings. Based on the estimated seismic properties of the studied samples, a significant part of

  16. Tectonic stresses in the lithosphere: constraints provided by the experimental deformation of rocks. (United States)

    Kirby, S.H.


    The strengths of rocks clearly place an upper limit on the stress that can be sustained by the upper half of the lithosphere. Laboratory data on rock rheology are generally lacking at intermediate temperatures and pressures on the important rock types expected in the lithosphere, so a definitive accounting of the strength distribution with depth in the upper lithosphere is presently unattainable. Analogies are drawn between the fragmentary strength data on slicates at intermediate temperature and the more extensive experimental data on marble and limestone, and several tentative conclusions are drawn: First, brittle processes, such as faulting and cataclasis, are expected to control rock strength at low pressures and temperatures. The strengths associated with these brittle mechanisms increase rapidly with increasing effective pressure and are relatively insensitive to temperature and strain rate. Second, the transitions between brittle and ductile processes occur at critical values of the least principal stress sigma3. I suggest that the concept of the deformation mechanism map of Ashby (1972) be extended to brittle-ductile transitions by normalizing the applied differential stress sigma by sigma3, i.e., the transitions occur at critical values of sigma/sigma3. -from Author

  17. Lithospheric mantle deformation in the Yerer-Tullu Wellel Volcanotectonic Lineament: A study of peridotite xenoliths (United States)

    Trestrail, K. R.; Rooney, T. O.


    Although a great deal is known about crustal extensional processes in the East African Rift System (EARS), questions remain as to the impact of extension on the continental lithospheric mantle. The northernmost portion of the EARS is the Main Ethiopian Rift (MER), which is divided into three sectors: the Northern, (NMER), Central (CMER), and the Southern Main Ethiopian Rift (SMER). The NMER-CMER transition coincides with the Yerer-Tullu Wellel volcanotectonic lineament (YTVL), and may represent a terrain boundary along which extension was directed during the Cenozoic. Here we present petrographic data from peridotite xenoliths contained within ~6 Ma lavas recovered along the western portion of the YTVL near Nekempte, Ethiopia to examine the characteristics of the lithospheric mantle, and how peridotite has responded to extensional strain. Our preliminary results show that the Nekempte xenoliths are deformed spinel-bearing lherzolites, which previous studies have constrained to the spinel lherzolites field at 1.1 GPa in the lithospheric mantle. Petrographic examination of these xenoliths reveals two generations of crystals. These generations are defined by both size and texture; the first generation (coarse crystals) being up to 4 mm in diameter and the second generation (fine crystals) being less than 1 mm in diameter. The samples contain two generations of olivine (Ol I and Ol II) and orthopyroxene (Opx I and Opx II), one generation of clinopyroxene (Cpx I), spinel (Spl I), amphibole (Amp), and many fluid inclusion trails. We compare these xenoliths to samples from Injibara, Lake Tana Province, approximately 200 km north of Nekempte on the Ethiopian Plateau, a region with less focused extensional strain. Xenoliths from Injibara are also spinel-bearing lherzolites, however they exhibit less strain and metasomatic textures in comparison to xenoliths from along the YTVL. Based on the petrographic and textural analyses performed, we propose that the larger scale

  18. Lithosphere deformation methods and models constrained by surface fault data on Mars (United States)

    Dimitrova, Lada L.

    Models of lithospheric deformation tie observed field measurements of gravity and topography with surface observations of tectonic features. An understanding of the sources of stress, and the expected style, orientation, and magnitudes of stress and associated elastic strain is important for understanding the evolution of faulting on Mars and its relationship to loading. At the same time, theoretical models of deformation mechanisms and forces, when tied to tectonic observations, can be interpreted in terms of major tectonic events and allow insights into the planet's history and evolution as well as its internal structure and processes. This is particularly important for understanding solid planetary bodies other than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g. Mars. This kind of research has implications for, and benefits from, an understanding of the petrology and surface processes. In this work, I use MGS MOLA and Radio Science data products (topography and gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics on Mars as a function of time, while satisfying geologic surface observations (surface features) that have been and are being catalogued and studied from Viking, MOLA, MOC, and THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects), (2) loading from the surface and base of lithosphere, and the effects of this loading on membrane and flexural strains and stresses, and (3) the role of global contraction, all viewed in the context of how the surface elastic layer has changed as the planet has evolved. I show that deviatoric stresses associated with gravitational potential differences do a good job at matching the normal faults; however, fitting all the surface-breaking faults is more difficult. I argue that global planetary contraction is an unlikely source of significant deformation. Instead, the simplest inverse models show that small lateral

  19. Digital deformation of the lithosphere: how simulation helps to unravel the dynamics of the solid Earth (United States)

    Kaus, Boris J. P.


    Better understanding the physics of the Earth is and will remain one of the major goals of solid Earth sciences. Whereas geophysical methods give a fair idea of the structure of the present-day Earth, geological data indicate that most processes occur over millions of years and, thus, provide information on how the Earth behaved on a much longer timescale. If both types of data should be reconciled, models are needed that describe how the lithosphere deforms and results in mountain belts such as the Himalayas. However, most geological tectonic models are just cartoon models drawn with software tools. They satisfy the geological (and often geophysical) data, but they do not necessarily tell much about the underlying physics of the lithosphere and the mechanics of deformation. As a result, there are many competing geological models explaining the same data sets. A different approach is to use thermo-mechanical numerical models to simulate collision scenarios on the computer. Over the last two decades, such models have become quite sophisticated and nowadays one can take realistic rock rheologies into account that vary from brittle (or elastoplastic) under low temperatures to ductile (or viscous) at higher temperatures. Typically such geodynamic models are used in a forward manner, in which various theoretical scenarios are simulated as a function of changing parameters such as plate speed, thermal structure of the lithosphere and rock rheology. The best fitting models are the ones that appear to be most consistent with the data. This shows how lithospheric collision could have occurred. Yet, since the number of model parameters is large and the models remain computationally intensive even in 2D, we cannot check every parameter combination. The result is that it is often tricky to understand the underlying physics of such models, although progress can be made with the help of scaling analysis and (semi-)analytical solutions. Moreover, present-day geophysical

  20. Lithosphere Deformation Modelling of the Italian Peninsula: A Tool for Seismic Hazard Assessment (United States)

    Jiménez-Munt, I.; Pagani, M.; Marcellini, A.; Sabadini, R.


    Large uncertainties of input data for seismic hazard assessment, like the incompleteness of the historical catalogues, magnitude estimation uncertainties and low reliability of epicentral location forces the adoption of additional information for the characterization of seismicity. Lithosphere deformation measuring and modelling techniques were largely increased and improved during the last decade; the detail and the reliability of the deformation models presently available make possible the development of methodologies for constraining the geodynamical evolution of active areas and particularly of their long term seismotectonic behaviour. In the present work we describe and test a procedure to create a probabilistic hazard source model for some areas of the Italian peninsula by integrating crustal deformation modelling results with historical evidences of earthquake occurrence. This procedure uses a Bayesian approach with geophysical input to define the earthquake occurrence behaviour: historical earthquake data characterize the sample likelihood function while strain derived occurrence rates define prior distribution parameters. Modelled strain rates are calculated by means of a finite element model based on the thin shell scheme of peninsular Italy and central Mediterranean that simulates the effects of Africa-Eurasia convergence and subduction underneath the Calabrian Arc on lithospheric deformation. The computed horizontal velocities and strain rates are compared with their geodetic counterparts retrieved by a network of permanent GPS receivers in the area. In order to reproduce the clockwise rotation in southern Italy from the NNW direction of the NOTO site (south eastern Sicily), envisaging the motion of the Africa plate, to the NNE direction of GPS sites in Calabria and Matera, the effects of the Calabrian subduction must be completed by the effects of the counter-clockwise rotation of the Adria microplate. This kinematics of Adria reproduces the NNE motion

  1. Crustal deformation induced by mantle dynamics: insights from models of gravitational lithosphere removal (United States)

    Wang, Huilin; Currie, Claire A.


    Mantle-based stresses have been proposed to explain the occurrence of deformation in the interior regions of continental plates, far from the effects of plate boundary processes. We examine how the gravitational removal of a dense mantle lithosphere root may induce deformation of the overlying crust. Simplified numerical models and a theoretical analysis are used to investigate the physical mechanisms for deformation and assess the surface expression of removal. Three behaviours are identified: (1) where the entire crust is strong, stresses from the downwelling mantle are efficiently transferred through the crust. There is little crustal deformation and removal is accompanied by surface subsidence and a negative free-air gravity anomaly. Surface uplift and increased free-air gravity occur after the dense root detaches. (2) If the mid-crust is weak, the dense root creates a lateral pressure gradient in the crust that drives Poiseuille flow in the weak layer. This induces crustal thickening, surface uplift and a minor free-air gravity anomaly above the root. (3) If the lower crust is weak, deformation occurs through pressure-driven Poiseuille flow and Couette flow due to basal shear. This can overthicken the crust, producing a topographic high and a negative free-air gravity anomaly above the root. In the latter two cases, surface uplift occurs prior to the removal of the mantle stress. The modeling results predict that syn-removal uplift will occur if the crustal viscosity is less than ∼1021 Pa s, corresponding to temperatures greater than ∼400-500 °C for a dry and felsic or wet and mafic composition, and ∼900 °C for a dry and mafic composition. If crustal temperatures are lower than this, lithosphere removal is marked by the formation of a basin. These results can explain the variety of surface expressions observed above areas of downwelling mantle. In addition, observations of the surface deflection may provide a way to constrain the vertical rheological

  2. Lithospheric deformation inferred from teleseismic shear wave splitting observations in the Scottish Highlands (United States)

    Bastow, I. D.; Owens, T. J.; Helffrich, G.; Knapp, J. H.


    The Scottish Highlands is an area that has experienced intense tectonic deformation over a recorded geological history that dates back to the Precambrian. Evidence for large scale deformation during the Caledonian orogeny is evident, for example, at the Great Glen and Highland Boundary faults, which have been investigated by field based studies of surface geology. The RUSH (Reflections Under the Scottish Highlands) broadband seismic network of 24 stations recorded continuously for 2 years in 2001-3 and traversed several of the major tectonic terrane boundaries in Scotland. Here we employ the method of Silver and Chan (1991) to estimate splitting parameters (dt, phi) using teleseismic shear waves recorded by these stations. The problem of large amounts of microseismic noise in our data is overcome by stacking individual results using the approach of Restivo and Helffrich (1999); high signal-to-noise ratio results are given more weight in the stack. We explore the relationship between splitting and structural fabric and find that fast polarisation directions are most commonly parallel to geological features such as the NE-SW trending Great Glen and Highland Boundary faults. In the north west part of the study area, towards the Moine thust zone, a change from NE- SW to E-W oriented polarisation direction is noted but dt is unchanged. dt increases markedly towards the NE-SW terrane boundaries. The results confirm that lithospheric scale deformation in Scotland has a preserved "fossil" anisotropic signature, up to hundreds of millions of years after the last tectonic episode.

  3. Insights into the mechanical strength of the Venusian lithosphere from the gravity-driven deformation of large volcanic edifices (United States)

    Gordon, Charlotte; Mikhail, Sami; Byrne, Paul K.; Heap, Michael J.; Ghail, Richard


    In our Solar System, Venus is the most similar planet to Earth in terms of size, composition, and distance from the Sun, yet these worlds are topographically, tectonically, and geomorphologically very different. The higher average surface temperature on Venus ( 460°C vs. 4°C on Earth) may be indirectly responsible for many of these contrasting features, since higher temperatures reduce the depth within the lithosphere at which deformation is expected to be predominantly ductile. Experimental data place the Venusian brittle-ductile transition at 2-12km [1], much shallower than on Earth. This implies that the Venusian lithosphere has a lower flexural rigidity and a diminished capacity to support large, heavy landforms such as major shield volcanoes. The relative dearth of tall landforms on Venus compared with Earth may be because most such structures subside into the Venusian lithosphere. We test this prediction by searching Magellan radar data for evidence of gravity-driven deformation of Venusian volcanoes. Experimental work has demonstrated that volcanoes undergoing such deformation can display a continuum of geomorphological features on their flanks that reflect the rigidity of, and their mechanical relationship with, the underlying basement [2]. Here, we relate these landforms to the deformational history of the volcanoes on which they are found, and explore the implications for the local mechanical properties of the Venusian lithosphere. References: [1] Mikhail and Heap, under review. [2] Byrne, P.K. et al., (2013) Geology, 41(3), 339-342


    Directory of Open Access Journals (Sweden)

    O. A. Kuchay


    Full Text Available The inversion seismic tomography algorithm (ITS was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8 are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0 ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velo­city anomalies is abruptly changed. We calculated seismotectonic deformations (STD from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study. 

  5. Crustal deformation evidences for viscous coupling and fragmented lithosphere at the Nubia-Iberia plate boundary (Western Mediterranean) (United States)

    Palano, Mimmo; González, Pablo J.; Fernández, José


    A spatially dense crustal velocity field, based on up to 15 years of GNSS observations at more than 380 sites and extensively covering the Iberian Peninsula and Northern Africa, allow us to provide new insights into two main tectonic processes currently occurring in this area. We detected a slow large-scale clockwise rotation of the Iberian Peninsula with respect to a local pole located closely to the northwestern sector of the Pyrenean mountain range (Palano et al., 2015). Although this crustal deformation pattern could suggest a rigid rotating lithosphere block, this model would predict significant shortening along the Western (off-shore Lisbon) and North Iberian margin which cannot totally ruled out but currently is not clearly observed. Conversely, we favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. Furthermore, the western Mediterranean basin appears fragmented into independent crustal tectonic blocks, which delimited by inherited lithospheric shear structures and trapped within the Nubia-Eurasia collision, are currently accommodating most of the plate convergence rate. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. Most of the observed crustal ground deformation can be attributed to processes driven by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary. Nevertheless, the observed deformation field infers a very low convergence rates as observed also at the eastern side of the western Mediterranean, along the Calabro Peloritan Arc, by space geodesy (e.g. Palano, 2015). References Palano M. (2015). On the present

  6. Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations (United States)

    Bowin, C. O.; Yi, W.; Rosson, R. D.; Bolmer, S. T.


    The new paradigm of plate tectonics began in 1960 with Harry H. Hess's 1960 realization that new ocean floor was being created today and is not everywhere of Precambrian age as previously thought. In the following decades an unprecedented coming together of bathymetric, topographic, magnetic, gravity, seismicity, seismic profiling data occurred, all supporting and building upon the concept of plate tectonics. Most investigators accepted the premise that there was no net torque amongst the plates. Bowin (2010) demonstrated that plates accelerated and decelerated at rates 10-8 times smaller than plate velocities, and that globally angular momentum is conserved by plate tectonic motions, but few appeared to note its existence. Here we first summarize how we separate where different mass sources may lie within the Earth and how we can estimate their mass. The Earth's greatest mass anomalies arise from topography of the boundary between the metallic nickel-iron core and the silicate mantle that dominate the Earth's spherical harmonic degree 2 and 3 potential field coefficients, and overwhelm all other internal mass anomalies. The mass anomalies due to phase changes in olivine and pyroxene in subducted lithosphere are hidden within the spherical harmonic degree 4-10 packet, and are an order of magnitude smaller than those from the core-mantle boundary. Then we explore the geometry of the Emperor and Hawaiian seamount chains and the 60° bend between them that aids in documenting the slow acceleration during both the Pacific Plate's northward motion that formed the Emperor seamount chain and its westward motion that formed the Hawaiian seamount chain, but it decelerated at the time of the bend (46 Myr). Although the 60° change in direction of the Pacific Plate at of the bend, there appears to have been nary a pause in a passive spreading history for the North Atlantic Plate, for example. This, too, supports phase change being the single driver for plate tectonics and

  7. Localization of ductile deformation in lithosphere and rocks: the role of grain boundary sliding (United States)

    Dimanov, Alexandre; Rahanel, Jean; Bornert, Michel; Bourcier, Mathieu; Gaye, Ag; Heripre, Eva; Ludwig, Wolfgang


    Ductile strain of the lithosphere localizes in multi-scale shear zones, ranging from km to mm scales. The resulting mylonites/ultramylonites present microstructural signatures of several concomitant deformation mechanisms. Besides cataclastic features, crystal plasticity dominates in volume, but grain boundary sliding and diffusive/solution mass transport act along interfaces. Considering solely the inherited natural microstructures does not make clear the chronology of appearance and the interactions between these mechanisms. Therefore, inference of the overall mylonitic rheology seems illusory. We have therefore realized over the last decade a systematic rheological characterization of the high temperature flow of various synthetic anorthite - diopside mixtures. The data clearly suggest Newtonian type of rheology as best adapted to the materials representative of the lower crust mylonites. However, the post mortem microstructures undoubtedly evidenced the coexistence of both crystal plasticity and grain boundary sliding processes. Yet, the specific roles of each mechanism in the localization process remained unclear. In order to clarify these aspects we realized a multi-scale micromechanical in situ investigation of the ductile deformation of synthetic rock-salt. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X-ray tomography (MCT). Digital image correlation (DIC) techniques allowed for measurements and characterization of the multi-scale organization of 2D and 3D full strain fields. Macroscopic and mesoscopic shear bands appear at the sample and microstructure scales, respectively. DIC evidenced the development of discrete slip bands within individual grains, and hence of dominant crystal plasticity. Combination of DIC and EBSD allowed for identification of active slip systems. Conversely, DIC allowed for the identification and the precise quantification of minor activity (operating along with crystal slip


    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov


    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to


    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov


    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  10. Deformation and fluid-enhanced annealing in subcontinental lithospheric mantle beneath the Pannonian Basin (Styrian Basin, Eastern Austria) (United States)

    Aradi, Laszlo; Hidas, Károly; János Kovács, István; Tommasi, Andrea; Garrido, Carlos; Szabó, Csaba


    In the Carpathian-Pannonian region, xenolith-bearing Neogene alkali basaltic volcanism occurred in five volcanic fields [1], from which the Styrian Basin Volcanic Field (SBVF) is the westernmost one. In this study, we present new petrographic and crystal preferred orientation (CPO) data, and structural hydroxyl ("water") contents of upper mantle xenoliths from 12 volcanic outcrops across the SBVF. The studied xenoliths are mostly coarse granular hydrous spinel lherzolites. Amphiboles, replacing pyroxenes and spinels, are present in almost every sample. The peridotites are highly annealed, olivines and pyroxenes show no significant amount of intragranular deformation. Despite the annealed texture of the peridotites, olivine CPO is unambiguous and varies between [010]-fiber, orthogonal and [100]-fiber symmetry. The CPO of pyroxenes is coherent with coeval deformation with olivine. The fabric and CPO of amphiboles suggest postkinematic epitaxial overgrowth on the precursor pyroxenes. The structural hydroxyl content of the studied xenoliths exhibits rather high, equilibrium values, up to 10, 290 and 675 ppm in olivine, ortho- and clinopyroxene, respectively. The olivines contain more structural hydroxyl in the annealed xenoliths than in the more deformed ones. The xenoliths show equilibrium temperatures from 850 to 1100 °C, which corresponds to lithospheric mantle depths between 30 and 60 km. Equilibrium temperatures show correlation with the varying CPO symmetries and grain size: coarser grained xenoliths with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which is characteristic for asthenospheric environments [2]. Most of the samples display transitional CPO symmetry between [010]-fiber and orthogonal, which indicate lithospheric deformation under varying stress field from transtensional to transpressional settings [3], probably related to the Miocene evolution of the Pannonian Basin, during which varying compressive and

  11. Postseismic Deformation of Large Normal Faulting Earthquakes in the Yellowstone-Snake River Plain with Implications for Lithospheric Rheology (United States)

    Chang, W.; Smith, R. B.; Puskas, C. M.


    Time-dependent deformation of the Hebgen Lake fault, MT, was measured by trilateration and campaign GPS from 1973 to 2000 following the 18 August 1959 Mw=7.3 Hebgen Lake earthquake that occurred at the northwest edge of the Yellowstone volcanic system in an extensional tectonic regime. Integrated analysis of the geodetic measurements shows time-dependent extension of baseline-length across the area with average rates of 4 to 6 mm/yr. Rheological models derived by these data using VISCO1D suggest that the lithosphere is stronger near the fault zone, and weaker in the vicinity of the Yellowstone caldera where higher heat flow and a thinner brittle crust were suggested by surface temperature measurements, gravity data, and earthquake focal depths. Our models also imply a more viscous lower crust than the upper mantle, in agreement with a corollary that the continental mantle has relatively low long-term stress. Since 2005, the EarthScope-PBO project has deployed an array of 12 continuously operated GPS stations across the Hebgen Lake fault and aftershock zone to assess intraplate postseismic deformation and to model lithospheric rheology. The comparison between the observed and modeled horizontal velocities of the continuous GPS stations suggested that the magnitude of postseismic relaxation from the Hebgen Lake earthquake is less than 20% of the contemporary ground motion. In addition, we evaluated continuous GPS data from 14 stations that span the Lost River fault, ID, to measure the postseismic deformation associated with the1983 Mw=6.9 Borah Peak earthquake. The data reveal extensional rates of 1-2 mm/yr across the Lost River fault zone. Preliminary results of viscoelastic modeling using the results from our Hebgen Lake rheologic model suggest that the combined postseismic relaxation of the above two earthquakes produced horizontal ground motions up to ~1-2 mm/yr across the Lost River fault, thus notably affecting the contemporary deformation field of the eastern

  12. Postseismic Deformation of the Large 1959 Hebgen Lake, MT, and 1983 Borah Peak, ID, Earthquakes, With Implications for Lithospheric Rheology (United States)

    Chang, W.; Smith, R. B.


    Time-dependent deformation of the Hebgen Lake, MT, normal fault zone was measured by campaign mode GPS and trilateration from 1973 to 2000 following the 18 August 1959 Ms=7.5 Hebgen Lake earthquake that occurred at the northwest edge of the Yellowstone volcanic field in an extensional tectono-volcanic regime. Since 2005, the EarthScope-PBO project has deployed an array of 10 continuously operated GPS stations across the Hebgen Lake fault and aftershock zone to assess intraplate post-seismic deformation and to model lithospheric rheology. Integrated analysis of these data shows time-dependent extension of baseline-length across the area with rates of 2 to 4 mm/yr. Rheological models derived by these data suggest that the lithosphere is stronger near the fault zone, and weaker in the vicinity of the Yellowstone caldera with much higher heat flow and a thinner brittle crust. Our models also imply a more viscous lower crust than the upper mantle, in agreement with a corollary that the continental mantle has relatively small long-term stress. In addition, we evaluated continuous GPS data from 10 stations that span the Lost River fault zone, ID, to measure the postseismic deformation associated with the1983 Ms=7.3 Borah Peak, ID earthquakes. The 08-09 data reveal extensional rates of 1-2 mm/yr across the Lost River fault zone. Our preliminary results of viscoelastic modeling suggest that the combined postseismic relaxation of both of these earthquakes produced horizontal ground motions up to ~1-2 mm/yr in the Yellowstone-Snake River Plain region, affecting the total deformation field of the eastern Basin-Range. This study provides new insights into the widespread effects on regional deformation from postseismic relaxation of large earthquakes that need to be considered in kinematic models and earthquake hazards of intraplate tectonic regions. Average horizontal velocities (Jan. 2004 - Jun. 2009) of continuous GPS stations in the Yellowstone-Snake River Plain region. Bold


    Directory of Open Access Journals (Sweden)

    A. A. Stepashko


    Full Text Available  The evolution and specific features of seismogynamics of the Baikal zones are reviewed in the context of interactions between deep deformation waves and the regional structure of the lithospheric mantle. The study is based on a model of the mantle structure with reference to chemical compositions of mantle peridotites from ophiolotic series located in the south-western framing of the Siberian craton (Fig. 1. The chemical zonation of the lithospheric mantle at the regional scale is determined from results of analyses of the heterogeneity of compositions of peridotites (Fig. 2, Table 1 and variations of contents of whole rock major components, such as iron, magnesium and silica (Fig. 3. According to spatial variations of the compositions of peridotites, the mantle has the concentric zonal structure, and the content of SiO2 is regularly decreasing, while concentrations of FeO∑ and MgO are increasing towards the centre of such structure (Fig. 4. This structure belongs to the mantle of the Siberian craton, which deep edge extends beyond the surface contour of the craton and underlies the north-western segment of the Central Asian orogenic belt.Results of the studies of peridotites of the Baikal region are consistent with modern concepts [Snyder, 2002; O’Reilly, Griffin, 2006; Chen et al., 2009] that suggest that large mantle lenses underlie the Archaean cratons (Fig. 5. The lenses are distinguished by high-density ultrabasic rocks and compose high-velocity roots of cratons which have remained isolated from technic processes. Edges of the mantle lenses may extend a few hundred kilometers beyond the limits of the cratons and underlie orogenic belts that frame the cratons, and this takes place in the south-western segment of the Siberian craton.The revealed structure of the lithospheric mantle is consistent with independent results of seismic and magmatectonical studies of the region. The Angara geoblock is located above the central part of the


    Directory of Open Access Journals (Sweden)

    A. A. Stepashko


    Full Text Available  The evolution and specific features of seismogynamics of the Baikal zones are reviewed in the context of interactions between deep deformation waves and the regional structure of the lithospheric mantle. The study is based on a model of the mantle structure with reference to chemical compositions of mantle peridotites from ophiolotic series located in the south-western framing of the Siberian craton (Fig. 1. The chemical zonation of the lithospheric mantle at the regional scale is determined from results of analyses of the heterogeneity of compositions of peridotites (Fig. 2, Table 1 and variations of contents of whole rock major components, such as iron, magnesium and silica (Fig. 3. According to spatial variations of the compositions of peridotites, the mantle has the concentric zonal structure, and the content of SiO2 is regularly decreasing, while concentrations of FeO∑ and MgO are increasing towards the centre of such structure (Fig. 4. This structure belongs to the mantle of the Siberian craton, which deep edge extends beyond the surface contour of the craton and underlies the north-western segment of the Central Asian orogenic belt.Results of the studies of peridotites of the Baikal region are consistent with modern concepts [Snyder, 2002; O’Reilly, Griffin, 2006; Chen et al., 2009] that suggest that large mantle lenses underlie the Archaean cratons (Fig. 5. The lenses are distinguished by high-density ultrabasic rocks and compose high-velocity roots of cratons which have remained isolated from technic processes. Edges of the mantle lenses may extend a few hundred kilometers beyond the limits of the cratons and underlie orogenic belts that frame the cratons, and this takes place in the south-western segment of the Siberian craton.The revealed structure of the lithospheric mantle is consistent with independent results of seismic and magmatectonical studies of the region. The Angara geoblock is located above the central part of the

  15. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.


    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  16. Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone (United States)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta


    Mantle xenoliths in Neogene-Quaternary basaltic rocks related to the European Cenozoic Rift System serve to assess the evolution of the subcontinental lithospheric mantle beneath the Catalan Volcanic Zone in NE Spain. Crystallographic preferred orientations, major element composition of minerals, and temperature and pressure estimates have been used to this end. The mantle consists of spinel lherzolites, harzburgites and subordinate websterites. Protogranular microstructures are found in all peridotites and websterites, but lherzolites also display finer-grained porphyroclastic and equigranular microstructures. The dominant olivine deformation fabric is [010] fiber, but subordinate orthorhombic and [100]-fiber types are also present, especially in porphyroclastic and equigranular lherzolites. The fabric strength (J index = 10.12-1.91), equilibrium temperature and pressure are higher in xenoliths with [010]-fiber fabric and decrease in those with orthorhombic and [100]-fiber type. Incoherence between olivine and pyroxene deformation fabric is mostly found in porphyroclastic and equigranular lherzolites. Seismic anisotropy, estimated from the crystal preferred orientations, also decreases (AVp = 10.2-2.60%; AVs max = 7.95-2.19%) in porphyroclastic and equigranular lherzolites. The olivine [010]-fiber fabric points to deformation by simple shear or transpression which is likely to have occured during the development of late-Hercynian strike-slip shear zones, and to subsequent annealing during late Hercynian decompression, Permian and Cretaceous rifting. Also, it cannot be excluded that the percolation of mafic magmas during these extensional events provoked the refertilization of the lithospheric mantle. However, no clear relationship has been observed between fabric strength and mineral mode and composition. Later transtensional deformation during late Alpine orogenesis, at higher stress and decreasing temperature and pressure, transformed the earlier fabric into

  17. Lithospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldridge, W. [and others


    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  18. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation (United States)

    Kaus, B.; Popov, A.


    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results

  19. Lithospheric Structure and Active Deformation in the Salton Trough from Coseismic and Postseismic Models of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake (United States)

    Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.


    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex structure of the faults. Coseismic slip inversion with a layered elastic model shows that largely right-lateral slip is confined to upper 10 km with strong variations along strike. Near-field GPS measures slip on a north-striking normal fault that ruptured at the beginning of the earthquake, previously inferred from seismic waveforms. EMC Earthquake postseismic deformation shows the Earth's response to the large coseismic stress changes. InSAR shows rapid shallow afterslip at the north and south ends of the main ruptures. Continuous GPS from the Plate Boundary Observatory operated by UNAVCO measures the first six years of postseismic deformation, extremely rapid near the rupture. Afterslip on faults beneath the coseismic rupture cannot explain far-field displacements that are best explained by viscoelastic relaxation of the lower crust and upper mantle. We built a viscoelastic 3D finite element model of the lithosphere and asthenosphere based on available data for the region with the EMC coseismic faults embedded inside. Coseismic slip was imposed on the model, allowed to relax for 5 years, and then compared to the observed surface deformation. Systematic exploration of the viscoelastic parameters shows that horizontal and vertical heterogeneity is required to fit the postseismic deformation. Our preferred viscoelastic model has weaker viscosity layers beneath the Salton Trough than adjacent blocks that are consistent with the inferred differences in the geotherms. Defining mechanical lithosphere as rocks that have viscosities greater than 10^19 Pa s (able

  20. Petrology and deformation style of lithospheric mantle beneath the Heldburg Dike swarm (Central Germany) subset of Central European Volcanic Province (United States)

    Kukuła, Anna; Puziewicz, Jacek; Hidas, Károly; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Milke, Ralf


    -30 % of melting of primitive mantle, which was overprinted by silicate and/or carbonatite metasomatism. The xenolith 3140 seems not to be affected by metasomatic overprint. Based on the EBSD analyses of 15 xenoliths, olivine grains are characterized by relatively strong CPO (crystal preferred orientation) with J indices 4.4 - 13.3, and they have orthorhombic (8 xenoliths) or [100]-fiber CPO (6 xenoliths) symmetries except for one [010]-fiber symmetry observed in group B (Tommasi et al., 1999). Pyroxenes have weaker CPO and the distribution of their crystallographic axes is inconsistent with their coeval deformation with olivine. We propose that their CPO postdates that of olivine, hence strongly support a later origin for pyroxenes. Funding. This study was possible thanks to the project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science to JP Tommasi, A., B. Tikoff, and A. Vauchez (1999). Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet Sc Lett,168, 173-186. Upton, B.G.J., Downes, H., Kirstein, L.A., Bonadiman, C., Hill, P.G., Ntaflos, T. (2011). The lithospheric mantle and lower crust-mantle relationships under Scotland: a xenolithic perspective. J Geol Soc, 168, 873-886.

  1. Kalman filter for statistical monitoring of forest cover across sub-continental regions (United States)

    Raymond L. Czaplewski


    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  2. Lithosphere thickness and mantle viscosity estimated from joint inversion of GPS and GRACE-derived radial deformation and gravity rates in North America (United States)

    Zhao, S.


    The Global Positioning System (GPS) and the Gravity Recovery and Climate Experiment (GRACE) have been used to respectively determine the Earth's surface deformation and gravity changes associated with glacial isostatic adjustment, which is caused by ongoing stress release of the viscoelastic mantle after removal of the Late Pleistocene ice sheets. Here we present a joint inversion analysis of GPS-derived radial (vertical) deformation and GRACE-derived gravity rates in North America to examine whether the ice sheets (ICE-3G and ICE-5G) and earth models can fit the satellite based observations. The results of joint inversion give an effective lithosphere thickness of 150 km (110-180 km under a statistical confidence level of 80 per cent), an upper-mantle viscosity of 3.7 (2.0-5.0; 90 per cent confidence level) × 1020 Pa s, and a lower-mantle viscosity of 1.9 (1.3-2.6; 90 per cent confidence level) × 1021 Pa s. More sophisticated models such as introducing a transition zone of 400-670 km are not fully resolved with current data sets because there is no significant improvement in fitting observations. Tests of modifying ICE-5G show that a reduction of ice thickness by ˜20 per cent in the area west of Hudson Bay and an increase by ˜40 per cent in the southeast (Quebec region) are required to fit both observed vertical deformation and gravity changes. An additional test from inversion analysis of GRACE-derived geoid rates confirms possible signal loss in the GRACE-derived gravity rates, which could be due to noise reduction methods used in data processing stages.

  3. Effects of lithospheric viscoelastic relaxation on the contemporary deformation following the 1959 Mw 7.3 Hebgen Lake, Montana, earthquake and other areas of the intermountain seismic belt (United States)

    Chang, Wu-Lung; Smith, Robert B.; Puskas, Christine M.


    The 1959 Mw 7.3 Hebgen Lake, MT, normal-faulting earthquake occurred in an extensional stress regime near the Yellowstone volcanic field. Time-dependent crustal deformation data following this major earthquake were acquired by precise trilateration and GPS surveys from 1973 to 2000 around the Hebgen Lake fault zone. Modeling the changes of baseline lengths across and near the fault reveals a lateral variation of transient rheology, in which the lithosphere is stronger near the Hebgen Lake fault zone than in the vicinity of the Yellowstone volcano system. The models also imply that the lower crust is stronger than the upper mantle, in agreement with results from studies of postseismic and post-lake-filling relaxations (<~100 years). In addition, evaluations of the postseismic motion produced by the Hebgen Lake and the 1983 Mw 6.9 Borah Peak, ID, earthquakes indicate that horizontal transient motion of up to ~1 mm/yr contribute significantly to the contemporary regional crustal deformation near the epicentral areas. For the eastern Basin and Range, ~500 km south of the Hebgen Lake fault, similar rheologic models were derived from the observed uplift associated with the Lake Bonneville rebound and were used to evaluate the postseismic deformation associated with six most recent paleoearthquakes of the Wasatch fault zone and three M ≥ 5.6 historic earthquakes of northern Utah. The results show ≤0.1 mm/yr of horizontal postseismic motion at present time that are within the horizontal uncertainties of continuous GPS velocity from the Basin and Range and significantly smaller than the contemporary extension of 1-3 mm/yr in the Wasatch Front.

  4. Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake (United States)

    Huang, Mong-Han; Bürgmann, Roland; Pollitz, Fred


    The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1-4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989-1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼ 6 ×1018 Pas, underlain by a viscous upper mantle with viscosity between 3 ×1018 and 2 ×1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.

  5. Formation and temporal evolution of the Kalahari sub-cratonic lithospheric mantle: Constraints from Venetia xenoliths, South Africa

    NARCIS (Netherlands)

    Hin, R.C.; Morel, M.L.A.; Nebel, O.; Mason, P.R.D.; van Westrenen, W.; Davies, G.R.


    The ~533 Ma Venetia Diamond Mine is located between the Kaapvaal and Zimbabwe Cratons and the study of selected xenoliths provides the opportunity to investigate the temporal evolution of the sub-continental lithospheric mantle (SCLM) underneath southern Africa, as well as the extent and potentially

  6. Differentiation of Secular and Postseismic Deformation in the Mojave Shear Zone in Southern California and Inference of Lithospheric Rheology (United States)

    Shen, Z.; Liu, S.; Burgmann, R.


    The 1992 Mw 7.3 Landers and 1999 Mw7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in various "interseismic" GPS velocity solutions in the form of 2-3 mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures [Liu et al., 2015 JGR]. Postseismic GPS time series differentiated from the secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures. Using the postseismic time series data as model constraints, we develop postseismic deformation model invoking afterlip on faults and viscoelastic relaxation in the lower crust and upper mantle. A Burgers body material and a Maxwell material are assumed for the lower crust and upper mantle respectively. Our preliminary modeling result, constrained using GPS time series data from the SCEC Crustal Motion Map 4.0 (covering the time period of 1992-2004), reveals that both the long-term viscosities for the lower crust and upper mantle are on the order of e+19 Pa-s. This finding differs significantly from the "Crème Brulee" model predictions about the rheological structure of the lower crust and upper mantle, in which the lower crust has a substantially higher viscosity. We are incorporating more GPS time series data into our model, particularly the ones from continuous sites of the Plate Boundary Observatory network with post-2004

  7. Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): implications for strength and strain localization in the lithosphere (United States)

    Vissers, R. L. M.; Drury, M. R.; Newman, J.; Fliervoet, T. F.


    The Turon de Técouère peridotite in the west of the North Pyrenean Zone contains four types of mylonitic structures: (1) protomylonites, (2) mylonites, (3) platy ultramylonites, each developed in map-scale domains, and (4) cm-scale, vein-like ultramylonites. These mylonites are marked by increasing volume fractions of very fine-grained matrix enclosing mm- to cm-scale porphyroclasts derived from the lherzolite protolith. Progressive mylonitization was associated with the transformation from spinel- to plagioclase-bearing assemblages, which indicates exhumation of the peridotites and suggests that mylonitization was related to lithosphere extension. The mylonites are usually interpreted to have formed during Albian-Aptian rifting. Final emplacement of the peridotites in the upper crust must certainly have occurred in the Cretaceous, but we argue that the mylonitic deformation and initial crustal emplacement could also have taken place during Variscan late-orogenic extension. For lack of a pre-mylonitic protolith, our study of the Turon de Técouère mylonites is supplemented by microstructural data from the Moncaup and Etang de Lhers peridotites. The protomylonites of Turon de Técouère and the selected samples from Moncaup and Etang de Lhers contain microstructures suggesting high-stress dislocation creep and concurrent dynamic recrystallization, but also planar discontinuities with and without extremely fine-grained material suggesting incipient brittle behaviour. Bot ductile and brittle mechanisms may thus have induced strain localization. High flow stress estimates (300-1300 MPa) using piezometry and olivine flow laws indicate that the inferred conditions of incipient mylonitization may indeed have allowed semi-brittle flow. Unlike upper mantle shear zones described from other areas, localization in the North Pyrenean peridotites was independent of the presence of hydrated phases, and we envisage that these shear zones represent a case of effectively dry

  8. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales (United States)

    Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.


    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  9. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales. (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A


    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  10. Predicting gully densities at sub-continental scales: a case study for the Horn of Africa (United States)

    Vanmaercke, Matthias; Pelckmans, Ignace; Poesen, Jean


    Gully erosion is a major cause of land degradation in many regions, due to its negative impacts on catchment hydrology, its associated losses of land and damage to infrastructure, as well as its often major contributions to catchment sediment yields. Mitigation and prevention of gully erosion requires a good knowledge of its spatial patterns and controlling factors. However, our ability to simulate or predict this process remains currently very limited. This is especially the case for the regional scale. Whereas detailed case studies have provided important insights into the drivers of gully erosion at local scales, these findings are often difficult to upscale to larger regions. Here we utilized a simple and cheap method to predict patterns of gully density at the sub-continental scale. By means of a random sampling procedure, we mapped gully densities for over sixty study sites across the Horn of Africa, using freely available Google Earth imagery. Next, we statistically analyzed which factors best explained the observed variation in mapped gully density. Based on these findings, we constructed a multiple regression model that simulates gully density, based on topography (average slope), soil characteristics (percentage silt) and land use (NDVI-value). Although our model could benefit from further refinement, it succeeds already fairly well in simulating the patterns of gully density at sub-continental scales. Over 75% of the predicted gully densities differ less than 5% from the observed gully density, while over 90% of the predictions deviate less than 10%. Exploration of our results further showed that this methodology may be highly useful to quantify total gully erosion rates at regional and continental scales as well as the contribution of gully erosion to catchment sediment yields.

  11. Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present-day motion between the Australian and Indian plates (United States)

    Gordon, Richard G.; Demets, Charles; Argus, Donald F.


    From an expanded, accurate, and up-to-date data set comprising 110 spreading rates, 46 transform azimuths, and 151 earthquake slip vectors from the Indian Ocean and Gulf of Aden, we determine a new rigid plate model describing the motion since 3 Ma between India and Australia. The Euler vector (ω = 0.313°/m.y. about 5°S, 78°E) lies near the middle of the equatorial, diffuse plate boundary dividing the Indian from the Australian plate and predicts a rate of north-south shortening along 85°E of 4±3 mm/yr, only 30% as fast as predicted by our prior model. The new model also predicts north-south extension of 6±2 mm/yr (at 68°E) along the western segment of the diffuse plate boundary, where our prior model predicted north-south contraction. Using data only along the Carlsberg and Central Indian ridges and no other plate boundaries, we show that plate motion data cannot be fit by a single Euler vector. However, the data are well fit by two Euler vectors when an east-west striking India-Australia plate boundary is assumed to intersect the Central Indian Ridge near the equator. The best location along the Central Indian Ridge for this triple junction is 6°S-3°S, with 95% confidence limits of 9°S-4°N, just west of a region of intense seismicity. The sense of deformation, as recorded in earthquake focal mechanisms, reverse faults mapped with reflection seismic data, and undulations in basement topography, surface gravity, and the geoid, agrees well with the north-south extension predicted in the western part and the north-south shortening predicted in the eastern part of the India-Australia boundary. The predicted rate of north-south shortening between 79°E and 86°E is consistent with the rate of shortening inferred from observed faulting and folding; shortening taken up by faulting is ˜6 to 100 times greater than that taken up by the spectacular basement folds. Little of the rapid north-south shortening predicted east of ˜86°E is taken up by crustal

  12. Large scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress and inherited lithospheric structure in the late stage of the SE Carpathians evolution.

    NARCIS (Netherlands)

    Matenco, L.C.; Bertotti, G.V.; Leever, K.A.; Cloetingh, S.A.P.L.; Schmid, S.; Tarapoanca, M.; Dinu, C.


    The interplay between slab dynamics and intraplate stresses in postcollisional times creates large near-surface deformation, particularly in highly bent orogens with significant lateral variations in mechanical properties. This deformation is expressed through abnormal foredeep geometries and

  13. The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere (United States)

    Palano, Mimmo; González, Pablo J.; Fernández, José


    A spatially dense GNSS-based crustal velocity field for the Iberian Peninsula and Northern Africa allows us to provide new insights into two main tectonic processes currently occurring in this area. In particular, we provide, for the first time, clear evidence for a large-scale clockwise rotation of the Iberian Peninsula with respect to stable Eurasia (Euler pole component: N42.612°, W1.833°, clockwise rotation rate of 0.07 deg/Myr). We favor the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. We furnish evidence for a fragmentation of the western Mediterranean basin into independent crustal tectonic blocks, which are delimited by inherited lithospheric shear structures. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. These processes can be mainly explained by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary.

  14. Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes. (United States)

    Kounina, Anna; Margni, Manuele; Shaked, Shanna; Bulle, Cécile; Jolliet, Olivier


    This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity. Copyright © 2014 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    P. G. Dyadkov


    Full Text Available Based on the data on earthquake focal mechanisms, we estimated seismotectonic deformation related to the 2010 Мw 8.8 Maule earthquake and analyzed the deformation at different depths. In the main seismic dislocation of the Maule earthquake and the northern area, the deformation field to a depth of 70 km is typical of subduction zones as evidenced by shortening in the direction of the oceanic plate subduction. Below a depth of 70 km, the deformation pattern changes sharply to horizontal stretching. After the main seismic event, as well as before it, nearlatitudinal shortening was dominant in the focal zone, while the region of the main seismic dislocations was surrounded by separate areas of near-latitudinal stretching, which is an opposite type of deformation. We conducted a detailed analysis of the seismotectonic deformations in the oceanic uplift area to the west of the deep-water trough and identified local zones of near-latitudinal stretching near the southern and northern boundaries of the future Maule earthquake zone. Detecting such zones can provide important data for early forecasting of regions wherein strong subduction-related earthquakes are being prepared.

  16. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  17. Assessing long-term postseismic deformation following the M7.2 4 April 2010, El Mayor-Cucapah earthquake with implications for lithospheric rheology in the Salton Trough (United States)

    Spinler, Joshua C.; Bennett, Richard A.; Walls, Chris; Lawrence, Shawn; González García, J. Javier


    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake provides the best opportunity to date to study the lithospheric response to a large (>M6) magnitude earthquake in the Salton Trough region through analysis of Global Positioning System (GPS) data. In conjunction with the EarthScope Plate Boundary Observatory (PBO), we installed six new continuous GPS stations in the months following the EMC earthquake to increase station coverage in the epicentral region of northern Baja California, Mexico. We modeled the pre-EMC deformation field using available campaign and continuous GPS data for southern California and northern Baja California and inferred a pre-EMC secular rate at each new station location. Through direct comparison of the pre- and post-EMC secular rates, we calculate long-term changes associated with viscoelastic relaxation in the Salton Trough region. We fit these velocity changes using numerical models employing an elastic upper crustal layer underlain by a viscoelastic lower crustal layer and a mantle half-space. Forward models that produce the smallest weighted sum of squared residuals have an upper mantle viscosity in the range 4-6 × 1018 Pa s and a less well-resolved lower crustal viscosity in the range 2 × 1019 to 1 × 1022 Pa s. A high-viscosity lower crust, despite high heat flow in the Salton Trough region, is inconsistent with felsic composition and might suggest accretion of mafic lower crust associated with crustal spreading obscured by thick sedimentary cover.

  18. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area (United States)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.


    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  19. LaMEM: a massively parallel 3D staggered-grid finite-difference code for coupled nonlinear themo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology (United States)

    Popov, Anton; Kaus, Boris


    This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of

  20. Strain localization at the margins of strong lithospheric domains: insights from analogue models

    NARCIS (Netherlands)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frederic; Cloetingh, Sierd

    The lateral variation of the mechanical properties of continental lithosphere is an important factor controlling the localization of deformation and thus the deformation history and geometry of intra-plate mountain belts. A series of three-layer lithospheric-scale analog models, with a strong domain

  1. Platinum-group elements and oxidation condition of Paleozoic sub-continental lithospheric mantle in southernmost South America: Xenolith study in the Pali-Aike Region, Chile (United States)

    Wang, J.; Hattori, K. H.; Stern, C.


    Mantle xenoliths are abundant in Quarternary alkaline basalts in the Pali-Aike area of southernmost South America. The area is in the Andean back-arc region and most samples were derived from the depth of >60 km. There are two types of mantle xenoliths: cumulates of partial melt and mantle residues. The former are pyroxenites (orthopyroxenite, websterite) and contains significant contents of globular sulfides (>0.1 %), Mg-ilmenite (> 1 %), and Phl (> 2 %). The bulk rocks are low in PGE, 2.20-15.5 ppb, and show positive-sloped mantle-normalized patterns, similar to host basalts. This confirms the incompatible nature of Pt group PGE. Ol websterite, which shows low P and T, ˜ 15 kb and 780° C, has the highest Mg# (0.74) and lowest Cr#sp ( ˜0.186) and has fO2 similar to FMQ buffer, representing a relatively shallow cumulate of partial melt. The mantle residues are Grt lherzolite, Grt-Spl lherzolite and Grt-Spl harzburgite. Grt lherzolite and Grt-Spl lherzolite have high CaO (2.43-3.33wt %) and Al2O3(3.14- 4.18 wt %), whereas Grt-Spl harzburgites are low in CaO (0.99-1.21wt %). Sulfides are rare, and occur as inclusions in Ol and Opx, and as films along boundaries of silicate and oxide minerals. Some harzburgites are modally metasomatized by partial melt, forming Phl and Prg amphibole. The melt itself was solidified into ilmenite- and sulfide-rich pyroxenite veinlets. The calculation of fO2 using the Sp-Ol-Opx equilibria shows that the fertile garnet-bearing peridotites are reduced, Δ fO2 ranging from FMQ-0.50 to -0.20 with the Cr#sp from 0.29 to 0.30, similar to those in oceanic peridotites. Depleted harzburgites have slightly elevated, but comparable fO2 (FMQ-0.36 -FMQ+0.39) and Cr#sp (0.28-0.33). The mantle residues contain total PGE ranging from 6.92 to 22.1 ppb, slightly lower than the primitive mantle value, but show flat normalized patterns. Metasomatized harzburgites contain comparable Cu and total PGE contents as anhydrous peridotites. The data suggest that the metasomatism by partial melt originated from the underlying asthenosphere was not accompanied by significant change in PGE and redox state.

  2. On the Yield Strength of Oceanic Lithosphere (United States)

    Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro


    The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.

  3. Expression of Lithospheric Shear Zones in Rock Elasticity Tensors and in Anisotropic Receiver Functions and Inferences on the Roots of Faults and Lower Crustal Deformation (United States)

    Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.


    We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes

  4. Controls of mantle plumes and lithospheric folding on modes of intra-plate continental tectonics: differences and similarities

    NARCIS (Netherlands)

    Burov, E.; Cloetingh, S.A.P.L.


    Mantle plume activity and lithospheric folding by far-field stresses exerted from plate boundaries are two important end-members as mechanisms for continental intraplate deformation. The topographic expression of mantle plume impingement on continental lithosphere and lithospheric folding has some

  5. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction (United States)


    Background Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case–control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. Results We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual’s continental and sub-continental ancestry. To predict an individual’s continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control’s λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of

  6. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction. (United States)

    Hajiloo, Mohsen; Sapkota, Yadav; Mackey, John R; Robson, Paula; Greiner, Russell; Damaraju, Sambasivarao


    Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case-control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual's continental and sub-continental ancestry. To predict an individual's continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control's λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3

  7. The continental lithosphere

    DEFF Research Database (Denmark)

    Artemieva, Irina


    of the Royal Society of London. Series A, 360, 2475–2491.; Shapiro N.M., Ritzwoller M.H. 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophysical Journal International 151, 1–18.] and lithospheric temperatures [Artemieva I.M., Mooney W.D., 2001. Thermal structure......The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle...... are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions...

  8. Subduction-driven recycling of continental margin lithosphere. (United States)

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S


    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  9. Robust high resolution models of the continental lithosphere: Methodology and application to Asia

    NARCIS (Netherlands)

    Stolk, W.|info:eu-repo/dai/nl/323259170


    Asia is a key natural laboratory for the study of active intra-continental deformation in far-field response to the ongoing collision ofIndiaandEurasia. The resulting tectonic processes strongly depend on the thermo-mechanical structure of the lithosphere. This lithosphere can be separated into

  10. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models (United States)

    Eshagh, Mehdi; Tenzer, Robert


    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  11. Oriented grain growth and modification of 'frozen anisotropy' in the lithospheric mantle (United States)

    Boneh, Yuval; Wallis, David; Hansen, Lars N.; Krawczynski, Mike J.; Skemer, Philip


    Seismic anisotropy throughout the oceanic lithosphere is often assumed to be generated by fossilized texture formed during deformation at asthenospheric temperatures close to the ridge. Here we investigate the effect of high-temperature and high-pressure static annealing on the texture of previously deformed olivine aggregates to simulate residence of deformed peridotite in the lithosphere. Our experiments indicate that the orientation and magnitude of crystallographic preferred orientation (CPO) will evolve due to the preferential growth of grains with low dislocation densities. These observations suggest that texture and stored elastic strain energy promote a style of grain growth that modifies the CPO of a deformed aggregate. We demonstrate that these microstructural changes alter the orientation distributions and magnitudes of seismic wave velocities and anisotropy. Therefore, static annealing may complicate the inference of past deformation kinematics from seismic anisotropy in the lithosphere.

  12. Assessing long‐term postseismic deformation following the M7.2 4 April 2010, El Mayor‐Cucapah earthquake with implications for lithospheric rheology in the Salton Trough

    National Research Council Canada - National Science Library

    Spinler, Joshua C; Bennett, Richard A; Walls, Chris; Lawrence, Shawn; González García, J. Javier


    ... station coverage in the epicentral region of northern Baja California, Mexico. We modeled the pre‐EMC deformation field using available campaign and continuous GPS data for southern California and northern Baja California and inferred a pre...

  13. High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging (United States)

    Liu, L.; Hasterok, D. P.


    An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.


    Directory of Open Access Journals (Sweden)

    Yuri G. Leonov


    Full Text Available The review summary states that studies of the hierarchical subordination of geodynamic systems is top in the scientific agenda, and researches of orientation of the Earth’s surface deformation structures in relation to the elements of the stress field are important. It is noted that the proposed classification of geological objects by ranks is ambiguous, and there is a need for a geodynamic model to provide a basis for studying relationships between the fields of forces, stresses and strains on the surface and processes which take place deep in the core and mantle of the Earth.

  15. Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delamination below the Archean Singhbhum Craton? (United States)

    Mandal, Prantik


    We herein present shear velocity structure extending down to 300 km depth below the Archean Singhbhum-Odisha Craton (SOC) and Proterozoic Chotanagpur granitic-gneissic terrain (CGGT), which has been obtained through the inversion modeling of P-receiver functions. We use three-component broadband recordings of 200 teleseismic earthquakes (30° ≤ ∆ ≤ 90°) from a 15 station seismic network that has been operational in the Eastern Indian shield since February 2013. We obtain the thinnest crust of 35 km overlying a thin lithosphere of 78 km, below the region near south Singhbhum shear zone, which could be attributed to the 1.6 Ga plume activity associated with Dalma volcanic. However, the thickest crust of 47 km overlying a thin lithosphere of 81 km is noticed below the region near the Singhbhum granite of 3.6 Ga. This thinning of lithosphere could be attributed to the delamination of lithospheric root due to the Himalayan orogeny with a shortening rate of 2 cm/year. This delamination model in SOC gets further support from the densification of the lower crust, which could result from repeated episodes of basaltic underplating associated with episodes related to Dalma ( 1.6 Ga) and Rajmahal ( 117 Ma) volcanisms. This led to relatively more mafic, heterogeneous and deformed crustal structure in SOC as well as EGMB (with an average crustal Vs of 4.0 km/s) in comparison to that in CGGT (with an average crustal Vs of 3.9 km/s), as seen through our modeling results. The thickest lithosphere of 100 km is observed in the southwestern SOC as well as northeastern CGGT. We also notice that a sharp and flat Moho in CGGT, which could be attributed to thermal reactivation and large volume melting of the mafic cratonic crust during the late Archean subduction process and associated volcanism episodes. This model gets further support from the estimated 169 km thick lower Vs zone in the upper mantle below CGGT. Our modeling results also support a northward subduction of Archean

  16. A finite amplitude necking model of rifting in brittle lithosphere (United States)

    Lin, Jian; Parmentier, E. M.


    We formulate a mechanical model describing the formation of rifts as finite amplitude necking of an elastic-plastic layer overlying a fluid substrate. A perfectly plastic rheology is a continuum description of faulting in rift zones. Two important aspects of rift evolution are illustrated by this model: the evolution of the rift width as extension proceeds and the finite strain that occurs. A region at yield initially develops with a width determined by the thickness of the brittle layer, and the internal deformation within this yield zone is proportional to the topographic slope. As extension proceeds, the surface within the rift subsides, and the width of the subsiding yield zone decreases. At any stage of rifting, material in regions just outside the yield zone is deformed but no longer deforming. The width of these deformed regions increases with increasing extension. Vertical forces due to the mass deficit of the rift depression will flex the elastic layer outside the yield zone, creating flanking uplifts. The external force required to maintain active rifting increases with the amount of lithospheric stretching, indicating that rifting is a quasi-static, stable process. Because the yield zone will revert to elastic behavior if the external force causing extension is removed, the model predicts that the rift depression and flanking uplifts will be preserved after extension stops. Our simple mechanical model demonstrates the inherent relationship among graben formation, lithospheric thinning, and rift shoulder uplift in rift zones.

  17. Deformation and rheology of the Asian continent (United States)

    Liu, Yongjiang; Liu, Junlai; Neubauer, Franz


    The plate tectonic theory has been developed and accepted by most geologists since the last century when Joseph Barrell (1914) first introduced the concept of a strong lithosphere that overlies a weak fluid asthenosphere. The plate tectonic theory led to a revolution in geosciences in the 1960s of the 20th century, and explains well the tectonic evolution of the global lithosphere, especially the rigid oceanic lithosphere. But there are many problems when we apply the plate tectonic theory to the study of continents due to the large strength contrasts between oceanic and continental lithospheres. Compared with the oceanic lithosphere, the continental lithosphere has heterogeneous compositions, more complicated structures, long history, distinct rheological properties and lower deformation strength (Burov, 2011; Chen et al., 2012; Kirby, 1983). The continent has horizontally both marginal and inner-plate deformations and different rheological layers with the depth (Brace and Kohlstedt, 1980; Burgmann and Dresen, 2008; Kirby, 1983), which control the behavior of the continental lithosphere (Jackson, 2002). These properties, especially the rheological behavior, block the plate tectonic theory applying to the not-rigid continent. In the last decade, the continental rheology has become one of the cutting-edge research directions for the continental geodynamics (Burov and Watts, 2006).

  18. Geodynamics and The Evolution of Continental Lithosphere (United States)

    Hamilton, W. B.

    R.L. ArmstrongSs (1991) posthumous paper demonstrated that, contrary to conven- tional (and still dominant) geochemical assumption, isotopic data require most con- tinental material to have been fractionated into crust early in Earth history and to have been variably recycled since through the mantle. Recent information confirms predictions implicit in his recycling model. Archean cratonic crust mostly lacks a thick, mafic basal layer and is in bulk more felsic than Proterozoic and younger crust, whereas Archean lithospheric mantle is much more refractory than younger litho- sphere, which becomes markedly more enriched in fusible components with decreas- ing age. The oldest rocks in all Archean cratons are felsic migmatites, plus abundant but subordinate ultramafic, mafic, and anorthositic rocks. Ion-microprobe ages of zir- cons in these gneisses typically scatter from a maximum (currently 4.4 Ga in Yilgarn, and 4.1-3.6 Ga in other cratons) to minima near ages of overlying supracrustal rocks or of remobilization into late domiform batholiths. The gneisses were near wet-solidus temperature for long periods, the felsic protolith may have been mostly fractionated into crust by 4.4 Ga, and these ancient gneisses may dominate middle and lower Archean crust. Setting of formation is unknown, although steep REE patterns sug- gest derivation, by hydrous magmatic fractionation or partial melting, complementary to garnet-rich rocks that comprise geophysical mantle. Waterlaid supracrustal rocksU-° first quartzite, then mostly mafic and ultramafic lavaUwere deposited on the basement ° rocks after 3.5 Ga, and were deformed by gravitational rise of domiform batholiths and sinking of dense synclines. Indicators of plate-tectonic rifting and convergence are widespread in terrains younger than 2 Ga but are wholly lacking in the Archean. Plate tectonics is driven by subduction, which is enabled by top-down cooling of light asthenosphere to form dense oceanic lithosphere. Hinges

  19. Seismic anisotropy of Precambrian lithosphere: Insights from Rayleigh wave tomography of the eastern Superior Craton (United States)

    Petrescu, Laura; Darbyshire, Fiona; Bastow, Ian; Totten, Eoghan; Gilligan, Amy


    The thick, seismically fast lithospheric keels underlying continental cores (cratons) are thought to have formed in the Precambrian and resisted subsequent tectonic destruction. A consensus is emerging from a variety of disciplines that keels are vertically stratified, but the processes that led to their development remain uncertain. Eastern Canada is a natural laboratory to study Precambrian lithospheric formation and evolution. It comprises the largest Archean craton in the world, the Superior Craton, surrounded by multiple Proterozoic orogenic belts. To investigate its lithospheric structure, we construct a frequency-dependent anisotropic seismic model of the region using Rayleigh waves from teleseismic earthquakes recorded at broadband seismic stations across eastern Canada. The joint interpretation of phase velocity heterogeneity and azimuthal anisotropy patterns reveals a seismically fast and anisotropically complex Superior Craton. The upper lithosphere records fossilized Archean tectonic deformation: anisotropic patterns align with the orientation of the main tectonic boundaries at periods ≤110 s. This implies that cratonic blocks were strong enough to sustain plate-scale deformation during collision at 2.5 Ga. Cratonic lithosphere with fossil anisotropy partially extends beneath adjacent Proterozoic belts. At periods sensitive to the lower lithosphere, we detect fast, more homogenous, and weakly anisotropic material, documenting postassembly lithospheric growth, possibly in a slow or stagnant convection regime. A heterogeneous, anisotropic transitional zone may also be present at the base of the keel. The detection of multiple lithospheric fabrics at different periods with distinct tectonic origins supports growing evidence that cratonization processes may be episodic and are not exclusively an Archean phenomenon.

  20. Lithosphere continental rifting and necking in 3D analogue experiments: role of plate divergence rate. (United States)

    Nestola, Y.; Storti, F.; Cavozzi, C.


    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal state of rifted margins. Despite a large number of analogue and numerical modelling studies on lithosphere extension are available in the literature, a quantitative experimental description of lithosphere necking evolution is still lacking. Extensional strain rate and thermal layering of the lithosphere exert a fundamental control on necking shape and evolution. We focused our experimental work on the former parameter and simulated the progression of lithosphere thinning and necking during asymmetric orthogonal rifting at different plate divergence rates. Our models involve a 4-layer mechanical continental lithosphere, which rests on a glucose syrup asthenosphere. Both the topography and the base of the lithosphere were monitored by time-lapse laser scanning. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for the crust, mantle, and lithosphere as a whole. Laser-scanning monitoring provided also a detailed picture of the evolving neck shape, which shows a strong dependency on the strain-rate. At low strain-rates, necking is "boxed" with steep flanks and a flat-lying roof, and few deep basins develop at surface. At high strain-rates, more distributed thinning occurs and isolates portions of less deformed mantle. More distributed deformation affects the model topography. Despite large differences in shape, the aspect ratio (amplitude/wavelength) of the cross-sectional neck shapes converges towards very similar values at the end of the experiments.The significant differences and evolutionary pathways produced by the plate divergence rate on the lithosphere necking profile, suggest that this parameter exert a fundamental control on localization vs. distribution of deformation in the crust as in the whole mechanical lithosphere. Furthermore, it can exert a fundamental control on the time and space

  1. Collapse of passive margins by lithospheric damage and plunging grain size (United States)

    Mulyukova, Elvira; Bercovici, David


    The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least

  2. How the continents deform: The evidence from tectonic geodesy (United States)

    Thatcher, Wayne R.


    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  3. Why lithospheric extension separated the Aegean from Turkey (United States)

    Ring, U.; Gessner, K.; Thomson, S. N.; Markwitz, V.


    The Aegean Sea region in the eastern Mediterranean is one of the classic and best-studied extensional provinces. Inspired by recent 3D geodynamic models of laterally heterogeneous accretion during rollback we discuss the nature of the transition from the Aegean Sea basin (Hellenides) into the Anatolian plateau of west Turkey (Anatolides). The Hellenides and Anatolides experienced similar rates of convergence, but display remarkable differences in lithospheric structure. Whereas the Aegean is characterized by sustained high-pressure metamorphism followed by slab retreat since c. 60 Ma, a south verging greenschist-facies thrust-and-fold belt formed in the Anatolides since c. 45 Ma. Fission-track contour maps show that since c. 24 Ma extension in both regions evolved differently. Gravity data, earthquake locations and seismic velocity anomalies highlight a N-S oriented subvertical boundary in the upper mantle between a fast slab below the Aegean and a slow asthenospheric region below west Turkey, the West Anatolia Transfer Zone (WATZ). Our data support the hypothesis that the WATZ developed as a result of laterally inhomogeneous convergence along the boundary of the Adriatic and Anatolian lithospheres. 3D numerical simulations of laterally inhomogeneous convergence predict a similar evolution, where two distinct domains develop along strike: a region of distributed shortening where the systems gets congested by a microcontinent (Anatolides), and a region of extension associated with rollback of the active subduction zone (Hellenides). Strike-slip deformation concentrates perpendicular to the boundary of the two domains (WATZ). The numerical simulations also predict other salient features of regional geology and geodynamics, including the origin of a lithospheric window below west Turkey, local ocean floor topography, and the formation of the North Anatolian Fault zone. We argue that the seemingly complex tectonic evolution of the Aegean-Anatolian portion of the

  4. A common Pan-African Lithospheric Mantle (PALM) source for HIMU-like Pb-isotope signatures in circum-Mediterranean magmas (United States)

    Young, H. P.; Wang, Z.; Brandon, M. T.


    Isotopic compositions of widely distributed basaltic rocks of Europe and North Africa are clustered around a point that is displaced from modern MORB in 208Pb/204Pb vs. 206Pb/204Pb, pointing to the 'HIMU' component proposed by Zindler and Hart (1986). This observation was originally highlighted in an abstract by Cebria and Wilson (1995), who suggested that a reservoir of unknown origin exists in the convecting upper mantle of the Mediterranean and coin it the 'European asthenospheric reservoir' or EAR in order to distinguish it from the apparent influence of an additional 'lithospheric' component having a Sr-Nd isotope composition similar to continental crust that is observed in some, but not all, Cenozoic igneous rocks. While this study and most authors agree that the 'lithospheric' component in the model of Cebria and Wilson (1995) is crustal material associated with Cenozoic subduction, explanations for the origin of the HIMU-like EAR reservoir, however, are diverse, ranging from deep plumes to recently subducted slabs. These explanations are problematic. For example, neither plumes nor recent subduction are spatially broad enough to explain all of the EAR occurrences. Alternatively, we argue that both components (lithospheric and EAR) observed by Cebria and Wilson are lithospheric in origin. We propose that the origin of the HIMU-like Pb component is metasomatized sub-continental lithospheric mantle (SCLM). Comparison with synthetic evolution models of a veined mantle show the HIMU-like composition of European Cenozoic igneous rocks can be generated after ~500 Ma (Pilet et al., 2011). Major and trace element compositions of the European alkalic-basalts are similar to experimental melts of amphibole-pyroxenite veins in peridotite (a common feature of the SCLM) (Médard et al., 2006). A likely candidate for a veined 500 Ma SCLM in this region is the 'Pan-African' age terrane that is currently widely distributed from England to the Sahara as well as on the

  5. Offshore Southern California lithospheric velocity structure from noise cross-correlation functions (United States)

    Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.


    A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.

  6. Investigating the Lithospheric Structure of Southern Madagascar (United States)

    Tilmann, Frederik; Yuan, Xiaohui; Rümpker, Georg; Gerard, Rambolamana; Elisa, Rindraharisaona; Priestley, Keith


    The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material, with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (> 1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (Madagascar, but are based on sparse data. We are operating a ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly, although this interpretation has recently been questioned. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the eastern part of the study area, where

  7. The Geodynamics of Continental Lithosphere Entering a Subduction Zone (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.; Wu, F. T.


    As deformation patterns resulting from subduction of a passive continental margin are insufficiently understood, here we perform 2-D numerical simulations to explore the effects of continental lithosphere entering a subduction zone. The model setup consists of a subduction zone in which the oceanic part of a passive continental margin initially subducts beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel new feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study this feature is employed to study how crustal scale deformation around the subduction zone is influenced by surface processes and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography over time, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the strength of the lower crust; the amounts of erosion; imposed pushing versus density-driven (slab-pull and ridge- push) convergence; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. The results can be compared to evidence from areas such as Taiwan where continental subduction or convergence is thought to be happening. Preliminary results indicate that a low viscosity lower crust may contribute to crustal uplift.

  8. Formation of lithospheric shear zones: Effect of temperature on two-phase grain damage (United States)

    Mulyukova, Elvira; Bercovici, David


    Shear localization in the lithosphere is a characteristic feature of plate tectonic boundaries, and is evident in the presence of small grain mylonites. Localization and mylonitization in the ductile portion of the lithosphere can arise when its polymineralic material deforms by a grain-size sensitive rheology in combination with Zener pinning, which can impede, or possibly even reverse, grain growth and thus promotes a self-softening feedback mechanism. However, the efficacy of this mechanism is not ubiquitous and depends on lithospheric conditions such as temperature and stress. Therefore, we explore the conditions under which self-weakening takes place, and, in particular, the effect of temperature and deformation state (stress or strain-rate) on these conditions. In our model, the lithosphere-like polymineralic material is deformed in a two-dimensional simple shear driven by constant stress or strain rate. The mineral grains evolve to a stable size, which is obtained when the rate of coarsening by normal grain growth and the rate of grain size reduction by damage are in balance. Damage involves processes by which some of the deformational energy gets transferred into surface energy. This can happen by (i) dynamic recrystallization (grain damage) and (ii) stretching, deforming and stirring the material interface (interface damage). The influence of temperature enters through rheological laws (which govern the rate of work and damage), grain growth kinetics, and the damage partitioning fraction, which is the fraction of deformational work that goes into creating new surface energy. We demonstrate that a two-phase damage model, in which the partitioning fraction depends on both temperature and roughness of the interface between the phases, can successfully match the field data, including the reported correlation of grain size and temperature, the increasing dominance of dislocation creep at higher temperatures and a large range of grain sizes observed across the

  9. Continental collision slowing due to viscous mantle lithosphere rather than topography. (United States)

    Clark, Marin Kristen


    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.

  10. Modelling of compression and extension of the continental lithosphere: Towards rehabilitation of the necking-level model (United States)

    Mikhailov, Valentin; Stephenson, Randell; Diament, Michel


    We present a dynamic model of continental lithosphere deformation under extension or compression, focusing on the role of an effective mechanical parameter called "necking level" or "necking depth", a widely used concept in basin modelling studies. Though it has generally been assumed that "necking depth" depends strongly upon the rheological structure of the lithosphere (especially the depth distribution of its strong layers), such a dependency has never been demonstrated. Our model, which accommodates small deformations of a thin inhomogeneous plate induced by in-plane as well as by mantle boundary forces (applied to the model sides and base, respectively), shows that "necking depth" is a function of the horizontal position and depends mainly on the relative thicknesses and strengths of the rigid layers in the uppermost crust and below the Moho. Using different yield strength envelopes we demonstrate that the final structure of the lithosphere formed as a result of deformation and its consequent isostatic adjustment can be closely approximated by a model with a flat necking level. In the process of extension and compression of the continental lithosphere all boundaries, including the topographic surface and the Moho, deform. As a result, the total disturbance of the isostatic equilibrium state (specified as a load) is only a part of the topographic weight. Estimates of the correct load can be made using the depth to the necking level inferred from lithosphere structure, composition and thermal state. The final topography of lithospheric interfaces depends on both necking depth and effective flexural rigidity. Any attempt to estimate simultaneously strain distribution, necking depth and effective flexural rigidity, however, represents an ill-posed problem and is not possible without reliance upon strong independent assumptions constraining lithosphere structure.

  11. Strength, strain, and structure of the Australian continental lithosphere (United States)

    van der Hilst, R. D.; Simons, F. J.


    and the two-dimensional coherence measurements can respectively be analyzed for anisotropy in the wave speed deviations or mechanical strength variations. Surface-wave tomography and gravity-topography analysis can thus provide independent measures of elastic anisotropy (one instantaneous, the second long-term) and, by implication, strain in the lithospheric upper mantle. The depth variation of their relation resolves a change both in the character of seismic anisotropy and in its relation to strain near ˜200 km depth in the Australian subcontinental lithospheric mantle. In our interpretation, the top 200 km of the Australian lithosphere primarily records the coherent signature of past deformation episodes, whereas below 200 km, active processes related to current plate motion provide the dominant explanation for the observed seismic anisotropy. The alignment of the fast axes in the flow direction is consistent with the deformation of a dry olivine mantle by simple shear. The correspondence between seismic fast axes and plate motion of Australia is best when the latter is expressed in a hot-spot reference frame. Thus, seismic anisotropy can add information on plate motion with respect to the underlying mantle that is independent from geodetic and plate-circuit constraints. Finally, the comparison of our results with mantle convection simulations suggests how seismic and mechanical models of the lithosphere are approaching resolutions at which they can be treated as ``data'' to refine forward models, thereby strengthening the crucial links between seismology, tectonics, and geodynamics.

  12. The Lithospheric Structure of Madagascar (United States)

    Wysession, M. E.; Pratt, M. J.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.; Nyblade, A.; Aleqabi, G. I.; Shore, P.; Tucker, R.; Wiens, D. A.; Rambolamanana, G.


    The lithosphere of Madagascar is revealed for the first time from a combination of studies using data from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the IRIS PASSCAL program (funded by NSF, with additional data from the RHUM-RUM and Madagascar Seismic Profile projects). Methods include seismicity locations, body-wave receiver functions, Pn tomography, body-wave tomography, and ambient-noise and two-plane-wave earthquake surface-wave analyses. Madagascar's crustal thickness varies greatly, from 20 to 45 km, in good agreement with its past tectonic history of rifting from the mainland and having India break away to the north. The crust is thickest along the central spine of the island, along a ridge of mountains, but unusually high elevations suggest some amount f thermal buoyancy in the mantle. Crust is also thick along the east coast, where archean terranes were severed from India. Crust is thinnest along the west coast, where thick sedimentary basins up to 8 km thick are found on top of unusually thinned basement crust (about 12 km thick), a remnant of rifting away from Africa 130-160 Ma ago. Madagascar has an unusually high level of intraplate seismicity, with 918 earthquakes located during the 2-year period. Seismicity shows interesting correlations with paleotectonic features, but much is located in the central regions of the island, associated with normal faulting along several graben structures. This region also corresponds to the central of three regions within Madagascar (north, central, and southwest) that display strong lithospheric seismic low-velocity anomalies that underlie regions of current or recent volcanic activity. Surface waves show that these low-velocity zones (LVZs) extending down into the asthenosphere, and body-wave tomography shows them extending even deeper. Pn tomography shows that the width of the central LVZ is only about 100-200 km in diameter at the top of the mantle, indicative of

  13. Lithospheric Stress and Geodynamics: History, Accomplishments and Challenges (United States)

    Richardson, R. M.


    The kinematics of plate tectonics was established in the 1960s, and shortly thereafter the Earth's stress field was recognized as an important constraint on the dynamics of plate tectonics. Forty years ago the 1976 Chapman Conference on the Stress in the Lithosphere, which I was fortunate to attend as a graduate student, and the ensuing 1977 PAGEOPH Stress in the Earth publication's 28 articles highlighted a range of datasets and approaches that established fertile ground for geodynamic research ever since. What are the most useful indicators of stress? Do they measure residual or tectonic stresses? Local or far field sources? What role does rheology play in concentrating deformation? Great progress was made with the first World Stress Map in 1991 by Zoback and Zoback, and the current version (2016 release with 42,348 indicators) remains a tremendous resource for geodynamic research. Modeling sophistication has seen significant progress over the past 40 years. Early applications of stress to dynamics involved simple lithospheric flexure, particularly at subduction zones, Hawaii, and continental foreland basin systems. We have progressed to full 3-D finite element models for calculating the flexure and stress associated with loads on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. Initial efforts to use lithospheric stresses to constrain plate driving forces focused on a "top-down" view of the lithosphere. Such efforts have evolved to better include asthenosphere-lithosphere interactions, have gone from simple to complicated rheologies, from 2-D to 3-D, and seek to obtain a fully thermo-mechanical model that avoids relying on artificial boundary conditions to model plate dynamics. Still, there are a number of important issues in geodynamics, from philosophy (when are more complicated models necessary? can one hope to identify "the" answer with modeling, or only

  14. Reconciling the Isabella Anomaly with Lithosphere Delamination and Basin & Range Extension (United States)

    Straub, J.; Hu, J.; Zhou, Q.; Liu, L.


    The Isabella anomaly is a high-seismic velocity region located below the Sierra Nevada, and its presence has been explained through lithosphere delamination occurring within the past 10-15 Ma and an accreted oceanic micro-plate. Both the lack of consensus on the origin of this high velocity structure and its relation to putative lithospheric delamination and surface uplift requires more careful geodynamic studies. While earlier models of lithosphere delamination neglected the nearby subduction, we attempt to explain this anomaly in the context of delamination related to the subducted slab of the Farallon plate. We design a two-dimensional high-resolution model that extends from the west coast of the United States to the Colorado Plateau, including both the Sierra Nevada and Basin and Range regions. The Basin and Range experienced accelerated extension towards the northwest since 15 Ma, resulting in a topographical pattern with alternating subsidence and uplift; the mechanisms for both the deformation and topography of the region are presently debated. Preliminary results from our 2-D slab-lithosphere interaction model indicate that the foundering of an earlier accreted Farallon slab causes the surface to uplift and the overriding plate to extend. The model can potentially reproduce the main tectonic characteristics of the region, offering new insights on the evolution of the lithosphere-mantle system.

  15. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R


    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  16. The Magnetic Field of the Earth's Lithosphere (United States)

    Thébault, Erwan; Purucker, Michael; Whaler, Kathryn A.; Langlais, Benoit; Sabaka, Terence J.


    The lithospheric contribution to the Earth's magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth's sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth's lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth's magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth's lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth's lithosphere. The lessons learned in measuring and processing Earth's magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties.

  17. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps (United States)

    Maury, J.; Cornet, F. H.; Cara, M.


    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  18. Anisotropic grain growth and modification of 'frozen texture' in the lithospheric mantle (United States)

    Boneh, Yuval; Wallis, David; Hansen, Lars; Krawczynski, Mike; Skemer, Philip


    Seismic anisotropy is widely observed in both the lithospheric and asthenospheric upper mantle, and is mainly caused by flow-induced alignment of anisotropic olivine crystals. Crystallographic preferred orientation (CPO) in the asthenosphere is thought to reflect the dynamics of current mantle flow. In contrast, the lithosphere is relatively viscous, and, it is assumed that texture in the lithosphere retains a memory of past flow (e.g., lithospheric mantle in an oceanic basin preserves texture that originated from corner flow at the mid-oceanic-ridge). Although the viscosity of the lithosphere is high in comparison to the asthenosphere, temperatures are high enough that non-deformational, microstructural processes may still be significant for texture evolution. Here we use an experimental approach to simulate a textured mantle annealed under high temperature, high pressure, and hydrostatic conditions, in order to investigate whether microstructural evolution due to static annealing could modify texture in the lithospheric mantle. Starting material for the experiments was a synthetic Fo50 olivine aggregate that was previously deformed in torsion (Hansen et al., 2016) to shear strains up to 10. The sample has a mean grain-size of 15 microns and a narrow, unimodal grain-size distribution, high dislocation-densities, and exhibits a strong A-type CPO. Sub-samples of the deformed specimen were annealed under hydrostatic conditions using a piston cylinder apparatus at T = 1250° C, P = 1 GPa for up to one week. After annealing, the samples were cut into thin sections and the crystal orientations were measured by electron backscatter diffraction (EBSD). The samples show clear evidence for abnormal grain growth due to annealing (with maximum grain sizes of 1 mm). The abnormally large grains grew at the expense of the smaller matrix grains, and grain-size distributions became distinctly bimodal. The small grains not consumed by abnormal grain growth have similar CPO strength

  19. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina


    of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...

  20. Modeling Plume-Triggered, Melt-Enabled Lithospheric Delamination (United States)

    Perry-Houts, J.; Humphreys, G.


    It has been suggested that arrival of the Yellowstone plume below North America triggered a lithospheric foundering event which aided the eruption of the Columbia River flood basalts. This hypothesis potentially accounts for some of the biggest mysteries related to the CRB's including their location as "off-track" plume volcanism; and the anomalous chemical signatures of the most voluminous units. The foundered lithosphere appears to be a remnant chunk of Farallon slab, which had been stranded beneath the Blue Mountains terrain since the accretion of Siletzia. If this is the case then the mechanisms by which this slab stayed metastable between Siletzia accretion and CRB time, and then so suddenly broke loose, is unclear. The addition of heat and mantle buoyancy supplied by the Yellowstone plume provides a clue, but the geodynamic process by which the slab was able to detach remains unclear.Efforts to model numerically the underlying processes behind delamination events have been gaining popularity. Typically, such models have relied on drastically weakened regions within the crust, or highly non-linear rheologies to enable initiation and propagation of lithosphere removal. Rather than impose such a weak region a priori, we investigated the role of mantle and crustal melt, generated by the addition of plume heat, as the source of such a rheologic boundary.We track melt generation and migration though geodynamic models using the Eulerian finite element code, ASPECT. Melt moves relative to the permeable, compacting, and viscously-deforming mantle using the approach of (Keller, et al. 2013) with the notable exception that ASPECT currently cannot model elasticity. Dike and sill emplacement is therefore still a work in progress. This work is still in the preliminary stages and results are yet inconclusive.

  1. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham


    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from...

  2. Insights into the lithospheric architecture of Iberia and Morocco from teleseismic body-wave attenuation (United States)

    Bezada, Maximiliano J.


    The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.

  3. Crossing the Iberian Plate from the Bay of Biscay to the Alboran Sea: a lithospheric geotransect (United States)

    Carballo, Alberto; Fernandez, Manel; Torne, Montserrat; Jiménez-Munt, Ivone; Vergés, Jaume; Pedreira, David; Díaz, Jordi; Villaseñor, Antonio


    A ~1000-km-long lithospheric transect running from the North-Iberian Margin to the Neogene Alboran Basin (W- Mediterranean) is investigated. The main goal is to image the lateral changes in the crustal and lithospheric structure occurring in: i) the North-Iberian margin, whose deformation in Alpine times gave rise to the uplift of the Cantabrian Mountains related to incipient subduction; ii) the Spanish Meseta, characterized by the presence of Cenozoic basins on top of a Variscan basement with weak Alpine deformation in the Spanish Central System and localized Neogene-Quaternary deep volcanism; and iii) the Betic-Alboran system related to the roll-back of the Ligurian-Tethyan domain. The modeling approach based on the LitMod package combines potential fields, elevation, thermal, seismic and petrological data under a self-consistent scheme. The crustal structure is mainly constrained by active and passive seismic experiments whereas the upper mantle is constrained by tomography models. The results highlight the lateral variations in the topography of the lithosphere-asthenosphere boundary (LAB), suggesting a strong lithospheric mantle strain below the Cantabrian and Betic mountain belts. The LAB depth ranges from 160 km beneath the Cantabrian Mountains to 110-90 km beneath Iberia Meseta deepenly again to values of 190 km beneath Betic Mountain. The Spanish Central System, with elevations higher than 1400 m, has no noticeable signature on the LAB depth. We have considered three lithospheric mantle compositions: a predominantly average Phanerozoic in the continental mainland, and two more fertile PUM (primitive upper mantle) compositions in the oceanic domains of Cantabrian and Mediterranean seas, and in the Calatrava volcanic field. These compositional differences allowed us to reproduce the main trends of the geophysical observables as well as the inferred P-, Pn- and S-wave seismic velocities from tomography models and seismic experiments available in the study

  4. Water in the Cratonic Mantle Lithosphere (United States)

    Peslier, A. H.


    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents ( 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (water contents. The olivine inclusions, however, may have been protected from metasomatism by their host diamond and record the overall low olivine water content of

  5. Modeling Geodynamic Mobility of Anisotropic Lithosphere (United States)

    Perry-Houts, J.; Karlstrom, L.


    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  6. Lithospheric buoyancy and continental intraplate stresses (United States)

    Zoback, M.L.; Mooney, W.D.


    Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed

  7. Evidence for retrograde lithospheric subduction on Venus (United States)

    Sandwell, David T.; Schubert, Gerald


    Annular moats and outer rises around large Venus coronas such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronas on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronas while compensating back-arc extension is occurring in the expanding coronas interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of aestern Aphrodite Terra.

  8. PICASSO: Lithosphere Structure in the Western Mediterranean from Ps Receiver Functions and Rayleigh Wave Tomography (United States)

    Palomeras, I.; Thurner, S.; Levander, A.; Humphreys, E.; Miller, M. S.; Carbonell, R.; Gallart, J.


    The western Mediterranean is a diffuse plate boundary separating the African and Eurasian plates. Cenozoic deformation is centered on the Gibraltar arc and Alboran Sea, and occupies a wide area from the southern Iberian Massif in Spain to the Atlas Mountains in Morocco. We present a model of the lithospheric structure of this region derived from Rayleigh wave tomography and Ps receiver functions, using data from the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) linear broadband array of ~100 seismographs. This array is deployed from central Spain to the Morocco-Algerian border. We complement these data with some of that recorded by IberArray, an areal broadband array, operated by the Spanish seismological community, covering the same region with a uniform 50 km x 50 km grid of stations. Rayleigh phase velocities have been measured from 20-167s period using the two-plane-wave method to remove complications due to multi-pathing, and finite-frequency kernels to improve lateral resolution. The phase velocities were inverted for 1D structure on a 0.25 by 0.25 degree grid. Ps receiver functions at 1Hz and 2Hz were calculated for the same area using water-level and time-domain iterative deconvolution, and were then CCP stacked. The Rayleigh wave shear velocity model, jointly interpreted with the discontinuity structure from the CCP stack, shows the first-order lithospheric structure, and the lithosphere-asthenosphere boundary (LAB). From north to south along the PICASSO profile: The lithosphere is ~120 km thick beneath the Iberian Massif, where it has the highest shear velocity, 4.45 km/s. To the south the lithosphere thins dramatically beneath the Betic Mountains to ~85 km, and then varies in thickness and decreases in velocity beneath the Alboran Sea and Gibraltar Arc. The thinnest lithosphere, ~60 km, is observed beneath the Rif mountains and Middle Atlas, with a low velocity feature (4.2 km/s) at ~60 km depth beneath a site of Late Cenozoic

  9. Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model

    National Research Council Canada - National Science Library

    Berg, J. van den; Wal, R.S.W. van de; Oerlemans, J


    A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment...

  10. Lithospheric Flexural Modeling of Iapetus' Equatorial Ridge (United States)

    Zheng, W.; Ip, W.-H.; Teng, L. S.


    Iapetus, which is one of Saturn's ball-shaped satellites, has some unique features in the Solar System. This satellite has a mean radius of 735 km, and there is an approximately 20-kilometer-high mountain lying precisely on its equator. The mountain is known as an "equatorial ridge" since it makes Iapetus appear walnut shaped. The origin of the equatorial ridge is attributed to several hypotheses, including different endogenesis and exogenesis processes. In this work, we attempted to construct a flexural model of the equatorial ridge using elastic lithosphere theory. The equatorial ridge is treated as a linear load which exerts uniform force on Iapetus' hard shell (i.e. elastic lithosphere of Iapetus). To calculate the deflection of surface, we use the Digital Terrain Model (DTM) data of Iapetus' leading side published by Giese et al. (2008). Giese et al. also pointed out that the elastic lithospheric thickness of Iapetus must exceed 100 km to support the ridge without deflecting. However, we found possible evidence in the DTM data that implied deflection. There are two sites of surface depression on the northern side of the equatorial ridge. The few-kilometer deflection implies a thinner lithosphere than previous suggested. Assume that the thickness of elastic lithosphere is only 5% below of the radius of Iapetus, so the flat-Earth and one-plate condition could adapt to the flexure model of Iapetus. Based on analysis of the distance between a bulge and the ridge, the calculated lithospheric thickness is 6-10 km. The new result seems controversial, but the modeled surface profile is highly consistent with numerical ridge DTM profile extracted from Giese et al. (2008). Thinner lithosphere also supports the contraction model proposed by Sandwell and Schubert (2010) since the bucking harmonic degree increases. In the other hand, the transformation layer between hard shell and plastic inner core may need constraint on thermal history or crystal form of ice. In

  11. The lithosphere-asthenosphere boundary beneath the South Island of New Zealand (United States)

    Hua, Junlin; Fischer, Karen M.; Savage, Martha K.


    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.

  12. Estimating lithospheric properties at Atla Regio, Venus (United States)

    Phillips, Roger J.


    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  13. Surface and tectonic consequences of plume-lithosphere interactions in continents: insights from modelling approach based on realistic representation of lithosphere. (United States)

    Burov, E.; Guillou-Frottier, L.


    Plume-Lithosphere Interactions (PLI) are conditioned by plume dynamics but also by complex (visco-elasto- plastic) lithosphere rheology, structure and regional intraplate stress field. In continents, PLI are often identified within extensional or compression geodynamic contexts, near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical and thermo- rheological barriers that affect plume head emplacement (e.g., Archean West Africa, East Africa, Pannonian - Carpathian system). We address these problems by considering a free-surface thermo-dynamically coupled (continuous phase transforms) thermo-mechanical numerical model of PLI that treats stratified elasto-viscous-plastic (EVP) continental blocks of contrasting properties submitted to regional compression and extension. The results show that: (1) topographic response to PLI is highly different from the predictions of classical convection models, in particular, the commonly expected long-wavelength uplift is short-lived and is replaced by mainly bi-harmonic deformation of 'tectonic- style' (poly-phase basins and uplifts) characterized by two short wavelengths (50-100 and 200-400 km). (2) tectonic deformation due to far-field forces, such as folding, may interact with lithospheric response to PLI, sometimes in a very complex way; (3) in presence of intra-plate boundaries or blocks, plume head flattening is highly asymmetric and can be blocked from one side by older (and colder) lithospheric block, which leads to mechanical decoupling of crust from the mantle lithosphere and cab be accompanied by localized faulting at the margin; (4) the return flow from the plume head results in sub- vertical down-thrusting (delamination) of the lithosphere below the margin, producing vertical cold 'subduction like' boundary that can be traced down to the 400 km depth; (5) plume head flattening and migration towards the younger plate results in concurrent

  14. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa (United States)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.


    , possibly favouring here deformation process such as grain-boundary sliding (EAGBS) due to lithospheric strain. Its geometry might have been controlled by inherited lithospheric fabrics and heterogeneous upper mantle structure. We evidence that crustal and mantle magmatic processes represent first order mechanisms to ease and locate the deformation during the first stage of a cratonic lithospheric breakup.

  15. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction. (United States)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel


    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship

  16. Geodynamical evolution of the Southern Carpathians: inferences from computational models of lithospheric gravitational instability (United States)

    Lorinczi, Piroska; Houseman, Gregory


    The Carpathians are a geologically young mountain chain which, together with the Alps and the Dinarides, surround the extensional Pannonian and Transylvanian basins of Central Europe. The tectonic evolution of the Alpine-Carpathian-Pannonian system was controlled by convergence between the Adriatic and European plates, by the extensional collapse of thickened Alpine crust and by the retreat of the Eastern Carpathians driven by either a brief episode of subduction or by gravitational instability of the continental lithospheric mantle. The Southeast corner of the Carpathians has been widely studied due to its strong seismic activity. The distribution and rate of moment release of this seismic activity provides convincing evidence of a mantle drip produced by gravitational instability of the lithospheric mantle developing beneath the Vrancea region now. The question of why gravitational instability is strongly evident beneath Vrancea and not elsewhere beneath the Southern Carpathians is unresolved. Geological and geophysical interpretations of the Southern Carpathians emphasise the transcurrent deformation that has dominated recent tectonic evolution of this mountain belt. We use computational models of gravitational instability in order to address the question of why the instability appears to have developed strongly only at the eastern end of this mountain chain. We use a parallelised 3D Lagrangean-frame finite deformation algorithm, which solves the equations of momentum and mass conservation in an incompressible viscous fluid, assuming a non-linear power-law that relates deviatoric stress and strain-rate. We consider a gravitationally unstable system, with a dense mantle lithosphere overlying a less dense asthenosphere, subject to boundary conditions which simulate the combination of shear and convergence that are thought to have governed the evolution of the South Carpathians. This program (OREGANO) allows 3D viscous flow fields to be computed for spatially


    Directory of Open Access Journals (Sweden)

    A. I. Tatarkin


    Full Text Available Interaction of the lithosphere and the biosphere with a view of socioeconomic activity by a human being has the most complete effect in the process of mineral resource utilization. It is typical of mining and metal production complexes (MMC of the Ural, which are basic for the regional economy. A research methodology related to anthropogenic transformation of environment caused by MMCs, including techniques, principles of construction, forms, means and approaches to the scientific knowledge has been developed.

  18. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E


    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  19. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise (United States)

    Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.


    We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs lateral flow induced by the Alboran slab.

  20. Deep scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm

    Directory of Open Access Journals (Sweden)

    O.P. Pandey


    Full Text Available The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of considerable interest. In view of this, about three decades ago, a new idea was put forward suggesting that out of all shield terrains, the Indian shield has an extremely thin lithosphere (∼100 km, compared to 250–350 km, elsewhere, apart from being warm, non-rigid, sheared and deformed. As expected, it met with scepticism by heat flow and the emerging seismic tomographic study groups, who on the contrary suggested that the Indian shield has a cool crust, besides a coherent and thick lithosphere (as much as 300–400 km like any other shield. However, recently obtained integrated geological and geophysical findings from deep scientific drillings in 1993 Killari (Mw: 6.3 and 1967 Koyna (Mw: 6.3 earthquake zones, as well as newly acquired geophysical data over other parts of Indian shield terrain, have provided a totally new insight to this debate. Beneath Killari, the basement was found consisting of high density, high velocity mid crustal amphibolite to granulite facies rocks due to exhumation of the deeper crustal layers and sustained granitic upper crustal erosion. Similar type of basement appears to be present in Koyna region too, which is characterized by considerably high upper crustal temperatures. Since, such type of crust is depleted in radiogenic elements, it resulted into lowering of heat flow at the surface, increase in heat flow contribution from the mantle, and upwarping of the lithosphere-asthenosphere boundary. Consequently, the Indian shield lithosphere has become unusually thin and warm. This study highlights the need of an integrated geological, geochemical and geophysical approach in order to accurately determine deep crust-mantle thermal regime in continental areas.

  1. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.


    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  2. Constraining the near-surface response to lithospheric reorientation: Structural thermochronology along the TRANSALP geophysical transect (United States)

    Glotzbach, Christoph; Büttner, Lukas; Ehlers, Todd


    Tomographic analyses of the lithosphere structure underneath the Alps suggest a complex geodynamic history (e.g. Lippitsch et al. 2003), indicating, among other things, switches in the direction of subduction. A subduction polarity switch is proposed to have occurred in Miocene times between the Central and Eastern Alps (e.g. Lippitsch et al. 2003; Handy et al. 2015). In the Western and Central Alps SE-directed subduction of European continental lithosphere occurs, whereas NW-directed subduction of Adriatic lithosphere occurs further east (e.g. Kissling et al. 2006). The subducted slab steepens at the transition to the Eastern Alps, roughly at the position of the TRANSALP geophysical profile (S. Germany to N. Italy). This lithospheric reorientation was pre-dated by slab breakoff and also involves the delamination of the lower lithosphere, both processes producing distinct long-wavelength deformation (e.g. Gerya et al. 2004). Thermochronological data can be used to study the surface response to such a long-wavelength deformation. We present new apatite and zircon (U-Th)/He ages of 23 samples collected along 210 km of the TRANSALP profile. The samples were collected along a balanced cross section the TRANSALP profile (e.g. Lüschen et al. 2004) across individual structures that can be tied to deeper, seismically imaged, structures. The thermochronometer ages provide a record of exhumation related to both crustal shortening and post deformation erosional exhumation. Interpretation of the data is in progress and being used to discriminate between competing kinematic/geometric models, and the timing of major fault activity. Variations in exhumation along the section will also unravel the timing and shape of possible long-wavelength rock uplift event(s). References Gerya, T.V., Yuen, D.A., Maresch, W.V. 2004. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101-116. Handy, M.R., Ustaszewski, K., Kissling, E. 2015. Reconstructing the Alps

  3. Global equivalent magnetization of the oceanic lithosphere (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.


    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  4. Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography (United States)

    Deng, Yangfan; Levandowski, Will; Kusky, Tim


    Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it-essentially discretizing Eurasia into microplates-or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp /vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim-the Tien Shan, Kunlun Shan, and Altyn Tagh fault-are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not simply from

  5. Active compressive intraoceanic deformation: early stages of ophiolites emplacement? (United States)

    Chamot-Rooke, Nicolas; Delescluse, Matthias; Montési, Laurent


    Oceanic lithosphere is strong and continental lithosphere is weak. As a result, there is relatively little deformation in the oceanic domain away from plate boundaries. However, the interior of oceanic lithosphere does deform when highly stressed. We review here places where intraoceanic compression is at work. In the more than 30 years since the first observations of active compressive intraplate deformation in the Central Indian Ocean through seismic profiling (Eittreim et al., 1972), compressive deformation has been identified in a variety of other oceanic tectonic settings: as a result of small differential motion between large plates (between North America and South America in the Central Atlantic; between Eurasia and Nubia offshore Gibraltar; between Macquarie and Australia plates in the Southern Ocean), within back-arcs (northwest Celebes Sea, Okushiri Ridge in the Japan Sea, on the eastern border of the Caroline plate), and ahead of subduction (Zenisu Ridge off Nankai Trough). Deformation appears to be more diffuse when larger plates are involved, and more localized for younger plates, perhaps in relation with the increasing rigidity of oceanic plates with age. The best example of diffuse deformation studied so far remains the Central Indian Ocean. Numerous marine data have been collected in this area, including shallow and deep seismic, heat flow measurements, multibeam bathymetry. The present-day deformation field has been modeled using GPS and earthquakes as far field and near field constraints respectively. Reactivation of the oceanic fabric (including for portions of the Indo-Australian plate which are now in subduction as evidenced by the September 2009 Padang earthquake), selective fault abandonment (Delescluse et al., 2008) and serpentinization (Delescluse and Chamot-Rooke, 2008) are some of the important processes that shape the present-day pattern of deformation. These rare intraplate deformation areas constitute excellent natural laboratories to

  6. Investigation of Lithospheric Structure in Mongolia: Insights from Insar Observations and Modelling (United States)

    Jing, Z.; Bihong, F.; Pilong, S.; Qiang, G.


    The western Mongolia is a seismically active intracontinental region, with ongoing tectonic deformation and widespread seismicity related to the far-field effects of India-Eurasia collision. During the 20th century, four earthquakes with the magnitude larger than 8 occurred in the western Mongolia and its surrounding regions, providing a unique opportunity to study the geodynamics of intracontinental tectonic deformations. The 1957 magnitude 8.3 Gobi-Altai earthquake is one of the largest seismic events. The deformation pattern of rupture zone associated with this earthquake is complex, involving left-lateral strike-slip and reverse dip-slip faulting on several distinct geological structures in a 264 × 40 km wide zone. To understand the relationship between the observed postseismic surface deformation and the rheological structure of the upper lithosphere, Interferometric Synthetic Aperture Radar (InSAR) data are used to study the 1957 earthquake. Then we developed a postseismic model in a spherical, radially layered elastic-viscoelastic Earth based on InSAR results, and further analysed the dominant contribution to the surface deformation. This work is important for understanding not only the regional tectonics, but also the structure and dynamics of the lithosphere. SAR data were acquired from the ERS1/2 and Envisat from 1996 to 2010. Using the Repeat Orbit Interferometry Package (ROI_PAC), 124 postseismic interferograms are produced on four adjacent tracks. By stacking these interferograms, the maximum InSAR line-of-sight deformation rate along the Gobi-Altai fault zone is obtained. The main results are as follows: (1) The maximum InSAR line-of-sight deformation velocity along this large fault zone is about 6 mm/yr; (2) The modelled surface deformation suggests that the viscoelastic relaxation is the most reasonable mechanism to explain the observed surface motion; (3) The optimal model cover the Gobi-Altai seismogenic thickness is 10 km; (4) The


    Directory of Open Access Journals (Sweden)

    Z. Jing


    Full Text Available The western Mongolia is a seismically active intracontinental region, with ongoing tectonic deformation and widespread seismicity related to the far-field effects of India-Eurasia collision. During the 20th century, four earthquakes with the magnitude larger than 8 occurred in the western Mongolia and its surrounding regions, providing a unique opportunity to study the geodynamics of intracontinental tectonic deformations. The 1957 magnitude 8.3 Gobi-Altai earthquake is one of the largest seismic events. The deformation pattern of rupture zone associated with this earthquake is complex, involving left-lateral strike-slip and reverse dip-slip faulting on several distinct geological structures in a 264 × 40 km wide zone. To understand the relationship between the observed postseismic surface deformation and the rheological structure of the upper lithosphere, Interferometric Synthetic Aperture Radar (InSAR data are used to study the 1957 earthquake. Then we developed a postseismic model in a spherical, radially layered elastic-viscoelastic Earth based on InSAR results, and further analysed the dominant contribution to the surface deformation. This work is important for understanding not only the regional tectonics, but also the structure and dynamics of the lithosphere. SAR data were acquired from the ERS1/2 and Envisat from 1996 to 2010. Using the Repeat Orbit Interferometry Package (ROI_PAC, 124 postseismic interferograms are produced on four adjacent tracks. By stacking these interferograms, the maximum InSAR line-of-sight deformation rate along the Gobi-Altai fault zone is obtained. The main results are as follows: (1 The maximum InSAR line-of-sight deformation velocity along this large fault zone is about 6 mm/yr; (2 The modelled surface deformation suggests that the viscoelastic relaxation is the most reasonable mechanism to explain the observed surface motion; (3 The optimal model cover the Gobi-Altai seismogenic thickness is 10

  8. The first magnetotelluric image of the lithospheric-scale geological architecture in central Svalbard, Arctic Norway

    Directory of Open Access Journals (Sweden)

    Thomas I. Beka


    Full Text Available Magnetotelluric data, collected from 30 stations on Spitsbergen as part of a reconnaissance geothermal resource assessment along a profile with 0.5–3-km spacing in 0.003–1000-s period range, were used to develop a lithospheric-scale two-dimensional (2D resistivity model, heretofore unavailable for the region. Inverting the determinant of the impedance tensor in 2D, we found the smoothest model fitting the data within a specified tolerance level. We justified the model by perturbing it, performing sensitivity analysis and re-running the inversion with a different algorithm and starting models. From our final model, we constructed a crustal-scale stratigraphic framework, using it to estimate the depth of major geological features and to locate structural deformations. The 2D resistivity model indicates a shallow low resistive (1000 Ωm east of the Billefjorden Fault Zone. Underneath, a (possibly Devonian basin is imaged as a thick conductive anomaly stretching >15 km downwards. Beneath a deformed Paleozoic–Mesozoic successions, an uplifted pre-Devonian shallow basement (>3000 Ωm is revealed. We estimated a thin lithosphere, in the range of ca. 55–100 km thick, that could explain the area's elevated surface heat flow (ca. 60–90 mW/m2, consistent with the calculated depth of thermal lithosphere heat-base boundaries for a partially melting mantle. The model indicates a possible replenishment pathway of upward heat transport from the shallow convective mantle to the composite crustal conductive units. This is encouraging for low-enthalpy geothermal development.

  9. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates (United States)

    Mahatsente, Rezene


    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (<75 Ma) is much less than the ridge-push force for both compressional and extensional tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  10. Imaging and Interpreting Lithospheric Structure in the Southern Appalachians using the SESAME Broadband Array (United States)

    Verellen, D.; Alberts, E.; Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.


    The Southeastern Suture of the Appalachian Margin Experiment (SESAME) was designed to investigate the role of crustal and subcrustal deformation associated with Alleghanian collision and Mesozoic extension of the lithosphere across the southeastern United States. It involved the deployment of three profiles with a total length of 1300 kilometers. In this study, we use zero-offset reflections generated by the global seismic phase PKIKP as a virtual source to image structure within the lithosphere. Together with Consortium for Continental Reflection Profiling (COCORP) surveys, these data allow us to study the nature of the Moho and other discontinuities over a wide range of scales. A major objective of this work is to track variations in the detailed structure of the crust-mantle transition from Grenville basement beneath the Valley & Ridge to accreted terranes beneath the Coastal Plain and across the boundary between Laurentian and Gondwanan lithosphere. We also investigate the scale of layering in the uppermost mantle and its possible relation to contrasts in anisotropy in relation to shearing. Preliminary findings for a single earthquake (mb=6.1) recorded along a profile trending northwest across the Carolina Terrane, Inner Piedmont, and Blue Ridge show dipping reflectors at a depth of approximately 15-20 km in the crust, and layered, relatively flat-lying reflectors at a depth of roughly 70 km in the upper mantle. Ongoing work includes stacking of waveforms for multiple events in order to enhance signal-to-noise levels and construction of images for two additional north-south trending profiles across the Coastal Plain, where deep structure is more difficult to image due to reverberations within low-velocity sediments. The resulting broadband images of P-wave reflectivity will be used in combination with models of S-wave reflectivity derived by other methods to provide insight into the complex deformational history of the southern Appalachian system.

  11. Thick, Cold and Dry Roots: the Key to Longevity of Continental Arc Lithosphere? (United States)

    Chin, E. J.; Soustelle, V.; Hirth, G.; Saal, A. E.; Kruckenberg, S. C.; Eiler, J. M.


    In contrast to the continuity of mid-ocean ridge magmatism, arc volcanism is episodic, characterized by flareups lasting 10 - 50 My which, for reasons that remain unclear, end abruptly in lherzolite. Olivine crystal-preferred orientations (CPO) are weak and show predominantly axial-(010) and one lherzolite with B-type CPO. Measured water contents by SIMS in olivine and pyroxene are low, 5 - 9 ppm and 30 - 500 ppm, respectively. Assuming olivine lost water during eruption, recalculated olivine water in equilibrium with pyroxene does not exceed 35 ppm, resulting in reconstructed bulk rock water content similar to the MORB source. Extrapolation of experimental olivine water solubility to the xenoliths' final PT conditions ranges from 30 to 270 ppm, indicating that the peridotites are water-undersaturated. Such low water contents are not sufficient to produce axial-(010) and B-type CPO. Instead, we propose that the observed CPO was inherited from the prior melt infiltration event, which deformed the peridotites via grain-size sensitive, diffusion creep (e.g., grain boundary sliding). Therefore, water played little role in deformation of arc mantle. Low water contents in thick, cold arc roots result in very high viscosities which preclude significant deformation at final PT. In the Sierran case, rapid cooling also helped to freeze in geochemical and microstructural evidence of earlier melt-assisted deformation, and allowed the preservation of arc mantle lithosphere for ~80 My after it was formed. Only when the Farallon slab rolled back in the Late Cenozoic was the Sierran arc root finally destabilized. Thus, thickening, dehydration, and cooling of lithospheric roots (part of the upper plate) can modulate the tempo of arc magmatism by episodically growing into the melt-producing mantle wedge, thereby shutting off volcanism.

  12. Contracture deformity (United States)

    Deformity - contracture ... Contracture can be caused by any of the following: Brain and nervous system disorders, such as cerebral ... Follow your health care provider's instructions for treating contracture at home. Treatments may include: Doing exercises and ...

  13. Global model for the lithospheric strength and effective elastic thickness

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.


    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young

  14. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress (United States)

    Choy, George; McGarr, A.


    The radiated energies, ES, and seismic moments, M0, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (τa=μES/M0, where μ is the modulus of rigidity). The globally averaged τa for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (τa greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7–29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-τa events. The depth distribution of τa, which shows peak values somewhat greater than 25 MPa in the depth range 20–25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5–30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10–30 km, our set of high-τa earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions

  15. Recovering lateral variationin lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model

    NARCIS (Netherlands)

    van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Oerlemans, J.|info:eu-repo/dai/nl/06833656X


    A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet

  16. Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model

    NARCIS (Netherlands)

    Berg, J. van den; Wal, R.S.W. van de; Oerlemans, J.


    A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet

  17. Block versus continuum deformation in the Western United States (United States)

    King, G.; Oppenheimer, D.; Amelung, F.


    The relative role of block versus continuum deformation of continental lithosphere is a current subject of debate. Continuous deformation is suggested by distributed seismicity at continental plate margins and by cumulative seismic moment sums which yield slip estimates that are less than estimates from plate motion studies. In contrast, block models are favored by geologic studies of displacement in places like Asia. A problem in this debate is a lack of data from which unequivocal conclusions may be reached. In this paper we apply the techniques of study used in regions such as the Alpine-Himalayan belt to an area with a wealth of instrumental data-the Western United States. By comparing plate rates to seismic moment release rates and assuming a typical seismogenic layer thickness of 15 km it appears that since 1850 about 60% of the Pacific-North America motion across the plate boundary in California and Nevada has occurred seismically and 40% aseismically. The San Francisco Bay area shows similar partitioning between seismic and aseismic deformation, and it can be shown that within the seismogenic depth range aseismic deformation is concentrated near the surface and at depth. In some cases this deformation can be located on creeping surface faults, but elsewhere it is spread over a several kilometer wide zone adjacent to the fault. These superficial creeping deformation zones may be responsible for the palaeomagnetic rotations that have been ascribed elsewhere to the surface expression of continuum deformation in the lithosphere. Our results support the dominant role of non-continuum deformation processes with the implication that deformation localization by strain softening must occur in the lower crust and probably the upper mantle. Our conclusions apply only to the regions where the data are good, and even within the Western United States (i.e., the Basin and Range) deformation styles remain poorly resolved. Nonetheless, we maintain that block motion is the

  18. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas


    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  19. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.


    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  20. Constraints on the mantle and lithosphere dynamics from the observed geoid with the effect of visco-elasto-plastic rheology in the upper 300 km (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Rogozhina, Irina; Sobolev, Stephan


    used. Finally, given significant dispersion of geodynamic predictions from different seismic tomography models currently available, we further look for seismic models that provide predictions closest to observations at both regional and global scales. References 1. Hager B.H & O'Connell R.J., 1981. A simple global model of plate dynamics and mantle convection, J.Geophys. Res. 86, 4843-4867 2. Popov A.A., Sobolev S.V., 2008. SLIM3D: A tool for three-dimensional thermo- mechanical modelling of lithospheric deformation with elasto-visco-plastic rheology, J.pepi.2008.03.007 3. Steinberger B., 2014. Dynamic topography: A comparison between observations and models based on seismic tomography. (Submitted) 4. Becker T and Boschi L., 2002, A comparison of tomographic and geodynamic mantle models. , J.Geophys. Res. 115, 0148-0227

  1. Variability of lithospheric structure in the Baltic Shield (United States)

    Pedersen, Helle; Debayle, Eric; Maupin, Valérie


    We present the shear velocity structure down to 250km depth beneath the dense LAPNET array in northern Finland, located at the northern end of the Baltic Shield. We analysed phase velocity dispersion of fundamental mode Rayleigh waves, using data from 46 seismic broadband stations and almost 200 magnitude >6 events. The inversion of the dispersion curve shows a well resolved low velocity zone starting at approximately 150km depth, while the shear velocities above are typical for cratonic lithosphere. The comparison to other parts of the Baltic Shield show strong variability of the lithospheric structure. Immediately south of LAPNET, in an area dominated by paleaproterozoic rocks at surface, the lithosphere is fast to a depth of 225-250km, while cratonic lithosphere seems to be absent beneath southern Norway, in spite of Proterozoic age tectonic ages. The low velocity zone beneath northern Finland indicates that the lithosphere in this area is either modified at depth, for example through metasomatism, or that it is thinner than the more internal part of the Baltic shield. We suggest that the modification of the cratonic lithosphere beneath northern Finland is not related to continental breakup at the opening of the Atlantic Ocean, as the continental shelf continues north, beneath the Barents Sea. We rather favour the hypothesis that subduction and/or collision could potentially modify (by fluid injection) or remove (by erosion/dripping) otherwise stable cratonic lithosphere.

  2. A lithospheric perspective on structure and evolution of Precambrian cratons

    DEFF Research Database (Denmark)

    Artemieva, Irina


    The purpose of this chapter is to provide a summary of geophysical data on the structure of the stable continental lithosphere and its evolution since the Archean. Here, the term lithosphere is used to define the outer layer of the Earth which includes the crust and uppermost mantle, forms...... the roots of the continents, and moves together with continental plates. Depending on geophysical techniques (and physical properties measured), the lithosphere has different practical definitions. Most of them (i.e., seismic, electrical) are on the basis of a sharp change in temperature-dependent physical...

  3. A geochemical study of lithospheric mantle beneath Northern Victoria Land (Antarctica): main evidences from volatile content in ultramafic xenoliths (United States)

    Correale, Alessandra; Pelorosso, Beatrice; Rizzo, Andrea Luca; Coltorti, Massimo; Italiano, Francesco; Bonadiman, Costanza


    A geochemical study of ultramafic xenoliths from Northern Victoria Land (Green Point, GP and Handler Ridge, HR), is carried out in order to investigate the features of the lithosphere mantle beneath the Western Antarctic Ridge System (WARS). The majority of samples is spinel anhydrous lherzolite with rare presence of secondary phases (secondary cpx and glass). Geothermobarometric calculations, based on the Fe/Mg distribution among the peridotite minerals reveal that Sub Continental Lithospheric Mantle (SCLM) beneath Handler Ridge records temperatures and redox conditions higher then Greene Point (P fixed at 15 Kbar). Moreover, geochemical models evidence that, GP mantle domain represents a residuum after ˜7 to 21 % of partial melting in the spinel stability field, which was variably affected by interaction with infiltrating melts, acting in different times, from at least Jurassic to Cenozoic (Pelorosso et al., 2016). Fluid inclusions (FI) entrapped in olivine and pyroxene crystals were investigated for elemental and isotopic contents of both, noble gases (He, Ne, Ar) and CO2. He, Ar and Ne concentrations range from 1.52×10-14 to 1.07×10-12, from 4.09×10-13 to 3.47×10-11and from 2.84×10-16 to 7.57×10-14 mol/g, respectively, while the CO2amounts are between 7.08×10-10 and 8.12×10-7 mol/g. The 3He/4He varies between 5.95 and 20.18 Ra (where Ra is the 3He/4He ratio of air), being the lowest and the highest values measured in the He-poorer samples. Post-eruptive input of cosmogenic 3He and radiogenic 4He seems to influence mainly the samples associated to a lower He concentrations, increasing and decreasing respectively their primordial 3He/4He values, that for all the other samples range between 6.76 and 7.45 Ra. This range reasonably reflects the isotope signature of mantle beneath the investigated areas. The 4He/40Ar* ratio corrected for atmospheric-derived contamination ranges between 0.004 and 0.39. The lowest 4He/40Ar* values (4He/40Ar*<0.1) are

  4. Lithospheric structure across the California Continental Borderland from receiver functions

    National Research Council Canada - National Science Library

    Reeves, Zachary; Lekić, Vedran; Schmerr, Nicholas; Kohler, Monica; Weeraratne, Dayanthie


    .... We map variations in present‐day lithospheric structure across the region using Ps and Sp receiver functions at permanent stations of the Southern California Seismic Network as well as ocean bottom seismometer (OBS...

  5. Substantial Lateral Motions Accompany Tectonic Deformation on Venus (United States)

    Byrne, P. K.; Sengor, A. M. C.; Ghail, R.; Klimczak, C.; Solomon, S. C.


    Absent plate tectonics, deformation accompanying large-scale relative horizontal motion of the lithosphere on Venus is much more evenly distributed than that on Earth, which is mainly concentrated at plate boundaries. Yet Earth's plates, especially those of the continental lithosphere, are themselves internally deformed, often in a spatially distributed manner. Tectonic deformation on Venus thus has parallels to intraplate deformation on Earth, and so the morphology and kinematics of large-scale tectonics on Venus can be compared with structurally similar intraplate regions here. For example, numerous low-lying plains on Venus delineated by fold belts are analogous to mountain-range-bound sedimentary basins on Earth. One such site, northeast of Artemis Corona, is elliptical in plan and, at 1100 km in east-west and 620 km in north-south dimension, is akin to the Tarim Basin in northwest China (1250 km × 560 km). The fold belts demarcating this plain structurally resemble the Tian Shan range to the northwest and the Altun Shan to the southeast of the Tarim Basin, as well as the southern mountain range of the Sichuan Basin in southwest China. Notably, the Sichuan Basin is comparable in size (560 km × 390 km) to two other elliptical, fold-belt-bordered plains in the northeastern portion of Lada Terra on Venus (400 km × 300 km and 400 km × 370 km, respectively). The mountain ranges that delimit both the Tarim and Sichuan basins have accommodated substantial transpressive deformation: the Altun Shan range is situated atop the major Altyn Tagh left-lateral strike-slip fault, and the Longmenshan thrust belt to the northwest of the Sichuan Basin includes right-lateral shear. The fold belts on Venus may therefore possess a greater component of transpressive deformation than currently recognized, and these structures may thereby have facilitated more large-scale lateral mobility of the planet's lithosphere than previously thought.

  6. Subducting Plate Breakup by Plume-Lithosphere Interaction (United States)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.


    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  7. Sequential, Multi-stage Processes for Intraplate and Intraslab Seismogenesis in Oceanic Lithosphere (United States)

    Kirby, S. H.


    Marine geoscience surveys and thermal modeling have shown that oceanic lithosphere has an extremely complex tenure under the ocean basins and during slab descent involving magmatic, hydrothermal, and tectonic processes, processes that undoubtedly leave a cumulative imprint on plate/slab mineralogy, structure, and fluid makeup. These processes clearly have implications for the physical states of plate materials from ridges to trenches to deep slabs and give insights into the geological and geophysical observables, especially intraplate and intraslab earthquakes. Likely stages of this inheritance include: (1) Shallow melting and stretching deformation at Mid Ocean Ridges (MOR's) produce brittle faulting and earthquakes as well as hydrothermal alteration, segregation into oceanic crust and mantle, and internal plate deformation as indicated by seismic anisotropy. Hydrothermal alteration of faults cutting oceanic crust at MOR's have been posited as possible sources of dehydration fluids or dehydration embrittlement near the original seafloor during subsequent slab descent as an explanation of some intermediate-depth earthquakes. (2) Ocean Island (Plume) Volcanism produce an additional component of magmatic CO2 of deeper origin as well as plate deformation due to mass loading by the island edifices. [Kirby presentation in Session T13, this meeting]. (3) Intraplate deformation especially near triple junctions or other settings where discontinuous lateral boundary stresses propagate into plate interiors. (4) Near-trench deformation associated with plate bending that is expressed by shallow normal-faulting earthquakes, fault scarps on the ocean floor off trenches, and seismic reflections of normal faults, all of which locally indicate that such faulting penetrates well into the lithospheric mantle. It seems likely that even though the thermal conditions in most oceanic plates near trenches are relatively cold, mineral alteration along normal-fault pathways from ingress of

  8. Lithospheric anisotropy on the Kerguelen hotspot track inferred from Rayleigh wave polarisation anomalies (United States)

    Pettersen, Øyvind; Maupin, Valérie


    Rayleigh waves recorded at the Geoscope station PAF on the Kerguelen Isles in the Indian Ocean, show strong polarisation anomalies in the period range 20-50 s, as demonstrated by dispersion analysis of 3-component recordings. The largest and most consistent anomalies are observed for events located in the southern part of the Java Trench. At 25 s the Rayleigh waves present transverse components with an amplitude of up to 55 per cent of the amplitude of the longitudinal components. The particle motion in the horizontal plane is largely elliptical. By comparison, very few and mostly small polarisation anomalies are detected at the nearby Geoscope stations AIS and CRZF on the Amsterdam and Crozet Isles, respectively. Wave path deviations from the epicentre-receiver great circle, as calculated in tomographic models of the Indian Ocean, cannot explain the polarisation anomalies. Using a multiple-scattering scheme for modelling surface waves in 3-D heterogeneous and anisotropic structures, we show that wavefield distortion due to the geometrical structure of the Kerguelen Plateau in the vicinity of the station cannot explain the anomalies either, but that anisotropy can. We infer the presence of an anisotropic structure in the lithosphere to the north of the Kerguelen Isles, containing 40 per cent oriented pyrolite, with fast axis tilting downwards in a north-north-east direction. The anisotropy may be caused by deformation of the lithosphere related to the Kerguelen hotspot.

  9. Influence of the inherited lithospheric structure on the interaction between the Kenyan and Ethiopian rifts across the Turkana depression: analog and numerical models (United States)

    Corti, Giacomo; Brune, Sascha; Ranalli, Giorgio


    Rifting processes result from the application of extensional stresses to a pre-deformed, and thus already structured, anisotropic lithosphere; consequently, the pre-rift lithospheric rheological structure and its along-axis variations play a major role in controlling the evolution and architecture of continental rifts. The East African Rift is a classic example of this process. The rift system developed within a region that has experienced several deformation events, which have given rise to significant variations in the rheological structure of the lithosphere. These variations -in turn- have played a major role on rift evolution, as clearly testified by the localisation and propagation of major rift segments within weak Proterozoic mobile belts surrounding cratonic areas. Linkage and mechanical interaction between adjacent rift segments typically occurred in correspondence to transverse pre-existing fabrics, where structurally complex areas (transfer zones) allowed significant along-axis variations in subsidence of grabens and elevation of uplifted flanks. One of these complex areas is the Turkana depression where the Ethiopian and Kenyan rifts interact. The region is characterised by anomalous morphology and distribution of deformation with respect to the rift valleys in Kenya and Ethiopia. In this work we investigate whether these anomalies result from the presence of a pre-existing Mesozoic graben, transverse to the trend of the rift valleys and characterized by thin crust and lithosphere. To this aim, we integrate crustal-scale, isothermal analog experiments with lithospheric-scale, thermo-mechanical numerical models. The two different methodologies generate very similar results, reproducing the along-axis transition from narrow rift valleys in Ethiopia/Kenya to a distributed deformation within the Turkana depression. Modeling results indicate that this variation results from the inherited distribution of lithospheric strength and -in particular- from the

  10. Deformation of the central Andes (15-27 deg S) derived from a flow model of subduction zones (United States)

    Wdowinski, Shimon; O'Connell, Richard J.


    A simple viscous flow model of a subduction zone is used to calculate the deformation within continental lithosphere above a subducting slab. This formulation accounts for two forces that dominate the deformation in the overriding lithosphere: tectonic forces and buoyancy forces. Numerical solutions, obtained by using a finite element technique, are compared with observations from the central Andes (15-27 deg S). The model predicts the observed deformation pattern of extension in the forearc, compression in the Western Monocline (corresponding to magmatic activity), extension in the Altiplano, compression in the Eastern Monocline and Subandes, and no deformation in the Brazilian Shield. By comparing the calculated solutions with the large-scale tectonic observations, the forces that govern the deformation in the central Andes are evaluated. The approximately constant subduction velocity in the past 26 million years suggests that the rate of crustal shortening in the Andes has decreased with time due to the thickening of the crust.

  11. Lithospheric Structure Beneath Various Tectonic Units of Northwestern Deccan Volcanic Province from Surface Wave Tomography (United States)

    Sharma, J.


    The northwestern portion of the Indian subcontinent evoked a lot of scientific interest due to its geological and tectonic evolution since 140 Ma, after breakup of India from the Gondwanaland and collision with the Asian plate. During the northward movement of the Indian plate, it passed over mantle plumes, resulting in massive outpouring of basalts seen in regions like the Deccan Volcanic province (DVP). The DVP region is one of the most seismically active intraplate regions in the world and has witnessed large earthquakes in the past including the 1819 Allah Bund earthquake (M 7.8) and 2001 Bhuj earthquake (M 7.7). Moreover, this region has been continuously active since the Bhuj earthquake (Mw 7.7). Since the entire lithosphere is involved in the deformation of continents, knowledge of the structure of the crust and upper mantle of tectonically active areas is very much important for understanding the tectonic framework and evolve possible models of geodynamic evolution. In the present study, we obtained the shear wave velocity structure of the crust and upper mantle by inverting the 1o by 1o regionalized group velocity dispersion curves. The 2-D surface wave dispersion maps have been prepared at various periods (6 to 100 s) and then inverted down to a depth of 220 km using the Genetic Algorithm (GA) technique. Our results reveal distinct sedimentary and upper crustal layers, Moho, lithospheric mantle lid (LID) and an asthenospheric low velocity zone (LVZ). We observed a variation in the crustal thickness, with the Moho depths varying from 35.4 to 40.7 km in the Kachchh rift, 32.1 to 36 km in the Cambay rift, 33.4 to 37 km in the Narmada Rift, and 35.3 to 42.6 km in the Saurashtra and other parts of DVP. Large values of Moho depth (40.7 km) with a Vs value of 4.0 km/s in the Kachchh Seismic Zone (KSZ) indicates presence of high-velocity lower crust with a mafic/ultramafic composition. A thin lithosphere of 82.5 km, 115 km and 93.2 km has been identified in the 3

  12. The crust and lithospheric mantle beneath SE Tibet and Sichuan Province (SW China) (Invited) (United States)

    van der Hilst, R. D.; Yao, H.; Huang, H.; Liu, Q.


    Studying the crust and upper mantle beneath SE Tibet and Sichuan Province, SW China, is important for (at least) two reasons. First, this region has been central in discussions about the mechanisms of the formation and (eastward) expansion of the Tibetan plateau and, in particular, about the role of lower crustal flow. Second, as the southern part of the Trans China Seismic Belt the region is often struck by powerful earthquakes - such as the devastating 12 May 2008 Wenchuan earthquake and its countless aftershocks along the Longmenshan fault system that separates the (mechanically rigid) Sichuan basin from the actively deforming and slowly eastward moving (eastern) Tibetan plateau (Burchfiel et al., GSA Today, 2008). In 2003-04, MIT and Lehigh University deployed (in separate experiments) a total of 75 broadband seismograph stations in western Sichuan and SE Tibet, and in 2006 the Institute of Geology of the Chinese Earthquake Administration (CEA), installed 300 temporary stations in west Sichuan. Data from these arrays have been used for a wide range of studies of the crust and upper mantle, including shear wave splitting (Lev et al., EPSL, 2006; Sol et al, Geology, 2007), receiver function analysis (Xu et al., PEPI, 2007), surface wave array tomography (Yao et al., 2006, 2008), and travel time tomography (Li et al., 2006, 2008). These analyses reveal substantial 3D heterogeneity as well as complex spatial variations of (azimuthal and radial) anisotropy in the crust and lithospheric mantle. Both the surface wave inversions and the receiver function analyses suggest the existence of low shear velocity (and, presumably, mechanically weak) zones in the middle and lower crust, and the inferred 3D variations in anisotropy are inconsistent with vertically coherent deformation. We will review and summarize the findings of these studies and present the latest results of our ongoing investigation of the lithosphere in this region.

  13. Continental strike slip fault zones in geologically complex lithosphere: the North Anatolian Fault, Turkey. (United States)

    Cornwell, David; Thompson, David; Papaleo, Elvira; Rost, Sebastian; Houseman, Gregory; Kahraman, Metin; Turkelli, Niyazi; Teoman, Ugur; Altuncu Poyraz, Selda; Gulen, Levent; Utkucu, Murat


    As part of the multi-disciplinary Faultlab project, we present new detailed images in a geologically complex region where the crust and upper mantle is bisected by a major continental strike-slip fault system. Our study region samples the north Anatolian fault zone (NAFZ) near the epicentres of two large earthquakes that occurred in 1999 at Izmit (M7.5) and Düzce (M7.2) and where estimates of present day slip rate are 20-25 mm/yr. Using recordings of teleseismic earthquakes from a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield, we build a detailed 3-D image of structure and anisotropy using receiver functions, tomography and shear wave splitting and illuminate major changes in the architecture and properties of the upper crust, lower crust and upper mantle, both across and along the two branches of the NAFZ, at length scales of less than 20 km. We show that the northern NAFZ branch depth extent varies from the mid-crust to the upper mantle and it is likely to be less than 10 km wide. A high velocity lower crust and a region of crustal underthrusting appear to add strength to a heterogeneous crust and play a role in dictating the variation in faulting style and postseismic deformation. Sharp changes in lithospheric mantle velocity and anisotropy are constrained as the NAFZ is crossed, whereas crustal structure and anisotropy vary considerably both parallel and perpendicular to the faulting. We use our observations to test current models of the localisation of strike-slip deformation and develop new ideas to explain how narrow fault zones develop in extremely heterogeneous lithosphere.

  14. Global model for the lithospheric strength and effective elastic thickness (United States)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.


    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  15. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle (United States)

    Wang, Jian; Li, Chun-Feng


    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  16. Age and evolution of the lithospheric mantle beneath the Khanka Massif: Geochemical and Re-Os isotopic evidence from Sviyagino mantle xenoliths (United States)

    Guo, Peng; Xu, Wen-Liang; Wang, Chun-Guang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.; Wang, Zhi-Wei


    New geochemical and Re-Os isotopic data of mantle xenoliths entrained in Cenozoic Sviyagino alkali basalts from the Russian Far East provide insights into the age and evolution of the sub-continental lithospheric mantle (SCLM) beneath the Khanka Massif, within the Central Asian Orogenic Belt (CAOB). These mantle xenoliths are predominantly spinel lherzolites with minor spinel harzburgite. The lherzolites contain high whole-rock concentrations of Al2O3 and CaO, with low forsterite content in olivine (Fo = 89.5-90.3%) and low Cr# in spinel (0.09-0.11). By contrast, the harzburgite is more refractory, containing lower whole rock Al2O3 and CaO contents, with higher Fo (91.3%) and spinel Cr# (0.28). Their whole rock and mineral compositions suggest that the lherzolites experienced low-degree (1-4%) batch melting and negligible metasomatism, whereas the harzburgite underwent a higher degree (10%) of fractional melting, and experienced minor post-melting silicate metasomatism. Two-pyroxene rare earth element (REE)-based thermometry (TREE) yields predominant equilibrium temperatures of 884-1043 °C, similar to values obtained from two-pyroxene major element-based thermometry (TBKN = 942-1054 °C). Two lherzolite samples yield high TREE relative to TBKN (TREE - TBKN ≥ 71 °C), suggesting that they cooled rapidly as a result of the upwelling of hot asthenospheric mantle material that underplated a cold ancient lithosphere. The harzburgite with a low Re/Os value has an 187Os/188Os ratio of 0.11458, yielding an Os model age (TMA) relative to the primitive upper mantle (PUM) of 2.09 Ga, and a Re depletion ages (TRD) of 1.91 Ga; both of which record ancient melt depletion during the Paleoproterozoic ( 2.0 Ga). The 187Os/188Os values of lherzolites (0.12411-0.12924) correlate well with bulk Al2O3 concentrations and record the physical mixing of ancient mantle domains and PUM-like ambient mantle material within the asthenosphere. This indicates that the SCLM beneath the Khanka

  17. Seismological Insights on the Lithosphere-Asthenosphere Boundary (United States)

    Fischer, K. M.


    The paradigm of plate tectonics is fundamental to our understanding of the Earth, yet the question of what makes the lithosphere "plate-like" remains unanswered. As Earth's outer thermal boundary layer, the lithosphere derives its high viscosity largely from its cold temperatures, relative to the warmer asthenosphere. However, the roles of partial melt and volatiles in further reducing asthenospheric viscosity are still debated, even 90 years after Beno Gutenberg identified a widespread velocity decrease at 80 km depth which he later attributed to the top of a layer containing partial melt. Seismic phase conversions generated by a velocity gradient within the lithosphere-asthenosphere transition, combined with surface wave tomography, provide key constraints. At the base of thick, stable cratonic lithosphere, the absence of clear Sp conversions (except at the longest periods) is consistent with a shear velocity decrease over >60 km and a lithosphere-asthenosphere boundary (LAB) that reflects an increase in temperature alone. In contrast, strong Sp conversions from the LAB in tectonically active continental regions indicate a vertically-localized negative velocity gradient (discontinuities likely represent the remains of past plate collisions. The most widespread cratonic feature is a sub-horizontal negative velocity gradient, typically at depths of 70-90 km, that is explained by the volatile-rich products of now-solid partial melt that once ponded beneath the carbonated peridotite solidus.

  18. Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography (United States)

    Deng, Yangfan; Levandowski, William Brower; Kusky, Tim


    Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it—essentially discretizing Eurasia into microplates—or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp/vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim—the Tien Shan, Kunlun Shan, and Altyn Tagh fault—are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not

  19. Upper Mantle Seismic Anisotropy in the South American Stable Platform from SKS Splitting: a Test of Asthenospheric Flow Models Beneath the Lithosphere (United States)

    Guarido, M.; Assumpcao, M.; van der Lee, S.; Dourado, J. C.


    Upper mantle seismic anisotropy has been extensively used to infer both present and past deformation processes at lithospheric/asthenospheric depths. We present 17 new measurements of the upper mantle fast polarization directions derived from core refracted shear wave splitting (mainly SKS phases) recorded in poorly sampled regions, such as northern and northeastern Brazil. Despite the sparse data coverage of the South American stable platform, consistent orientations are observed over hundreds of kilometers. The fast polarization directions tend to be close to the absolute plate motion given by the hot-spot reference model HS3-NUVEL1A over most of the continent. A previous global comparison of the SKS fast polarization directions with flow models of the upper mantle by Conrad et al.(2007) showed relatively poor correlation in the continents, which was interpreted as evidence for a large contribution of “frozen” anisotropy in the lithosphere. For the South American plate, our data indicates that the poor correlation may have been due to the relatively coarse model of lithospheric thicknesses. We suggest that improved models of upper mantle flow based on more detailed lithospheric thicknesses in South America may help explain most of the observed anisotropy pattern. The new data suggests asthenospheric flow around the keel of the Amazon craton in northern Brazil, similar to the pattern previously observed around the Sao Francisco craton in SE Brazil.

  20. Continuum-based 4D Plate Reconstructions: Linking Non-rigid Lithospheric Kinematics to Rigid Plate Motion (United States)

    Kneller, E. A.; Johnson, C. A.; Queffelec, T. A.; Nachtegaele, L.


    Non-rigid deformation in regions of continental extension and compression can lead to large lateral strain and changes in the shape and surface area of continental plates. This large lateral strain in turn leads to vertical strain in the lithosphere, which is a fundamental control on mechanical and thermal subsidence. Traditional plate reconstruction approaches only describe 2D changes in the shape of tectonic plates and do not include lateral strain gradients and vertical strain. Incorporating lateral and vertical strain into kinematic plate tectonic models is necessary for quantifying the past configuration of tectonic plates, modeling paleogeography and for linking subsidence and heat flow to lateral plate motion. Furthermore, traditional approaches are limited to describing processes at the surface of the Earth and cannot be used to investigate 3D slab kinematics. We build on previous work and overcome the limitations of traditional methods by developing an inverse non-rigid continuum-based plate reconstruction approach that links lateral plate tectonic motion to large-scale 4D deformation of continental plates and subducting slabs. We also describe how this approach can be implemented in open source 3D animation software that can be used to create extendable and easily maintained interactive tools. These tools allow the modeler to rapidly reconstruct deformation and map data and constrain plate models with 3D information. The methods presented in this work can improve paleogeographic reconstructions, help visualize complicated 4D deformation processes in a reconstructed framework, and constrain subsidence and lithospheric stretching, all of which are important for understanding thermal history and estimating heat flow in sedimentary basins.

  1. Lithospheric loading by the 1896 Riku-u earthquake, northern Japan: implications for plate flexure and asthenospheric rheology. (United States)

    Thatcher, W.; Matsuda, T.; Kato, T.; Rundle, J.B.


    Under favorable circumstances the time-dependent aseismic deformation resulting from the loading of the lithosphere by the stress drop of large dip slip earthquakes can be used to determine both the effective elastic plate thickness and the asthenospheric viscosity. The deformation has several similarities with the deflection of the lithosphere by surface loads and with movements due to postglacial rebound. Level changes obtained in the 80 years since the M = 7.5, 1896 Riku-u earthquake, an intraplate thrust event in northern Honshu, provide convincing evidence that asthenospheric readjustments are responsible for the observed movements. Leveling surveys crossing the zone of surface faulting have been repeated five times since 1900 and delineate a localized depression that has subsided at a continually decreasing rate. The depression is centered close to the 1896 faulting, and its shape and width, about 75 km, are matched by our model using a plate thickness of 30 km. The decaying subsidence rate constrains the viscosity of the uppermost asthenosphere to be 1 x 1020 P. A linear viscous rheology matches the observed decay quite well, although measurements are sparse during the several decades following the earthquake. -Authors

  2. Lithospheric structure models applied for locating the Romanian seismic events

    Directory of Open Access Journals (Sweden)

    V. Oancea


    Full Text Available The paper presents our attempts made for improving the locations obtained for local seismic events, using refined lithospheric structure models. The location program (based on Geiger method supposes a known model. The program is run for some seismic sequences which occurred in different regions, on the Romanian territory, using for each of the sequences three velocity models: 1 7 layers of constant velocity of seismic waves, as an average structure of the lithosphere for the whole territory; 2 site dependent structure (below each station, based on geophysical and geological information on the crust; 3 curves deseribing the dependence of propagation velocities with depth in the lithosphere, characterizing the 7 structural units delineated on the Romanian territory. The results obtained using the different velocity models are compared. Station corrections are computed for each data set. Finally, the locations determined for some quarry blasts are compared with the real ones.

  3. Heterogeneity of Water Concentrations in the Mantle Lithosphere Beneath Hawaii (United States)

    Bizimis, M.; Peslier, A. H.; Clague, D.


    The amount and distribution of water in the oceanic mantle lithosphere has implications on its strength and of the role of volatiles during plume/lithosphere interaction. The latter plays a role in the Earth's deep water cycle as water-rich plume lavas could re-enrich an oceanic lithosphere depleted in water at the ridge, and when this heterogeneous lithosphere gets recycled back into the deep mantle. The main host of water in mantle lithologies are nominally anhydrous minerals like olivine, pyroxene and garnet, where hydrogen (H) is incorporated in mineral defects by bonding to structural oxygen. Here, we report water concentrations by Fourier transform infrared spectrometry (FTIR) on olivine, clino- and orthopyroxenes (Cpx & Opx) from spinel peridotites from the Pali vent and garnet pyroxenite xenoliths from Aliamanu vent, both part of the rejuvenated volcanism at Oahu (Hawaii). Pyroxenes from the Aliamanu pyroxenites have high water concentrations, similar to the adjacent Salt Lake Crater (SLC) pyroxenites (Cpx 400-500 ppm H2O, Opx 200 ppm H2O). This confirms that pyroxenite cumulates form water-rich lithologies within the oceanic lithosphere. In contrast, the Pali peridotites have much lower water concentrations than the SLC ones (10% modal Cpx and low spinel Cr# (0.09-0.10). The contrast between the two peridotite suites is also evident in their trace elements and radiogenic isotopes. The Pali Cpx are depleted in light REE, consistent with minimal metasomatism. Those of SLC have enriched light REE patterns and Nd and Hf isotopes consistent with metasomatism by alkaline melts. These observations are consistent with heterogeneous water distribution in the oceanic lithosphere that may be related to metasomatism, as well as relatively dry peridotites cross-cut by narrow (?) water-rich melt reaction zones.

  4. Revisiting the Ridge-Push Force Using the Lithospheric Geoid (United States)

    Richardson, R. M.; Coblentz, D. D.


    The geoid anomaly and driving force associated with the cooling oceanic lithosphere ("ridge push") are both proportional to dipole moment of the density-depth distribution, and allow a reevaluation of the ridge push force using the geoid. The challenge with this approach is to isolate the "lithospheric geoid" from the full geoid signal. Our approach is to use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. However, even this "lithospheric geoid" is noisy, and thus we average over 100 profiles evenly spaced along the global ridge system to obtain an average geoid step associated with the mid-ocean ridges. Because the positive ridge geoid signal is largest near the ridge (and to capture fast-spreading ridges), we evaluate symmetrical profiles extending ±45 m.y. about the ridge. We find an average ridge geoid anomaly of 4.5m, which is equivalent to a 10m anomaly for 100 m.y. old oceanic lithosphere. This geoid step corresponds to a ridge push force of ~2.4 x1012N/m for old oceanic lithosphere of 100 m.y., very similar to earlier estimates of ~2.5 x1012N/m based on simple half-space models. This simple half-space model also predicts constant geoid slopes of about 0.15 m/m.y. for cooling oceanic lithosphere. Our observed geoid slopes are consistent with this value for ages up to 40-50 m.y., but drop off to lower values at greater ages. We model this using a plate cooling model (with a thickness of the order of 125km) to fit the observation that the geoid anomaly and ridge driving force only increase slowly for ages greater than 40 m.y. (in contrast to the half-space model where the linear dependence on age holds for all ages). This reduction of the geoid slope results in a 20% decrease in the predicted ridge push force. This decrease is due to the combined effects of treating the oceanic lithosphere as a cooling plate (vs. a half-space), and the loss of geoidal

  5. The principal characteristics of the lithosphere of China

    Directory of Open Access Journals (Sweden)

    Tingdong Li


    Full Text Available The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics. Firstly, China’s continental crust is thick in the west but thins to the east, and thick in the south but thins to the north. Secondly, the continental crust of the Qinghai–Tibet Plateau has an average thickness of 60–65 km with a maximum thickness of 80 km, whereas in eastern China the average thickness is 30–35 km, with a minimum thickness of only 5 km in the center of the South China Sea. The average thickness of continental crust in China is 47.6 km, which greatly exceeds the global average thickness of 39.2 km. Thirdly, as with the crust, the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south, and thinner in the east and north. The lithosphere of the Qinghai–Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180–200 km in the central and eastern parts of the Tarim Basin, Pamir, and Changdu areas. In contrast, the vast areas to the east of the Da Hinggan Ling–Taihang–Wuling Mountains, including the marginal seas, are characterized by lithospheric thicknesses of only 50–85 km. Fourthly, in western China the lithosphere and asthenosphere behave as a “layered structure”, reflecting their dynamic background of plate collision and convergence. The lithosphere and asthenosphere in eastern China display a “block mosaic structure”, where the lithosphere is thin and the asthenosphere is very thick, a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials. The latter is responsible for a huge low velocity anomaly at a depth of 85–250 km beneath East Asia and the western Pacific Ocean. Finally, in China there is an age structure of “older in the upper layers and younger in the lower layers” between both the upper and lower crusts and between the

  6. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range (United States)

    Chen, Haichao; Niu, Fenglin; Obayashi, Masayuki; Grand, Stephen P.; Kawakatsu, Hitoshi; John Chen, Y.; Ning, Jieyuan; Tanaka, Satoru


    We measured shear wave splitting from SKS data recorded by the transcontinental NECESSArray in NE China to constrain lithosphere deformation and sublithospheric flows beneath the area. We selected several hundreds of high quality SKS/SKKS waveforms from 32 teleseismic earthquakes occurring between 09/01/2009 and 08/31/2011 recorded by 125 broadband stations. These stations cover a variety of tectonic terranes, including the Songliao basin, the Changbaishan mountain range and Zhangguancai range in the east, the Great Xing'an range in the west and the Yanshan orogenic belt in the southwest. We assumed each station is underlaid by a single anisotropic layer and employed a signal-to-noise ratio (SNR) weighted multi-event stacking method to estimate the two splitting parameters (the fast polarization direction φ, and delay time, δt) that gives the best fit to all the SKS/SKKS waveforms recorded at each station. Overall, the measured fast polarization direction lies more or less along the NW-SE direction, which significantly differs from the absolute plate motion direction, but is roughly consistent with the regional extension direction. This suggests that lithosphere deformation is likely the general cause of the observed seismic anisotropy. The most complicated anisotropic structure is observed beneath the southern Great Xing'an range and southwest Songliao basin. The observed large variations in splitting parameters and the seismic tomographic images of the area are consistent with ongoing lithospheric delamination beneath this region.

  7. The lithospheric stress field from joint modeling of lithosphere and mantle circulation using constraints from the latest global tomography models (United States)

    Wang, X.; Holt, W. E.; Ghosh, A.


    An understanding of the lithospheric stress field is important because these stresses are one indication of processes within the Earth's interior. In order to calculate the lithosphere stress field it is necessary to take into account the effects of lithosphere structure and topography along with coupling with 3-D mantle flow. We separate these effects into two parts: (1) contributions from topography and lithosphere structure are calculated by computing the stresses associated with gravitational potential energy (GPE) differences, and (2) stresses associated with mantle tractions are computed using the latest tomography models. The contributions from GPE and tractions are then combined to obtain model estimates of the lithospheric stress field, strain rate field, and surface velocity field. We simultaneously use the World Stress Map, the Global Strain Rate Model, and the No-Net-Rotation (NNR) surface velocity vectors to constrain models. We systematically test the latest global tomography models (SEMum [Lekic and Romanowicz, 2011], S40RTS [Ritsema et al., 2011], and S362ANI_PREM [Kustowski et al., 2008]) and the composite tomography model (SMEAN [Becker and Boschi, 2002]), along with the influence of different mantle radial viscosity models. We find that a coupled model with a weak viscosity channel, sandwiched between a strong lithosphere and strong lower mantle is best able to match the observational constraints, although there is a slight difference in stress field among the different tomography models. There is considerable evidence that the contributions from shallow versus deeper sources vary dramatically over the surface of the globe. We quantify these relative contributions as a function of position on the globe and systematically compare the results of different tomography models. Subduction zones are dominated by the effects of GPE differences, whereas within many of the plate interiors the contributions from mantle flow dominate.

  8. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    numerically for different values of the fault-depth and dip angle. 1. Introduction ... fault. Singh and Rani (1994) obtained an analytical solution for the problem of a long inclined strike- slip fault in an elastic layer overlying an elastic half-space. In the model used ... dinate system (x1,x2,x3) at the free boundary and the x3-axis ...

  9. The nature of the lithosphere-asthenosphere boundary from laboratory investigations of olivine anisotropy (United States)

    Hansen, Lars; Qi, Chao; Warren, Jessica; Kohlstedt, David; Holtzman, Benjamin; Wallis, David


    The nature of the lithosphere-asthenosphere boundary (LAB) determines the mechanical coupling between rigid plates and the underlying convecting mantle. Seismological studies reveal distinct reflectors (G discontinuity) in the uppermost oceanic mantle that are sometimes interpreted as the LAB. The discontinuity in seismic velocity is suggested to arise from abrupt changes in composition, including the melt fraction. Interestingly, these reflectors roughly correlate with the location of discontinuities in radial seismic anisotropy, but do not correlate with the location of discontinuities in azimuthal anisotropy. To investigate the correlation between these datasets, we draw on recent laboratory measurements of crystallographic texture development in olivine-rich rocks. The textural evolution of dry olivine aggregates has been well described in recent experiments, while micromechanical models are available for incorporating these observations into larger-scale models of upper-mantle flow. Unfortunately, the systematics of textural evolution in melt-bearing olivine aggregates have not been similarly described. Here we present a new experimental data set detailing the evolution of anisotropy during deformation of partially molten peridotite. Torsion experiments were conducted on samples composed of San Carlos olivine and basaltic melt at a temperature of 1473 K and a confining pressure of 300 MPa. Seismically fast axes of olivine tend to lie at a high angle to the flow direction in a manner similar to previous experiments. The anisotropy in these samples is weak compared to that in dry, melt-free olivine deformed to similar strains. The anisotropy also exhibits relatively little change in strength and orientation with progressive deformation. Detailed microstructural analyses allow us to distinguish between competing models for the grain-scale deformation processes, favoring one in which crystallographically controlled grain shapes govern grain rotations. We

  10. Satellite-derived geoid for the estimation of lithospheric cooling and ...

    Indian Academy of Sciences (India)

    Lithospheric cooling and basal heat flux anomalies over the northern Indian Ocean lithosphere 1679. • To study the progressive cooling of young-aged oceanic lithosphere from the divergent Mid-Oceanic type Carlsberg Ridge through the estimation of basalt heat flux anomalies and vertical temperature structure retrieved ...

  11. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)


    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  12. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    DEFF Research Database (Denmark)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.


    , there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. Themodel derived from more than 12 years of satellite data reveals...

  13. Upper mantle viscosity and lithospheric thickness under Iceland

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Drury, M.R.


    Deglaciation during the Holocene on Iceland caused uplift due to glacial isostatic adjustment. Relatively low estimates for the upper mantle viscosity and lithospheric thickness result in rapid uplift responses to the deglaciation cycles on Iceland. The relatively high temperatures of the upper

  14. Project Skippy explores the lithosphere and mantle beneath Australia

    NARCIS (Netherlands)

    Hilst, R.D. van der; Kennett, Brian; Christie, Doug; Grant, John


    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband

  15. Lithospheric strength variations in Mainland China : Tectonic implications

    NARCIS (Netherlands)

    Deng, Yangfan; Tesauro, M.


    We present a new thermal and strength model for the lithosphere of Mainland China. To this purpose, we integrate a thermal model for the crust, using a 3-D steady state heat conduction equation, with estimates for the upper mantle thermal structure, obtained by inverting a S wave tomography model.

  16. A new thermal and rheological model of the European lithosphere

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.; Cloetingh, S.A.P.L.


    We present a new thermal and rheological model of the European lithosphere (10°W-35°E; 35°N-60°N), which is based on a combination of recently obtained geophysical models. To determine temperature distribution we use a new tomography model, which is principally improved by an a-priori correction of

  17. Lithospheric and atmospheric interaction on the planet Venus (United States)

    Volkov, Vladislav P.


    Lithospheric and atmospheric interaction in the planet Venus are discussed. The following subject areas are covered: (1) manifestation of exogenic processes using photogeological data; (2) the chemical composition and a chemical model of the troposphere of Venus; (3) the mineral composition of surface rock on Venus; and (4) the cycles of volatile components.

  18. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy (United States)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.


    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer

  19. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.


    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  20. From the North-Iberian Margin to the Alboran Basin: A lithosphere geo-transect across the Iberian Plate (United States)

    Carballo, A.; Fernandez, M.; Jiménez-Munt, I.; Torne, M.; Vergés, J.; Melchiorre, M.; Pedreira, D.; Afonso, J. C.; Garcia-Castellanos, D.; Díaz, J.; Villaseñor, A.; Pulgar, J. A.; Quintana, L.


    A ~ 1000-km-long lithospheric transect running from the North-Iberian Margin to the Alboran Basin (W-Mediterranean) is investigated. The main goal is to image the changes in the crustal and upper mantle structure occurring in: i) the North-Iberian margin, whose deformation in Alpine times gave rise to the uplift of the Cantabrian Mountains related to Iberia-Eurasia incipient subduction; ii) the Spanish Meseta, characterized by the presence of Cenozoic basins on top of a Variscan basement with weak Alpine deformation in the Central System, and localized Neogene-Quaternary deep volcanism; and iii) the Betic-Alboran system related to Africa-Iberia collision and the roll-back of the Ligurian-Tethyan domain. The modeling approach, combines potential fields, elevation, thermal, seismic, and petrological data under a self-consistent scheme. The crustal structure is mainly constrained by seismic data whereas the upper mantle is constrained by tomographic models. The results highlight the lateral variations in the topography of the lithosphere-asthenosphere boundary (LAB), suggesting a strong lithospheric mantle strain below the Cantabrian and Betic mountain belts. The LAB depth ranges from 180 km beneath the Cantabrian Mountains to 135-110 km beneath Iberia Meseta deepening again to values of 160 km beneath the Betic Cordillera. The Central System, with a mean elevation of 1300 m, has a negligible signature on the LAB depth. We have considered four lithospheric mantle compositions: a predominantly average Phanerozoic in the continental mainland, two more fertile compositions in the Alboran Sea and in the Calatrava Volcanic Province, and a hydrated uppermost mantle in the North-Iberian Margin. These compositional differences allowed us to reproduce the main trends of the geophysical observables as well as the inferred P- and S-wave seismic velocities from tomography models and seismic experiments available in the study transect. The high mean topography of Iberia can be

  1. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses (United States)

    Madson, Austin; Sheng, Yongwei; Song, Chunqiao


    overall lake load increase of 25.9 Gt. Our findings help to provide a better understanding of the lithospheric response to the recent expansion of Siling Co by introducing a new spaceborne laser altimeter derived technique to measure surface deformation caused by an extreme case of hydrologic loading.

  2. Lithospheric Structure and Dynamics: Insights Facilitated by the IRIS/PASSCAL Facility (United States)

    Meltzer, A.


    Through the development of community-based facilities in portable array seismology, a wide-range of seismic methods are now standard tools for imaging the Earth's interior, extending geologic observations made at the surface to depth. The IRIS/PASSCAL program provides the seismological community with the ability to routinely field experimental programs, from high-resolution seismic reflection profiling of the near surface to lithospheric scale imaging with both active and passive source arrays, to understand the tectonic evolution of continents, how they are assembled, disassembled, and modified through time. As our ability to record and process large volumes of data has improved we have moved from simple 1-D velocity models and 2-D structural cross sections of the subsurface to 3-D and 4-D images to correlate complex surface tectonics to processes in the Earth's interior. Data from individual IRIS/PASSCAL experiments has fostered multidisciplinary studies, bringing together geologists, geochemists, and geophysicists to work together on common problems. As data is collected from a variety of tectonic environments around the globe common elements begin to emerge. We now recognize and study the inherent lateral and vertical heterogeneity in the crust and mantle lithosphere and its role in controlling deformation, the importance of low velocity mobile mantle in supporting topography, and the importance of fluids and fluid migration in magmatic and deformational processes. We can image and map faults, fault zones, and fault networks to study them as systems rather than isolated planes of deformation to better understand earthquake nucleation, rupture, and propagation. An additional benefit of these community-based facilities is the pooling of resources to develop effective and sustainable education and outreach programs. These programs attract new students to pursue careers in earth science, engage the general public in the scientific enterprise, raise the profile of


    Directory of Open Access Journals (Sweden)

    S. I. Sherman


    between main parameters of faults, i.e. length and depth, length and amplitude of displacement, length and density, and estimated the factors determining such parameters. A model showing the fault structure was proposed with account of changes of physical properties of the crust with depth. It was shown that faulting in the crust follows the laws of deformation and destruction of Maxwell body.With accumulation of the knowledge on regularities of faulting in the lithosphere, analyses the state of stresses in the lithosphere has become prioritised, and this is one of the top challenges in geodynamics and tectonophysics. Tectonophysics from Irkutsk published the first map of the state of stresses of the Baikal rift zone and proposed new concepts for studying crustal stresses by structural geological methods. Based on such concepts, a new map of the state of stresses of the upper lithosphere was constructed.Studies of faulting included researches of areas around virtual axes of faults and variations of sizes of such areas, and a concept of an area of dynamic influence of large lithospheric faults was proposed. It is established that internal patterns of areas of dynamic influence of faults are composed of zones that can be revealed both laterally and in depth, and such zonal patterns depend on the degree of tectonical and dynamo-metamorphical transformation of the rocks.The internal structure of continental fault zones was studied, and three main disjunctive stages were revealed, each corresponding to a specific type of deformation behaviour of the medium, its state of stresses, pathogenesis of faults varying in ranks, and variations of parameters in space and time.Triple paragenesises of fractures were revealed and analysed for a number of regions, and such studies provided the basis to propose a method of specialized mapping of the crust, which provides for determination of locations of fault zones and their boundaries, conditions of their formation and major specific


    Directory of Open Access Journals (Sweden)

    S. I. Sherman


    between main parameters of faults, i.e. length and depth, length and amplitude of displacement, length and density, and estimated the factors determining such parameters. A model showing the fault structure was proposed with account of changes of physical properties of the crust with depth. It was shown that faulting in the crust follows the laws of deformation and destruction of Maxwell body.With accumulation of the knowledge on regularities of faulting in the lithosphere, analyses the state of stresses in the lithosphere has become prioritised, and this is one of the top challenges in geodynamics and tectonophysics. Tectonophysics from Irkutsk published the first map of the state of stresses of the Baikal rift zone and proposed new concepts for studying crustal stresses by structural geological methods. Based on such concepts, a new map of the state of stresses of the upper lithosphere was constructed.Studies of faulting included researches of areas around virtual axes of faults and variations of sizes of such areas, and a concept of an area of dynamic influence of large lithospheric faults was proposed. It is established that internal patterns of areas of dynamic influence of faults are composed of zones that can be revealed both laterally and in depth, and such zonal patterns depend on the degree of tectonical and dynamo-metamorphical transformation of the rocks.The internal structure of continental fault zones was studied, and three main disjunctive stages were revealed, each corresponding to a specific type of deformation behaviour of the medium, its state of stresses, pathogenesis of faults varying in ranks, and variations of parameters in space and time.Triple paragenesises of fractures were revealed and analysed for a number of regions, and such studies provided the basis to propose a method of specialized mapping of the crust, which provides for determination of locations of fault zones and their boundaries, conditions of their formation and major specific

  5. Matching Lithosphere velocity changes to the GOCE gravity signal (United States)

    Braitenberg, Carla


    Authors: Carla Braitenberg, Patrizia Mariani, Alberto Pastorutti Department of Mathematics and Geosciences, University of Trieste Via Weiss 1, 34100 Trieste Seismic tomography models result in 3D velocity models of lithosphere and sublithospheric mantle, which are due to mineralogic compositional changes and variations in the thermal gradient. The assignment of density is non-univocal and can lead to inverted density changes with respect to velocity changes, depending on composition and temperature. Velocity changes due to temperature result in a proportional density change, whereas changes due to compositional changes and age of the lithosphere can lead to density changes of inverted sign. The relation between velocity and density implies changes in the lithosphere rigidity. We analyze the GOCE gradient fields and the velocity models jointly, making simulations on thermal and compositional density changes, using the velocity models as constraint on lithosphere geometry. The correlations are enhanced by applying geodynamic plate reconstructions to the GOCE gravity field and the tomography models which places today's observed fields at the Gondwana pre-breakup position. We find that the lithosphere geometry is a controlling factor on the overlying geologic elements, defining the regions where rifting and collision alternate and repeat through time. The study is carried out globally, with focus on the conjugate margins of the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105---- Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th

  6. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction (United States)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy


    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  7. Mantle Flow and Melting Beneath Young Oceanic Lithosphere: Seismic Studies of the Galapagos Archipelago and the Juan de Fuca Plate (United States)

    Byrnes, Joseph Stephen

    In this dissertation, I use seismic imaging techniques to constrain the physical state of the upper mantle beneath regions of young oceanic lithosphere. Mantle convection is investigated beneath the Galapagos Archipelago and then beneath the Juan de Fuca (JdF) plate, with a focus on the JdF and Gorda Ridges before turning to the off-axis asthenosphere. In the Galapagos Archipelago, S-to-p receiver functions reveal a discontinuity in seismic velocity that is attributed to the dehydration of the upper mantle. The depth at which dehydration occurs is shown to be consistent with prior constraints on mantle temperature. A comparison between results from receiver functions, seismic tomography and petrology shows that mantle upwelling and melt generation occur shallower than the depth of the discontinuity, despite the expectation of high viscosities in the dehydrated layer. Beneath the JdF and Gorda Ridge, low Vs anomalies are too large to be explained by the cooling of the lithosphere and are attributed to partial melt. The asymmetry, large Vs gradients, and sinuosity of the anomalies beneath the JdF Ridge are consistent with models of buoyancy-driven upwelling. However, deformation zone processes appear to dominate mantle flow over seafloor spreading beneath the Explorer and Gorda diffuse plate boundaries. Finally, S-to-p receiver functions reveal a seismic discontinuity beneath the JdF plate that can only be attributed to seismic anisotropy. Synthesis of the receiver function results with prior SKS splitting results requires heterogeneous anisotropy between the crust and the discontinuity. Models of anisotropy feature increasing anisotropy before the decrease at the discontinuity, but well below the base of the lithosphere, and a clockwise rotation of the fast direction with increasing depth. In these results and even in the SKS splitting results, additional driving mechanisms for mantle flow such as density or pressure anomalies are required.


    Directory of Open Access Journals (Sweden)

    Lidia V. Solov’eva


    Full Text Available The area of studies covers the north-eastern part of the Siberian craton (the Birekte terrain, Russia. The influence of metasomatic and magmatic processes on the mantle lithosphere is studied based on results of analyses of phlogopite- and phlogopite-amphibole-containing deep-seated xenoliths from kimberlites of the Kuoika field. In the kimberlitic pipes, deep-seated xenoliths with mantle phlogopite- and phlogopite-amphibole mineralization are developed in two genetically different rock series: magnesian (Mg pyroxenite-peridotite series (with magnesian composition of rocks and minerals and phlogopite-ilmenite (Phl-Ilm hyperbasite series (with ferrous types of rocks and minerals. This paper is focused on issues of petrography and mineralogy of the xenoliths and describes the evidence of metasomatic / magmatic genesis of phlogopite and amphibole. We report here the first data set of 40Ar/39Ar age determinations for phlogopite from the rocks of the magnesian pyroxenite-peridotite series and the ferrous Phl-Ilm hyperbasite series.The Mg series is represented by a continuous transition of rocks from Sp, Sp-Grt, Grt clinopyroxenite and ortopyroxenite to websterite and lherzolite. Many researchers consider it as a layered intrusion in the mantle [Ukhanov et al., 1988; Solov’eva et al., 1994]. The mantle metasomatic phlogopite and amphibole are revealed in all petrographic types of the rocks in this series and compose transverse veins and irregular patchs at grain boundaries of primary minerals. At contacts of xenolith and its host kimberlite, grains of phlogopite and amphibole are often cut off, which gives an evidence of the development of metasomatic phlogopite-amphibole mineralization in the rocks before its’ entraiment into the kimberlite. In the xenoliths with exsolution pyroxene megacrystalls, comprising parallel plates of clino- and orthopyroxene ± garnet ± spinel (former high-temperature pigeonite [Solov’eva et al., 1994], the

  9. Deformation rates across the San Andreas Fault system, central California determined by geology and geodesy (United States)

    Titus, Sarah J.

    The San Andreas fault system is a transpressional plate boundary characterized by sub-parallel dextral strike-slip faults separating internally deformed crustal blocks in central California. Both geodetic and geologic tools were used to understand the short- and long-term partitioning of deformation in both the crust and the lithospheric mantle across the plate boundary system. GPS data indicate that the short-term discrete deformation rate is ˜28 mm/yr for the central creeping segment of the San Andreas fault and increases to 33 mm/yr at +/-35 km from the fault. This gradient in deformation rates is interpreted to reflect elastic locking of the creeping segment at depth, distributed off-fault deformation, or some combination of these two mechanisms. These short-term fault-parallel deformation rates are slower than the expected geologic slip rate and the relative plate motion rate. Structural analysis of folds and transpressional kinematic modeling were used to quantify long-term distributed deformation adjacent to the Rinconada fault. Folding accommodates approximately 5 km of wrench deformation, which translates to a deformation rate of ˜1 mm/yr since the start of the Pliocene. Integration with discrete offset on the Rinconada fault indicates that this portion of the San Andreas fault system is approximately 80% strike-slip partitioned. This kinematic fold model can be applied to the entire San Andreas fault system and may explain some of the across-fault gradient in deformation rates recorded by the geodetic data. Petrologic examination of mantle xenoliths from the Coyote Lake basalt near the Calaveras fault was used to link crustal plate boundary deformation at the surface with models for the accommodation of deformation in the lithospheric mantle. Seismic anisotropy calculations based on xenolith petrofabrics suggest that an anisotropic mantle layer thickness of 35-85 km is required to explain the observed shear wave splitting delay times in central

  10. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary (United States)

    Schmerr, Nicholas


    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  11. The lithosphere-asthenosphere boundary observed with USArray receiver functions


    Kumar, P.; Yuan, X.; Kind, R.; Mechie, J.


    The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire a...

  12. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region (United States)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole


    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  13. Universal deformation formulas


    Remm, E.; Markl, M.


    We give a conceptual explanation of universal deformation formulas for unital associative algebras and prove some results on the structure of their moduli spaces. We then generalize universal deformation formulas to other types of algebras and their diagrams.

  14. DTM: Deformable Template Matching


    Lee, Hyungtae; Kwon, Heesung; Robinson, Ryan M.; Nothwang, William D.


    A novel template matching algorithm that can incorporate the concept of deformable parts, is presented in this paper. Unlike the deformable part model (DPM) employed in object recognition, the proposed template-matching approach called Deformable Template Matching (DTM) does not require a training step. Instead, deformation is achieved by a set of predefined basic rules (e.g. the left sub-patch cannot pass across the right patch). Experimental evaluation of this new method using the PASCAL VO...

  15. Relaxation of continental lithosphere: An explanation for Late Cretaceous reactivation of the Sabine Uplift of Louisiana-Texas (United States)

    Nunn, Jeffrey A.


    With few unconstrained assumptions, a simple quantitative model for flexural isostasy between two crustal blocks of different thickness that subsequently undergoes partial relaxation of accumulated stress can explain reactivation of the Sabine Uplift in the mid-Cretaceous. Thin salt over the Sabine Uplift indicates that it was a positive area in the Middle Jurassic but began to subside during the Late Jurassic. During the Late Jurassic and Early Cretaceous, the Sabine Uplift had no topographic expression and was the center of a large, flat bottomed basin covering most of east Texas and north Louisiana. Reactivation of the Sabine Uplift in the mid-Cretaceous caused a minimum of 150 m of uplift and extensive erosion of Lower Cretaceous rocks. During the Late Cretaceous and Tertiary, the Sabine Uplift resumed subsiding but at a slower rate than the adjacent basins. Since the mid-Cretaceous, the Sabine Uplift has risen more than 1 km relative to the East Texas Basin. We suggest that this structural history is consistent with the following simple quantitative model for flexural isostasy. During formation of the Gulf of Mexico in the Late Triassic-Early Jurassic by rifting and extension of the lithosphere, brittle deformation of the crust created small-scale wavelength of tens of kilometers, lateral variations in crustal thickness. Initially, the newly formed margin was in point-wise Airy isostatic equilibrium. Thus synrift and/or early postrift subsidence was characterized by a series of rift valleys or half grabens separated by uplifts. However, as the margin cooled and contracted, the lithosphere became stronger, and subsequent loading was regionally compensated. Thus postrift subsidence was characterized by a broad regional downwarp. If, at some later point in time, the rigid portion of the lithosphere was weakened or relaxed, then lateral density variations would have been recompensated at shorter wavelengths. Thus areas of little or no crustal extension would have

  16. 26 million years of mantle upwelling below a segment of the Mid Atlantic Ridge: The Vema Lithospheric Section revisited (United States)

    Cipriani, Anna; Bonatti, Enrico; Brunelli, Daniele; Ligi, Marco


    Temporal variations of temperature and composition of the mantle upwelling below a 80-km long segment of the Mid Atlantic Ridge were reconstructed from 20 to 4 Ma ago from peridotites sampled along a > 300-km long section of oceanic lithosphere (Vema Lithospheric Section or VLS) exposed south of the Vema transform at 11° N [Bonatti, E., Ligi, M., Brunelli, D., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., Ottolini, L., 2003. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variation in the formation of oceanic lithosphere, Nature, 423, 499-505]. We extended this time interval from 26 to 2 Ma by sampling mantle ultramafics at 18 new sites along the VLS. Peridotite orthopyroxene, clinopyroxene and spinel chemistry suggest a weak trend of decreasing extent of melting of the mantle from 26 to 18.5 Ma ago with superimposed short-wavelength (~ 4 Ma) oscillations followed by a steady increase of degree of melting from 18.5 to 2 Ma ago, with superimposed 3-4 Ma oscillations. Temporal variations of crustal thickness inferred from the Residual Mantle Bouguer Anomaly calculated from gravity data reveal similar trends. The older (26 to 18.5 Ma) and the younger (18.5 to 2 Ma) mantle suites differ in cpx Na 2O content and CaO/Al 2O 3 ratio, suggesting that not only the thermal regime, but also the composition of the mantle source might have been different in the two suites. The two trends are separated by a ~ 1.4 Ma-long stretch (from 18.2 to 16.8 Ma) where deformed ultramafic mylonites prevail, indicating probably an interval of nearly a-magmatic lithospheric emplacement at ridge axis, corresponding to a thermal minimum. Spatially offset correlation along the VLS of crustal thickness (i.e., quantity of basaltic melt released by the mantle) and mantle peridotite degree of melting led to an estimate of ~ 16.1 mm/a for the solid mantle average velocity of upwelling, a value close to the average half spreading rate for the 26 Ma interval covered by the

  17. Spatial Patterns in Distribution of Kimberlites: Relationship to Tectonic Processes and Lithosphere Structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans


    Since the discovery of diamonds in kimberlite-type rocks more than a century ago, a number of theories regarding the processes involved in kimberlite emplacement have been put forward to explain the unique properties of kimberlite magmatism. Geological data suggests that pre-existing lithosphere ...... broad limits and are, apparently controlled, by the past structure of the lithosphere and a "vigor" of lithosphere-mantle interaction, which caused kimberlite emplacements....

  18. A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent (United States)

    Zhang, Letian


    The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail

  19. Deformation Mechanism of the Northern Tibetan Plateau as Revealed by Magnetotelluric Data (United States)

    Zhang, Letian; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Xie, Chengliang


    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the northern and northeastern Tibetan Plateau. However, due to its complex evolution history and difficult logistic condition, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin, as well as anticlinorium systems within the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. Based on the analysis results, 2D inversions were performed to produce a preferred model of the lithospheric electrical structure beneath the northern Qaidam Basin. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. All these results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 °C and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin. This conductor extends

  20. Gravitational and tectonic forces controlling the post-collisional deformation and present-day stress of the Alps. Insights from numerical modelling.

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Negredo, A.; Platt, J.


    We perform numerical modeling to investigate the mechanisms leading to the postcollisional tectonic evolution of the Alps. We model the lithospheric deformation as a viscous thin sheet with vertically averaged rheology and coupled with surface mass transport. The applied kinematic boundary

  1. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution (United States)

    Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda


    We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the

  2. Thin lithosphere-asthenosphere boundary beneath Eastern Indian craton (United States)

    Shalivahan; Bhattacharya, Bimalendu B.; Rao, N. V. Chalapathi; Maurya, V. P.


    The lithosphere-asthenosphere boundary (LAB) separates the hard and rigid outer layer of the earth (lithosphere) and the weaker, hotter, and deeper part of the upper mantle (asthenosphere) and plays a pivotal role in plate tectonics. However, its definitive detection, especially beneath the cratons, is proving elusive. One of the geophysical tools used to map the LAB beneath the cratons is through magnetotelluric (MT) observations. The resistivity at boundary falls in the range of 5-25 Ω-m and can be explained by the presence of a small amount of water in the asthenosphere, possibly inducing partial melt. Here, we report thickness of the LAB in one of the oldest dated ancient cratons of India-Eastern Indian Craton (EIC) of ~ 3.3 Gyr, from MT studies. The two prominent phase-sensitive strike directions, one each for crust and mantle, and the presence of resistive continental lower crust act as a window to mantle in resolving deeper electrical conductivity structures beneath EIC. Our results show that the LAB beneath the EIC is at 95 km. The region is interesting as the electrical properties of the crust and mantle and the Moho depth are similar to those of the Slave Craton, Canada (~ 4.0 Gyr) but the depth of the LAB beneath the EIC is half that of the Slave craton. As cratonic signatures, depicted by ultrapotassic rocks from Gondwana coal fields close to EIC, are preserved at least till early Cretaceous (117 Ma) it is likely that Himalayan orogeny could have played a major role in delamination of the lithospheric roots of the EIC in addition to attendant seismicity.

  3. The lithosphere-asthenosphere boundary observed with USArray receiver functions (United States)

    Kumar, P.; Yuan, X.; Kind, R.; Mechie, J.


    The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho) and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB), since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926). Our S receiver function LAB is at a depth of 70-80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010) and Lekic and Romanowicz (2011) as a recently discovered mid-lithospheric discontinuity (MLD). A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007).

  4. The lithosphere-asthenosphere boundary observed with USArray receiver functions

    Directory of Open Access Journals (Sweden)

    P. Kumar


    Full Text Available The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB, since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926. Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010 and Lekic and Romanowicz (2011 as a recently discovered mid-lithospheric discontinuity (MLD. A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007.

  5. Magmatism in Lithosphere Delamination process inferred from numerical models (United States)

    Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras


    The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in

  6. Interactions of multi-scale heterogeneity in the lithosphere: Australia (United States)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.


    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  7. Dripping or delamination? A range of mechanisms for removing the lower crust or lithosphere (United States)

    Beall, Adam P.; Moresi, Louis; Stern, Tim


    Under some conditions, dense parts of the lower crust or mantle lithosphere can become unstable, deform internally and sink into the less dense, underlying asthenosphere. Two end-member mechanisms for this process are delamination and dripping. Numerical calculations are used to compare the time taken for each instability to grow from initiation to the point of rapid descent through the asthenosphere. This growth period is an order of magnitude shorter for delamination than dripping. For delamination, the growth rate varies proportionally to the buoyancy and viscosity of the sinking material, as with dripping. It also depends on the relative thickness (L^' }_c) and viscosity (η ^' }_c) of the weak layer which decouples the sinking material from the upper crust, varying proportionally to L_c^' 2}/η ^' 2/3}_c. As instabilities commonly resemble a mix of dripping and delamination, the analysis of initial instability growth includes a range of mechanisms in-between. Dripping which begins with a large perturbation and low η ^' }_c reproduces many of the characteristic features of delamination, yet its growth timescale is still an order of magnitude slower. Previous diagnostic features of delamination may therefore be ambiguous and if rheology is to be inferred from observed timescales, it is important that delamination and this 'triggered dripping' are distinguished. Transitions from one mechanism or morphology to another, during the initial growth stage, are also examined. 3-D models demonstrate that when η ^' }_c is small, a dripping, planar sheet will only transition into 3-D drips if the initial triggering perturbation is less than a third of the dense material's thickness. This transition occurs more easily at large η ^' }_c, so rheological heterogeneity may be responsible for morphological transitions through time. We also calculate the rates at which delamination grows too slowly to outpace cooling of the upwelling asthenosphere, resulting in stalling and

  8. Seismic anisotropy of the lithosphere/asthenosphere system beneath southern Madagascar (United States)

    Reiss, M. C.; Rumpker, G.; Tilmann, F. J.; Yuan, X.; Rindraharisaona, E. J.


    Madagascar is considered as a key region with respect to the assembly and break-up of the supercontinent Gondwana. Following the collision between East- and West-Gondwana (~700-650 Ma), its position was central to the Pan-African orogeny and later to the break-up between East-Africa, India and Antarctica. Today, Madagascar consists of different tectonic units; the eastern two thirds of the island are composed mainly of Precambian rocks, whereas the western part is dominated by sedimentary deposits. Southern Madagascar is characterized by several NS to NW-SE trending shear zones. To increase our understanding of these structures and related tectonic processes, we installed a dense temporary seismic network in southern Madagascar. It consisted of 50 stations, which were in operation for up to 2 years between 2012 and 2014. We present results from shear-wave splitting analyses to infer the seismic anisotropy of the lithosphere-asthenosphere system in response to deformational processes. The polarization of the fast shear wave and the delay time between the fast and slow waves provide constraints on the anisotropic fabric. For our study, we use core phases from up to 22 events. We first apply a conventional single-event splitting analysis by minimizing the transverse component. For stations that do not show a significant azimuthal dependence of the splitting parameters, we also apply a joint inversion involving all recorded waveforms from several events. Our results exhibit delay times between 0.4 and 1.5 s. In the center of the E-W profile, fast axes are mainly oriented NNW-SSE, whereas east of the Ranotsara zone, fast axes are oriented NE-SW. We apply full-waveform FD modeling to examine the effects of various anisotropic models of the crust and mantle. Our results indicate that recently proposed mantle flow models are insufficient to explain the small scale variations of splitting parameters observed along our profile. Our observations are best characterized by

  9. Seismic anisotropy of the lithosphere-asthenosphere system beneath southern Madagascar (United States)

    Reiss, Miriam Christina; Rümpker, Georg; Tilmann, Frederik; Yuan, Xiaohui; Josiane Rindraharisaona, Elisa


    Madagascar is considered as a key region with respect to the assembly and break-up of the supercontinent Gondwana. Following the collision between East- and West-Gondwana (~700-650 Ma), its position was central to the Panafrican orogenesis. Madagascar then separated from East Africa and later from the Indian and Antarctic plates until these processes came to a halt about 69 Ma ago. Today, Madagascar consists of different tectonic units; the eastern parts (two thirds of the island) are composed mainly of Precambian rocks, whereas the western part is dominated by sedimentary deposits. Furthermore, southern Madagascar is characterized by several NS to NW-SE trending shear zones. Madagascar has been the target of a number of geological studies, but seismological investigations of the presumed complex lithosphere-asthenosphere system and of deeper upper-mantle structures are sparse. To increase our understanding of these structures and related tectonic processes, we installed a dense temporary seismic network in southern Madagascar. It consisted of 25 broadband and 25 short-period stations, which were in operation for up to 2 years between 2012 and 2014. The broadband stations crossed the island along an east-west profile; the eastern section was supplemented by a network of short-period stations. Here we present results from shear-wave splitting analyses to infer the seismic anisotropy of the lithosphere-asthenosphere system in response to deformational processes. The polarization of the fast shear wave and the delay time between the fast and slow waves provide constraints on the anisotropic fabric. For our study, we use SKS-phases from up to 12 events recorded at the temporary stations and from 10 events at the permanent GEOFON station VOI. We first apply a single-event splitting analysis by minimizing the transverse component. For stations that do not show a significant azimuthal dependence of the splitting parameters, we also apply a joint inversion involving all

  10. Anatomy of the dead sea transform from lithospheric to microscopic scale (United States)

    Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.; Alasonati-Tasarova, Z.; Al-Zubi, H.; Babeyko, A.; Bartov, Y.; Bauer, K.; Becken, M.; Bedrosian, P.A.; Ben-Avraham, Z.; Bock, G.; Bohnhoff, M.; Bribach, J.; Dulski, P.; Ebbing, J.; El-Kelani, R.; Forster, A.; Forster, H.-J.; Frieslander, U.; Garfunkel, Z.; Goetze, H.J.; Haak, V.; Haberland, C.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Hoffmann-Rotrie, A.; Jackel, K.H.; Janssen, C.; Jaser, D.; Kesten, D.; Khatib, M.; Kind, R.; Koch, O.; Koulakov, I.; Laske, Gabi; Maercklin, N.; Masarweh, R.; Masri, A.; Matar, A.; Mechie, J.; Meqbel, N.; Plessen, B.; Moller, P.; Mohsen, A.; Oberhansli, R.; Oreshin, S.; Petrunin, A.; Qabbani, I.; Rabba, I.; Ritter, O.; Romer, R.L.; Rumpker, G.; Rybakov, M.; Ryberg, T.; Saul, J.; Scherbaum, F.; Schmidt, S.; Schulze, A.; Sobolev, S.V.; Stiller, M.; Stromeyer, D.; Tarawneh, K.; Trela, C.; Weckmann, U.; Wetzel, U.; Wylegalla, K.


    Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene (???20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the ??m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull

  11. Lithospheric radial anisotropy beneath the Gulf of Mexico (United States)

    Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don


    The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.

  12. Surface waves in an heterogeneous anisotropic continental lithosphere (United States)

    Maupin, V.


    At global as well as at regional scale, the lithosphere appears usually faster to Love waves than to Rayleigh waves. This Love-Rayleigh discrepancy can be modelled by introducing transverse isotropy in the mantle. In continental structures, the amount of transverse isotropy necessary to explain the discrepancy is however often quite large and not compatible with results of SKS-splitting analysis and azimuthal variation of surface wave velocities, at least in the simple framework of large scale uniform olivine orientation in the continental lithosphere. Models where the orientation of the olivine is incoherent at the scale of a few hundred km have been proposed to reconcile the different datasets, but the surface wave characteristics in such anisotropic heterogeneous models have not yet been analysed in detail. Using a mode-coupling scheme for calculating surface wave propagation in heterogeneous anisotropic structures, we analyse the characteristics of Rayleigh and Love waves in such laterally varying anisotropic models. We generate 3-D stochastic models of olivine orientation with different characteristics: preferred orientation dominantly horizontal, vertical or equally distributed in all directions, and use different correlation lengths in the horizontal and vertical directions to constrain the scale at which the anisotropy is coherent. We analyse the apparent Love-Rayleigh discrepancy and the phase velocity azimuthal variation these models generate and the mode-coupling and polarisation anomalies they produce.

  13. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm


    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  14. Lithospheric Thickness Variations from Gravity and Topography in Areas of High Crustal Remanent Magnetization on Mars (United States)

    Smrekar, S. E.; Raymond, C. A.


    Large regions of intense crustal re- manent magnetization were fortuitously discovered on Mars by the Mars Global Surveyor (MGS) spacecraft. Gravity and topography admittance studies are used to examine lithospheric structure in the areas of intense magnetization. Areas with positively magnetized crust appear to have thinner crust and elastic lithosphere than negatively magnetized crust. Additional information is contained in the original extended abstract.

  15. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction (United States)

    Spencer, J.E.


    The Colorado Plateau is blanketed by Phanerozoic marine and nonmarine strata as young as Cretaceous that are now exposed at elevations of about 2 km. Crustal thickening due to magmatism and horizontal crustal shortening was far less than necessary to cause this uplift, which is commonly attributed to the consequences of mantle lithosphere thinning and heating. The Colorado Plateau and the midcontinent region around Iowa consist of Precambrian bedrock overlain by a similar amount of Paleozoic platformal strata, and thus both regions once had similar lithospheric buoyancy. Mesozoic sedimentation increased the crustal thickness and lithospheric buoyancy of the Colorado Plateau relative to the midcontinent region. Backstripping calculations yield elevation without these sediments and lead to a calculated elevation difference between the two areas of about 1200 m, which represents unexplained plateau uplift. Review of constraints on uplift timing finds little support for a late Cenozoic uplift age and allows early to middle Cenozoic uplift, which is consistent with uplift mechanisms related to low-angle subduction that ended in the middle Cenozoic. Finite element heat flow calculations of low-angle subduction and lithosphere attenuation, using a range of initial lithosphere thicknesses and degree of attenuation, indicate that required uplift can result from tectonic removal of about 120 km of mantle lithosphere from an initially 200-km-thick lithosphere. This allows for partial preservation of North American mantle lithosphere with its distinctive isotopic signature in some late Cenozoic volcanic rocks and is consistent with normal Pn velocities in the uppermost mantle beneath the plateau.

  16. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.


    Mechanical equilibrium of tectonic plates implies that lithospheric edge and body forces are balanced by forces arising from interaction with the underlying mantle. We use this quantitative physical relation to integrate existing modelling approaches of lithosphere dynamics and mantle flow into a

  17. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.


    The CHAMP magnetic field mission is providing highly reliable measurements from which the global lithospheric magnetic field can be determined in unprecedented resolution and accuracy. Using almost 5 yr of data, we derive our fourth generation lithospheric field model termed MF4, which is expanded...

  18. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates (United States)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.


    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  19. Strong lateral variations of lithospheric mantle beneath cratons - Example from the Baltic Shield (United States)

    Pedersen, H. A.; Debayle, E.; Maupin, V.


    Understanding mechanisms for creation and evolution of Precambrian continental lithosphere requires to go beyond the large-scale seismic imaging in which shields often appear as laterally homogeneous, with a thick and fast lithosphere. We here present new results from a seismic experiment (POLENET-LAPNET) in the northern part of the Baltic Shield where we identify very high seismic velocities (Vs˜4.7 km/s) in the upper part of the mantle lithosphere and a velocity decrease of ˜0.2 km/s at approximately 150 km depth. We interpret this velocity decrease as refertilisation of the lower part of the lithosphere. This result is in contrast to the lithospheric structure immediately south of the study area, where the seismic velocities within the lithosphere are fast down to 250 km depth, as well as to that of southern Norway, where there is no indication of very high velocities in the lithospheric mantle (Vs of ˜4.4 km/s). While the relatively low velocities beneath southern Norway can tentatively be attributed to the opening of the Atlantic Ocean, the velocity decrease beneath northern Finland is not easily explained with present knowledge of surface tectonics. Our results show that shield areas may be laterally heterogeneous even over relatively short distances. Such variability may in many cases be related to lithosphere erosion and/or refertilisation at the edge of cratons, which may therefore be particularly interesting targets for seismic imaging.

  20. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina


    than 250 km) lithosphere is restrictedsolely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots donot extend deeper than 200–220 km.The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continentalupper mantle...

  1. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton (United States)

    Wang, Xingchen; Li, Yonghua; Ding, Zhifeng; Zhu, Lupei; Wang, Chunyong; Bao, Xuewei; Wu, Yan


    We present a new 3-D lithospheric Vs model for the NE Tibetan Plateau (NETP) and the western North China Craton (NCC). First, high-frequency receiver functions (RFs) were inverted using the neighborhood algorithm to estimate the sedimentary structure beneath each station. Then a 3D Vs model with unprecedented resolution was constructed by jointly inverting RFs and Rayleigh wave dispersions. A low-velocity sedimentary layer with thicknesses varying from 2 to 10 km is present in the Yinchuan-Hetao graben, Ordos block, and western Alxa block. Velocities from the middle-lower crust to the uppermost mantle are generally high in the Ordos block and low in the Alxa block, indicating that the Alxa block is not part of the NCC. The thickened crust in southwestern Ordos block and western Alxa block suggests that they have been modified. Two crustal low-velocity zones (LVZs) were detected beneath the Kunlun Fault (KF) zone and western Qilian Terrane (QLT). The origin of the LVZ beneath the KF zone may be the combined effect of shear heating, localized asthenosphere upwelling, and crustal radioactivity. The LVZ in the western QLT, representing an early stage of the LVZ that has developed in the KF zone, acts as a decollement to decouple the deformation between the upper and lower crust and plays a key role in seismogenesis. We propose that the crustal deformation beneath the NETP is accommodated by a combination of shear motion, thickening of the upper-middle crust, and removal of lower crust.

  2. Formation of cratonic lithosphere: An integrated thermal and petrological model (United States)

    Herzberg, Claude; Rudnick, Roberta


    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  3. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus


    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... manifold and that the distance between two deformations are given by the metric introduced by the L2-norm in the parameter space. The chosen L2-norm is shown to have a clear and intuitive interpretation on the usual nonlinear manifold. Our model is validated on a set of MR images of corpus callosum...

  4. Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean (United States)

    Ergun, Mustafa


    The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at

  5. Lithosphere Structure and Mantle Characterization of the Alpine-Himalayan Belt: Atlas, Zagros and Tibet (United States)

    Jiménez-Munt, I.; Tunini, L.; Fernandez, M.; Verges, J.; Garcia-Castellanos, D.


    By combining geophysical and petrological information, we investigate the crust and upper mantle of three orogens of the Alpine-Himalayan Belt (Atlas, Zagros and Tibet), characterizing the lithosphere from the thermal, compositional and seismological viewpoint. The modeling is based on an integrated geophysical-petrological methodology combining elevation, gravity, geoid, surface heat flow, seismic and geochemical data.The results show prominent lithospheric mantle thickening beneath the Moroccan margin followed by thinning beneath the Atlas Mountains. Different convergence accommodation between the crust and lithospheric mantle suggests a decoupled crustal-mantle mechanical response. In the northern Zagros the lithosphere-asthenosphere boundary rises sharply below the Sanandaj Sirjan Zone in a narrow region, whereas in the central Zagros the thinning is smoother and affects a wider region. The transition from the Arabian to the Eurasian lithospheric domain is located beneath the Zagros range, and it is marked by a change in the mantle velocity anomaly and in the lithospheric mantle composition. In the western Himalaya-Tibetan orogen, the lithosphere thickening is gradual reaching the maximum below the northern edge of the Plateau. The Indian lithospheric mantle underlies the whole Tibetan Plateau up to the boundary with the Tarim Basin. In the eastern sector, the thickening generates sharp steps beneath the Himalaya Range, and it thins abruptly beneath the Qiangtang and the Songpan Ganzi terrains. The Indian underthrusting is restricted to the southern Plateau. Different Eurasian domains have been also identified beneath the Tarim Basin, the Altaids region and NE Plateau by means of different lithospheric mantle compositions. The lithospheric models crossing Zagros and Tibetan Plateau show that the present-day lithosphere mantle structure of the Arabia-Eurasia and India-Eurasia collision zones are laterally-varying along the strike of both orogens, not just in

  6. Impact of the Canadian Shield-Cordillera tectonic transition on controlling deformation within western Canada (United States)

    Schaeffer, A. J.; Audet, P.; Mallyon, D.; Chen, Y.; Currie, C. A.; Gu, Y. J.


    Assembly of North America has been ongoing for more than 2 Ga, though geologically recent activity has been largely confined to the western margin—the Cordillera. Unlike a typical plate boundary fault, the Cordillera is characterized by a broad zone of distributed deformation as much as 800 km in lateral extent. The Canadian Cordillera is observed to have elevated heat flow, high topography, and a thin and weak lithosphere. Juxtaposed immediately to the east acting as a rigid backstop to deformation, is the strong and thick Canadian Shield. Both the location and nature of the Cordillera-Craton transition have been a subject of much study and debate. Past results suggest that the Cordilleran Deformation Front may mark the western extent of the cratonic lithosphere, whereas others indicate it extends further west, up to the Tintina Fault-Rocky Mountain Trench system. In the Mackenzie and Richardson Mountains of the northern Canadian Cordillera, this boundary likely becomes more complex and elusive due to the arcuate nature of the predominant tectonic structures. Despite high levels of seismicity across much of the region, detailed study has been limited by insufficient coverage of seismological infrastructure. With the USArray Transportable Array now deployed in Alaska and northwestern Canada, combined with several active regional arrays (e.g. the Yukon-Northwest Seismic Network, Canadian Rockies and Alberta Network), national and regional networks, and past seismological datasets, new studies now achieve improved resolution across large regions of western Canada and the craton-Cordillera transition. We present a new vertically polarized shear speed model of the lithospheric mantle and crust across western North America, and examine key features associated with the complex crust and lithosphere of dynamics of western North America. These include the location and nature of the Cordillera-Craton transition throughout the Cordillera, and what role the apparent step

  7. Layered anisotropy within the crust and lithospheric mantle beneath the Sea of Japan (United States)

    Legendre, C. P.; Zhao, L.; Deschamps, F.; Chen, Q.-F.


    Continental rifting during the Oligocene to mid-Miocene caused the opening of the Sea of Japan and the separation between the Japanese Islands and the Eurasian Plate. The tectonic evolution in the Sea of Japan is important for understanding the evolution of back-arc regions in active convergent margins. Here, we use data from the seismic stations surrounding the Sea of Japan to map the Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath the Sea of Japan. We explore the variations of Rayleigh-wave phase-velocity beneath the Sea of Japan in a broad period range (30-80 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 231 interstation paths using vertical-component broad-band waveforms at 22 seismic stations around the Sea of Japan from 1411 global earthquakes. The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy allow the examination of azimuthal anisotropy at specific periods. They exhibit several regions with different isotropic and anisotropic patterns: the Japan Basin displays fast velocities at shorter periods (30 and 40 s) with NNE-SSW anisotropy, whereas at 60 s and longer, the velocities become slow even if the anisotropy remains NE-SW; the East China Sea shows fast velocities at all periods (30-80 s) with constant NW-SE anisotropy. Trench-normal anisotropy beneath the Japanese Islands is found at short periods (30-40 s) and become trench-parallel at periods of 60 s and longer. Overall, our model resolves two layers of anisotropy, the shallowest and deepest layers being potentially related to frozen deformation due to recent geodynamic events, and asthenospheric flow, respectively.

  8. Constraints on the Thermal and Compositional Nature of the Oceanic Lithosphere-Asthenosphere Boundary from Seismic Anisotropy (United States)

    Beghein, C.; Yuan, K.; Schmerr, N. C.; Xing, Z.


    underlying hydrated, more deformable bottom layer, yielding an anisotropic discontinuity at the base of the dehydrated layer. This alignment would be frozen in the part of the lithosphere that lies below the chemical depletion boundary as the lid cools and thickens, whereas flow in the warmer asthenosphere would align with present-day APM.

  9. Sulphidation of the oceanic lithosphere: an experimental approach (United States)

    Los, Catharina; Hansen, Christian; Bach, Wolfgang


    Newly formed oceanic lithosphere close to spreading centers can be influenced by fluids that feed hydrothermal vents. These fluids often carry high amounts of dissolved gases such as H2S, which can trigger precipitation of sulphide minerals in the interacting rock during percolation. This process occurs equally in exposed mantle rock, serpentinised mantle rock, troctolite or gabbro and basalt, the lithology depending on the spreading rate at the ridge where hydrothermal activity is present. These later-stage fluid-rock interactions can develop different types of sulphide mineralization in the lithosphere. In order to better understand these sulphidation reactions, we have conducted several batch experiments that placed different oceanic lithologies in contact with an H2S saturated, iron-free solution. The mixture was heated to 250°C at 400 bars and kept under these conditions for 2-8 weeks. In situ fluid and gas sampling was used to monitor reaction progress. REM-analysis of the solid products has shown the growth of euhedral pyrite and magnetite crystals as well as dissolution textures in feldspar and olivine. The presence of pyrite (gabbro experiment) and magnetite (troctolite and serpentinite) is in agreement with the measured H2- and H2S-content in the analysed fluids. These Fe-bearing minerals grew although no iron was added to the fluid, showing the replacive nature of the reaction. Geochemical modeling can be used to extend the application of these observations to different PT-conditions. Using this technique, we can start tackling the problem of replacive sulphide formation within hydrothermal discharge zones in oceanic basement of variable composition.

  10. Lithospheric Evolution of Magmas from the Northern Galapagos Province (United States)

    Miller, M.; Geist, D.; Harpp, K. S.; Mittelstaedt, E. L.


    Volcanoes of the Northern Galapagos Providence (NGP) are crucial to understanding the interaction between the Galapagos Plume and the Galapagos Spreading Center (GSC). The NGP consists of five islands and nine volcanic lineaments, all located south of the GSC. Major and trace element compositions of seamounts within the NGP provide insight into the lithospheric evolution of magma within the province. The FLAMINGO cruise (June, 2010) dredged forty-seven localities in the NGP. Major element compositions were determined by XRF and microprobe analysis of submarine rocks and glasses. Crystallization as a function of pressure and temperature is modeled with MELTS and projections into ternary phase diagrams. The Wolf-Darwin Lineament (WDL) is divided into three groups for evaluation of the lavas’ petrology: Northern Wolf-Darwin lineament (that closest to the GSC including Darwin Island), Middle Wolf-Darwin lineament (MWDL, which includes Wolf Island), and Southern Wolf-Darwin lineament (that closest to the Galapagos Platform). Lavas from two other lineaments to the east of the WDL and around Pinta Island are assessed as well. Two parental compositions are modeled, one enriched and one depleted (K2O/TiO2 >0.23 as enriched and K2O/TiO2 =0.04 as depleted). CaO/Al2O3 and Al2O3 variations with Mg# vary considerably as a function of pressure. Magmas from most of the subregions of the NGP evolved by crystallization of olivine and plagioclase, with little CPX crystallization. This indicates that crystallization beneath these volcanoes is limited to pressures 16.5% could be from very low extents of partial melting. The dominantly shallow crystallization depths within the NGP contrast with the deep crustal crystallization that characterizes magmas from the Galapagos Platform. We attribute the rarity of deep crustal fractionation as due to the relatively thin lithosphere south of the GSC as well as the extensional tectonic regime.

  11. Imaging the Italian Lithosphere based on Adjoint Tomography (United States)

    Magnoni, F.; Casarotti, E.; Komatitsch, D.; Melini, D.; Michelini, A.; Piersanti, A.; Tape, C.; Tromp, J.


    We exploit the powerful European computational resources awarded to our PRACE project IMAGINE_IT ("3D full-wave tomographic IMAGINg of the Entire ITalian lithosphere") to develop a reference, high-resolution 3D seismic wavespeed model for the Italian lithosphere. The inversion procedure consists of iterative improvements of an initial 3D traveltime tomographic model of the region constrained by a large number of full, high-quality observed seismic waveforms. The final model images the regional structure at unprecedented resolution ( 10 s) minimizing the misfit between recorded and synthetic data. Numerical wavefield simulations at high frequency are performed using a spectral-element method (code SPECFEM3D) that allows us to implement all complexities that characterize the studied region (lateral heterogeneity, topography, attenuation). This method is then efficiently combined with an adjoint technique to perform the 3D full-wave tomographic inversion. The Italian peninsula is characterized by very heterogeneous features resulting from complex tectonic evolution of the region mainly dominated by the interaction of Tyrrhenian, Adria and European plates. Our inversion includes 163 earthquakes that occurred in Italy and neighboring areas between 2005 and 2014, and a dense seismological network of 400 seismic recording stations. We perform 25 iterations of our iterative tomographic inversion process, as well as moment tensor inversions for the considered events. The resolution capabilities of our model are also explored based on point spread function analyses and calculation of the approximate Hessian. Thanks to our project IMAGINE_IT, at present the first application of adjoint tomography for the whole Italian region, we are able to constrain Vp as well as Vs at unprecedented resolution; the complex plate relationships start to be accurately modeled, and other inferences on the Italian geodynamical evolution or on fluid (such as CO2) distribution become possible.

  12. The evolution of deformation and topography of high elevated plateaus. 2: Application to the central Andes (United States)

    Wdowinski, Shimon; Bock, Yehuda


    The central Andes form a wide elevated flanked in the west by a steep slope toward the deep Chilean Trench and in the east by a gentle slope that subsides gradually toward the Brazilian Shield. The low elevated trench topography is dynamically supported, whereas the high Andean mountain topography is mostly isostatically supported by a thick crust. The last mountain building phase, which thickened the crust and formed the present-day Andes, began 26 m.y. ago, in the late Oligocene, with the increase of the convergence rate between the Nazca and the South American plates. We investigate the time evolution of the Andean deformation and topography by applying a temperature dependent viscoplastic flow model of continental lithosphere to the South American plate. The model predicts the observed present-day topographic profile across the central Andes, from the trench across the high Altiplano plateau to the Brazilian Shield. Our numerical results, combined with observations of the spatial and temporal distribution of igneous activity in the central Andes, lead us to conclude that the Altiplano developed and extended to its present width of 400 km as a result of thermal weakening of the lithosphere since late Oligocene until present. The model also predicts the observed eastward migration of the locus of the Andean crustal deformation with time. At early stages, both the crustal and mantle loci of deformation lie in the thermally weak region, which results in crustal thickening in this finite region. At later stages, as the crust thickens, it induces increased buoyancy forces, which resist crustal thickening beyond 65 km. As a result, the locus of crustal deformation migrates eastward. The detachment of the crustal locus of deformation from that of the mantle can explain the observed change in deformation pattern from thick-skinned tectonism during early stages of the deformation to thin-skinned tectonism during the more recent stages.

  13. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.


    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  14. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction (United States)

    Pilet, S.; Müntener, O.; Jean, G.; Schoene, B.; Schaltegger, U.


    The temporal coincidence between LIPs and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic and Pliensbachian-Toarcian boundaries combined with geochronological data demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. As current hypothesis for LIPs seems unable to produce these successive climatic changes, we evaluate an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. Even in presence of abnormal potential mantle temperature, the presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. Various studies on Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. We argue that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission. We suggest that the nature of the underlying lithosphere during large LIP eruption exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  15. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine


    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  16. Genetic Diversity in Sub continental Land race cultivars

    African Journals Online (AJOL)

    M. shahbaz


    May 31, 2012 ... durum lines T2 and T3 were placed in group A, whereas their counterpart T1 was quite distinct. Of the selections, T4 to T9 that was .... and a final extension step of 10 min at 72°C. Amplification products were fractionated on 2% agarose ... Popgene 1.44 software (Yeh et al., 2000). All amplification products.

  17. MONA LISA - Deep seismic investigations of the lithosphere in the southeastern North Sea (United States)

    MONA LISA Working Group


    The MONA LISA collaborative project has collected 1112 km of seismic normal-incidence reflection data (recorded to 26 s) and wide-angle data from 26 onshore and 2 offshore locations along 4 profiles in the southeastern North Sea. The seismic data clearly image structures in the crust and uppermost mantle that may be related to Caledonian collision and Late Palaeozoic to Mesozoic rifting and basin formation. For the first time, dipping and subhorizontal reflections from the mantle have been observed to 24 s twt in seismic normal-incidence reflection sections. Strong sub-horizontal reflections are observed on two perpendicular profiles at c. 21 s twt, which is near the base of the lithosphere. These deep reflections are sharper than expected from a thermal-rheological transition suggesting that they are generated at lithological or tectonic interfaces. The Moho is reflective along all four profiles. Particularly strong and sharp normal-incidence and wide-angle reflections were recorded from the Moho south of the Caledonian Deformation Front. The normal-incidence reflection sections show unusually low intra-crustal reflectivity. Lower crustal, subhorizontal reflectivity is only observed west of the Central Graben and in a short profile segment at the base of the interpreted Caledonian Deformation Front. The crustal suture between Avalonia and Baltica is interpreted to be south- to west-dipping. SSW- and N-dipping reflections to 20 s twt are observed from the uppermost mantle. Two models of Tornquist Sea subduction may explain these events: either southward subduction and later extensional reactivation or northward subduction with later extension along a SSW-dipping shear zone. The crust is c. 5 km thinner below the Central Graben than below the surrounding parts of the Mid North Sea-Ringkøbing-Fyn High. The lower crust is reflective on the western flank of the Central Graben. East-dipping reflections from the lower crust and the upper mantle to the east of the graben

  18. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar


    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...

  19. Pediatric Thumb Flexion Deformities. (United States)

    Shreve, Mark; Chu, Alice


    Pediatric trigger thumb and congenital clasped thumb are the two most common pediatric thumb flexion deformities. Both might appear similar, however, they are caused by varying etiologies, and treatment is vastly different. Pediatric trigger thumb is due to a size mismatch of the flexor tendon and the thumb pulley system, develops over time, typically manifests as a locked interphalangeal joint, and is treated with observation or surgical release. Congenital clasped thumb, although presenting in varying degrees of severity, is due to a congenital absence or hypoplasia of one or more of the thumb extensors and is treated with either splinting for supple deformities or surgery for more complex deformities.

  20. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting (United States)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao


    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  1. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity? (United States)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel


    The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving

  2. Extremely deformable structures

    CERN Document Server


    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  3. Deformations of singularities

    CERN Document Server

    Stevens, Jan


    These notes deal with deformation theory of complex analytic singularities and related objects. The first part treats general theory. The central notion is that of versal deformation in several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations. The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern. Examples are spread throughout the text.

  4. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. (United States)

    Hilairet, Nadege; Reynard, Bruno; Wang, Yanbin; Daniel, Isabelle; Merkel, Sebastien; Nishiyama, Norimasa; Petitgirard, Sylvain


    The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.

  5. Reconciling the Misfit Between the Yellowstone Plume Trace and Global Plate Motion Models: Channelized and Pancake Plume Flow on Basal Lithospheric Topography (United States)

    Jordan, B. T.


    accreted terranes would have produced more decompression melts. The latter process is analogous to plume flow toward mid-ocean ridges. Two modes of flow have been evaluated in considering plume-ridge interactions, channelized and pancake flow, with geodynamic models favoring the latter. I suggest that both types of flow occurred in the Yellowstone system in the Miocene. The western Snake River Plain graben connects the projected position of the Yellowstone plume at 17 Ma to the CRB dike swarms. I propose that the development of the western Snake River Plain graben reflects weakening of the lithosphere by channelized sublithospheric plume flow. Further evidence for this process is the observation that CRB lavas became more isotopically evolved over time, consistent with thermomechanical erosion of the Precambrian lithosphere in which the channel was developed. In contrast, the region connecting the projected position of the Yellowstone plume to the SB dikes and the NNR lacks subsequent focussed deformation and is characterized by widespread Miocene caldera systems (including the western 300 km of the canonical plume trace). These characteristics are more consistent with pancake flow. Only after the craton margin was far enough from the plume, at about 10 Ma, did the Yellowstone plume begin to leave a simple plume trace. That channelized plume flow dominated over pancake flow in this setting (CRB volume >3x SB volume) probably reflects greater irregularity in the sublithospheric topography under continents than ocean basins.

  6. Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions

    National Research Council Canada - National Science Library

    O'Driscoll, Leland J; Miller, Meghan S


    We present the first broad‐scale image of lithospheric thickness across the major tectonic domains of Alaska based on S wave receiver functions and joint interpretation with the potential field, seismic velocity, and heat flow measurements...

  7. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: examples from Europe, Siberia, and North America

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    of the Precambrian lithosphere based on surface heat flow data, (ii) non-thermal part of upper mantle seismic velocity heterogeneity based on a joint analysis of thermal and seismic tomography data, and (iii) lithosphere density heterogeneity as constrained by free-board and satellite gravity data. The latter...... is compared with xenolith data from the Siberian kimberlite provinces. An analysis of surface heat flow indicates that many Precambrian cratons (particularly the cratons of Laurasia) are characterized by extremely low surface heat flow (... compilation of cratonic xenolith P-T arrays, which are usually consistent with surface heat flow of around 40 mW/m2. In regions with very low heat flow, the depth extent of the lithospheric keels locally may reach the depth of 300-350 km. In contrast, the lithosphere of the cratons which were a part...

  8. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: a case study of the Siberian craton

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija


    We present geophysical models for the lithospheric mantle of the Siberian craton, with focus on its structureand thermo-compositional heterogeneity as constrained by various geophysical data. The latter include thermalstructure of the lithosphere based on surface heat flow data and supported...... constrained independently by free-board and satellite gravityshows significant lateral variations, that are well correlated with crustal structure, surface tectonics, and regionalxenolith data. Proterozoic sutures and intracratonic basins are manifested by an increase in mantle density as comparedto light...... and lateralheterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes.We discuss lateral and vertical heterogeneity of the cratonic lithosphere discussed in connection to regionaltectono-thermal evolution....

  9. The Changing Lithosphere: formation of minerals and dissapearance of rocks (United States)

    Vignola, Teresa; Floriano, Michele A.


    Earth Science teaching/learning is based on the idea that lithosphere is subject to changes that continuously modify its aspect. In order to demonstrate one of the causes of these changes, simple laboratory experiments have been used for first year high school students allowing simulating the formation of minerals by precipitation from a saturated solution and their solubility due to chemical reaction with acid substances. In the first stage, solubility, saturated and unsaturated solution concepts have been clarified by using sugar candies thatdissolveat different times by putting them in water containing increasing amounts of added sugar. Afterwards, by inspection of data tables, students have verified that different substances have different solubilities at the same temperature. At this point the solubility CuSO4. 5 H2O was considered and students prepared saturated aqueous solutions by adding 31.6 g of the salt in 100 ml of water. On further addition of salt for a total of 40 g, students have verified the presence of an undissolvedresidue that dissolved on heating. The obtained solution was transferred to a crystallization dish. Subsequent cooling and solvent evaporation produced a supersaturated solution where the precipitation process started allowing the formation, in 5-6 days, of CuSO4. 5 H2O bluecrystals. One of the minerals that can form by precipitation from a saturated solution is calcite that can originate from precipitation of calcium carbonate saturated solutions or from deposition of marine organisms inorganic residues containing calcium carbonate in their shells. However, when a mineral is formed, it will not remain unchanged forever. In order to show that some minerals and carbonaterocks, in addition to erosion phenomena, may also be subject to chemical attacks by atmospheric agents leading to their dissolution. Several rock samples were treated with an acid solution, and the bubbles forming in some of the samples demonstrated that even rocks could

  10. Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton (United States)

    Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie


    The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas

  11. Lithosphere Removal in the Central Andes: Reconciling Seismic Images and Elevation History (United States)

    Henderson, O.; Currie, C. A.


    Shortening of the upper crust should be accompanied by thickening of the deeper lithosphere. However, for many orogens, including the central Andes, geophysical and geological observations indicate that mantle lithosphere is spatially heterogeneous, being anomalously thin or absent. Seismic studies of the central Andes suggest that mantle lithosphere is locally removed. Also, present day elevations of the central Andean Plateau have been explained by rapid removal of mantle lithosphere over the last 10 Ma. Yet, the geological record is innately incomplete, and seismic tomography and receiver functions can offer only a present day snapshot of the subsurface. None of these techniques provides concrete insight into the physical processes responsible for current Andean elevations (3-5 km). A 2D plane-strain thermo-mechanical code, SOPALE, is used to examine the deep lithospheric dynamics connected to mantle lithosphere removal within a subduction zone setting, such as the Andes. Three models have been tested: removal by viscous dripping, by delamination, and a model with no removal. The removal models contain a high density eclogite root, creating a contrast between mantle lithosphere and mantle material. For the viscous drip models, mantle lithosphere is removed within 2.5-5 Myrs, descending subvertically through the mantle, causing subsequent surface rebound. Prior to this rebound, surface topography subsides locally over the dense root. This subsidence is influenced by crustal rheology, where weaker crustal rheologies produce deep, narrower basins (25-75 km wide, ~1 km deep), and stronger crustal rheologies produce shallow, broader basins (300-400 km wide, ~0.5 km deep). Delamination, which involves the coherent removal of mantle lithosphere along the Moho, affects a larger region, and is reflected in broader basins that extend into the back-arc. In all models, the deep lithosphere dynamics have an appreciable effect on surface topography, therefore, removal events

  12. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology (United States)

    Mather, Kathy A.; Pearson, D. Graham; McKenzie, Dan; Kjarsgaard, Bruce A.; Priestley, Keith


    Despite the relatively long-standing availability of numerical approaches for estimating palaeogeotherms using peridotite xenolith Pressure-Temperature (P-T) data, the practise of fitting xenolith P-T arrays to simple models of lithospheric heat generation, in a non-quantitative manner, remains widespread. The lack of quantification in both the magnitude and uncertainty of heat flow and lithosphere thickness estimates leads to difficulty in evaluating proposed models for lithosphere evolution on a local and regional scale. Here, we explore the advantages of using a numerical approach to palaeogeotherm fitting, in terms of the ability to make objective comparisons of the effect that differing thermobarometer combinations and varying states of mineral and textural equilibrium have on the shape of the palaeogeotherm, and the resulting estimates of lithospheric thickness and heat flow. We also make quantitative comparisons between lithospheric mantle properties estimated using peridotite xenoliths versus single mineral xenocrysts. Using two reference peridotite xenolith databases from Bultfontein (S. Africa) and Somerset Island (Canada) we show that the same lithospheric mantle properties are predicted using harzburgite versus lherzolite thermobarometry methods. Filtering mineral data for the effects of inter-mineral disequilibrium does not produce significantly different palaeogeotherms but does increase the quality of fit of the palaeogeotherm to the P-T data, allowing more confidence to be placed in comparisons between locations. Palaeogeotherms calculated using xenocryst data, screened for peridotitic affinities, show misfits that are 2-3 times greater than those obtained using xenoliths. Lithospheric properties calculated from the Somerset Island xenocryst-based geotherm yield results that are within error of the xenolith estimate. A mutually consistent and quantitative palaeogeotherm fitting approach is used to evaluate existing hypotheses for the evolution of

  13. Thermo-mechanical characterization of the lithosphere : Implications for geothermal resources


    Limberger, Jon


    The two key ingredients needed to commercially exploit a geothermal energy system are (1) sufficiently high subsurface temperatures and (2) presence of rock formations suitable to act as a geothermal reservoir at reachable depths. Subsurface temperatures are controlled by the heat flowing from deep inside the Earth to its surface with the heat transfer in the lithosphere primarily marked by conduction. The thermal structure of the lithosphere itself depends on its thickness, thermal propertie...

  14. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere


    Hansen, Lars N.; Qi, Chao; Warren, Jessica M.


    Although plate tectonics has seen broad acceptance for Earth, the manner in which lithospheric plates are coupled to Earth’s deeper interior is still heavily debated. In particular, recent seismological observations suggest a sharp, flat base of the lithosphere, whereas thermal models suggest a gradational boundary that deepens with age. Based on laboratory experiments, we suggest that thermal models are most appropriate and that seismic studies are detecting features frozen into the lithosph...

  15. High-velocity lid of East Antarctica: Evidence of a depleted continental lithosphere (United States)

    Kuge, Keiko; Fukao, Yoshio


    In broadband seismograms from shallow earthquakes occurring south of New Zealand recorded at the South Pole, we found significant arrivals 40-70 s after the first SH arrivals at distances of 29°-35° and 20-50 s after the first P arrivals at distances of 28°-35°. These waves traversing beneath East Antarctica can be modeled by slightly modifying one-dimensional P and S wave velocity structures of the Canadian shield. In the obtained velocity models, a velocity reduction below the lithosphere forms a deep low-velocity zone. S waves turning below the low-velocity zone explain the SH waveforms observed at 29°-55°. The observed P waveforms, however, suggest that a corresponding reduction in P velocity is smaller. These P and S wave velocity variations are likely to be a manifestation of a depleted continental lithosphere (high concentrations of olivine and magnesium number (Mg # = 100Mg/(Mg + Fe)). For a lithospheric composition more depleted than that of the underlying mantle, the temperature profile estimated from our velocity models is smooth from the lithosphere to the underlying mantle. Lithospheric depletion can also explain that the velocity anomaly in the lithosphere is larger for S than for P waves. Were the composition to be assumed uniform throughout the upper mantle, a large temperature gradient would be required at the bottom of the lithosphere, implying a heat sink which is unlikely to be sustainable. Thus a difference in composition between the lithosphere and underlying mantle leads to a reasonable estimate of temperature profile that is consistent with the observed seismic waveforms.

  16. The role of hydrothermal cooling of the oceanic lithosphere for ocean floor bathymetry and heat flow (United States)

    Schmeling, Harro; Marquart, Gabriele; Nawa, Viktor


    We investigate the influence of hydrothermal circulation on cooling of oceanic lithosphere. We include hydrothermal convection in a 1-D lithosphere cooling model by using a scaling law which relates the Rayleigh to the Nusselt number. This law allows calculating an effective thermal conductivity accounting for the extra heat transport. Based on a global data set for bathymetry and surface heat flow for ocean floor ages between 0.7 and 160 Ma, we perform a joint inversion based on a downhill simplex algorithm to constrain characteristic parameters for hydrothermal cooling (beside the classical parameter mantle temperature, thickness of the lithosphere, and thermal expansivity of lithosphere rocks). Hydrothermal cooling parameters are crack aspect ratio which controls the hydrothermal penetrations depth, characteristic cementation time at which cracks become closed and hydrothermal circulation ceases, and sealing time when enough sedimentary cover on top of the lithosphere has accumulated to prevent hydrothermal fluid escaping into the ocean. Best fitting parameter sets predict mantle temperatures between 1350 and 1450°C and lithosphere thickness between 70 and 90 km and further suggest that (1) the fit to the data is strongly improved if hydrothermal cooling effects are considered, (2) hydrothermal cooling is important for up to 10 Ma old lithosphere and leads to a significant deviation from the 1/square root—law with an exponent closer to 1/3, (3) sedimentary sealing is completed for 1.5 Ma old lithosphere, and (4) fitting of the data is improved for an apparently 1.4 times higher value of thermal expansivity which may account for effects of melt solidification.

  17. Magma mixing in the Kalaqin core complex, northern North China Craton: Linking deep lithospheric destruction and shallow extension (United States)

    Fu, Lebing; Wei, Junhao; Tan, Jun; Santosh, M.; Zhang, Daohan; Chen, Jiajie; Li, Yanjun; Zhao, Shaoqing; Peng, Lina


    The widespread Mesozoic magmatism in the North China Craton (NCC) has received considerable attention as a trigger for large scale lithospheric destruction. Here we investigate the Early Cretaceous Jiguanzi adamellite from the northern part of the NCC which is contemporaneous with shallow extensional deformation and deep lithospheric destruction. This intrusion emplaced at ca. 133 Ma is located in the foot wall of the Kalaqin metamorphic core complex (MCC), and occurs as a synextensional ring complex with numerous magmatic equigranular (Group 1) and porphyritic (Group 2) enclaves. Hornblende and plagioclase from the host adamellite and xenocrysts of Group 2 enclaves show distinct inverse zoning with Mg- and Ca-rich mantle. The Group 2 enclaves are characterized by plagioclase xenocrysts hosting hornblende, biotite and apatite inclusions, quartz ocelli with fine-grained rim enriched in biotite and hornblende, and poikilitic biotite surrounded by hornblende. Geochemically, the host intrusion is calc-alkaline to alkaline and metaluminous with variable contents of SiO2 (60.70-72.20 wt.%), Al2O3 (14.19-17.22 wt.%), Na2O + K2O (6.16-9.42 wt.%), and Mg# values (28.0-47.7), whereas the Group 2 enclaves exhibit low SiO2 (54.05-55.55 wt.%), high Fe2O3 (8.18-8.64 wt.%) and TiO2 (2.08-2.28 wt.%), and moderate Mg# (44.0-44.1). Both the host intrusion and Group 2 enclaves are enriched in large-ion lithophile and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements except that the latter has lower Ba and high Nb, Ta and Ti contents. The major and trace element contents of the Group 1 enclaves are broadly similar to those of the host intrusion. Analyses of Sr-Nd-Hf isotopes in the host intrusion, and in Group 1 and Group 2 enclaves show (87Sr/86Sr)ihost = 0.70600-0.70618, εNd(t)host = - 8.2 to - 9.6, T2DM(Nd)host = 1592-1706 Ma, εHf(t)host = - 9.2 to - 12.0, (87Sr/86Sr)iGroup 1 = 0.70590-0.70635, εNd(t)Group 1 = - 9.6 to - 10

  18. Dislocation models of interseismic deformation in the western United States (United States)

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.


    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  19. The lithosphere structure beneath the central Mediterranean from S receiver functions (United States)

    Bianchi, Irene; Miller, Meghan; Piana Agostinetti, Nicola; O'Driscoll, Leland


    The last piece of Mesozoic oceanic lithosphere from the Neo-Tethys Ocean is being consumed beneath Eurasia in the Central Mediterranean area, squeezed by the continuing convergence of Africa with the Eurasian plate. Convergence between Africa and Eurasia has been ongoing since the Cenozoic, forming a series of arcuate shaped subduction zones, and producing the current complex plate boundary that strikes across the Mediterranean area. Moreover, geophysical imaging depicts a variable lithospheric structure related to remnants of both oceanic and continental lithosphere within this convergent margin, which contributes to its complexity. In fact, the subduction/collision of blocks with different rheologies and thicknesses (e.g. continental or oceanic) has resulted in complex setting that includes accretionary wedges, orogenesis, and formation of an intricate back-arc/fore-arc/trench system. In order to shed light on these tectonic structures, we provide observations and interpretations of the lithospheric structure of the central Mediterranean via S receiver functions analysis. Teleseismic observations recorded at permanent and temporary seismic stations have been employed to produce images of the lithospheric discontinuities with tens of kilometers lateral resolution. We illustrate the feasibility of the lithosphere-asthenosphere boundary detection on a regional scale, and detect the occurrence of deeper seismic discontinuities due both to positive and negative seismic velocity jumps.

  20. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey (United States)

    Oruç, Bülent; Sönmez, Tuba


    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  1. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    Directory of Open Access Journals (Sweden)

    Valiya M. Hamza


    Full Text Available A magma accretion model of oceanic lithosphere is proposed and its implications for understanding its thermal field examined. The new model (designated Variable Basal Accretion—VBA assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. However, unlike the previous thermal models of the lithosphere, the ratio of advection to conduction heat transfer is considered a space dependent variable. The results of VBA model simulations reveal that the thickness of the young lithosphere increases with distance from the ridge axis, at rates faster than those predicted by Half-Space Cooling models. Another noteworthy feature of the new model is its ability to account for the main features in the thermal behavior of oceanic lithosphere. The improved fits to bathymetry have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation. Also, use of VBA model does not lead to artificial discontinuities in the temperature field of the lithosphere, as is the case with GDH (Global Depth Heat Flow reference models. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  2. Lithospheric topography, tilted plumes, and the track of the Snake River-Yellowstone hot spot (United States)

    Shervais, John W.; Hanan, Barry B.


    The trace of the Snake River-Yellowstone hot spot is the world's best example of a mantle plume that has been overridden by continental lithosphere. The "standard model" calls for the plume head to rise under northern Nevada and be forced northward to form basalts of the Columbia Plateau; subsequent movement of North America to the southwest over the plume tail created a hot spot trace on the surface. We present a new conceptual model for the origin of this feature that resolves inconsistencies in the current standard model and explains the recent documentation of a thermal anomaly in the mantle below Yellowstone today that plunges ˜65° WNW. Our model implies that the plume tail was forced beneath thinned cratonic lithosphere to the SE along with part of the plume head and has remained in this orientation for the last 12 Ma. We infer that almost all of the volcanism in SE Oregon and SW Idaho prior to 12 Ma results from overriding the southern extension of the plume head, not the plume tail, and that a distinct plume tail hot spot track was not established until formation of the Bruneau-Jarbidge eruptive center around 12 Ma. The plume tail track may also be controlled by a preexisting structural boundary in lithosphere that is thinner than adjacent lithosphere. This model demonstrates the potential importance of lithospheric topography on controlling the surface manifestation of plume volcanism and the complexity that may arise when lithospheric thickness is nonuniform.

  3. Three-dimensional lithospheric density distribution of China and surrounding regions

    Directory of Open Access Journals (Sweden)

    Chuantao Li


    Full Text Available In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30′ × 30′ gravity data and 1° × 1° P-wave velocity data. Firstly, we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2–40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART, the inversion of 30′ × 30′ residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.

  4. Hydrosphere, Atmosphere, Lithosphere, Biosphere: A Global Geophysical Union (United States)

    Milly, P.


    Water moves freely among the major spheres of the earth system, and, in so doing, it unites them. The atmosphere is driven, moistened and clouded by water in its changing phases, with ubiquitous climatic consequences. The biosphere's organisms depend on the "universal solvent" for access to and internal transport of nutrients, so much so that water availability defines the very geography of photosynthesis and life. The lithosphere is variously loaded, inflated, lubricated and eroded by water, with geodynamic consequences of all sorts. The ever-changing gravitational pull of earth's wandering waters is felt even in the exosphere. The movement of water among the spheres is partially regulated by, and has enormous consequences for, the anthroposphere. The influence of the hydrosphere on the other spheres creates interesting opportunities (indeed, necessities) for hydrologists to play with puzzles and problems beyond their own traditional sphere. In the experience of the speaker, the American Geophysical Union has been a playground that promotes such play, and the future promises more interdisciplinary fun; we have nothing to fear but spheres by themselves.

  5. Risk and Geodynamically active areas of Carpathian lithosphere

    Directory of Open Access Journals (Sweden)

    Lubomil Pospíšil


    Full Text Available This paper illustrates an application of multidisciplinary data analysis to the Carpathian–Pannonian region and presents a verification of a Complex model of the Carpathian - Pannonian lithosphere by recent data sets and geophysical data analyses and its utilization for the determination of risk and active geodynamic and tectonic zones of Ist order . This model can be used for the analysing any Carpathian area from the point of view of the seismic risk, hazards and geodynamic activity, which is important to know for the building of a repository for the radioactive wasted material. Besides the traditionally used geological (sedimentological and volcanological data and geomorphological data (Remote Sensing, an emphasis was laid on geodetic, grav/mag data, seismic, seismological and other geophysical data (magnetotelluric, heat flow, paleomagnetic etc.. All available geonomic (geologic, geodetic, geophysical, geomorphological data were verified and unified on the basis of the same scale and in the Western Carpathians on the Remote Sensing data. The paper concentrates on two problematic areas – the so call “rebounding area” in the Eastern Carpathians and the Raba – Muran - Malcov tectonic systems.

  6. Westernmost Mediterranean Mantle Tomography: Slab Rollback and Delaminated Atlas Lithosphere (United States)

    Bezada, M. J.; Humphreys, E.


    We present a new velocity model for the upper mantle in the westernmost Mediterranean including the Iberian Peninsula and northern Morocco. Our imaging improves over previous efforts by taking advantage of the data generated by the PICASSO, IberArray, TopoMed and connected seismograph deployments and by using a new methodology that includes finite-frequency effects and iterative ray tracing, utilizes local earthquakes in addition to teleseismic events and includes constraints from surface wave analyses. We image a subducted slab as a high velocity anomaly located under the Alboran Sea and southern Spain that extends to the bottom of the transition zone. The anomaly has an arcuate shape at most depths and reaches the surface beneath Gibraltar but not under southern Spain. The N-S oriented Gibraltar and E-W oriented southern Spain segments of the slab appear to be separated by a vertical tear or "slab gap". Under the Atlas Mountains in northern Morocco we image low velocities to depths of over 200 km and a high-velocity body at depths of 300-450 km beneath the Middle Atlas, which we tentatively interpret as delaminated lithosphere.

  7. The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-Value (United States)

    King, Geoffrey


    Plate tectonics has provided a method of visualizing the geometry of the deformation of the Earth’s lithosphere on a large scale. The description is so concise that for many purposes it provides an explanation of geological processes that overshadows the need to understand the driving processes. The mechanics of the zones between the plates are less well understood, particularly in continental regions where large areas are subject to deformation. Both continuous and discontinuous models have been tried but both have obvious drawbacks. In this paper concepts of geometrical self-similarity are adapted to provide a description of the multiscale faulting that must occur in such environments. The fractal geometry of Mandelbrot is applied to the problem of continental triple junctions and it is shown that certain arrays of faults can “stabilize” a junction where three faults meet. The conditions required to do this indicate that earthquakes of different sizes must occur in certain proportions. For simple assumptions and conditions of triaxial deformation the proportion is that which is observed globally for earthquakes. Thus, the b-value of unity found empirically by Gutenberg and Richter and others can be regarded as a consequence of three-dimensional self-similar fault geometry. The geometric description can be used to understand the way in which fault systems evolve. Earthquakes initiate and terminate in regions where fault systems bend, because the bends become zones subject to multiscale faulting. Movement on many faults in these regions distributes the stress concentration of a propagating rupture front and terminates motion. The multiple faults create offsets in the next fault to move. These offsets are the asperities that must break before a new earthquake occurs. The self-similar fault geometry requires that a substantial proportion of the deformation in a fault system occur on minor faults and not on the main faults. The proportion of the deformation

  8. Post-laminectomy deformities

    Directory of Open Access Journals (Sweden)

    Fabiano Stumpf Lutz


    Full Text Available Objective: To present the deformities and evaluate the results of their treatment. Methods: Retrospective study of patients with deformity following surgical access to the spinal canal. Fifteen patients who met the inclusion criteria were included. Patients without complete data in medical records were excluded. Results: Fourteen patients underwent surgical treatment and one patient received conservative treatment with vest type TLSO. The average angle of kyphosis correction was 87° preoperatively to 38° postoperatively, while the associated scoliosis correction was 69° preoperatively to 23° postoperatively. Conclusions: The prevention of deformity should be emphasized to avoid laminectomy alone, while laminoplasty should be the procedure of choice for canal access in surgeries where there is no need for resection of the posterior elements.

  9. Breast deformities and mastopexy. (United States)

    Nahabedian, Maurice Y


    LEARNING OBJECTIONS: After reviewing this article, the participant should be able to: 1. Appreciate the diversity of approaches for the correction of breast deformities and mastopexy. 2. Review the salient literature. 3. Understand patient selection criteria and indications. Breast deformities and mastopexy continue to challenge plastic surgeons. Deformities such as Poland syndrome, tuberous breast, gynecomastia, and other congenital conditions are uncommon; therefore, management experience is often limited. Various techniques have been described, with no general consensus regarding optimal management. Mastopexy has become more common and is performed both with and without augmentation mammaplasty. However, a variety of techniques are available, and a thorough understanding of the indications, patient selection criteria, and techniques is important to optimize outcomes. This article will review these and other conditions to provide a better understanding of the current available data and evidence for these operations.

  10. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  11. Slab, drip, or peeling lithosphere: Teleseismic P-wave tomography and the Isabella anomaly of the southwestern Sierra Nevada, California (United States)

    Jones, C. H.; Reeg, H.; Zandt, G.; Gilbert, H. J.; Owens, T. J.; Stachnik, J. C.


    volumes are appropriate and the geometry compatible with such an origin. A slab origin is troubled if the slab is neutrally buoyant because of the odd coincidence of subsidence in the past 3-5 Ma, it is troubled if antibuoyant as the position so far east and a 60-70° dip ~20 Ma after subduction would seem difficult to maintain, and in either event, the Isabella anomaly is north of a position consistent with the subducted remains of the Monterey subplate. True delamination (i.e., peeling with minimal internal deformation) is unlikely as the volume of material is probably greater than what was present due east and no scar in the lithosphere has been preserved; however, some variation on delamination allowing considerable internal deformation might be possible. Identification of the robust and not-so-robust elements of tomography allows for a better test of hypotheses.

  12. Heat treatment deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bavaro, A. (Soliveri SpA, Caravaggio (Italy))


    Types and causes of heat treatement derived isotropic and anisotropic dilatancies in ferrous materials are reviewed. The concepts are developed in such a way as to allow extension to all materials exhibiting martensitic tempering behaviour. This paper intends to illustrate the basic processes of dimensional variations undergone by the materials under heat treatments. The parametric analysis includes an analysis of the interactions amongst the parameters themselves. The relative importance of each parameter is assessed in order to determine methods to attenuate deformation action. Simplified examples are offered to provide technicians explanations as to why specific deformations occur and indications on improved materials working techniques.

  13. Nail Deformities and Injuries. (United States)

    Tucker, James Rory J


    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan


    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  15. Intracontinental deformation in southern Africa during the Late Cretaceous (United States)

    Brown, Roderick; Summerfield, Michael; Gleadow, Andrew; Gallagher, Kerry; Carter, Andrew; Beucher, Romain; Wildman, Mark


    Intracontinental deformation accommodated along major lithospheric scale shear zone systems and within associated extensional basins has been well documented within West, Central and East Africa during the Late Cretaceous. The nature of this deformation has been established by studies of the tectonic architecture of sedimentary basins preserved in this part of Africa. In southern Africa, where the post break-up history has been dominated by major erosion, little evidence for post-break-up tectonics has been preserved in the onshore geology. Here we present the results of 38 new apatite fission track analyses from the Damara region of northern Namibia and integrate these new data with our previous results that were focused on specific regions or sections only to comprehensively document the thermo-tectonic history of this region since continental break-up in the Early Cretaceous. The apatite fission track ages range from 449 ± 20 Ma to 59 ± 3 Ma, with mean confined track lengths between 14.61 ± 0.1 μm (SD 0.95 μm) to 10.83 ± 0.33 μm (SD 2.84 μm). The youngest ages (c. 80-60 Ma) yield the longest mean track lengths, and combined with their spatial distribution, indicate major cooling during the latest Cretaceous. A simple numerical thermal model is used to demonstrate that this cooling is consistent with the combined effects of heating caused by magmatic underplating, related to the Paraná-Etendeka continental flood volcanism associated with rifting and the opening of the South Atlantic, and enhanced erosion caused by major reactivation of major lithospheric structures within southern Africa during a key period of plate kinematic change that occurred in the South Atlantic and SW Indian ocean basins between 87 and 56 Ma. This phase of intraplate tectonism in northern Namibia, focused in discrete structurally defined zones, is coeval with similar phases elsewhere in Africa and suggests some form of trans-continental linkage between these lithospheric zones.

  16. The Central Pamir domes as tracer of gravitational disequilibrium and deformation phases forced by deep-seated lithospheric processes (United States)

    Rutte, Daniel; Fox, Matthew; Ratschbacher, Lothar


    Miocene gneiss domes in the Pamir allow unique insight into crustal-scale processes forming the Asian crust of the Pamir-Tibet Plateau. They were exhumed along normal-sense shear zones in an intermittent phase of N-S extension while earlier and later structures document N-S shortening. Recently, Schmidt et al. (2011), Stearns et al., (2013; 2015), Rutte et al. (a & b, accepted), and Hacker et al. (submitted) established a vast structural, petrologic, and geochronologic dataset for the Central Pamir domes. These studies interpreted the domes as a product of gravitational collapse. The dataset includes (micro)structural observations constraining the mechanism of exhumation, thermobarometry of the metamorphic rocks, petrochronologic data constraining timing of pro- and retrogression, a vast multi-method thermochronometric dataset including age-elevation and age-distance data, dates for normal-sense shear zones and barometric data on intrusive rocks. These data constrain the time-temperature, pressure-temperature, and time-pressure history of the dome rocks. We explore the dataset using one-dimensional thermal models. Our code solves the heat transfer equation and gives a transient solution allowing for variation of the geothermal gradient and thermal diffusivity. At this stage, our models suggest that exponential decay of an initially high exhumation rate of 6 km/Myr at 22 Ma to 0.5km/Myr at 13 Ma best explains the dataset. This suggests a one-time input of gravitational potential energy (GPE) that is successively decaying through crustal extension. Both, Asian crustal foundering or Indian slab breakoff may concur with this result. While the Central Pamir domes extend >400 km along strike of the orogen, little variation in timing of most of exhumation during N-S extension is observed. This suggests that the underlying mechanism - be it crustal foundering or slab breakoff - varied little along strike as well. References Hacker, B.R., Ratschbacher, L., Rutte, D., Stearns, M. A., Malz, N., Stübner, K., Kylander-Clark, A. R. C., Pfänder, J. A., and Everson, A. (submitted) Building the Pamir-Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and Petrochronology of Deep Asian Crust. Tectonics Rutte, D., Ratschbacher, L., Schneider, S., Stübner, K., Stearns, M. A., Gulzar, M.A., and Hacker, B. R. (accepted a) Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 1. Geometry and kinematics. Tectonics Rutte, D., Ratschbacher, L., Khan, J., Stübner, K., Jonckheere, R., Pfänder, J. A., Hacker, B. R., Stearns, M. A., Enkelmann, E., Sperner, B., Tichomirowa, M. (accepted b) Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 2. Timing and Rates. Tectonics Schmidt J., Hacker B. R., Ratschbacher L., Stübner K., Stearns M., Kylander-Clark A., Cottle J. M., Alexander A., Webb G., Gehrels G. and Minaev V. (2011) Cenozoic deep crust in the Pamir. Earth Planet. Sci. Lett. 312, 411-421. Available at: Stearns M. A., Hacker B. R., Ratschbacher L., Lee J., Cottle J. M. and Kylander-Clark A. (2013) Synchronous oligocene-miocene metamorphism of the pamir and the north himalaya driven by plate-scale dynamics. Geology 41, 1071-1074. Stearns M. A., Hacker B. R., Ratschbacher L., Rutte D. and Kylander-Clark A. R. C. (2015) Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics 34, 1-19.

  17. Imaging a Precambrian Mantle Suture in the Subandean Lithosphere by Surface Wave Tomography (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.; Minaya, E.; Tavera, H.


    The Central Andean Plateau (CAP), as defined by the 3 km elevation contour, extends over 1,800 km along the active South American Cordilleran margin reaching a maxim width around 400 km near the Bolivian Orocline making it second only to the Tibetan Plateau in geographic extent. First-order questions about principle segments of the lithospheric structure of the northern CAP remain underdeveloped. As part of the seismological component of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we image the crustal and lithospheric structure beneath the northern Central Andean Plateau by jointly inverting surface wave dispersion measured from ambient noise and two-plane wave tomography for a S-wave velocity model of the northern CAP. First-order robust features of our S-wave velocity model include a low-velocity (4.5 km/s) eastward dipping feature in contact with the Moho below the eastern-most Altiplano reaches a maximum depth of ~160 km. Previous tomography studies have interpreted this high-velocity feature as the western extent of the Brazilian Craton. Additionally, we observe a strong inverse correlation with topography and mean lithospheric Vs east of the Eastern Cordillera excluding asthenosphere inflow from a foundering lithosphere as a possible explanation for the low-velocity wedge. We combine our model with geochemical studies that delineate two lithospheric mantle blocks and suggest the transition from the eastward dipping high-velocity feature to the low-velocity wedge is the mantle signature of suturing the Arequuipa/Antofalla terrane to Amazonia during the Grenville-Sunsás Orogeny. This interpretation of an intact upper plate lithosphere is inconsistent with recent lithospheric foundering in this region.

  18. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter


    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  19. New Research initiatives for Imaging the Iberian Lithosphere (United States)

    Carbonell, R.


    lithospheric processes that resulted in the present day geodynamic scenario of the Betics-Alboran-Atlas System (South Iberia Peninsula, Northern Africa).

  20. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco


    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  1. Deformation Structures Along mid-crustal Shear Zones: What are Field Evidences for Ancient Tremor and Slip Activity? (United States)

    Herwegh, M.; Buckingham, T.; Pfiffner, A.


    Large-scale shear zones like thrusts faults, detachments or strike slip faults accommodate a considerable amount of deformation of the lithosphere. From surface based earthquake and modern GPS monitoring systems we know that deformation in shear zones may alternate between stages of continuous steady state creep and transient stages comprising instantaneous seismically active deformation events. One way to learn more about the physical processes related to tremor and slip activity is the study of deformation structures of formerly active crustal faults, which have meanwhile been exposed at the surface. In light of tremor and slip, particularly brittle deformation associated with fluid activity are interpreted to reflect the major deformation processes. In this study, we present a series of deformation structures from major thrust zones of the Helvetic Alps all indicating a close interplay between fluid flux and brittle deformation interlinked with stages of ductile deformation. Among others, prominent examples are arrays of synkinematic veins, which formed by cycles of hydrofracturing, mineral precipitation and ductile deformation. Interestingly, these structures are concentrated at paleo-depth intervals between 8-13 km, i.e., at crustal levels where recent seismic activity in orogens often is concentrated, while they are less abundant at greater depths. Are we looking here at the source of the processes manifest at the surface by the measured tremor and slip activity? The goal of the talk will be to demonstrate a series of deformation structures, which potentially can be attributed to transient deformation, and to address the question whether or not they can be used as indicators for tremor and slip activity at depth.

  2. Deformation of chlorite in naturally deformed low-grade rocks

    NARCIS (Netherlands)

    Bons, A.J.


    The intracrystalline deformation of chlorite in naturally deformed low-grade rocks was investigated with transmission electron microscopy (TEM). As in other phyllosilicates, the deformation of chlorite is dominated by the (001) slip plane. Slip along this plane is very easy through the generation

  3. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction (United States)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs


    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries combined with geochronological data in order to establish the sequence of events that initiate two of the major mass extinctions recorded in Earth's history. This synthesis demonstrates that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. The initial regressive events recorded at T-J and Pl-To boundaries seem difficult to reconcile either with large initial CO2 degassing associated with plume activity or by volatile-release (CO2, CH4, Cl2) from deep sedimentary reservoirs during contact metamorphism associated to dykes and sills intrusion because massive CO2 degassing is expected to produce super greenhouse conditions. We evaluate, here, an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Petrological constraints on primary magmas indicate that the mantle is hotter and melts more extensively to produce LIP lavas than for current oceanic islands basalts. However, available data suggest that the Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. The presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. This initial step of thermal erosion / thermal heating of the cratonic lithosphere is critical to understand the volatile budget associated with LIPs while

  4. Rheology of deformed Carrara marble: Insights from torsion experiments (United States)

    Bruijn, R. H. C.; Delle Piane, C.; de Raadt, W. S.


    Rock deformation experiments are essential for understanding lithosphere dynamics, strain localization processes and deformation mechanisms in polymineral aggregates, as they provide rheological parameters and record fabric development of rock-forming minerals, aiding the geological interpretation of naturally deformed rocks. Carrara marble received significant attention in the rock deformation community due to its homogeneous fabric and low impurities content, making it a laboratory standard. When the torsion actuator was developed for the Paterson-type gas-medium apparatus, it became possible to perform high strain experiments and reach true steady state flow conditions in Carrara marble. At the center of these ground breakings developments stood Luigi Burlini and his students. Their work showed for the first time, the importance of fabric development on steady state flow stress in response to high strain deformation and recrystallization. In the last years of Luigi's life, he and his students took rock deformation studies to a different direction by investigating the effect of initial strain and quantifying the coupling between fabric and flow stress. We present here an overview of the four types of torsion experiment that were performed on Carrara marble with varied pre-existing strain. Earlier torsion experiments on homogeneous Carrara marble provided the framework in which these newer experiments were evaluated. In type I experiments samples were subjected to a torsion deformation leading to a maximum shear strain of 1 to 5, immediately followed by a reversed straining of equal magnitude. In type II and III experiments, a composite sample consisting of a segment of undeformed and one (type II) or two (type III) segment(s) of previously twisted Carrara marble, were deformed. In type IV experiments, a cylindrical segment of dynamically recrystallized Carrara marble was annealed 727 °C for up to five hours at to recover the original grain size without removing

  5. Seismic images of the upper mantle velocities and structure of European mantle lithosphere (United States)

    Plomerova, Jaroslava; Munzarova, Helena; Vecsey, Ludek; Babuska, Vladislav


    Tomography images of seismic velocities in the Earth mantle represent significant tool for recovering first order structural features. Regional studies, based on dense networks of temporary stations allow us to focus on structure of the continental upper mantle and to study variations of body-wave velocities in greater detail. However, the standard tomography exhibits only isotropic view of the Earth, whose structure is anisotropic in general, as shown by results of various studies exploiting a broad range of methods, types of waves and scales. We present results of our studies of seismic anisotropy in tectonically different provinces that clearly demonstrate the continental mantle lithosphere consists of domains with different fossil fabrics. We detect anisotropic signal both in teleseismic P-wave travel-time deviations and shear-wave splitting and show changes of the anisotropic parameters across seismic arrays, in which stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual, often sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a or foliation (a,c). These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Modelling anisotropic structure of individual domains of the continental mantle lithosphere helps to decipher boundaries of individual blocks building the continental lithosphere and hypothesize on processes of its formation (Plomerova and Babuska, Lithos 2010). Exploiting the long memory of the deep continental lithosphere fabric, we present the lithosphere-asthenosphere boundary (LAB) as a transition between a fossil anisotropy in the mantle lithosphere and an underlying seismic anisotropy related to the present-day flow in

  6. Shallow and deep lithosphere slabs beneath the Dinarides from teleseismic tomography as the result of the Adriatic lithosphere downwelling (United States)

    Šumanovac, Franjo; Markušić, Snježana; Engelsfeld, Tihomir; Jurković, Klaudia; Orešković, Jasna


    The study area covers the Dinarides and southwestern part of the Pannonian basin as the marginal zone between the Adriatic microplate (African plate) and the Pannonian tectonic segment (Eurasian plate). We created a three-dimensional seismic velocity model to 450 km depth using teleseismic tomography. Our travel-time dataset was collected by means of 40 seismic stations from the ORFEUS database and Croatian Seismological Survey database. A set of 90 teleseismic earthquakes were selected in the time range 2014-2015, and relative P-wave travel-time residuals were calculated. For the first time the seismic P-wave velocity model of a relatively high resolution on the entire Dinaridic mountain belt was obtained. Based on this model, a more reliable insight in the relations of the lithosphere plates has been achieved. We imaged a fast velocity anomaly extending underneath the entire Dinaridic mountain belt which indicates cold, rigid materials. The anomaly is steeply sloping towards the northeast and directly indicates the sinking of the Adriatic microplate underneath the Pannonian tectonic segment. In the Northern Dinarides the anomaly extends to the depth of 250 km, whereas in the Southern Dinarides it covers greater depths, up to 450 km. The shallow Adriatic slab extends along the External Dinarides, while the deep Adriatic slab extends beneath the Internal Dinarides and ophiolite zones in the area of central and southern Dinarides. Different slab depths are interpreted as the faster convergence of the plate in the southern Dinarides than in the northern, or the convergence of the plates had started in the southern part and systematically developed to the north.

  7. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere (United States)

    Hansen, Lars N.; Qi, Chao; Warren, Jessica M.


    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  8. Multidisciplinary approach to assess thermo-mechanical properties of the Asian lithosphere (United States)

    Stolk, Ward; Kaban, Mikhail; Tesauro, Magdala; Beekman, Fred; Cloetingh, Sierd


    Assessing the thermo-mechanical properties of the lithospheric mantle is a complex business and still poses many problems. Seismic studies indicate large heterogeneities within the mantle lithosphere, but cannot discern between e.g. thermal and compositional effects. Similarly, gravity field analysis can constrain density heterogeneities, but is by its nature unable to distinguish between e.g. stacked density anomalies or lateral density anomalies. A joint analysis of both data types potentially leads to an improved insight in the mantle lithosphere, though the solution to the problem at hand remains non-unique and additional constraints are required. We have combined a high resolution tomography model with a recent global gravity field model to improve our knowledge of both the compositional and thermal aspects of the mantle lithosphere in the Asian continent. The preliminary results presented here will focus on the four major cratonic areas in Asia: the East European Platform, Siberia, Northeast China and India. These regions represent two distinct types of cratonic lithosphere (deep root and shallow root). Xenolith studies help us to further constrain the trade off between temperature and compositional effects.

  9. Postural deformities in Parkinson's disease

    NARCIS (Netherlands)

    Doherty, K.M.; Warrenburg, B.P.C. van de; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R.


    Postural deformities are frequent and disabling complications of Parkinson's disease (PD) and atypical parkinsonism. These deformities include camptocormia, antecollis, Pisa syndrome, and scoliosis. Recognition of specific postural syndromes might have differential diagnostic value in patients

  10. Cosmetic and Functional Nasal Deformities (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  11. Shear-wave velocity structure of young Atlantic Lithosphere from dispersion analysis and waveform modelling of Rayleigh waves (United States)

    Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven


    The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.

  12. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.


    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  13. Pediatric breast deformity. (United States)

    Latham, Kerry; Fernandez, Sarah; Iteld, Larry; Panthaki, Zubin; Armstrong, Milton B; Thaller, Seth


    Congenital breast anomalies represent a relatively common set of disorders encountered by pediatric plastic surgeons with a spectrum of severity that ranges widely from the relatively benign polythelia to the very complex disorders such as Poland's syndrome and tuberous breast deformities. While the former can be treated in a single surgical setting with minimal morbidity, the more complicated disorders often require a staged reconstructive algorithm. Some disorders also require a multidisciplinary management for both workup and management. Although rarely a source of functional morbidity, these physical deformities are often a significant source of psychological stress for the adolescent male or female who feels alienated from their peers. The purpose of this article is to review the most common congenital breast disorders including the diagnosis, workup, and management especially the timing of surgical intervention as guided by normal developmental milestones.

  14. [Babies with cranial deformity]. (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J


    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  15. The role of lithospheric stress in the support of the Tharsis rise (United States)

    Willemann, R. J.; Turcotte, D. L.


    It is hypothesized that the Tharsis rise can be approximated as an axisymmetrical igneous construct. Linear theory for the deflection of planetary lithospheres is used to demonstrate that the lithospheric stresses required partially to support the construct are reasonable and consistent with the observed radial grabens around Tharsis. The computed thickness of the elastic lithosphere is between 110 and 260 km, depending of the values assumed for crustal thickness and crustal density. The computed thickness of the Tharsis load ranges from 40 to 70 km. Since in this model the height of the geoid is not specified a priori, the agreement between the observed and computed geoid is evidence for the validity of the model. The tectonics of the Tharsis region are briefly reviewed, and it is contended that all observations are consistent with the loading model.

  16. Lithosphere-asthenosphere system in the Mediterranean region in the framework of polarized plate tectonics

    CERN Document Server

    Raykova, Reneta Blagoeva; Doglioni, Carlo


    Velocity structure of the lithosphere-asthenosphere system, to the depth of about 350 km, is obtained for almost 400 cells, sized 1 degree by 1 degree in the Mediterranean region. The models are obtained by the following sequence of methods and tools: surface-wave dispersion measurements and collection; 2D tomography of dispersion relations; non-linear inversion of cellular dispersion relations; smoothing optimization method to select a preferred model for each cell. The 3D velocity model, that satisfies Occam razor principle, is obtained as a juxtaposition of selected cellular models. The reconstructed picture of the lithosphere-asthenosphere system evidences the, globally well known, asymmetry between the W- and E-directed subduction zones, attributed to the westward drift of the lithosphere relative to the mantle. Different relationship between slabs and mantle dynamics cause strong compositional differences in the upper mantle, as shown by large variations of seismic waves velocity, consistent with Polari...

  17. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    CERN Document Server

    Hamza, V M; Alexandrino, C H


    A simple magma accretion model of the oceanic lithosphere is proposed and its implications for understanding the thermal field of oceanic lithosphere examined. The new model (designated VBA) assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. Heat flow and bathymetry variations calculated on the basis of the VBA model provide vastly improved fits to respective observational datasets. The improved fits have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation in stable ocean crust. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  18. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils


    We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs....... Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation...

  19. [Treatment of chin deformities]. (United States)

    Morera Serna, Eduardo; Scola Pliego, Esteban; Mir Ulldemolins, Nuria; Martínez Morán, Alejandro


    Facial beauty depends on the form, proportion and position of its various units. The chin is the most prominent element of the lower third of the face, both in the frontal view and in profile. The surgical approach to chin deformities did not start until the second half of the twentieth century. The development of silicone prostheses and the emergence of sliding genioplasty offered surgeons a whole new range of options to modify the size and position of the chin. We have performed a historical review of chin surgery, the multiple aesthetic analyses available and the advantages and disadvantages of the different alloplastic materials and osteotomies. To do so, a comprehensive search through current scientific literature on the topic has been carried out, focusing on large series, long-term follow-up studies, research in animal models and medical evidence. As happens in almost any topic in facial plastic surgery, no strong evidence useful in ENT practice for handling chin deformities can be found in today's scientific literature. Ethnicity influences the aesthetic analysis; the type and degree of deformity to be corrected will determine the allo-plastic augmentation of the chin or the suitability of osteotomy. Porous polyethylene (Medpor, Porex Surgical, Newman, Ca, USA) and solid silicone (Silastic, Michigan Medical Corporation, Santa Barbara, Ca, USA) show a clear advantage over other alloplastic materials. Moderate-to-severe retrogenia benefits from sliding genioplasty strategies rather than prosthetic enlargement.

  20. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension (United States)

    Bland, Michael; McKinnon, William B.


    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that

  1. Multi-dimensional Crustal and Lithospheric Structure of the Atlas Mountains of Morocco by Magnetotelluric Imaging (United States)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.


    The PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project were designed to collect high resolution, multi-disciplinary lithospheric scale data in order to understand the tectonic evolution and lithospheric structure of the western Mediterranean. The over-arching objectives of the magnetotelluric (MT) component of the projects are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structure of the Atlas Mountains, and (ii) to test the hypotheses for explaining the purported lithospheric cavity beneath the Middle and High Atlas inferred from potential-field lithospheric modeling. We present the results of an MT experiment we carried out in Morocco along two profiles: an approximately N-S oriented profile crossing the Middle Atlas, the High Atlas and the eastern Anti-Atlas to the east (called the MEK profile, for Meknes) and NE-SW oriented profile through western High Atlas to the west (called the MAR profile, for Marrakech). Our results are derived from three-dimensional (3-D) MT inversion of the MT data set employing the parallel version of Modular system for Electromagnetic inversion (ModEM) code. The distinct conductivity differences between the Middle-High Atlas (conductive) and the Anti-Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approx. 60 km). In all inverse solutions, the crust and the upper mantle show resistive signatures (approx. 1,000 Ωm) beneath the Anti-Atlas, which is the part of stable West African Craton. Partial melt and/or exotic fluids enriched in volatiles produced by the melt can account for the high middle to lower crustal and uppermost mantle conductivity in the Folded Middle Atlas, the High Moulouya Plain and the

  2. Probing the Uppermost Mantle Rheology Using Surface Deformation Associated with the Lake Mead Load Fluctuations (United States)

    Doin, M.; Cavalié, O.; Lasserre, C.; Briole, P.


    Water level fluctuations in the Lake Mead (Basin and Range, USA) act as a time varying load on the lithosphere. The monitoring of the surface deformation induced by the water load is performed by InSAR using ERS-1, ERS-2 and Envisat radar acquisitions between 1992 and 2007. The comparison between load and deformation could bring constraints on the uppermost mantle viscosity structure, provided a sufficient accuracy of InSAR measurements. Interferograms from ERS-1 and ERS-2 SAR acquisitions were previously calculated and inverted to retrieve the temporal and spatial subsidence around lake Mead between 1992 and 2001. A peak to peak subsidence of 1.5 cm is recorded between 1995 and 1999 and corresponds to 10m of lake level increase. It was shown in a previous study that the ground motion evolution can be closely associated with the load/unload of lake Mead water level fluctuations (Cavalié et al., J. Geophys. Res, 2007). The ground motion amplitude, evolution, and pattern could be best explained by a visco-elastic rebound of the lithosphere- asthenosphere, with a 30 km thick elastic plate overlying a 1018 Pa.s asthenosphere. In order to provide further constraints on the lithosphere and asthenosphere rheology, it was found necessary to extend the monitoring of surface deformation up to 2007. We need, in particular, to record the uplift that is associated with the drastic lake level fall (25 m) from 2000 to 2004. This should theoretically allow to measure not-in-phase ground motions with respect to loading, that were not yet clearly visible in the 1992-2001 time series. To achieve that goal, we use Envisat data from 2003 to 2007, and a few additional ERS-2 data from 2004 to 2007, acquired with a "reasonable" Doppler centroid frequency. The link between the ERS 1992-2001 and the Envisat 2003-2007 time series is obtained through a few cross-platform ERS/Envisat interferograms and a few ERS-2 interferograms covering the data gap in 2002-2003. We shortly describe the

  3. Regional variations in subsidence rate of lithospheric plates: implication for thermal cooling models (United States)

    Lago, Bernard; Cazenave, Anny; Marty, Jean-Charles

    Although simple thermal models of lithospheric cooling predict to first order the general behaviour of observed seafloor depth with increasing age, important regional variations in seafloor subsidence, in the range 250-400 m Ma1/2, are reported for several lithospheric plates. Such variations cannot be accounted for by classical cooling models unless implausible variations in asthenospheric temperature of ˜550°C are assumed. Here we present an alternative cooling model, which assumes that at the ridge axis the temperature may deviate from the mean asthenospheric temperature. Such a model satisfactorily explains the data provided that the temperature deviation is ±100°C only.

  4. Paleoproterozoic Collisional Structures in the Hudson Bay Lithosphere Constrained by Multi-Observable Probabilistic Inversion (United States)

    Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.


    The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay


    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov


    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  6. Rheological responses to plate boundary deformation at the Eastern Volcanic Zone in Iceland (United States)

    Tariqul Islam, Md.; Sturkell, Erik


    Located on the mid-Atlantic ridge, Iceland allows for direct measurement of crustal deformation. Global Positioning System (GPS) data from the Eastern Volcanic Zone (EVZ), Iceland, and crustal deformation of the rift near its southern end at 64°N show a spreading rate of 13.8 ± 1.8 mm yr- 1. About 90% of the deformation occurs in an 80 to 90-km wide zone. To understand how the rheology of the lithosphere influences rifting, we applied a thermo-mechanical stretching model that includes thermal states in Iceland using temperature- and stress-dependent wet and dry olivine rheology. We attempt to reproduce the thermal structure of a rift by defining 700 °C from 5- to 15-km depth at the rift axis that leads to variation in rheological structure, and to estimate the layer (from surface to a depth of 700 °C) where the elastic deformation of the lithosphere is the greatest. At a fixed spreading rate, the deformation field is controlled by the sub-surface thermal state. The vertical subsidence rate at the ridge axis increases almost linearly as the half-velocity increases. The best fitted model suggests a thermal gradient of 54 °C km- 1 at depth below where 700 °C occurs at the ridge axis. The models have little sensitivity to the wet or dry olivine rheology. Estimated viscosity is 1 × 1019 Pa s at 20-km depth at the ridge axis and 1 × 1018 Pa s up to 100-km depth in the model. The spreading rate influences the tangential (non-linearity) shape of the deformation field, and a change in spreading rate affects the deformation field the most. After spreading velocity, the model's second most sensitive parameter is the location of the 700 °C at the rift axis. The thermomechanical model confirms that the rheological responses at the central part of the rift zone in the EVZ, Iceland caused of plate spreading is nonlinear, comparable with surface deformation observed by GPS measurement.

  7. Lithospheric Structure of the Arabian Shield From the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations (United States)


    black). 13 Comparison of the Sandvol et al. (1998) crustal thicknesses (circles) and 22 the crustal thicknesses inferred from the joint inversion... lithospheric structure of that region and, therefore, originating new studies: Sandvol et al. (1998) computed receiver functions from the Arabian peninsula, Rodgers et al. (1999) estimated lithospheric velocity structure by modeling regional waveforms, and Mokhtar et al. (2001

  8. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust

    NARCIS (Netherlands)

    Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C.


    Continental subduction takes place in the final stage of subduction when all oceanic lithosphere is consumed and continental passive margin is pulled into the mantle. When the overriding plate is oceanic, dense forearc oceanic lithosphere might be obducted onto light continental crust forming an

  9. On the structure of the lithosphere of Mars: New insights from crustal composition and rheology of the upper mantle (United States)

    Jiménez-Díaz, A.; Egea-González, I.; Parro, L. M.; Tasaka, M.; Ruiz, J.


    We conduct an in-depth study of the thermal structure and rheology of the lithosphere of Mars, focusing on the effects of crust composition, creep behaviour of olivine (the main mineral in the lithosphere mantle), and the abundance of iron and water in the mantle.

  10. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    overcompensation of the ridge due to overburden sediment load. In this work we attempted to know; whether, the present day oceanic lithosphere, juxtaposed to the Eastern Continental Margin of India (ECMI), holds the vestiges of lithospheric stretching due...


    Directory of Open Access Journals (Sweden)

    A. I. Kiselev


    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base


    Directory of Open Access Journals (Sweden)

    A. I. Kiselev


    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base

  13. Lithospheric structure in the Baikal–central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation


    Fullea, J.; Lebedev, S.; Agius, M. R.; Jones, A. G.; Afonso, Juan Carlos


    Recent advances in computational petrological modeling provide accurate methods for computing seismic velocities and density within the lithospheric and sub-lithospheric mantle, given the bulk composition, temperature, and pressure within them. Here, we test an integrated geophysical-petrological inversion of Rayleigh- and Love-wave phase-velocity curves for fine-scale lithospheric structure. The main parameters of the grid-search inversion are the lithospheric and crustal thicknesses, mantle...

  14. Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation


    Fullea, J.; Lebedev, S.; Agius, M. R.; Jones, A. G.; Afonso, J.C.


    Recent advances in computational petrological modeling provide accurate methods for computing seismic velocities and density within the lithospheric and sub-lithospheric mantle, given the bulk composition, temperature, and pressure within them. Here, we test an integrated geophysical-petrological inversion of Rayleigh- and Love-wave phase-velocity curves for fine-scale lithospheric structure. The main parameters of the grid-search inversion are the lithospheric and crustal thicknesses, mantle...

  15. Amagmatic Lithospheric Rifting as Expressed in the Red Sea (Invited) (United States)

    Cochran, J. R.


    The Red Sea is an active analog for the rifting that produced most of the non-magmatic passive continental margins of the Atlantic and Indian Oceans. Specifically, it cuts through old (Pre-Cambrian) lithosphere well away from other plate boundaries and rifting is within 30° of orthogonal to the trend of the rift. Observations in the Red Sea therefore provide insights that can be applied to older, relict non-magmatic margins Although rifting in the Red Sea has been basically amagmatic, magmatism at two crucial times was important in defining the location of the rift and of initiating active extension and rifting. The onset of rifting was preceded by massive volcanism in Ethiopia and southern Yemen. The major volume of lava was erupted over a short period from 31-29.5 Ma. This event appears to have defined the location of the triple junction between the Red Sea, Gulf of Aden and Ethiopian rifts. Although rifting along the Gulf of Aden may have initiated at the time of the Afar volcanism, this magmatic episode was not accompanied by significant extension in the region that was to become the Red Sea and there is no sign of continuing extension in the Red Sea beginning at that time. The onset of rifting and extension in the Red Sea immediately follows a massive episode of dike intrusion that occurred over a short period of time at 24-21 Ma. Diking extended for 1700 km along the entire length of the Red Sea with no discernable temporal pattern. The diking event coincides with deposition of the first clearly syn-rift sediments at locations from the Gulf of Suez to Eritrea as well as the beginning of uplift and denudation. The diking event may have enabled rifting and extension in the Red Sea. There is no evidence of additional volcanism within the Red Sea rift from 21 Ma to the initiation of seafloor spreading. Seismic reflection and potential field data from the northern Red Sea show that large, rotated fault blocks of continental crust underlie the basin. Rifting is

  16. Introduction of sub-lithospheric component into melted lithospheric base by propagating crack: Case study of migrated Quaternary volcanoes in Wudalianchi, China (United States)

    Chuvashova, Irina; Sun, Yi-min


    From a long-lasted discussion on origin of mantle magmatism (i.e. Foulger, 2010), it follows that magmatic sources might belong to: (1) a plume, starting from the lower thermal boundary layer of the mantle, (2) a counterflow from the lower mantle after an avalanche of slab material from the transition layer, (3) a melting anomaly of a domain that extends above the transition layer at depths of 200-410 km, (4) a melting anomaly of a domain that occurs beneath the lithosphere at depths of 50-200 km, (5) a melting anomaly of the lithospheric base, activated due to its extension, and (6) a melting anomaly of the crust-mantle boundary originated through delamination of an orogenic root in compressional conditions. In this study, we present geological and geochemical evidence on the Quaternary volcanism related to the shallow melting anomaly at the lithospheric base. Eruptions of potassic liquids at the northern terminus of the Songliao basin, subsided from the Middle Jurassic to Paleogene, are limited to the Wudalianchi zone that is exhibited by the 230-km long north-south chain of late Cenozoic volcanic fields: Erkeshan - Wudalianchi - Keluo - Xiaogulihe. Contemporaneous eruptions of potassic-sodic melts are distributed at the western and eastern flanks of this zone, in the Nuominhe and Wuyiling volcanic fields, respectively. The melting anomaly is marked by local decreasing S-wave velocities at a depth of 100 km (Rasskazov et al., 2014). Lithospheric control of the potassic volcanism is emphasized by decreasing thickness of the crust up to 33.5 km (Wang, Chen, 2005). In the Wudalianchi field, volcanism commenced at ca. 2.3 Ma and episodically rejuvenated until AD1720-1721 (Guide book ..., 2010). From comparative geochemical study of volcanic rocks from the Wudalianchi zone and Nuominhe volcanic field, the volcanism was examined to be provided by melting of the heterogeneous lithospheric base, material of which was mixed with a common sub-lithospheric component. Due to

  17. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.


    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  18. Heterogeneity of the composition of the lithosphere and consanguinity of mineral deposits in eastern China (United States)

    Tingyu, Chen

    The distribution of mineral deposits in eastern China is heterogeneous. Principally, Au deposits are concentrated in northeast China, Fe deposits in northern China, Cu deposits in the Lower Yangzi River Valley, W deposits in the Nanling and surrounding regions, and Sn deposits in the area of Guangdong and Guangxi. This heterogeneity might reflect the nature of the primordial lithosphere of our planet.

  19. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.


    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  20. Dynamics and stress field of the Eurasian plate: A combined lithosphere-mantle approach

    NARCIS (Netherlands)

    Ruckstuhl, K.N.|info:eu-repo/dai/nl/304848743


    This thesis presents a new combined lithosphere-mantle modeling approach to the dynamics of individual tectonic plates. This approach incorporates tractions from convective mantle flow modeling into a detailed analysis of the forces acting on a tectonic plate. Mechanical equilibrium of the plate is

  1. Major element composition of the lithospheric mantle under the North Atlantic craton

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Stevenson, R.K.


    , and East Greenland (Wiedemann Fjord) peridotites. The Sarfartoq peridotites have equilibrated at temperatures and pressures ranging from 660 to 1,280 °C and from 2.2 to 6.3 GPa, and define a relatively low mantle heat flow of 13.2 ± 1 mW/m. In addition, the lithospheric mantle underneath the Sarfartoq area...

  2. LITHO1.0: An Updated Crust and Lithosphere Model of the Earth (Postprint) (United States)


    Zhitu Ma1 , Gabi Laske1, and Michael E. Pasyanos2 5d. PROJECT NUMBER 1010 5e. TASK NUMBER PPM00005947 5f. WORK...LITHOSPHERE MODEL OF THE EARTH T. Guy Masters1, Zhitu Ma1 , Gabi Laske1, and Michael E. Pasyanos2 University of California San Diego1, and Lawrence

  3. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Holme, R.


    Satellite magnetic anomaly maps derived by different techniques from Magsat/POGO data vary by more than a factor of 2 in the deduced strength of the lithospheric magnetic field. Here, we present a first anomaly map from new CHAMP scalar magnetic field data. After subtracting a recent Ørsted main...

  4. Structure and evolution of subducted lithosphere beneath the Sunda arc, Indonesia

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der


    Tomographic imaging reveals seismic anomalies beneath the Sunda island arc, Indonesia, that suggest that the lithospheric slab penetrates to a depth of at least 1500 kilometers. The Sunda slab forms the eastern end of a deep anomaly associated with the past subduction of the plate underlying the

  5. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America

    NARCIS (Netherlands)

    Hilst, R.D. van der; Mann, P.


    We used seismic tomography to investigate the complex structure of the upper mantle below northwestern South America. Images of slab structure not delineated by previous seismicity studies help us to refine existing tectonic models of subducted Caribbean-Pacific lithosphere beneath the study area.

  6. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van


    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  7. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris


    are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron grid at a depth of 100 km belowthe surface. The corresponding model parameters...

  8. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model...

  9. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris


    are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm...

  10. Lithospheric Velocity Structure of the Anatolain plateau-Caucasus-Caspian Regions

    Energy Technology Data Exchange (ETDEWEB)

    Gok, R; Mellors, R J; Sandvol, E; Pasyanos, M; Hauk, T; Yetirmishli, G; Teoman, U; Turkelli, N; Godoladze, T; Javakishvirli, Z


    Anatolian Plateau-Caucasus-Caspian region is an area of complex structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region little is known about the detailed lithospheric structure. Using data from 29 new broadband seismic stations in the region, a unified velocity structure is developed using teleseismic receiver functions and surface waves. Love and Rayleigh surface waves dispersion curves have been derived from event-based analysis and ambient-noise correlation. We jointly inverted the receiver functions with the surface wave dispersion curves to determine absolute shear wave velocity and important discontinuities such as sedimentary layer, Moho, lithospheric-asthenospheric boundary. We combined these new station results with Eastern Turkey Seismic Experiment results (29 stations). Caspian Sea and Kura basin underlained by one of the thickest sediments in the world. Therefore, short-period surface waves are observed to be very slow. The strong crustal multiples in receiver functions and the slow velocities in upper crust indicate the presence of thick sedimentary unit (up to 20 km). Crustal thickness varies from 34 to 52 km in the region. The thickest crust is in Lesser Caucasus and the thinnest is in the Arabian Plate. The lithospheric mantle in the Greater Caucasus and the Kura depression is faster than the Anatolian Plateau and Lesser Caucasus. This possibly indicates the presence of cold lithosphere. The lower crust is slowest in the northeastern part of the Anatolian Plateau where Holocene volcanoes are located.

  11. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.


    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  12. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans


    Since the discovery of diamonds in kimberlite-type rocks more than a century ago, a number of theories regarding the processes involved in kimberlite emplacement have been put forward to explain the unique properties of kimberlite magmatism. Geological data suggests that pre-existing lithosphere ...

  13. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    Since the discovery of diamonds in kimberlite-type rocks more than a century ago, a number of theories regarding the processes involved in kimberlite emplacement have been put forward to explain the unique properties of kimberlite magmatism. Geological data suggests that pre-existing lithosphere ...

  14. A seismic tomography study of lithospheric structure under the Norwegian Caledonides

    DEFF Research Database (Denmark)

    Hejrani, Babak; Jacobsen, B. H.; Balling, N.


    towards the north along the Caledonian Mountains or not? For this purpose we present new results of relative P-wave tomography for the northern SCANLIPS (SCANdinavia Lithosphere ProfileS) profile across the northern part of the Caledonides combined with data from permanent seismological stations...

  15. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure (United States)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.


    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  16. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)


    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  17. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.


    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  18. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate (United States)

    Medvedev, Sergei


    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  19. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir? (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François


    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  20. What can we learn from lithosphere-scale models of passive margins? (United States)

    Scheck-Wenderoth, Magdalena; Maystrenko, Yuriy; Hirsch, Katja K.


    To understand the present day structure and the mechanisms of subsidence at passive margins we assess first-order heterogeneities in the sediments, crust and upper mantle. Thus, we explore how far a good knowledge of the sedimentary and upper crustal configuration can provide constraints for the deeper parts of the system and how far the preserved record of deposits holds the key to unravel margin history. The present-day geometry and distribution of physical properties within the upper and middle crust is integrated into data-based, 3D structural models, which, in turn, provide the base for the analysis of the deep crust and the lithospheric mantle. Different configurations of the deep lithosphere can be tested against two independent observables: gravity and temperature, using isostatic, 3D gravity and 3D thermal modelling. Results from the 55 mio year old Norwegian passive volcanic margin indicate that there, the oceanic lithospheric mantle is less dense than the continental lithospheric mantle (Maystrenko and Scheck-Wenderoth, 2009), that this is mainly due to thermal effects (Scheck-Wenderoth and Maystrenko, 2008) and that the transition between continental and oceanic lithosphere thickness is sharp (Maystrenko and Scheck-Wenderoth, 2009). Furthermore, the thickness of the young oceanic lithosphere in the North Atlantic is smaller than predicted by plate cooling models but consistent with seismologically derived estimates. We also find that the oceanic lithosphere-asthenosphere boundary strongly influences the shallow thermal field of the margin and that surface heat flow increases from the continent to the ocean. In contrast, at the South Atlantic margin offshore South Africa, a thicker and older (~130 mio years) oceanic lithosphere is present. Based on previous studies of the crustal configuration (Hirsch et al., 2009), first lithosphere configurations have been tested. There the transition between continent and ocean appears equilibrated and surface heat

  1. Geophysical and Geodetic Deformation Patterns In The Mediterranean (United States)

    Jimenez-Munt, I.; Marnoni, M.; Sabadini, R.; Devoti, R.; Luceri, V.; Ferraro, C.; Bianco, G.

    The active tectonics in the Mediterranean, from Gibraltar to Anatolia, is studied by means of an integrated approach based on geophysical, geodetic and seismo- logical methodologies. Major tectonic processes, such as continental collision and subduction, characterise this region that marks a broad transition zone between the African/Arabian and Eurasian plates. A thin-shell finite element approach allows us to simulate the deformation pattern in all the Mediterranean. The global plate motion model NUVEL-1A is used to account for the convergence, while the relative velocities of the overriding and subduction plates are obtained from another family of models that simulate the effects of the negatively buoyant density contrasts of the subducted lithosphere on the horizontal velocity at the surface. A systematic comparison be- tween model results and the seismic strain rates obtained from the NEIC catalogue, the geodetic velocity field and strain resulting from GPS, SLR and VLBI analyses and the World Stress Map, indicate that Africa/Arabia vs Eurasia convergence and subduction in the Aegean Sea and Calabrian Arc are the major tectonic mechanisms controlling the deformation style in the Mediterranean. The velocity resulting from our modelling and the new geodetic data obtained from recently installed permanent receivers in the northern Apennines (Camerino site) and in Calabria, allow us to study in more detail the style of deformation in the Italian Peninsula. In particular, the Camerino site, and other new permanent GPS receivers in proximity of this site, show a NNE motion with respect to Eurasia coherent with the motion of the Matera site in southern Italy.

  2. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I


    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  3. Isabella Anomaly: Lithospheric drip, delamination or fragment of the Farallon plate? (United States)

    Forsyth, D. W.; Rau, C. J.


    The Isabella Anomaly or Central Valley Anomaly in California is perhaps the best known example of a high seismic velocity anomaly that has been interpreted as a lithospheric instability. High P and S velocities extend to a depth of at least 150 km and perhaps to several hundred km in a nearly cylindrical region 100-150 km across. The amplitude of the anomaly in the upper 200 km is similar to that of the subducted Gorda plate. This anomaly has been variously interpreted as a convective drip or as a remnant of the lithosphere delaminated from beneath the eastern Sierra Nevada. We suggest instead that the Isabella anomaly may represent a fragment of the subducted Farallon plate that is still attached to the Pacific lithosphere. Directly seaward of the anomaly is the fossil Monterrey microplate, which is a remnant of the Farallon plate that was left when subduction ceased before the spreading center itself subducted. The microplate was then incorporated into the Pacific plate, but it is not clear how much of the subducting slab remained attached to the surface microplate. New Rayleigh wave tomographic images of Baja California show that there are still fragments of the Farallon plate remaining attached to the unsubducted Guadelupe and Magdelena microplate remnants, with anomalies extending down to at least 150 km. The geometry of these anomalies in relationship to the microplates is very similar to that of the Isabella anomaly. A major question with this interpretation is whether a bit of oceanic lithosphere extending down into the asthenosphere could be dragged along with the surface microplate/Pacific plate for 20 Ma since subduction ceased. Another anomaly similar to the Isabella anomaly begins in the shallow mantle beneath the northern end of San Francisco bay and dips to the west - another candidate for a lithospheric drip or convective instability?

  4. Investigating and Imaging the Lithospheric Structure of the Westernmost Mediterranean Using S Receiver Functions (United States)

    Miller, Meghan S.; Butcher, Amber


    The Alboran System was created during the Neogene at the western edge of the Alpine-Himalayan orogenic belt, as the result of convergence between the European and African plates. This system includes the Gibraltar Arc, Rif-Betic chain, Atlas Mountains, and Alboran Sea. The evolution from ocean subduction to continental collision, particularly in complex three-dimensional settings such as this, is poorly understood. Advances in this subject are likely to come from multidisciplinary projects, such as PICASSO (Program to Investigate Convective Alboran Sea System Overturn): a study of the Alboran Sea, Atlas Mountains, and Gibraltar arc. Several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Advances in defining the lithosphere - asthenosphere boundary (LAB) are crucial to understanding the geochemical and geodynamic evolution of the region. Seismic data from ~85 broadband instruments deployed in Morocco and Spain as part of the PICASSO project are being utilized to constrain lithospheric structure beneath this part of the Western Mediterranean via identification of S-to-p conversions from S receiver functions. A previous study indicates that the lithospheric thinning beneath the Atlas High may be the result of mantle upwelling induced thermal erosion, while a more recent imaging study suggests that the LAB could be at depths >200 km, tens of kilometers thicker than previous models. Our preliminary results indicate LAB depths down to ~100 - 110 km near the Straight of Gibraltar and as shallow as ~65 - 80 km under the Atlas High. The primary purpose of this project is to advance our understanding of the structure and evolution of the lithosphere - asthenosphere boundary (LAB) of the Atlas Mountains and surrounding areas.

  5. Effect of the lithospheric thermal state on the Moho interface: A case study in South America (United States)

    Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.


    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  6. Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China (United States)

    Zhang, Hui; Zheng, Jianping; Pan, Shaokui; Lu, Jianggu; Li, Yihe; Xiang, Lu; Lin, Abing


    Knowledge about the nature and history of the lithospheric mantle beneath the west Cathaysia block (South China) is still sparse. The major- and trace-element compositions and H2O contents of minerals from peridotite xenoliths entrained in the Cenozoic lamprophyres of the Anyuan area (SE China), were conducted to investigate the nature and evolution of the lithospheric mantle, as well as the factors controlling the distribution of water. The xenoliths including spinel harzburgites and lherzolites are moderately refractory (Mg# Olivine = 90.2-91.2) with minor fertile lherzolites (Mg# Olivine = 89.1-89.9). Clinopyroxenes in lherzolites show variable REE patterns from LREE-depleted to LREE-enriched patterns, and commonly exhibit negative anomalies of U, Pb and Ti. The mantle represented by the xenoliths mostly experienced 1-10% partial melting and obvious subsequent silicate metasomatism. H2O contents of clinopyroxene, orthopyroxene, and olivine in the peridotites are 320-404 ppm, 138-200 ppm, and 11-33 ppm, respectively. The whole-rock H2O contents range from 63 to 120 ppm, similar to that estimated for the MORB source. The negative correlations of H2O contents with Mg# in olivine and lack of correlation correlations with (La/Yb)N in clinopyroxene suggest that the H2O contents are mainly controlled by the partial melting process rather than mantle metasomatism. The fertile and moderately refractory peridotite xenoliths have similar equilibrium temperatures, implying that the lithospheric mantle is not compositionally stratified. Integrated with published data, we suggest that the widespread fertile and moderately refractory lithospheric mantle beneath the studied area (west Cathaysia), even the whole South China, might be eroded or melt-rock reacted by upwelling asthenospheric materials. Finally, the cooling of the upwelled asthenospheric materials resulted in the formation of the accreted lithospheric mantle mixed with pre-existing moderately refractory volumes.

  7. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu


    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  8. Angular Limb Deformities: Growth Retardation. (United States)

    McCarrel, Taralyn M


    Angular limb deformities are common in foals; however, the importance of the deformity and if treatment is required depend on the degree of deformity relative to normal conformation for stage of growth, the breed and discipline expectations, age, and response to conservative therapies. This article addresses the importance of the foal conformation examination to determine which foals need surgical intervention to correct an angular deformity and when. Techniques for surgical growth retardation include the transphyseal staple, screw and wire transphyseal bridge, and transphyseal screw. Appropriate timing for intervention for each location and complications associated with each procedure are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau


    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  10. Visualizing the Structure of the Earth’s Lithosphere on the Google Earth Virtual-Globe Platform

    Directory of Open Access Journals (Sweden)

    Liangfeng Zhu


    Full Text Available While many of the current methods for representing the existing global lithospheric models are suitable for academic investigators to conduct professional geological and geophysical research, they are not suited to visualize and disseminate the lithospheric information to non-geological users (such as atmospheric scientists, educators, policy-makers, and even the general public as they rely on dedicated computer programs or systems to read and work with the models. This shortcoming has become more obvious as more and more people from both academic and non-academic institutions struggle to understand the structure and composition of the Earth’s lithosphere. Google Earth and the concomitant Keyhole Markup Language (KML provide a universal and user-friendly platform to represent, disseminate, and visualize the existing lithospheric models. We present a systematic framework to visualize and disseminate the structure of the Earth’s lithosphere on Google Earth. A KML generator is developed to convert lithospheric information derived from the global lithospheric model LITHO1.0 into KML-formatted models, and a web application is deployed to disseminate and visualize those models on the Internet. The presented framework and associated implementations can be easily exported for application to support interactively integrating and visualizing the internal structure of the Earth with a global perspective.

  11. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica (United States)

    Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.


    Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal

  12. Elevated temperature deformation analysis (United States)

    Nelson, J. M.

    The paper demonstrates a novel nondestructive test and data analysis technique for quantitative measurement of circumferentially varying flexural moduli of 2D involute carbon-carbon tag rings containing localized wrinkles and dry plies at room and rocket nozzle operating temperatures. Room temperature computed tomography (CT) deformation tests were performed on 11 carbon-carbon rings selected from the cylinders and cones fabricated under the NDE data application program and two plexiglass rings fabricated under this program. This testing and analysis technique is found to have primary application in validation of analytical models for carbon-carbon performance modeling. Both effects of defects assumptions, the effects of high temperature environments, and failure-related models can be validated effectively. The testing and analysis process can be interwoven in a manner that increases the engineering understanding of the material behavior and permits rapid resolution of analysis questions. Specific recommendations for the development and implementation of this technique are provided.

  13. Marginal deformations & rotating horizons (United States)

    Anninos, Dionysios; Anous, Tarek; D'Agnolo, Raffaele Tito


    Motivated by the near-horizon geometry of four-dimensional extremal black holes, we study a disordered quantum mechanical system invariant under a global SU(2) symmetry. As in the Sachdev-Ye-Kitaev model, this system exhibits an approximate SL(2, ℝ) symmetry at low energies, but also allows for a continuous family of SU(2) breaking marginal deformations. Beyond a certain critical value for the marginal coupling, the model exhibits a quantum phase transition from the gapless phase to a gapped one and we calculate the critical exponents of this transition. We also show that charged, rotating extremal black holes exhibit a transition when the angular velocity of the horizon is tuned to a certain critical value. Where possible we draw parallels between the disordered quantum mechanics and charged, rotating black holes.

  14. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Neprochnov, Y.P.

    diapiric structure. 1. Introduction The events of uni cation of Indian and Australian plates in the middle Eocene (Liu et al 1983; Krishna et al 1995), hard continent-continent colli- sion to the north of the Indian shield (Curray et al 1982) and continuous... of the instability process reached the failure stage and triggered seis- mic activity in the middle of the Indo-Australian plate that deformed the upper lithosphere inten- sively (Weissel et al 1980). The activity's imprints are well documented in both the oceanic...

  15. Insights for the melt migration, the volcanic activity and the ultrafast lithosphere delamination related to the Yellowstone plume (Western USA) (United States)

    Rigo, A.; Adam, C.; Grégoire, M.; Gerbault, M.; Meyer, R.; Rabinowicz, M.; Fontaine, F.; Bonvalot, S.


    The Yellowstone-East Snake River Plain hotspot track has been intensely studied since several decades and is widely considered to result from the interaction of a mantle plume with the North American plate. An integrated conclusive geodynamic interpretation of this extensive data set is however presently still lacking, and our knowledge of the dynamical processes beneath Yellowstone is patchy. It has been argued that the Yellowstone plume has delaminated the lower part of the thick Wyoming cratonic lithosphere. We derive an original dynamic model to quantify delamination processes related to mantle plume-lithosphere interactions. We show that fast (˜300 ka) lithospheric delamination is consistent with the observed timing of formation of successive volcanic centres along the Yellowstone hotspot track and requires (i) a tensile stress regime within the whole lithosphere exceeding its failure threshold, (ii) a purely plastic rheology in the lithosphere when stresses reach this yield limit, (iii) a dense lower part of the 200 km thick Wyoming lithosphere and (iv) a decoupling melt horizon inside the median part of the lithosphere. We demonstrate that all these conditions are verified and that ˜150 km large and ˜100 km thick lithospheric blocks delaminate within 300 ka when the Yellowstone plume ponded below the 200 km thick Wyoming cratonic lithosphere. Furthermore, we take advantage of the available extensive regional geophysical and geological observation data sets to design a numerical 3-D upper-mantle convective model. We propose a map of the ascending convective sheets contouring the Yellowstone plume. The model further evidences the development of a counter-flow within the lower part of the lithosphere centred just above the Yellowstone mantle plume axis. This counter-flow controls the local lithospheric stress field, and as a result the trajectories of feeder dykes linking the partial melting source within the core of the mantle plume with the crust by

  16. Preservation of an Archaean whole rock Re-Os isochron for the Venetia lithospheric mantle: Evidence for rapid crustal recycling and lithosphere stabilisation at 3.3 Ga (United States)

    van der Meer, Quinten H. A.; Klaver, Martijn; Reisberg, Laurie; Riches, Amy J. V.; Davies, Gareth R.


    Re-Os and platinum group element analyses are reported for peridotite xenoliths from the 533 Ma Venetia kimberlite cluster situated in the Limpopo Mobile Belt, the Neoarchaean collision zone between the Kaapvaal and Zimbabwe Cratons. The Venetian xenoliths provide a rare opportunity to examine the state of the cratonic lithosphere prior to major regional metasomatic disturbance of Re-Os systematics throughout the Phanerozoic. The 32 studied xenoliths record Si-enrichment that is characteristic of the Kaapvaal lithospheric mantle and can be subdivided into five groups based on Re-Os analyses. The most pristine group I samples (n = 13) display an approximately isochronous relationship and fall on a 3.28 ± 0.17 Ga (95 % conf. int.) reference line that is based on their mean TMA age. This age overlaps with the formation age of the Limpopo crust at 3.35-3.28 Ga. The group I samples derive from ∼50 to ∼170 km depth, suggesting coeval melt depletion of the majority of the Venetia lithospheric mantle column. Group II and III samples have elevated Re/Os due to Re addition during kimberlite magmatism. Group II has otherwise undergone a similar evolution as the group I samples with overlapping 187Os/188Os at eruption age: 187Os/188OsEA, while group III samples have low Os concentrations, unradiogenic 187Os/188OsEA and were effectively Re-free prior to kimberlite magmatism. The other sample groups (IV and V) have disturbed Re-Os systematics and provide no reliable age information. A strong positive correlation is recorded between Os and Re concentrations for group I samples, which is extended to groups II and III after correction for kimberlite addition. This positive correlation precludes a single stage melt depletion history and indicates coupled remobilisation of Re and Os. The combination of Re-Os mobility, preservation of the isochronous relationship, correlation of 187Os/188Os with degree of melt depletion and lack of radiogenic Os addition puts tight constraints on

  17. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич


    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  18. Permanent deformation of asphalt mixes

    NARCIS (Netherlands)

    Molenaar, A.A.A.; Van de Ven, M.F.C.; Muraya, P.M.

    This dissertation describes the results of a research that was conducted on the permanent deformation of asphalt mixtures. Central to this research was the separate characterization of the contribution of the aggregate skeleton and the bituminous mortar towards resistance to permanent deformation.

  19. Permanent deformation of asphalt mixes

    NARCIS (Netherlands)

    Muraya, P.M.


    This dissertation describes the results of a research that was conducted on the permanent deformation of asphalt mixtures. Central to this research was the separate characterization of the contribution of the aggregate skeleton and the bituminous mortar towards resistance to permanent deformation.

  20. Metastable vacua and geometric deformations

    CERN Document Server

    Amariti, A; Girardello, L; Mariotti, A


    We study the geometric interpretation of metastable vacua for systems of D3 branes at non isolated toric deformable singularities. Using the L^{aba} examples, we investigate the relations between the field theoretic susy breaking and restoration and the complex deformations of the CY singularities.

  1. Nuclear deformation at finite temperature. (United States)

    Alhassid, Y; Gilbreth, C N; Bertsch, G F


    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  2. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed


    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  3. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry (United States)

    Greenough, John D.; McDivitt, Jordan A.


    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  4. Imaging the Lithospheric - Asthenosphere Boundary Structure of the Westernmost Mediterranean Using S Receiver Functions (United States)

    Butcher, A.; Miller, M. S.; Diaz Cusi, J.


    The Iberian microcontinent, in the westernmost portion of the Mediterranean is comprised of the Betic Cordillera Zone, the South Portuguese Zone, the Ossa-Morena Zone, the Central Iberian Zone, the Galicia-Tras Os Montes Zone, the West Asturian-Leonese Zone, and the Cantabrian Zone. These zones were created as a result of three primary stages of Iberian evolution, with the last being the collision of Iberia with in the Late Cretaceous. In northeastern Africa, Neogene convergence between the European and African plates created the Alboran System: comprised of the Gibraltar Arc, Rif-Betics, Atlas Mountains, and Alboran Sea. The primary purpose of this study is to advance our understanding of the structure and evolution of the lithosphere, as well as the lithosphere - asthenosphere boundary (LAB) of the Iberian microcontinent and surrounding areas. Of particular interest is improving our understanding of the evolution from ocean subduction to continental collision that has been taking place in the late stage convergence of this part of the Mediterranean., The region is a particularly complex three-dimensional settings and, several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Here we use broadband seismic data from 272 broadband instruments deployed in Morocco and Spain as part of the PICASSO and IBERArray (Díaz, J., et al., 2009) projects to constrain lithospheric structure via identification of S-to-p conversions from S receiver functions (SRF). We use SRFs to image the characteristics and structure in terms of seismic velocity discontinuities, including the crust-mantle boundary (Moho) and the lithosphere-asthenosphere boundary (LAB) beneath the region. Our SRFs agree with previous work that suggests that the lithospheric thickness is shallow (~65 km) beneath the Atlas and thickest (~120 km) beneath the Rif. Additionally, LAB structures

  5. Crustal and lithospheric imaging of the Atlas Mountains of Morocco inferred from magnetotelluric data (United States)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Hogg, C.; Ledo, J.; Sinischalchi, A.; Campanya, J.; Picasso Phase II Team


    The Atlas System of Morocco is an intra-continental mountain belt extending for more than 2,000 km along the NW African plate with a predominant NE-SW trend. The System comprises three main branches: the High Atlas, the Middle Atlas, and the Anti Atlas. We present the results of a very recent multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains region that started in September, 2009 and ended in February, 2010, comprising acquisition of broadband and long-period MT data. The experiment consisted of two profiles: (1) a N-S oriented profile crossing the Middle Atlas through the Central High Atlas to the east and (2) a NE-SW profile crossing the western High Atlas towards the Anti Atlas to the west. The MT measurements are part of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE project) projects, to develop a better understanding of the internal structure and evolution of the crust and lithosphere of the Atlas Mountains. The MT data have been processed with robust remote reference methods and submitted to comprehensive strike and dimensionality analysis. Two clearly depth-differentiated strike directions are apparent for crustal (5-35 km) and lithospheric (50-150 km) depth ranges. These two orientations are roughly consistent with the NW-SE Africa-Eurasia convergence acting since the late Cretaceous, and the NNE-SSW Middle Atlas, where Miocene to recent Alkaline volcanism is present. Two-dimensional (2-D) smooth electrical resistivity models were computed independently for both 50 degrees and 20 degrees E of N strike directions. At the crustal scale, our preliminary results reveal a middle to lower-crustal conductive layer stretching from the Middle Atlas southward towards the High Moulouya basin. The most resistive (and therefore potentially thickest

  6. GPS-Derived Models of Intraplate Deformation of the Yellowstone Hotspot (United States)

    Puskas, C. M.; Smith, R. B.; Meertens, C. M.


    The 800-km long Yellowstone-Snake River Plain (YSRP) is interpreted to be the track of the Yellowstone hotspot. It has experienced over 150 giant silicic volcanic eruptions in the last 16 Ma from magmatic sources derived from interaction of the N. American Plate with a mantle heat source. GPS measurements at more than 170 temporary stations and 10 continuous sites were made between 1987 and the present to assess the kinematic deformation field. The GPS observations cover a 800 by 600 km area affected by the volcanic system and are used to constrain kinematic and dynamic models. The present center of YSRP volcanic activity, at the Yellowstone Plateau, exhibits extensive earthquake activity and anomalously high rates of crustal deformation of ~4 mm/yr SW extension. In contrast, the hotspot track along the eastern Snake River Plain has much lower displacement rates of ~2 mm/yr SW extension. GPS-derived principal strain rate fields for the entire YSRP reveal rotation of the extensional strain axes from N-S to E-W at Yellowstone. This change corresponds to similar directions for tensional stress axes derived from focal mechanisms, post-caldera vent alignments, and active faults. The YSRP deformation field is compared with other geodetic, geologic, and seismic observations of the strain field for western North America to examine how it fits into the plate boundary framework. Finite-element models of the resolved deformation incorporate GPS rates, fault slip rates, volcanic features, seismicity, etc. These models suggest compression of the Snake River Plain, which apparently deforms as a single block within the resolution of the GPS data. Higher displacement rates at the Yellowstone caldera are likely due to local volcanic activity combined with with regional extension, for regional extension rates alone do not account for the observed rates. Volcanic acitivity has reworked the topography, enhanced heat flow, and modified lithosphere composition through melting and

  7. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt


    Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality......Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account...... for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from...

  8. Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica

    Czech Academy of Sciences Publication Activity Database

    Mundl, A.; Ntaflos, T.; Ackerman, Lukáš; Bizimis, M.; Bjerg, E. A.; Hauzenberger, Ch. A.


    Roč. 43, č. 1 (2015), s. 39-42 ISSN 0091-7613 Institutional support: RVO:67985831 Keywords : lithospheric mantle * Mesoproterozoic * Paleoproterozoic Subject RIV: DD - Geochemistry Impact factor: 4.548, year: 2015

  9. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко


    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  10. Evidence for metasomatic enrichment in the oceanic lithosphere and implication for the generation of intraplate basalts (United States)

    Pilet, S.; Buchs, D.; Cosca, M. A.; Baumgartner, P.


    Petrological studies play a significant role in the debate regarding the origin of intraplate magmas by providing unequivocal constraints about the source(s) composition and melting processes related to basalt formation. Two major hypotheses are currently in debate: first, intraplate magmas are produced at depth (i.e. within the asthenosphere) by low-degrees melting of an enriched peridotitic source in the presence of CO2 [1]; second, alkaline magmas are produced by the melting of metasomatic hydrous veins present within the lithospheric mantle [2]. If the existence of metasomatic veins in the continental lithospheric mantle is well documented, their existence and the mechanism of their formation in an oceanic setting are still mostly unconstrained. Here we report new petrological data demonstrating that metasomatic veins can be produced within the oceanic lithosphere by percolation and differentiation of low-degree melts initially located in the low velocity zone [3]. The existence of metasomatic veins in the oceanic lithosphere is documented by cpx xenocrysts in accreted basaltic sills from northern Costa Rica. New field observations, 40Ar-39Ar radiometric dating, biostratigraphic ages and geochemical analyses indicate that the sills represent a possible, ancient analogue of petit-spot volcanoes produced off Japan by oceanic plate flexure [4]. The cpx xenocrysts are interpreted as a relic of metasomatic veins based on their composition, which is similar to that of cpx from metasomatic veins observed in mantle outcrops and xenoliths. The major and trace element contents of the studied cpx xenocrysts indicate that they crystallized at high pressure in a differentiated liquid. This liquid represents the last stage of a fractional crystallization process that produced early anhydrous cumulates followed by later hydrous cumulates, a mechanism similar to that proposed by Harte et al. [5] for the formation of metasomatic veins in the continental lithosphere. Monte Carlo

  11. An enigmatic earthquake in the continental mantle lithosphere of stable North America (United States)

    Craig, T. J.; Heyburn, R.


    The existence of earthquakes within continental lithospheric mantle remains a highly controversial topic. Here, we present a detailed set of seismological analyses confirming the occurrence of a mantle earthquake beneath the Wind River Range of central Wyoming. Combining regional waveform inversion with the analysis of the delay and relative amplitudes of teleseismically-observed depth phases, we demonstrate that the 2013 Wind River earthquake - a MW 4.7 highly-oblique thrust-faulting event - occurred at 75 ± 8 km, well beneath the base of the crust. The magnitude, mechanism, and location of this earthquake suggest that it represents simple brittle failure at relatively high temperatures within the mantle lithosphere, as a result of tectonic, rather than magmatic, processes.

  12. How has magmatism in the northwest United States affected the lithosphere? Insights from Sp Receiver Functions (United States)

    Hopper, E.; Ford, H. A.; Fischer, K. M.; Lekic, V.; Fouch, M. J.


    The origins of the age-progressive hot spot track of the eastern Snake River Plain (ESRP) and the age-progressive magmatic wave of the Newberry Trend in the High Lava Plains (HLP) are much debated. Constraining lithospheric structure and its relationship to magmatism in this region can provide new insights. We employ Sp receiver functions to image the base of the lithosphere. Data was collected from stations within a ~1500km x ~900km area centered on the ESRP, comprising both permanent network stations (e.g. US, IW) and many temporary arrays, including the High Lava Plains seismic array and EarthScope's USArray Transportable Array. We first obtained Sp receiver functions for individual waveforms using an extended-time multi-taper deconvolution method. We then migrated into a 3D volume using common-conversion point stacking and a spline function representation of phase Fresnel zones assuming mantle velocities from Obrebski et al. (2011) and the crustal model of Lowry and Perez-Gussinye (2011). In some areas, we detect a mantle Sp arrival indicating a decrease in velocity with depth in the 55-100 km depth range, which is consistent with the transition from high velocity lithosphere to low velocity asthenosphere in the tomography. To the southeast of Newberry volcano beneath the HLP, a particularly strong and clear negative Sp phase increases in depth from ~55 km beneath the youngest magmatism to ~65 km beneath 9-11 Ma eruptive centers. The depth of this phase is roughly consistent with the pressures of last equilibration of asthenospherically derived magmatic samples [Till et al, 2012]. Continuing to the southeast beneath the Owyhee Plateau, where there are 14-16 Ma silicic calderas associated with the onset of the SRP magmatic trend, a significantly weaker negative Sp phase is found at depths of 80-90 km. Image quality is poorer beneath the eastern SRP, where magmatic ages are 12 Ma and younger, due to sparser path coverage east of the High Lava Plains array

  13. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals? (United States)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.


    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  14. The investigation of the lithosphere by geophysical methods: Electromagnetic methods, geothermy, and complex interpretation (United States)

    Magnitskii, V. A.; Sollogub, V. B.; Starostenko, V. I.

    The book discusses the methodology used in studies of the geophysical and geodynamical features of the lithosphere of central and eastern Europe, which were conducted between 1981 and 1984 by the Academies of Sciences of socialist European states. Consideration is given to the computer-aided interpretation of geophysical (gravimetric) data, techniques used in electromagnetic and geothermic investigations, quantitative methods used in the interpretation of complex geophysical data, and qualitative methods used in the development of a complex geophysical model of the lithosphere. Special attention is given to the use of a computer system for the solution of inverse problems of contact surfaces, the prediction of earthquakes from variations in electrical resistance, the calculation of temperatures in the earth's crust and upper mantle, and correlational methods for integrating geophysical fields.

  15. Perceptual transparency from image deformation (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya


    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  16. Spacetimes for λ-deformations

    Energy Technology Data Exchange (ETDEWEB)

    Sfetsos, Konstadinos [Department of Nuclear and Particle Physics, Faculty of Physics, University of Athens,Athens 15784 (Greece); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050, Brussels (Belgium)


    We examine a recently proposed class of integrable deformations to two-dimensional conformal field theories. These λ-deformations interpolate between a WZW model and the non-Abelian T-dual of a Principal Chiral Model on a group G or, between a G/H gauged WZW model and the non-Abelian T-dual of the geometric coset G/H. λ-deformations have been conjectured to represent quantum group q-deformations for the case where the deformation parameter is a root of unity. In this work we show how such deformations can be given an embedding as full string backgrounds whose target spaces satisfy the equations of type-II supergravity. One illustrative example is a deformation of the Sl(2,ℝ)/U(1) black-hole CFT. A further example interpolates between the ((SU(2)×SU(2))/(SU(2)))×((SL(2,ℝ)×SL(2,ℝ))/(SL(2,ℝ)))×U(1){sup 4} gauged WZW model and the non-Abelian T-dual of AdS{sub 3}×S{sup 3}×T{sup 4} supported with Ramond flux.

  17. Inherited weaknesses control deformation in the flat slab region of Central Argentina (United States)

    Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.


    The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.

  18. Feedbacks Between Deformation and Fluid Flow in Mantle Shear Zones from Zabargad, Red Sea (United States)

    Tommasi, A.; Boudier, F. I.; Vauchez, A. R.; Zaderatzky, M.


    Peridotites in the Zabargad island, Red Sea, record different stages of lithospheric thinning and asthenospheric upwelling during rifting. Field mapping highlights a pervasive high-temperature NW-SE, subvertical foliation with lineations pluning 50°NW. This foliation is overprinted by a series of lower-temperature mylonitic zones with slightly oblique foliations and subhorizontal lineations, which record progressive strain localization under retrogressive conditions during the final exhumation of the peridotites (Nicolas and Boudier, JGR 1987). We performed a petrostructural study of ca. 50 samples collected by A. Nicolas and F. Boudier in the 80s from the different deformation facies. This study highlights: (1) a rather pervasive, but highly heterogeneous distribution of the LT deformation and (2) a feedback between deformation and fluid flow. The HT deformation is recorded in medium grained plagioclase- and spinel-peridotites by a homogeneous foliation and lineation marked by a shape-preferred orientation of plagioclase and olivine and a consistent CPO of all major-rock forming phases. The LT temperature deformation results in dynamic recrystallization of olivine leading to a marked grain size reduction by dynamic recrystallization of olivine, remobilization of orthopyroxene by dissolution-precipitation, and crystallization of amphibole. Increasing finite strain is recorded by the increase in the volume of the fine-grained material and of the amphibole proportion. The latter may attain in totally recrystallized cm-wide ultramylonite bands up to 30%. This together with the strong amphibole SPO and CPO corroborate fluid focusing and enhanced reaction rates into active shear zones. In the LT shear zones we also document: (1) changes in the olivine CPO, indicating changes in the dominant slip system and (2) unusual orthopyroxene CPO, which we interpret as due to oriented crystallization. Static replacement of pyroxenes by amphibole with no associated LT deformation

  19. The lithosphere-asthenosphere boundary observed with USArray receiver functions and comparison with other regions


    Rainer Kind; P. Kumar; Xiaohui Yuan; James Mechie; Forough Sodoudi; Benjamin Heit


    The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities and has no problems with multiples like P receiver functions. Only two major discontinuities are observed in the entir...

  20. Crustal Thickness and Lithospheric Structure in Northwestern Namibia from the WALPASS experiment


    Benjamin Heit; Xiaohui Yuan; W. Geissler; B. Lushetile; Michael Weber; Jokat, W.


    An amphibian passive-source seismic network (WALPASS) have been deployed for a period of two years in the area where theWalvis Ridge intersects with the continental margin of northwestern Namibia. The deployment was intended to study and map the lithospheric and upper mantle structure in the ocean-continent transition beneath the passive continental margin. The main idea is to find seismic anomalies related to the postulated hotspot track from the continent to the ocean along the Walvis Ridge...

  1. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions (United States)

    Yang, Haiyan; Peng, Hengchu; Hu, Jiafu


    Yunnan is located at the margin of southeast Tibet, where dramatic tectonic activities occur. In this study, we calculated the P and S receiver functions by the deconvolution of three-component seismic data from 48 permanent broad-band stations deployed in Yunnan region. In order to improve signal-noise ratios of the receiver functions, we move-out corrected receiver functions to a reference epicentral distance of 67°, and then stacked them to one trace for each station. Finally, the stacked traces were converted to the depth domain to obtain the crustal and lithospheric thicknesses beneath each station. In southwestern Yunnan (at the west side of the Jinshajiang-Red River Fault), the crustal thicknesses from the P-wave receiver functions (PRFs) and from the S-wave receiver functions (SRFs) are in the ranges of 30-36 km, and of 33-39 km, respectively. But in northwestern Yunnan, the crustal thicknesses from PRFs and SRFs are from 66 to 69 km and from 63 to 66 km, respectively. Our results show that the crustal thicknesses in Yunnan from PRFs and SRFs are consistent, with a maximum deviation of 3 km; and increase gradually from ∼30 km in the south to ∼68 km in the northwest. Besides, the lithospheric thickness from PRFs is also similar to that from SRFs, with the largest difference of 15-20 km in southeastern Yunnan. At the west side of the Jinshajiang-Red River Fault in western Yunnan, it is only about 80-100 km, and increases to 140-150 km regionally in northern and southeastern Yunnan. The thinned lithosphere extends eastward from western Yunnan to eastern Yunnan. We attribute the thinned lithosphere to the upwelling of hot upper mantle materials associated with the eastward subduction of the Indian plate.

  2. Lithospheric Structure in Central California: Towards Identifying the Tectonic Origin of the Isabella Anomaly (United States)

    Dougherty, S. L.; Clayton, R. W.


    The tectonic origin of the Isabella high-velocity anomaly in the upper mantle beneath California's southern Great Valley is unclear. Previous low-resolution seismic imaging studies of the region have been unable to identify the structural connection between this upper mantle anomaly and the overlying lithosphere. The two dominant hypotheses attribute the Isabella anomaly to a fossil slab or the foundered lithospheric root of the Sierra Nevada batholith. The Central California Seismic Experiment (CCSE) is designed to distinguish between these hypotheses. We present results from the CCSE, which consists of 44 broadband seismometers currently deployed in a quasi-linear array spanning from the Pacific coast, across the Great Valley, to the Sierra Nevada foothills, at an approximate latitude of 36°N. Forward modeling of the 2D structure of the crust is performed using local earthquakes recorded by the CCSE and a finite-difference algorithm to provide constraints on the geometry and velocity of the seismic structure of the Great Valley. This sedimentary basin is suggested to be filled with very low velocity material at shallow depths and partially underlain by a high-velocity ophiolite body. Hence, a well-constrained basin structure will be important in correcting surface wave tomography and receiver function images. The impact of the Great Valley basin structure on body waves is evident by an observed delay in P-wave arrival times on the radial component relative to the vertical component for stations located within the basin. Surface waves along the CCSE array also show a distinct slowing by the valley at periods <10 sec. Data from teleseismic events recorded by the CCSE reveal scattered waves arriving tens of seconds after the S-wave, which we will interpret in terms of the lithospheric structure of the region by identifying the source location(s) of the scatterer(s). We may also gain insights into the structural connection between the Isabella anomaly and the

  3. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis (United States)

    Pedersen, Helle A.; Bruneton, Marianne; Maupin, Valérie; Svekalapko Seismic Tomography Working Group


    We report measurements of radial and azimuthal anisotropy in the upper mantle beneath southern and central Finland, which we obtained by array analysis of fundamental-mode Rayleigh and Love waves. Azimuthally averaged phase velocities were analysed in the period range 15 to 190 s for Rayleigh waves and 15 to 100 s for Love waves. The azimuthal variation of the Rayleigh wave phase velocities was obtained in the period range 20 to 100 s. The limited depth resolution of fundamental-mode surface waves necessitated strong damping constraints in the inversion for anisotropic parameters. We investigated the effects of non-unicity on the final model by experimenting with varying model geometries. The radial anisotropy beneath Finland can be explained by a lithosphere at least 200 km thick, predominantly (> 50% by volume) composed of olivine crystals having their a-axes randomly distributed in the horizontal plane. On the contrary, the measured lithospheric azimuthal anisotropy is small. This can be reconciled with body-wave observations made in the area that indicate a complex pattern of rapidly varying anisotropy. Below 200-250 km depth, that is below the petrologic lithosphere as revealed by xenolith analyses conducted in the area, the magnitude of the azimuthal anisotropy increases and would be compatible with a mantle containing 15-20% by volume of olivine crystals whose a-axes are coherently aligned in the N-NE direction. The alignment of the a-axes is off the direction of present-day absolute plate motion in either the no-net-rotation or hot-spot reference frame, currently N55-N60. We interpret this mismatch as evidence for a complex convective flow pattern of the mantle beneath the shield, which, by inference, is decoupled from the overlying lithosphere.

  4. Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Fiala, Jiří; Plomerová, Jaroslava


    Roč. 99, č. 4 (2010), s. 891-907 ISSN 1437-3254 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : western Bohemian Massif * Eger (Ohře) Rift * lithosphere structure and development * mantle seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.980, year: 2010

  5. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.


    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  6. The lithosphere of the Antarctic continent: new insights from satellite gravity gradient data (United States)

    Ferraccioli, Fausto; Ebbing, Jorg; Pappa, Folker; Kern, Michael; Forsberg, Rene


    The GOCE+Antarctica project, part of the Support to Science (STSE) program of the European Space Agency (ESA) is a new polar geosciences research initiative that aims to investigate the thermal and compositional structure of the Antarctic lithosphere by combing satellite gravity gradients (Bouman et al., 2016), airborne gravity data compilations (Scheinert et al., 2016), seismological (e.g. An et al., 2015) and petrological models in a forward and inverse manner. This approach promises to shed new light into the fundamental interplays between Antarctic lithospheric architecture, bedrock topography, ice sheet dynamics, and also its dynamic relations with Glacial Isostatic Adjustment (GIA). Here we focus on the satellite gravity gradient signatures and superimpose these on major known tectonic and bedrock topography elements, as well as independent seismically-derived estimates of crustal thickness for the Antarctic continent. An ad hoc India up reference system was used to facilitate the initial interpretation of the satellite gravity gradient data images. The GIU component clearly reveals the marked contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and also the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. Notably, the new images suggests that more distributed wide-mode lithospheric and crustal extension affects the Ross Sea Embayment and continues under the Ross Ice Shelf, but this pattern is less clear towards the Bellingshousen Embayment. This suggests that the rift system narrows considerably as it reaches the southern edge of the Antarctic Peninsula, perhaps also in response to the relatively thicker crust and potentially relatively more rigid Precambrian lithosphere of the displaced Haag-Ellsworth block, which was originally located closer to East Antarctica, prior to distributed Jurassic lithospheric and crustal extension in the Weddell Sea Rift System. In East Antarctica, the satellite

  7. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni


    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  8. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms (United States)

    Love, Jeffrey J.; Swidinsky, Andrei


    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  9. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling (United States)

    Vilà, M.; Fernández, M.; Jiménez-Munt, I.


    Determining the temperature distribution within the lithosphere requires the knowledge of the radiogenic heat production (RHP) distribution within the crust and the lithospheric mantle. RHP of crustal rocks varies considerably at different scales as a result of the petrogenetic processes responsible for their formation and therefore RHP depends on the considered lithologies. In this work we address RHP variability of some common lithological groups from a compilation of a total of 2188 representative U, Th and K concentrations of different worldwide rock types derived from 102 published studies. To optimize the use of the generated RHP database we have classified and renamed the rock-type denominations of the original works following a petrologic classification scheme with a hierarchical structure. The RHP data of each lithological group is presented in cumulative distribution plots, and we report a table with the mean, the standard deviation, the minimum and maximum values, and the significant percentiles of these lithological groups. We discuss the reported RHP distribution for the different igneous, sedimentary and metamorphic lithological groups from a petrogenetic viewpoint and give some useful guidelines to assign RHP values to lithospheric thermal modeling.

  10. Post-rift deformation of the Red Sea Arabian margin (United States)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb


    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent

  11. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites (United States)

    Piccardo, Giovanni; Ranalli, Giorgio


    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  12. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W


    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  13. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J


    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  14. Axisymmetric finite deformation membrane problems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.W.


    Many biomechanic problems involve the analysis of finite deformation axisymmetric membranes. This paper presents the general formulation for solving a class of axisymmetric membrane problems. The material nonlinearity, as well as the geometric nonlinearity, is considered. Two methods are presented to solve these problems. The first method is solving a set of differential equilibrium equations. The governing equations are reduced to three first-order ordinary-differential equations with explicit derivatives. The second method is the Ritz method where a general potential energy functional valid for all axisymmetric deformed positions is presented. The geometric admissible functions that govern the deformed configuration are written in terms of a series with unknown coefficients. These unknown coefficients are determined by the minimum potential energy principle that of all geometric admissible deformed configurations, the equilibrium configuration minimizes the potential energy. Some examples are presented. A comparison between these two methods is mentioned.

  15. Characteristic classes in deformation quantization


    Willwacher, Thomas


    In deformation quantization, one can associate five characteristic functions to (stable) formality morphisms on cochains and chains and to "two-brane" formality morphisms. We show that these characteristic functions agree.

  16. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau (United States)

    Meyer, B.; Tapponnier, P.; Bourjot, L.; Métivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, Guo; Zhitai, Chen


    Late-Cenozoic crustal shortening on NE sections between the Kunlun fault and the Hexi corridor are estimated to range between 100 and 200 km. In keeping with the inference of a deep crustal décollement and with the existence of Mid-Miocene to Pliocene plutonism and volcanism south of the Kunlun range, such values suggest that the lithospheric mantle of the Qaidam plunged obliquely into the asthenosphere south of that range to minimum depths of the order of 200-300 km. A minimum of ~150 km of shortening in the last ~10 Ma, consistent with the average age of the earliest volcanic-plutonic rocks just south of the Kunlun (~10.8 Ma) would imply average Late-Cenozoic rates of shortening and regional uplift in NE Tibet of at least ~15 mm yr-1 and ~0.2 mm yr-1, respectively. Such numbers are consistent with a cumulative sinistral offset and slip rate of at least ~200 km and ~2 cm yr-1, respectively, on the Altyn Tagh fault east of 88°E. The fault may have propagated more than 1000 km, to 102°E, in the last 10 Ma. Our study of ongoing tectonics in northeast Tibet is consistent with a scenario in which, while the Himalayas-Gangdese essentially `stagnated' above India's subducting mantle, much of Tibet grew by thickening of the Asian crust, as propagation of large, lithospheric, strike-slip shear zones caused the opposite edge of the plateau to migrate far into Asia. The Asian lithospheric mantle, decoupled from the crust, appears to have subducted southwards along the two Mesozoic sutures that cut Tibet north of the Gangdese, rather than to have thickened. The Bangong-Nujiang suture was probably reactivated earlier than the Jinsha-Kunlun suture, located farther north. Overall, the large-scale deformation bears a resemblance to plate tectonics at obliquely convergent margins, including slip-partioning along large strike-slip faults such as the Altyn Tagh and Kunlun faults. Simple mechanisms at the level of the lithospheric mantle are merely hidden by the broader distribution

  17. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area (United States)

    Cui, H.; Gao, Y.; Zhou, Y.


    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  18. Geodynamic evolution of the lithosphere beneath the Eastern Anatolia region: Constraints from geodynamic modeling (United States)

    Memis, Caner; Hakan Gogus, Oguz; Pysklywec, Russell; Keskin, Mehmet; Celal Sengor, A. M.; Topuz, Gultekin


    The east Anatolian orogenic plateau is characterized by an average elevation of 2 km, and is delimited by the Bitlis-Zagros collision zone to the south and the Pontide arc to the north. Stratigraphic evidence suggests that the high plateau attained its current elevation since the Serravallian (about 12 million years ago), but probably did not reach its present height until at least the latest Pliocene. While the crustal shortening following the Arabia-Eurasia collision in the south enabled its relatively rapid rise and regional tectonic evolution, the presumed removal of the downgoing slab beneath east Anatolia has potentially played a significant role in this geodynamic configuration. According to the proposed scenario, the northward subducting slab of Neo-Tethys peels away from the overlying crust similar to the lithospheric delamination model. In this work, we performed a series of lithospheric removal models by varying rheological, physical and mechanical properties by using 2D numerical geodynamic experiments, (e.g. plate convergence rate, crustal thickness, mantle lithosphere yield-stress). Our model results show that the average amount of delamination hinge motion is maximum (18 km/my) when the lower crustal rheology is felsic granulite. The slab break-off only occurs at lower convergence rates (≤ 2 cm/yr), and is imposed on the margin of delaminating mantle lithosphere. The surface uplift takes place above the asthenospheric column (or plateau gap) through isostatic and thermal support of asthenospheric upwelling, and varies dependent on the width of the asthenospheric column. However; with higher plate convergence rates (≥3 cm/yr), the asthenospheric column does not widen enough and the continental collision occurs rather than delamination/peeling away. In this case, the average uplift appears in the central section of the crust, and this exceeds a surface elevation of 3 km. All model results are consistent with the observations from the Eastern

  19. Existence, morphology and persistence of intrusions as a probe for lithosphere rheology (United States)

    Massmeyer, Anna; Davaille, Anne; Di Giuseppe, Erika


    The development of intrusions in the lithosphere depends strongly on its rheology. Less viscous mushroom-shaped plumes or more viscous finger-shaped diapirs, depending on the viscosity ratio between the rising and the matrix materials, are known to migrate through ductile, quasi-newtonian lithosphere; while dikes fracture and propagate through a solid matrix. However, the lithosphere presents solid as well as viscous properties. To determine what happens in this complex case, we performed a combined study of laboratory experiments and numerical simulations on the development of thermal plumes in aqueous solutions of Carbopol, a polymer gel suspension forming a continuous network of micrometric sponges. This fluid is shear thinning and presents a yield-stress, whereby flow occurs only if the local stress exceeds a critical value ?0. Below this value, the fluid acts as an elastic solid. The rheological properties of the solutions can be systematically varied by varying the Carbopol concentration. Our experimental setup consists of a localized heat-source of constant power, placed in the center of a squared plexiglas tank. Two conditions must be fulfilled for an instability to develop and rise: 1) the Yield number 0 comparing the buoyancy-induced stress to the yield stress, should be greater than a critical value c ~ 6; and 2) the Bingham number Bi, comparing the yield stress to the viscous stresses, needs to be locally smaller than 1. Then, a plug flow develops inside the plume thermal anomaly, producing a rising finger-shape with strong shear zones confined along its edges. Moreover, the instability halts its ascent as soon as 0 1. Those finger-shaped diapirs show strong similarities with an off-axis diapir in Oman emplaced in a ridge context. This geological object, a few kilometers in diameter, presents strong shear localization along its edges. Our fluid dynamical analysis places constraints on the parameter range within which such an object may be emplaced. It

  20. Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations (United States)

    Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei


    Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.

  1. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements (United States)

    Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing


    Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite

  2. Obtaining Interpretable Receiver Functions to Study Lithospheric Structure in the Central US (United States)

    Cunningham, E. E.; Frassetto, A.; Lekic, V.


    Dense station coverage provided by the EarthScope USArray-Transportable Array in the central United States represents an unprecedented opportunity for imaging the crustal and lithospheric structure of relatively stable plate interiors. Conversions of teleseismic compressional (P) to shear (S) waves - and vice-versa - across velocity contrasts within the lithosphere can be detected and modeled using the receiver function (RF) approach. This method has been used to map variations in crustal and lithospheric thickness across the western US with great success. However, unconsolidated sediments characteristic of much of the central US present a technical challenge to both constructing and interpreting receiver functions. We undertake a systematic investigation of the data selection and analysis techniques used in constructing P-to-S and S-to-P receiver functions. We start by comparing results obtained from manual vs. automatic [1] data selection, and find automatic picking with loose selection criteria to outperform manual data selection. We interpret this finding to mean that even very noisy data contains structural information that can be enhanced through stacking, and that strict data selection can discard much of this information. We proceed to compare results obtained using iterative time-domain deconvolution [3] against those from damped simultaneous frequency-domain deconvolution [2]. While both methods seem to perform well for P-to-S receiver functions, frequency domain deconvolution produces much higher quality results for S-to-P. We also find that varying damping can suppress or accentuate the phase associated with an intra-lithospheric velocity drop, suggesting that the mid-lithospheric discontinuity may have a gradational character. In order to investigate the effects of station geology on receiver function quality and interpretability, we focus on the ancient Proterozoic and seismically active Reelfoot rift. We compare the results obtained for permanent

  3. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by DinSAR Time Series Analysis : Probing of the Lithosphere Rheological Structure (United States)

    Doin, M.; Cavalié, O.; Laserre, C.; Briole, P.


    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundement induced a subsidence of 17 centimeters. This relaxation process has been argued as analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyze multiple interferograms (241) based on 43 ERS images acquired between 1992 and 2001. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most of interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. This tropospheric delay is computed for each interferogram and then inverted for each date of SAR images before interferogram correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for the time series of ground motion in the lake Mead area. The linear inversion treats each pixel independently from its neighbours and uses the data redundancy to reduce errors such as local decorrelations. Additionnal constraints such as temporal smoothing allow to reduce the local atmospheric artefacts. We obtain a time series of the deformation in the lake Mead area with a millimetric accuracy. The deformation is non linear in time and spreads over a large spatial scale. In particular, we observe a subsidence of up to 16 mm between 1995 and 1998 due to a 10 meters water level increase, followed by an uplift due to the drop of the water level after 2000. The deformation

  4. Localization of Intraplate Deformation through Fluid-Assisted Fault Reactivation in the Lower-Crust: The Flinders Ranges, South Australia (United States)

    Balfour, N.; Cummins, P. R.; Pilia, S.; Love, D.


    Within the stable continental region of Australia, the Flinders Ranges stands out as experiencing concentrated and prolonged seismic activity. Previous studies have shown that strain rates inferred from seismicity of 10-16 —10-15 s-1 are similar to neotectonic slip rates inferred for range-bounding faults. It is also an area of relatively pronounced topography up to 1700 m and high heat flow averaging 90 mW/m2. For these reasons the Flinders Ranges have been the subject of many studies trying to understand why deformation of the Australian continent appears to be localized there, with explanations including erosion-driven isostatic rebound, lithospheric flexure, stress concentration due to change in lithospheric strength, and thermal weakening. We present a hypothesis for localized, intraplate deformation in the continental crust of south-central Australia that involves fluid-assisted reactivation of faults in the mid- to lower crust. This study utilizes data from a temporary seismometer deployment in the Flinders Ranges from 2003—2005. We show that earthquakes in the region extend to depths of 20 km and are clustered in elongated low Vp/Vs anomalies. These anomalies suggest a highly fractured or deformed zone that is aligned with the axis of the Flinders Ranges and extends to the lower crust. We argue that the compressive earthquake focal mechanisms are consistent with the regional stress field, that there is no evidence for stress concentration, and that the occurrence of earthquakes at mid- to lower crustal depth in an area of high heat flow can only be explained by high pore fluid pressure in the lower crust. These data reveal important constraints on structure, rheology, and stress that are crucial for understanding intraplate deformation in the Flinders Ranges, with possible implications for high-seismicity zones in stable continental regions elsewhere.

  5. Numerical validation of the 'Pop-Down tectonics' as a structural frame for hot lithospheres with particular reference to the Hearne craton (Canadian Shield) (United States)

    Poh, Jonathan; Yamato, Philippe; Gapais, Denis; Duretz, Thibault; Ledru, Patrick


    The formation of the architecture of the main cratons of the Canadian Shield has been debated over the past three decades. Understanding the role of tangential Vs. vertical tectonics in the Rae craton is of great interest as the role of inherited structure is fundamental for the subsequent drainage of fluids and the formation of high to ultra-high grade unconformity-type uranium deposits. These deposits are located in the vicinity of the intersection between the unconformity at the base of the Paleoproterozoic Athabasca sedimentary basin (1.75-1.5 Ga) and the graphite-rich metasediments of the Wollaston-Mudjatik transition zone, one of the main fault system of the Rae Craton related to the Trans-Hudson orogeny (1.82-1.78 Ga). A new tectonic model, Pop-down tectonics, was proposed as the primary driving process to concentrate supracrustal materials, strains, fluid transfers and metal transport in permeability enhanced deformation zones. The sub-vertical structural patterns with regional horizontal shortening seen in the tectonic model appear to be consistent with field evidences and has the potential for sustaining strong fluid-rock interactions. In the light of previous analogue modelling studies, we test the viability of the Pop-down tectonics model in a thermo-mechanical framework. The numerical experiments are based on a series of 2D visco-elasto-plastic thermo-mechanical models. We employ various thermal and rheological parameters derived from laboratory experiments. The geometry, thermicity and kinematics of the models are further constrained by applying existing geophysical and geological data. We impose a fixed upper mantle temperature of 1330 °C and a thin crust ranging from 30 - 40 km. The outcome of the models will provide insights into the mechanical processes controlling the deformation of hot lithospheres in convergent settings.

  6. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.


    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  7. The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy


    Jiménez Díaz, Alberto; Ruiz Pérez, Javier; Villaseca González, Carlos; Tejero López, Rosa; Capote del Villar, Ramón


    In this work we have modeled the thermal structure of the lithosphere of the Spanish Central System and the Tajo Basin, and their implications for lithospheric strength. For his, we have used refined heatproducing elements (HPE) values to obtain new estimates of heat production rates in the Spanish Central System and Tajo Basin areas, which have been used joined to the relation between topography and thermal structure of the lithosphere to calculate the best- it surface heat flows in the stu...

  8. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun


    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  9. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. (United States)

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke


    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.

  10. Seismic images of Caledonian, lithosphere-scale collision structures in the southeastern North Sea along Mona Lisa Profile 2 (United States)

    Abramovitz, Tanni; Thybo, Hans


    The unexposed suture between Baltica and Eastern Avalonia is imaged by coincident normal-incidence reflection and wide-angle reflection/refraction seismic data of the MONA LISA project. We present new results of the upper lithospheric, seismic structure from the N-S-striking profile 2 across the Caledonian Deformation Front, which represents the crustal collision suture between Baltica and Eastern Avalonia that formed after closure of the Tornquist Sea during the Caledonian orogeny in Late Ordovician times. Three different crustal types are identified with great similarities to the nearby profile 1: (1) a three-layered crust typical of shields to the north; (2) a transitional crust (suture zone) in the central part; and (3) a two-layered crust of Caledonian origin to the south characterized by very low velocities throughout the crust. The crustal thickness varies from 38-35 km under the northern margin of the Ringkøbing-Fyn High (Baltica crust) to 28-27 km beneath the North German Basin in the Caledonian crust to the south. The suture zone is imaged by S-dipping crustal reflections from 1.9 to 10.6 s two-way travel time (twt) over a horizontal distance of ˜70 km within the transitional crust. The reflection suture zone terminates in a ˜60 km wide reflective lens with velocities of 6.6-6.8 km/s in the lowermost crust. The reflective lens may be interpreted as a remnant of oceanic or island-arc crust that was accreted to the leading edge of Baltica during closure of the Tornquist Sea. Alternatively, the reflective lens may represent an indentor of Baltica crust into the Avalonian terrane. The change in lower crustal reflectivity and the abrupt transition from a three- to a two-layered crust further south suggest that the Trans-European Fault and the Elbe Lineament continue into the North Sea. The upper mantle reflectivity is dominated by bands of strong-amplitude, S-dipping reflections from 13.5 to 21.8 s twt, and a weaker band of N-dipping reflections from 12 to

  11. Static response of deformable microchannels (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.


    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  12. Deformation of the Songshugou ophiolite in the Qinling orogen (United States)

    Sun, Shengsi; Dong, Yunpeng


    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  13. Secular Changes in Lithospheric Diamonds from the Archean to the Proterozoic (United States)

    Shirey, S. B.; Richardson, S. H.; Aulbach, S.; Pearson, G.


    Geochronologic study of lithospheric diamonds uses the Sm-Nd and Rb-Sr systems on silicate inclusions of peridotitic (harzbugitic and lherzolitic) and eclogitic parageneses and Re-Os on sulfide inclusions also of peridotitic (pentlendite-rich) and eclogitic (pyrrhotite-rich) parageneses. While sulfide and silicate inclusions rarely occur in the same diamond, they usually occur in the diamond population of each kimberlite. More than 20 kimberlites on 4 cratons have geochronology on both their sulfide and silicate inclusion-bearing diamonds. This global dataset shows interesting systematic differences with age from the Archean to Proterozoic and can be used to test for secular changes in deep mantle processes and geodynamics. With few exceptions, harzburgitic silicate and sulfide inclusions are Paleo- to Mesoarchean and rare in the Proterozoic, in accord with the xenolith record. This suggests that the depletion registered in the harzburgitic diamonds was associated with the igneous processes that created or at least followed closely on the creation of stable cratonic lithosphere. The evidence for relatively shallow final equilibration of many mantle peridotite suites [1,2] indicates that early tectonic forces had enough lateral component to be capable of thickening the lithosphere into the diamond stability field regardless of the initial depletion of the mantle in a plume or a subduction wedge. Eclogitic sulfide inclusions are common from the Archean throughout the Proterozoic. Given the diverse surficial geochemical signatures present in these inclusions, in their diamond hosts, and in the diamond-hosting lithologies, this suggests that subduction-accretion was a major tectonic process operating on Earth at least since the Mesoarchean. The Re/Os of some Archean eclogitic sulfides is lower than Re/Os of Proterozoic eclogitic sulfides which potentially links the creation of Archean sulfides to the creation of more primitive, higher MgO oceanic lithosphere typical of

  14. Lithosphere rheology and active tectonics in Mongolia: relations between earthquake source parameters, gravity and GPS measurements (United States)

    Bayasgalan, Amgalan; Jackson, James; McKenzie, Dan


    In this paper, we use observations of earthquake source parameters and gravity to investigate the mechanical properties and the active faulting of the lithosphere in Mongolia. Well-determined earthquake centroid depths, including 10 from inversions of P and SH waveforms that are presented here for the first time, show that the seismogenic thickness (Ts) within Mongolia itself is less than 20 km. However, to both the east, in parts of the Lake Baikal rift system, and the west, adjacent to the Junggar basin and Kazakhstan platform, the seismogenic thickness is considerably greater, and includes essentially the whole crust. From the admittance between the free-air gravity and the topography, and also from profiles across a flexural foreland basin, we determine the effective elastic thickness (Te) in central Mongolia to be Kazakhstan platform, the same techniques show that Te > 30 km. In both Mongolia and its surroundings, Te is comparable with Ts and, where it is well determined, Te Ts. These data are consistent with the view that the strength of the continental lithosphere resides in its seismogenic part, which in Mongolia is the upper crust, but to both the east and west appears to be the whole crust. The earthquake source parameters also allow us to ask how the active faulting in Mongolia accommodates the velocity field revealed by GPS measurements. It is likely that the entire Mongolian Altay range in the west rotates counter-clockwise relative to stable Asia, and is responsible for the distributed E-W left-lateral shear seen further east in central Mongolia. The admittance observations show no evidence at the present day for convective mantle support, or a `hotspot', responsible for the elevated region of the Hangay dome in central Mongolia, even though the geochemical data from nodules in late Cenozoic basalts and seismic tomography studies suggest elevated temperatures at shallow depths (<125 km) and probably thinned lithosphere.

  15. POLARIS: Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity - New Opportunities in Canada (United States)

    Cassidy, J. F.; Adams, J.; Asudeh, I.; Atkinson, G.; Bostock, M. G.; Eaton, D. W.; Ferguson, I. J.; Snyder, D.; Unsworth, M.


    POLARIS is a multi-institutional 10M project recently funded by the Canadian Foundation for Innovation, Provincial Governments and Universities, and private industry across Canada. This project is providing new, state-of-the-art portable geophysical observatories for research into lithospheric structure, continental dynamics, and earthquake hazards in Canada. When completed, POLARIS infrastructure will comprise 90 three-component broadband seismographs and 30 magnetotelluric (MT) mobile field systems and complementary satellite telemetry data acquistion. Over the initial four year installation of this project, the seismograph network will be deployed as three subarrays of 30 instruments each. The MT instruments will be used in shorter-term deployments at each of the three seismic subarrays for lithospheric imaging, and continuous recording at selected elements for deep-mantle imaging. The initial scientific objectives include: 1) three-dimensional detailed mapping of the asthenosphere and upper mantle of the Slave Province in Canada's north to assist the emerging diamond industry; 2) mapping lithospheric structure and earthquake hazards in the heavily populated area of southern Ontario (identifying zones of crustal weakness, obtaining accurate earthquake parameters, and ground motion attenuation studies). 3) mapping the structure and earthquake hazards over the Cascadia subduction zone in southwest British Columbia (subducting oceanic plate, site-response in urban areas, identifying active crustal faults, and seismic attenuation studies). The latter array will provide new opportunities into research involving slab seismicity, including focal mechanisms, attenuation studies, and detailed structural studies. Further research initiatives that will be possible include: testing Rapid Warning Systems for ground shaking in the urban areas of Canada; developing new fine-scale imaging techniques using the scattered wavefield; and investigating geomagnetically induced

  16. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke


    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  17. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes (United States)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa


    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  18. Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano (United States)

    Carlier, G.; Lorand, J. P.; Liégeois, J. P.; Fornari, M.; Soler, P.; Carlotto, V.; Cárdenas, J.


    The Altiplano of southern Peru displays a large spectrum of Cenozoic potassic (K) and ultrapotassic (UK) mafic rocks that delineate two deep lithospheric mantle blocks that have undergone different depletion and enrichment events. Phlogopite lamproites indicate that the eastern Altiplano block is underlain by a metasomatized harzburgitic mantle of Paleoproterozoic to Archean age (depleted mantle age, TDM = 1130 2485 Ma; ɛNd = -5.0 to -11.4; 87Sr/86Sri = 0.7100 0.7159). Beneath the western Altiplano block, the presence of a younger (TDM = 837 1259 Ma; ɛNd = +0.6 to -6.3; 87Sr/86Sri = 0.7048 0.7069) metasomatized lherzolitic mantle is deduced from multiple occurrences of diopside-rich K-UK lavas (leucitites, leucite-bearing tephrites, olivine, and diopside trachybasalts). A third suite of young (Cusco Vilcanota fault system separating the western and eastern Altiplano blocks; this third suite, composed of diopside-phlogopite lamproites and augite kersantites, minettes, and trachybasalts, sampled a composite mantle source that probably included an asthenospheric component (TDM = 612 864 Ma; ɛNd = -1.1 to -3.5; 87Sr/86Sri = 0.7051 0.7062), in addition to lithospheric components inherited from the eastern and western Altiplano blocks. The spatial distribution of the south Peruvian K-UK magmatism suggests that K-UK melts reached the surface through reuse of older translithospheric weakness zones extending at least to the depth of magma generation. These latter were reactivated by a dextral transpressional regime imposed on the two rigid lithospheric blocks by the Andean orogen.

  19. Effect of Water on the Formation of Barriers to Melt Transport in the Martian Lithosphere (United States)

    Schools, J.; Montesi, L.


    The mantle is often considered as an aggregate of two phases: a solid, porous matrix and a liquid melt (McKenzie, 1984; Bercovici et al., 2001). Melt travels rapidly upwards through the matrix due to its buoyancy. When this melt enters the colder lithosphere it begins to crystallize. If the crystallization happens a high rate, then the newly formed crystals can clog the pore space, reducing its permeability to essentially zero (Korenaga and Kelemen, 1997). This area of zero permeability is the permeability barrier. We use the MELTS family of thermodynamic calculators (e.g. Ghiorso and Sack, 1995) to determine melt compositions and the crystallization sequence of ascending melt throughout Martian history to simulate the formation of permeability barriers. At low strain rates (10-17-10-15 s-1) permeability barriers form deep in the lithosphere, possibly contributing to the evolution of localized volcanic edifices on the Martian surface once fracturing or thermal erosion enables melt to traverse the lithosphere. Higher strain rates (10-13 s-1) yield shallower permeability barriers, which may be related to extensive lava flows. The behavior of permeability barrier formation from anhydrous mantle source to 0.5 wt.% H2O mantle source is investigated. Introducing small amounts of water ( 60 ppm H2O) has a similar effect to increasing the strain rate, forming shallower barriers. Large amounts of water (0.5 wt.% H2O) yield very shallow, weak barriers or no barriers at all. Melt reaches the Martian surface most easily in areas of increased tectonics or areas with an increased mantle water content.

  20. Finite Deformation of Magnetoelastic Film

    Energy Technology Data Exchange (ETDEWEB)

    Barham, Matthew Ian [Univ. of California, Berkeley, CA (United States)


    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  1. Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution (United States)

    Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry


    Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic

  2. Are mid-lithospheric discontinuities (MLDs) caused by layers of frozen-in melts? (United States)

    Rader, E. L.; Frost, D. A.; Cheng, C.; YU, C.; Menard, J.; Emry, E.; Schmerr, N. C.


    A Mid-Lithospheric Discontinuity (MLD) has been observed at a depth of ~90 km within the continental lithosphere by a wide variety of seismic techniques, including shear wave anisotropy, P and S receiver functions, active-source seismic experiments, SS and PP precursors, and ScS reverberation phases. Proposed geological mechanisms for explaining the MLD include the presence of melt, relict subduction zone accretionary structures, or an abrupt change in composition from frozen-in melts and metasomatism. During the 2013 CIDER summer workshop, our working group began an investigation of the MLD by compiling a seismological database of where the interface has been observed, methods used to identify it, and characteristics (depth, velocity contrast, gradients) of the observations. Additionally, we created a petrological database of xenoliths that originated immediately above, below, and within the vicinity of the seismologically observed structure. We find that regions of thick continental lithosphere, exhibit evidence for an abrupt decrease in seismic shear velocity (~5% over 10-20 km) at 60-160 km depth, with the majority of observations within ~80-90 km. We used the petrological and seismological constraints to then assess the feasibility of a metasomatic and frozen-in melt layer associated with the MLD. We used shear wave velocity data combined with compiled petrological data to determine which hydrous minerals are most likely to have an impact on the shear velocity at the MLD. Preliminary calculations at 1GPa show that by increasing the composition of hydrous minerals, such as phlogopite, by 5-20% in the rock, noticeable decreases in shear velocity are produced. To further test the feasibility of this explanation, we used standard thermobarometry methods to determine xenolith formation depth for samples containing amphibole and phlogopite, comparing them to the expected MLD pressure range (~2-5 GPa; 60-160 km). We find that only 25% of amphibole samples formed

  3. Lithospheric structure beneath the Northwest Iran using Ps and Sp converted waves


    F. T. Farahmand; Forough Sodoudi


    We compute P and S receiver functions to investigate the crustal and lithospheric thickness as well as the Vp/Vs ratio beneath the Northwest of Iran and map out the lateral variations of these discontinuities under this region.We selected data from teleseismic events (Mb ≥ 5.5, epicentral distance between 30°-95° for P receiver functions and Mb > 5.7, epicentral distance between 60°-85° for S receiver functions) recorded since 1995 to present at 8 three component short period stations from Ta...

  4. Lithospheric Flexure and Sedimentary Basin Evolution: the Steer's Head Model Re-visited (United States)

    Moore, J. D. P.; Watts, A. B.


    Backstripping studies of biostratigraphic data from deep wells show that sediment loading is one of the main factors controlling the subsidence and uplift history of sedimentary basins. Previous studies based on single layer models of elastic and viscoelastic plates overlying an inviscid fluid have shown that sediment loading, together with a tectonic subsidence that decreases exponentially with time, can explain the large-scale 'architecture' of rift-type basins and, in some cases, details of their internal stratigraphy such as onlap and offlap patterns. One problem with these so-called 'steer's head' models is that they were based on a simple rheological model in which the long-term strength of the lithosphere increased with thermal age. Recent oceanic flexure studies, however, reveal that the long-term strength of the lithosphere depends not only on thermal age, but also load age. We have used the thermal structure based on plate cooling models, together with recent experimentally-derived flow laws, to compute the viscosity structure of the lithosphere and a new analytical model to compute the flexure of a multilayer viscoelastic plate by a trapezoid-shaped sediment load at different times since basin initiation. If we define the nondimensional number Dw = τm/τt, where τm is the Maxwell time constant and τt is the thermal time constant, we find that for Dw > 1 the flexure approximates that of a viscoelastic plate and an offlap pattern develops (Fig. 2). Interestingly Dw ~ 1 produces a basin in which onlap dominates its early evolution while offlap dominates its later evolution and an unconformity separates the two different stratal patterns (Fig. 3). Therefore, when consideration is given to the fact that the long-term strength of the lithosphere depends on both thermal and load age we are able to produce stratal geometries that not only closely resemble stratigraphic observations, but do not require either long-term sea-level or sediment flux changes in

  5. Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary (United States)

    Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc


    The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological

  6. Lithospheric expression of cenozoic subduction, mesozoic rifting and the Precambrian Shield in Venezuela (United States)

    Masy, Jeniffer; Niu, Fenglin; Levander, Alan; Schmitz, Michael


    We have combined surface wave tomography with Ps and Sp receiver-function images based on common-conversion-point (CCP) stacking to study the upper mantle velocity structure, particularly the lithosphere-asthenosphere boundary (LAB), beneath eastern and central Venezuela. Rayleigh phase velocities in the frequency range of 0.01-0.05 Hz (20-100 s in period) were measured using the two-plane-wave method and finite-frequency kernels, and then inverted on a 0.5° × 0.5° grid. The phase velocity dispersion data at grid points were inverted for 1D shear velocity profiles using initial crust-mantle velocity models constructed from previous studies. The 3D velocity model and receiver-function images were interpreted jointly to determine the depth of the LAB and other upper mantle features. The tomographic images revealed two high velocity anomalies extending to more than ∼200 km depth. One corresponds to the top of the subducting Atlantic plate beneath the Serrania del Interior. The other anomaly is a highly localized feature beneath the Maturin Basin. The LAB depth varies significantly in the study region: It is located at ∼110 km depth beneath the Guayana Shield, and reaches ∼130 km at the northern edge of the Maturin Basin, which might be related to the downward flexural bending due to thrust loading of the Caribbean plate and pull from the subducting Atlantic plate. Immediately to the west, the lithosphere is thin (∼50-60 km) along the NE-SW trending Espino Graben from the Cariaco basin to the Orinoco River at the northern edge of the craton. The LAB in this region is the top of a pronounced low velocity zone. Westward, the lithosphere deepens to ∼80 km depth beneath the Barinas Apure Basin, and to ∼90 km beneath the Neogene Merida Andes and Maracaibo block. Both upper mantle velocity structure and lithosphere thickness correlate well with surface geology and are consistent with northern South American tectonics.

  7. Vector-valued spherical Slepian functions for lithospheric-field analysis (United States)

    Plattner, A.; Simons, F. J.


    One of the mission objectives of Swarm is to resolve and model the lithospheric magnetic field with maximal resolution and accuracy, even in the presence of contaminating signals from secondary sources. In addition, and more generally, lithospheric-field data analysis will have to successfully merge information from the global to the regional scale. In the past decade or so, a variety of global-to-regional modeling techniques have come of age that have, however, been met with mixed feelings by the geomagnetics community. In particular, the theory of scalar Slepian functions has been developed for applications mostly in geodesy, but support from within geomagnetism has been tepid. In the Proceedings of the First Swarm International Science Meeting, now six years ago, it was written with reference to Slepian localization analysis that these methods are theoretically powerful but still need to find their way from the applied mathematician's desk to the geophysicist practitioners'. In the intervening six years "these methods" have done just that, and thereby enjoyed much use in a variety of fields: but the root cause of their slow adoption for lithospheric-field analysis had not been remediated. To this date, only the theory of scalar Slepian functions on the sphere has been completely worked out. In this contribution we report on the development, at last, of a complete vectorial spherical Slepian basis, suited for applications specifically of geomagnetic data analysis, representation, and model inversion. We have designed a basis of vector functions on the sphere that are simultaneously bandlimited to a chosen maximum spherical harmonic degree, while optimally focused on an arbitrarily shaped region of interest. The construction of these bases of vector functions is achieved by solving Slepian's spatiospectral optimization problem in the vector case, as has been done before for scalar functions on the sphere. Scalar Slepian functions have proven to be very useful in

  8. Deformation of Marble, Quartzite, and Metabasalt during Subduction and its Aftermath (Invited) (United States)

    Whitney, D. L.; Teyssier, C.; Seaton, N. C.; Toraman, E.


    Field-based studies of naturally deformed minerals are a link between experimental studies of deformation mechanisms and models for the rheological behavior of the lithosphere. Of particular interest are field sites in which an array of rock types are present and in which field, outcrop, and microscale deformation features can be integrated to provide a comprehensive view of deformation history and syn-tectonic metamorphic reactions. An excellent example of such a site is the Sivrihisar Massif, Turkey, where interlayered marble, quartzite, and metabasalt in the NW part of the massif record conditions related to subduction metamorphism and deformation under high-P/T conditions (2 GPa, 75 km, and maintenance of low-T conditions during exhumation. Each rock type records subduction metamorphism in its texture and/or mineral assemblage, and each rock type varied in its response to overprinting by heat and later deformation. The dominant minerals in each rock type exhibit strong crystallographic preferred orientations (CPO): quartz in quartzite; calcite (former aragonite) in marble; omphacite, glaucophane, lawsonite in metabasalt. The overprinted rocks developed into L-tectonites, although calcite in marble lost both its CPO and shape-preferred orientation under greenschist facies conditions. In the NW, phengite-bearing marble records HP metamorphism in its texture (oriented, rod-shaped calcite pseudomorphs after aragonite); metabasalt has a HP mineral assemblage (e.g., lawsonite-omphacite-garnet-phengite ± glaucophane); and quartzite contains glaucophane + phengite + garnet ± omphacite ± lawsonite. In the south, the HP texture and white mica composition in marble were progressively obliterated by recrystallization at low T and P, and metabasalt interlayered with HP marble and quartzite is partially overprinted. At the P-T-deformation conditions under which the marble HP textures were obliterated, metabasalt shows no evidence for former HP conditions. In contrast, HP

  9. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chihan


    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  10. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.


    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  11. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.


    The relation between the polycrystal deformation and single crystal deformation has been studied for pure polycrystalline copper deformed in tension. The dislocation microstructure has been analyzed for grains of different orientation by transmission electron microscopy (TEM) and three types...

  12. Space-based monitoring of ground deformation (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja


    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  13. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)


    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  14. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun


    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  15. Effect of deformation induced nucleation and phase mixing, a two phase model for the ductile deformation of rocks. (United States)

    Bevillard, Benoit; Richard, Guillaume; Raimbourg, Hugues


    Rocks are complex materials and particularly their rheological behavior under geological stresses remains a long-standing question in geodynamics. To test large scale lithosphere dynamics numerical modeling is the main tool but encounter substantial difficulties to account for this complexity. One major unknown is the origin and development of the localization of deformation. This localization is observed within a large range of scales and is commonly characterized by sharp grain size reduction. These considerations argues for a control of the microscopical scale over the largest ones through one predominant variable: the mean grain-size. However, the presence of second phase and broad grain-size distribution may also have a important impact on this phenomenon. To address this question, we built a model for ductile rocks deformation based on the two-phase damage theory of Bercovici & Ricard 2012. We aim to investigate the role of grain-size reduction but also phase mixing on strain localization. Instead of considering a Zener-pining effect on damage evolution, we propose to take into account the effect of the grain-boundary sliding (GBS)-induced nucleation mechanism which is better supported by experimental or natural observations (Precigout et al 2016). This continuum theory allows to represent a two mineral phases aggregate with explicit log-normal grain-size distribution as a reasonable approximation for polymineralic rocks. Quantifying microscopical variables using a statistical approach may allow for calibration at small (experimental) scale. The general set of evolutions equations remains up-scalable provided some conditions on the homogenization scale. Using the interface density as a measure of mixture quality, we assume unlike Bercovici & Ricard 2012 that it may depend for some part on grain-size . The grain-size independent part of it is being represented by a "contact fraction" variable, whose evolution may be constrained by the dominant deformation

  16. Coupled Global Models of Mantle and Lithosphere Dynamics: Identifying the Forces Governing Pacific Plate Motions since the mid–Miocene

    DEFF Research Database (Denmark)

    Stotz Canales, Ingo Leonardo


    at the Melanesian arc. Furthermore, we demonstrate, for the first time, that the sub–Pacific asthenosphere features a significant component of pressure–driven flow (i.e., Poiseuille), and that this accounts for more than half of the Pacific plate motion over at least the past 15 Myr. Our results highlight the power......Almost all surface processes, including motions of the lithospheric plates, can be related to underlying mantle circulation. Geological expressions across Earth’s surface, such as the Andean mountain range in South America, the ancient cratons of Australia and the African continent’s unusual.......e. the direction and magnitude) of lithospheric plates. In this thesis, we have developed novel coupled global numerical models of mantle and lithosphere dynamics and, subsequently, used these to test hypotheses on the force–balance governing motion of the Pacific plate since the mid–Miocene. These coupled models...

  17. Geochemical and Isotopic Evidence for Melting and Erosion of Wyoming Craton Mantle Lithosphere Prior to 48 Ma (United States)

    Duke, G. I.; Carlson, R. W.; Frost, C. D.


    Trace-element geochemistry of Cretaceous-Tertiary Great Plains igneous rocks supports isotopic data that reveal a sequence of digestion of lithospheric mantle followed by intrusion of dominantly asthenospheric magmas. Multiple Archean, Proterozoic, and Phanerozoic subduction events beneath the Wyoming craton concentrated Ba and K within the underlying mantle lithosphere, resulting in earliest Cretaceous-Tertiary lithospheric melts with fingerprints of high K, high Ba/Nb and negative epsilon-Nd, but low U, Th, total REE, and less extreme values of LREE/HREE. Youngest (Eocene-Oligocene) magmas were kimberlite and carbonatite, with high U, Th, LREE, extremely high LREE/HREE, and positive epsilon-Nd, but with high-T xenoliths from depths of only 150 km (Carlson et al., 1999). Importantly, in the entire Wyoming craton, the Homestead kimberlite is the only one of K-T age that has transported a diamond—a single micro-diamond discovered. The shallow low-T to high-T xenolith transition, lack of diamonds, and changing magma geochemistry, suggest that a significant portion of the mantle lithosphere beneath the Wyoming Archean craton must have been consumed prior to the ≤48 Ma kimberlite eruptions. In contrast, the earliest phase of Cretaceous magmatism in Arkansas was explosive diamond-containing lamproite (~102 Ma) with a Proterozoic lithospheric isotopic signature (Lambert et al., 1995). In Arkansas, there was no earlier subalkalic magmatism, and no evidence of slow digestion of the mantle lithosphere, although later magmatism trended toward higher positive epsilon-Nd values (i.e. larger asthenospheric component). Removal by melting of a significant portion of the Wyoming mantle lithosphere during late Cretaceous-early Tertiary magmatism, along with heating, may have helped promote lithospheric “relaxation” related to extension further west between 53 Ma and 49 Ma, followed by more facile penetration by asthenospheric magmas, an idea proposed to explain the time

  18. Pre-Lie Deformation Theory

    NARCIS (Netherlands)

    Dotsenko, V.; Shadrin, S.; Vallette, B.


    In this paper, we develop the deformation theory controlled by pre-Lie algebras; the main tool is a new integration theory for preLie algebras. The main field of application lies in homotopy algebra structures over a Koszul operad; in this case, we provide a homotopical description of the associated

  19. Hexadecapole deformation studies in Nd

    Indian Academy of Sciences (India)

    [4] with only monopole and quadrupole degrees of freedom (sd-IBM) predicts a larger effective charge for neutrons ... in the SU(3) limit of sdg-IBM for axially symmetric deformed nuclei, M(E4) increases linearly with the .... dashed and dotted lines correspond to lower and upper β4 limits, respectively. Errors on data points ...

  20. Spatiotemporal deformations of reflectionless potentials (United States)

    Horsley, S. A. R.; Longhi, S.


    Reflectionless potentials for classical or matter waves represent an important class of scatteringless systems encountered in different areas of physics. Here we mathematically demonstrate that there is a family of non-Hermitian potentials that, in contrast to their Hermitian counterparts, remain reflectionless even when deformed in space or time. These are the profiles that satisfy the spatial Kramers-Kronig relations. We start by considering scattering of matter waves for the Schrödinger equation with an external field, where a moving potential is observed in the Kramers-Henneberger reference frame. We then generalize this result to the case of electromagnetic waves, by considering a slab of reflectionless material that both is scaled and has its center displaced as an arbitrary function of position. We analytically and numerically demonstrate that the backscattering from these profiles remains zero, even for extreme deformations. Our results indicate the supremacy of non-Hermitian Kramers-Kronig potentials over reflectionless Hermitian potentials in keeping their reflectionless property under deformation and could find applications to, e.g., reflectionless optical coatings of highly deformed surfaces based on perfect absorption.

  1. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  2. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев


    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  3. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær


    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  4. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)


    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  5. Magsat to CHAMP: Magnetic Satellite Explorations of Lithospheric Anomalies over Kursk, Bangui and the Antarctic (United States)

    Kim, H.; Taylor, Patrick T.; vonFrese, R. R.; Kim, J. W.


    We compare crustal magnetic anomaly maps over the Kursk (Russia) and Bangui (Central African Republic) isolated anomalies and the Antarctic derived from the Magsat, \\Orsted and CHAMP satellite fields. We wish to demonstrate how progress in satellite magnetic missions has improved the recovery of the crustal magnetic field. The 6-month long Magsat mission of 25 years ago generated two major methods of processing satellite magnetic anomaly data for lithospheric studies. The first was a global perspective using spherical harmonics that emphasize the more regional and global lithospheric fields. However, these fields commonly do not resolve local anomaly features in any detail. Therefore a second procedure involved the use of the individual satellite orbit or track data to recover small-scale anomalies on a regional scale. We present results over prominent magnetic anomalies such as Kursk, Bangui and the large Antarctic continent that demonstrate how the various analysis methods affect the recovery of crustal anomalies. The more recent \\Orsted and CHAMP missions are successfully recording data with an improved accuracy and with full spatial and temporal coverage. We show and interpret the total magnetic intensity anomaly maps over these areas from all three satellite magnetometer data sets.

  6. Atmosphere-ocean-lithosphere interactions during the Great Oxidation Event: insights from zircon δ18O (United States)

    Spencer, C. J.; Partin, C. A.; Kirkland, C.; Shiels, C.; Raub, T. D.; Kinny, P.


    The Great Oxidation Event (GOE) records a precipitous atmospheric oxygen rise, perhaps by as much as three to four orders of magnitude within a few million years. The timescale of the GOE is primarily constrained by the rapid loss of mass-independently fractionated sulfur isotopes. The drastic surface changes associated with the GOE are reflected by the appearance of marine sulfate and manganese deposits, as well as increased redox-sensitive trace metal abundances in banded iron formations and shale. Each of these manifestations is recorded at the atmosphere-lithosphere or atmosphere-ocean interface. However, how the GOE affected the lithosphere beyond the atmosphere interface has received little attention to date. We present zircon δ18O data from Paleoproterozoic sedimentary successions in Western Australia and Canada that display a step-change from the isotopically distinct reservoir with high δ18O that was incorporated into subduction zone magmas. One likely candidate is marine sulfate evaporite deposits, which appear with the GOE. The incorporation of this enriched δ18O reservoir would have facilitated the step change seen in the zircon δ18O record. This signal may also be present to a much lower degree associated with the "whiffs" of atmospheric oxygen prior to the GOE.

  7. Treatment of hallux valgus deformity. (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias


    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  8. Implications of a-priori constraints in transdimensional Bayesian inversion for continental lithospheric layering (United States)

    Roy, Corinna; Calo, Marco; Bodin, Thomas; Romanowicz, Barbara


    Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. Recent studies (Bodin et al., 2015, Calò et al. 2016) confirmed the presence of a structural boundary under the North American craton at 100-140 km depths by taking advantage of the power of a trans-dimensional Monte Carlo Markov chain (TMCMC). They generated probabilistic 1D radially shear wave velocity profiles for selected stations in North America by jointly inverting 2 different data types (PS Receiver Functions, surface wave dispersion for Love and Rayleigh waves), which sample different volumes of the Earth and have different sensitivities to 
structure. In fact, they found at least one, and in some cases several additional mid-lithospheric discontinuities (MLD) at intermediate depths in the stable part of the craton. Such discontinuities are not present in the active western part of the US. However, in their Bayesian approach, they made two major assumptions: First, they fixed the Vp/Vs ratio to a constant, averaged value for crust and mantle. Second, they added constraints on the crustal discontinuity depths in the prior distribution of the shear wave velocity. Given these strong

  9. Interaction Between Magma Fluids and Lithosphere Rocks Under Crest Zone of MAR: Mineralogical and Petrophysical Consequences (United States)

    Sharapov, V. N.; Mazurov, M. P.; Mysov, V. M.


    Using numerical and physical experiments dynamics of mass-change in the lithosphere under the zones joining rift valleys of MAR and transform faults was modeled. `Black smokers', methane gas flows, and bubbly carbon deposits, as products of hydrocarbon condensation, present in these zones. Numerical experiments were completed using flow-reactor scheme of PC Selector Win for gas flows of compositions: C (0.1-4), O (0-2), H (0.5-4), Cl (0.05-0.5), F (0.01-1), S (0.01-0.1), and N (0.02-0.1). Weight fraction of gas mixture in rocks was 1.5-0.01%, P from 45-10 kbar to 30-100 bar, T=1200-400° C. The fluid-rock interaction time was t=1-100 steps. Density change for new-formed rock in the lithosphere profile was estimated by virtual mineral composition recounting for each time step. Verification of physicochemical model was carried out by comparison of changed rocks and numerically obtained condensates, as well as minerals and solid, gas and liquid carbon phases, obtained experimentally using the equipment to study catalytic conversion of synthesis-gas flow (H2=65%, CO=34.8%, N2=0.2% vol.). It was shown that above the boiling boundary of basic liquids a field of convective mass transfer should form in the lithosphere. This field includes a number of zones of initial rock change with regions of solid phase depleting and condensing. The ranges of rock composition change due to `reduced' and oxidized' gas mixtures were studied. The density change for ultra-basic rock in the lithosphere is related to spatial and time change of oxygen potential, which current values at the beginning of the interaction process are buffering by rocks, and then - by the values at the system input. In the case when reduced gas mixtures exist, an oxidation roll is forming in the flow, for oxidized mixtures - a reduction roll. At the fluid output at the sea bottom their composition is the most oxidized. When fluids and initial rocks of the lithosphere interact, changed rock mixtures of anomalously

  10. Numerical modeling of the deformations associated with large subduction earthquakes through the seismic cycle (United States)

    Fleitout, L.; Trubienko, O.; Garaud, J.; Vigny, C.; Cailletaud, G.; Simons, W. J.; Satirapod, C.; Shestakov, N.


    A 3D finite element code (Zebulon-Zset) is used to model deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes: Sumatra, Japan and Chile. The mesh featuring a broad spherical shell portion with a viscoelastic asthenosphere is refined close to the subduction zones. The model is constrained by 6 years of postseismic data in Sumatra area and over a year of data for Japan and Chile plus preseismic data in the three areas. The coseismic displacements on the subduction plane are inverted from the coseismic displacements using the finite element program and provide the initial stresses. The predicted horizontal postseismic displacements depend upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. Non-dimensionalized by the coseismic displacements, they present an almost uniform value between 500km and 1500km from the trench for elastic plates 80km thick. The time evolution of the velocities is function of the creep law (Maxwell, Burger or power-law creep). Moreover, the forward models predict a sizable far-field subsidence, also with a spatial distribution which varies with the geometry of the asthenosphere and lithosphere. Slip on the subduction interface does not induce such a subsidence. The observed horizontal velocities, divided by the coseismic displacement, present a similar pattern as function of time and distance from trench for the three areas, indicative of similar lithospheric and asthenospheric thicknesses and asthenospheric viscosity. This pattern cannot be fitted with power-law creep in the asthenosphere but indicates a lithosphere 60 to 90km thick and an asthenosphere of thickness of the order of 100km with a burger rheology represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μKelvin=μelastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The postseismic subsidence is

  11. Prediction of deformity in spinal tuberculosis

    NARCIS (Netherlands)

    Jutte, Paul; Wuite, Sander; The, Bertram; van Altena, Richard; Veldhuizen, Albert

    Tuberculosis of the spine may cause kyphosis, which may in turn cause late paraplegia, respiratory compromise, and unsightly deformity. Surgical correction therefore may be considered for large or progressive deformities. We retrospectively analyzed clinical and radiographic parameters to predict

  12. Seismic anisotropy and mantle deformation in western Iran inferred from shear-wave splitting analysis (United States)

    Sadeghi-Bagherabadi, Amir; Sobouti, Farhad; Ghods, Abdolreza; Chen, Ling; Talebian, Morteza; Motaghi, Khalil; Jiang, Mingming; He, Yumei; Ai, Yinshuang


    The Iranian plateau as a part of the Alpine-Himalayan mountain belt is comprised of several tectonic units. These are; the Zagros, Alborz, Talesh and Kopeh-Dagh active thrust and fold belts, the Sannandaj-Sirjan and Urmieh-Dhoktar metamorphic and magmatic belts, and the Makran subduction zone. Much of the structural and deformational characteristics of these units have been formed during the subduction of the Neo-Tethys in the Mesozoic and the subsequent Arabia - Eurasia collision in the Cenozoic. Understanding the pattern of past and present deformation at depth provides a valuable key for enhancing our knowledge about the evolution of the collisional boundary in the Iran region. Here we use measurements of seismic anisotropy to understand this pattern. We use data from a temporary seismic network in western Iran to calculate shear-wave splitting parameters. The network was in operation for one year in 2013 and 2014 and consisted of 63 broadband seismometers installed along three parallel profiles that crossed the western Zagros Mountains, central Iran and the western Alborz Mountains.We present ourresults as splitting measurements of the teleseismic SKS/SKKS core-refracted phases. Our results show an average delay time of about 1.3 sec. The fast polarization orientation of the measurements varies significantly along the profile, indicating important changes in style of deformation across different tectonic units. A range-parallel trend is observed in the Zagros, while the orientations of the fast axes are perpendicular to the strike in the Alborz. We compared our fast polarization orientations with GPS velocity vectors in different reference frames. The fast directions in the Alborz are subparallel to the absolute plate motion GPS directions, indicating that the asthenospheric flow might be the influencing factor in the observed anisotropy. The complicated splitting pattern in the Zagros can be either due to contributions from both lithospheric and asthenospheric

  13. Tuberous breast deformity: principles and practice. (United States)

    Meara, J G; Kolker, A; Bartlett, G; Theile, R; Mutimer, K; Holmes, A D


    The tuberous breast deformity is one of the most challenging congenital breast anomalies. The nomenclature, classification, and treatment of this pathological condition have varied considerably. In this study, 16 patients with 23 tuberous breast deformities are evaluated. The breast deformities are classified according to the three-tier classification system used at the authors' institution. The treatment pattern is evaluated and a flexible algorithm is discussed for the treatment of the tuberous breast deformity.

  14. Criterion for surface contact deformation of metals

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.


    In most engineering applications, bulk plastic deformation of the surface is avoided. There is, however, no criterion for determining whether or not bulk plastic deformation occurs during the contact between rough surfaces. This paper presents a criterion for predicting the deformation behaviour of

  15. Covariant Deformation Quantization of Free Fields


    Harrivel, Dikanaina


    We define covariantly a deformation of a given algebra, then we will see how it can be related to a deformation quantization of a class of observables in Quantum Field Theory. Then we will investigate the operator order related to this deformation quantization.

  16. Protein transfer to membranes upon shape deformation

    NARCIS (Netherlands)

    Sagis, L.M.C.; Bijl, E.; Antono, L.; Ruijter, de N.C.A.; Valenberg, van H.J.F.


    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is

  17. 7 CFR 51.1357 - Seriously deformed. (United States)


    ... were well formed. Round or apple-shaped pears shall not be considered seriously deformed. ... STANDARDS) United States Standards for Pears for Canning Definitions § 51.1357 Seriously deformed. Seriously deformed means that the pear is so badly misshapen as to cause a loss during the usual commercial...


    Directory of Open Access Journals (Sweden)

    M. G. Mel’nikov


    Full Text Available The study is focused on earthquake migrations along active faults in seismic zones of Mongolia. The earthquake migrations are interpreted as a result of the influence of deformational waves. Vector velocities and other parameters of the deformational waves are studied. Based on data from largescale maps, local faults are compared, and differences and similarities of parameters of waves related to faults of different ranks are described.

  19. Molecular deformation mechanisms in polyethylene

    CERN Document Server

    Coutry, S


    adjacent labelled stems is significantly larger when the DPE guest is a copolymer molecule. Our comparative studies on various types of polyethylene lead to the conclusion that their deformation behaviour under drawing has the same basis, with additional effects imputed to the presence of tie-molecules and branches. Three major points were identified in